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Authors‘ response to reviewers. 1 

Reviewer #1 Accept as is (no corrections) 2 

Reviewer #2 minor revisions 3 

Comment #1: The introduction is excellent but long (9 paragraphs). There is a fair amount of 4 

theory/explanation that could potentially be moved to one of the sections describing the 5 

methods. I would invite the authors to at least consider this. 6 

Response #1: We reviewed the Introduction. We included quite a lot on the modelling method 7 

because we neeed to to emphasize that this study used modelling techniques that are quite 8 

novel for the field. We therefore decided to leave the text covering multi-level models as it is. 9 

However, we moved the last sentence of the Introduction, which covers multi-model 10 

inference (and includes the Grueber et al 2011 reference), to the Method section, thus 11 

tightening the text and shortening it slightly. 12 

Change #1: Last sentence of Introduction (P5 L10-13) deleted, and text added to Methods (P8 13 

L19-20). 14 

Comment #2: I would like to see a bit more discussion of the limitations of examining such 15 

large-scale spatiotemporal temperature patterns. The authors explain well the advantages of 16 

these scales (indeed this is a distinguishing characteristic of the paper), but what about the 17 

disadvantages (i.e. the paper limitations)? What is not captured by considering higher 18 

frequency patterns in time (e.g. heat waves and the role on ecosystems and other services)? 19 

Also, what is missed by not considering smaller scale spatial variability (i.e. thermal diversity 20 

or thermal refugia – see Kurylyk et al. 2015). Some of this ‘large-scale’ mindset influences 21 

the writing in places. For example, it is stated in P2, L28-30 that climate controls are most 22 

important, while hydrologic controls are of secondary importance. I would argue that order is 23 

(or at least can be) switched when it comes to thermal diversity. 24 

Kurylyk BL, MacQuarrie KTB, Linnansaari T, Cunjak RA, Curry RA. 2015 Preserving, 25 

augmenting, and creating cold-water thermal refugia in rivers: concepts derived from research 26 

on the Miramichi River (Canada). Ecohydrology 8(6) 27 

Response #2: The study is indeed focusing on larger spatio-temporal scales, which we make 28 

very explicit starting with the paper title (which includes such key words as “basin” and 29 

“seasonal”), and as the reviewer points out, with the introduction. However, we thought it 30 
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would be useful to emphasize this even more clearly in the introduction and added a sentence 1 

stating that we did not focus on higher frequency temporal patterns or smaller spatial patterns. 2 

Change #2: Sentence added (P2 L26-28). 3 

Comment #3: The results and discussion sections have unnecessary mini introductions that 4 

should be deleted (e.g. P15, L27 – P16, L3) 5 

Response #3: Agreed. 6 

Change #3: Mini-introduction of sections 4 and 5 deleted. 7 

Comment #4: The discussion around P18, L23 addresses the relationship between the climate 8 

variables (and the WT sensitivity to them) and the basin conditions. I might be more careful 9 

with some of the wording to be clear that the authors did not look at long term climate 10 

sensitivity but rather how the seasonal climate data influenced the water temperature. For 11 

example, it is stated: “Thus, water temperature in 24 impermeable basins appears to be more 12 

sensitive to climate than in permeable basins”. The data in the paper do not support that this is 13 

true on a multi-decadal basis but rather just a seasonal basis. Climate implies long terms. 14 

Perhaps they should reword ‘climate’ as ‘seasonal climate data’ or something like this. 15 

Response #4: We reviewed Discussion 5.2 and Conclusions sections, changing ‘climate’ for 16 

‘seasonal climate data’ in four locations, which clarify that other uses of ‘climate’ nearby (eg 17 

within same paragraph or sub-section) has to be understood in that sense (ie not long-term 18 

multi-decadal climate). 19 

Comment #5: Table 2 and related text: Is it possible that precipitation was more a statistical 20 

indicator of streamflow (and thus thermal inertia) rather than an indicator of surface advective 21 

input? This seems like it could be especially true in headwater streams 22 

Response #5: In Table 2, aimed to relate the climate variables from CHESS to an actual 23 

physical process. So, with that perspective, precipitation would be an advective input indeed; 24 

we left Table 2 and associated text unchanged as a consequence. However, the reviewer 25 

makes the point that precipitation, as a predictor in the models, could be a proxy for the effect 26 

of increased streamflow and thermal inertia. We added this point in the Discussion. 27 

Change #5: Text added (P17 L24-25). 28 

Minor comments 29 

P2, L20, the ‘(a)’ is misplaced in this sentence causing the sentence to read awkwardly. Done 30 
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P4, L1, ‘rarely’ should be moved before ‘coordinated’ Done 1 

P9, L7 typo (similar) Done 2 

P9, L13, missing word(s) at end of sentence Missing word (‘sites’) added at end of sentence 3 

P17, L1 should be ‘only partly causal’ Done 4 

P18, L28 I don’t think ‘damper’ is the right word (or a word) We checked and it is actually 5 

the right noun (something that dampens) but used as an adjective; we replaced it with 6 

‘dampening’. 7 

Figure 1 caption should be slightly reworded. It is a bit confusing Caption edited8 
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Abstract 9 

Stream water temperature is a key control of many river processes (e.g. ecology, 10 

biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). 11 

Consequently, the effect of climate change and variability on stream temperature is a major 12 

scientific and practical concern. This paper aimed (1) to improve the understanding of large-13 

scale spatial and temporal variability in climate–water temperature associations, and (2) to 14 

assess explicitly the influence of basin properties as modifiers of these relationships. A dataset 15 

was assembled including six distinct modelled climatic variables (air temperature, downward 16 

shortwave and longwave radiation, wind speed, specific humidity, and precipitation) and 17 

observed stream temperatures for the period 1984–2007 at 35 sites located on 21 rivers within 18 

16 basins (Great Britain geographical extent); the study focused on broad spatio-temporal 19 

patterns hence was based on three-month averaged data (i.e. seasonal). A wide range of basin 20 

properties was derived. Five models were fitted (all seasons, winter, spring, summer, and 21 

autumn). Both site and national spatial scales were investigated at once by using multi-level 22 

modelling with linear multiple regressions. Model selection used Multi-Model Inference, 23 

which provides more robust models, based on sets of good models, rather than a single best 24 

model. Broad climate-water temperature associations common to all sites were obtained from 25 

the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, 26 

were assessed against basin properties with ANOVA. All six climate predictors investigated 27 

play a role as a control of water temperature. Air temperature and shortwave radiation are 28 

important for all models/ seasons, while the other predictors are important for some models/ 29 
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seasons only. The form and strength of the climate-stream temperature association vary 1 

depending on season and on water temperature. The dominating climate drivers and physical 2 

processes may change across seasons, and across the stream temperature range. The role of 3 

basin permeability, size, and elevation as modifiers of the climate-water temperature 4 

associations was confirmed; permeability has the primary influence, followed by size and 5 

elevation. Smaller, upland, and/or impermeable basins are the most influenced by atmospheric 6 

heat exchanges, while larger, lowland and permeable basins are least influenced. The study 7 

showed the importance of accounting properly for the spatial and temporal variability of 8 

climate-stream temperature associations and their modification by basin properties. 9 

1 Introduction 10 

River and stream water temperature (WT) is a key control of many river processes (e.g. 11 

ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational 12 

use); Webb et al. (2008). From the perspective of river ecology, WT’s influence is both 13 

direct—e.g. organism growth rates (Imholt et al., 2013), predator-prey interactions (Boscarino 14 

et al., 2007), activity of poikilotherms, geographical distribution (Boisneau et al., 2008)—and 15 

indirect, e.g. water quality (chemical kinetics), nutrient consumption, food availability 16 

(Hannah and Garner, 2015). 17 

Consequently, the effect of climate change and variability on stream temperature is a major 18 

scientific and practical concern (Garner et al., 2014). River thermal sensitivity to climate 19 

change and variability is controlled by complex drivers that need to be unravelled (a) to better 20 

understand (a) patterns of spatio-temporal variability and (b) the relative importance of 21 

different controls to inform water and land management, especially climate change mitigation 22 

and adaptations strategies (Hannah and Garner, 2015). There is a growing body of river 23 

temperature research but there is still limited understanding of large-scale spatial and 24 

temporal variability in climate–WT associations, and of the influence of basin properties as 25 

modifiers of these relationships (Garner et al., 2014). Due to the focus on large scales, this 26 

paper is not investigating higher frequency temporal patterns (eg heat waves) or smaller 27 

spatial variability (eg thermal diversity and refugia). This paper extends Laizé (2015). 28 

River thermal regimes are complex because they involve many interacting drivers (Hannah et 29 

al., 2004, 2008). Caissie (2006) identified atmospheric conditions as the primary group of 30 

controls, with hydrology linked to basin physical properties (e.g. topography, geology) as 31 

secondary influencing factors. 32 
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The main climate variables (Fig. 1) which constitute an ‘atmospheric conditions’ group, can 1 

be identified by analysing the theoretical heat budget for a stream reach without tributary 2 

inflow, which may be expressed as (adapted from Hannah and Garner, 2015): 3 

Qn = Q* + Qh + Qe + Qbhf + Qf + Qa                                                                         Equation 1 4 

where Qn is the total net heat exchange, Q* the heat flux due to net radiation, Qh the heat flux 5 

due to sensible transfer between air and water (sensible heat), Qe the heat flux due to 6 

evaporation and condensation (latent heat), Qbhf the heat flux to and from the river bed, Qf the 7 

heat flux due to friction at the bed and banks, and Qa the heat flux due to advective transfer by 8 

precipitation and groundwater. 9 

The different components of Eq. (1) correspond to different processes, related to climatic and 10 

hydrological conditions. Q* corresponds to shortwave radiation (insolation from the sun) and 11 

longwave radiation (emitted towards the stream by clouds and overhanging surfaces such as 12 

vegetation, and reemitted back to space (lost) at water surface temperature). Qh corresponds to 13 

convective energy exchanges between air and water (at the surface) causing heat loss or gain. 14 

Qe represents heat loss by evaporation or gain by condensation. Qbhf and Qf do not relate 15 

directly to climate processes but rather local hydrological conditions. (Qf can be assumed to 16 

be negligible in many systems; e.g. Hannah et al., 2008). Qa corresponds to advective heat 17 

exchanges, e.g. inflow or outflow into the river reach, hyporheic exchange, groundwater. A 18 

direct, climatic component of Qa is precipitation inputs, which is thought to have a limited 19 

contribution (Caissie, 2006). 20 

These variables are not independent. Figure 1 features a schematic representation of the 21 

interactions between these variables. Downward short and long wave radiations increase WT 22 

but also air temperature, then there are exchanges between air and water, to influence sensible 23 

heating. Additionally, wind plays a significant role by increasing evaporative cooling and in 24 

modifying the air–water exchanges by increasing mixing (Hannah et al., 2008). The physical 25 

equations underpinning the role of wind can be found in Caissie et al. (2007). 26 

A review of recent international water temperature research can be found in Hannah and 27 

Garner (2015). To date, most UK-focused studies (Table 1) tend to be either specific to a few 28 

monitoring sites, to have a limited geographical extent (i.e. focused with specific region of the 29 

country), and /or to consider few climate drivers. In addition, seasonality, which has huge 30 

ecological relevance with regards to phenology, is only explored formally in a small number 31 

of papers (e.g. Langan et al., 2001; Hrachowitz et al., 2010). A major difficulty is to pair WT 32 
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and climate monitoring sites, as monitoring is rarely coordinated rarely, then to identify time 1 

series with long enough common periods of record. For example, Garner et al. (2014) 2 

undertook a England and Wales scale study and matched water temperature monitoring sites 3 

with climate and hydrological monitoring sites for 38 temperature sites out of ~ 3,000 sites in 4 

the Environment Agency’s Freshwater Temperature Archive (Orr et al., 2014). Garner et al. 5 

(2014) is one of the few studies internationally (eg Hrachowitz et al. (2010) in the UK; Isaak 6 

and Hubert (2001), Nelitz et al. (2007), or Isaak et al. (2010) in North America) to consider 7 

explicitly and empirically the role of a limited number of basin properties with regards to 8 

stream temperature. 9 

In most of these studies, analyses are done on a site by site basis, which limits the extent to 10 

which broad patterns can be inferred (statistical results for a given site are only valid for that 11 

site); Caissie, 2006 emphasized this as a limitation when having to work across different 12 

spatial scales. In contrast, studies like Garner et al. (2014) group sites together using 13 

classification techniques to identify regional patterns. However, doing so causes a loss of 14 

information since data-points of all sites within a class are summarised and intra-class 15 

differences lost, and inferences at group level are not necessarily valid at site level. An 16 

alternative analytical/ statistical method, which can characterise broad patterns while 17 

preserving individual site information, should be investigated. 18 

The following research gaps are identified (above): (a) climate–WT studies in the UK used a 19 

limited number of WT sites or climate explanatory variables (focus on air temperature links to 20 

WT) and /or are limited in geographical extent; (b) limited formal analysis of seasonality; (c) 21 

limited knowledge of role of basin properties as modifiers of climate–WT associations; and 22 

(d) need for alternative analysis method to optimise data utility. 23 

Given this context, the aims of this study are (1) to improve the understanding of large-scale 24 

spatial and temporal variability in climate–WT associations, and (2) to assess explicitly the 25 

influence of basin properties as modifiers of these relationships. This paper resolves the issue 26 

of driving data availability by using a comprehensive and consistent set of modelled climate 27 

data (see Table 2 below). With a period of records of 1984–2007 (24 years), for a total of 35 28 

sites located on 21 rivers within 16 basins (providing a Great Britain wide geographical 29 

extent) six distinct modelled climatic variables were taken within 1 km of the sites. The study 30 

focuses on broad spatio-temporal patterns; hence it is based on three-month averaged data 31 

(i.e. seasonal). Such a temporal scale limits issues of temporal auto-correlation often found in 32 
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water temperature time series (Caissie, 2006). The study also investigates a wider range of 1 

basin properties than previous studies. 2 

Innovatively, this paper investigates both site and national spatial scales at once. Multi-level 3 

(ML) modelling with linear multiple regressions is applied as an alternative to site-specific or 4 

to classification-based analyses because it allows pooling of all site data together while taking 5 

into account data structure (i.e. observations at site, sites within same basin) as well as not 6 

losing any information due to class-level data averaging (Zuur et al., 2009). With this 7 

modelling technique, it is possible to investigate both study aims (i.e. the broad climate-WT 8 

associations common to all sites, and the site-specific responses which may be related to basin 9 

properties) within the same analysis framework. In addition, model selection used Multi-10 

Model Inference (MMI), another state-of-the-art technique, which provides more robust 11 

models based on sets of good models rather than selecting a single best model (Grueber et al., 12 

2011). 13 

2 Data 14 

With regards to research Aim 1 of this paper, observed river temperature data were assembled 15 

with a view to maximise spatial and temporal coverage as much as practically possible. To 16 

address the issue of mismatching monitoring networks, climate variables were obtained from 17 

a modelled dataset. The paired climate–WT dataset used in this paper has been published 18 

online via an open-access data repository (Laizé and Bruna Meredith, 2015). With regards to 19 

Aim 2, a comprehensive and consistent set of basin properties were derived for all study sites. 20 

2.1 Water temperature data 21 

WT data (unit: ºC) were collated from various research projects run by the UK’s Centre for 22 

Ecology and Hydrology (CEH). The period of record, temporal resolution, and recording 23 

method of the individual datasets vary. These datasets totalled 41 sites, of which 35 were 24 

retained after quality-control (e.g. removal of duplicates; see Fig. 2). As often the case, water 25 

temperature was not the main focus of these projects: fish for the River Frome (1 site, 1991-26 

2009, 15-min logger; Welton et al., 1999), Great Ouse (1 site, 1989-1993, hourly logger), and 27 

Tadnoll (2 sites, 2005-2006, 15-min logger; Edwards et al., 2009) studies; impact of forestry 28 

on water quality for the Plynlimon catchment project (4 sites, 1984-2008, weekly manual 29 

recording; Neal et al., 2010); acidification monitoring for the UK Acid Water Monitoring 30 

Network (UKAWMN) project (10 sites, 1988-2008, monthly (not necessarily on same day) 31 
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manual recoding; Evans et al., 2008); hydrological and biogeochemical processes for the 1 

LOwland CAtchment Research (LOCAR) project (17 sites, 2002-2011, 15-min logger; 2 

Wheater et al., 2006). Whether recording was done manually or with a logger, measures are 3 

instantaneous. Because these original projects were focused on natural rivers, the temperature 4 

data used herein may be considered as largely free from artificial influences (e.g. no industrial 5 

use for cooling or heated effluent discharges). 6 

2.2 Climate data 7 

The Climate Hydrology and Ecology research Support System (CHESS) dataset features six 8 

climate variables (Table 2). CHESS is the forcing dataset for the Joint UK Land Environment 9 

Simulator model (JULES; Best et al., 2011). CHESS is a UK-wide 1-km grid dataset derived 10 

by downscaling the UK Meteorological Office Rainfall and Evaporation Calculation System 11 

(MORECS) 40-km grids (Hough and Jones, 1997), except for precipitation that were derived 12 

from observed rain gauge data by using the natural neighbour interpolation method, which is 13 

a development of the Thiessen approach (Keller et al., 2006). For each 1-km cell, modelled 14 

daily time series of all variables are available for the period 1971–2007. The processes linked 15 

to AT, LWR, P, and SWR are given in the stream heat budget overview (see Introduction) 16 

and summarised in Table 2. Specific humidity (SH) gives a measure of evaporation potential 17 

(i.e. the more humidity, the less evaporation due to reduced vapour pressure gradients; e.g. 18 

Hannah et al., 2008). Wind speed (WS) captures the various effects of wind in increasing 19 

evaporation (cooling) and convective air-water exchanges (cooling or warming) Each CHESS 20 

cell was matched to the study temperature site(s) it contained. 21 

2.3 Seasonal time series 22 

Firstly, sub-daily water temperature data were averaged at a daily time step (Frome, Great 23 

Ouse, Tadnoll, LOCAR) while spot measurements (Plynlimon, UKAWMN) were assumed 24 

representative of the day on which they were taken, although it is worth keeping in mind that 25 

they are only representative of daylight conditions. Secondly, daily water temperature data 26 

were matched by date to the daily climate data. Thirdly, seasonal averages were computed 27 

from these daily data for all variables. Seasons were defined as: December–February (winter), 28 

March–May (spring), June–August (summer), and September–November (autumn). For 29 

winter, these seasonal data for year y were based on data from December of year y-1 to 30 

February of year y (e.g. for 1976, December 1975, January and February 1976). Lastly, five 31 
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time series were derived from these data: one series per season at an annual time step (i.e. 1 

winter 2000, winter 2001, winter 2002, etc.), and one series with all seasons at a seasonal time 2 

step (i.e. autumn 2000, winter 2000, spring 2000, etc). These series and their related models 3 

are referred to as thereafter ‘autumn’, ‘winter’, ‘spring’, ‘summer’, and ‘all seasons’. 4 

2.4 Basin properties 5 

Basin properties were derived from the UK Flood Estimation Handbook (FEH), the UK 6 

‘industry standard’ for flood regionalisation studies, which includes 19 basin descriptors 7 

(Bayliss, 1999). A subset of descriptors was used.  First, the 19 catchment descriptors were 8 

derived for each site. Many basin properties co-vary, often substantially, and they are best 9 

interpreted as groups of properties (‘meta-properties’) rather than on their own. Descriptor 10 

specifications (Bayliss, 1999), pair plots, and correlation matrices were checked to identify 11 

likely groups of descriptors (for example, all FEH rainfall descriptors capturing basin 12 

wetness). Three groups were identifed, which relate to basin elevation, permeability (ie 13 

responsive impermeable v groundwater-fed basins), and size. These have been found to 14 

modify climate-hydrology associations in UK basins (eg Bower et al., 2004; Laizé and 15 

Hannah, 2010; Garner et al., 2014). Then, a test run of the basin property analysis outlined in 16 

Section 3.3 (ANOVA) was performed in order to check that all FEH descriptors from a given 17 

group of properties had consistent associations (positive or negative) with each model 18 

predictor (considering basin properties significantly associated with site-specific coefficients 19 

only), while one FEH descriptor was retained to represent each meta-property. 20 

The following meta-properties and their corresponding FEH descriptors were thus selected for 21 

the final analysis: 22 

• Elevation/wetness (‘elevation’ hereafter): as noted in Laizé and Hannah (2010), basin 23 

elevation and wetness are very strongly correlated in the UK; the meta-property ‘Elevation’ is 24 

represented by the ‘mean basin elevation above sea level‘ (m; FEH descriptor named 25 

‘ALTBAR‘), and, for the winter model only, by the proportion of time basin soils are wet (%; 26 

FEH descriptor named ‘PROPWET‘), based on soil moisture time series classified as wet/dry 27 

days; highly correlated to rainfall); elevation is also related to air temperature; 28 

• Size: basin area (km2; ‘AREA‘) using its natural log; area is a proxy for discharge, 29 

thus for thermal capacity, and is also linked to elevation; 30 
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• Permeability: Base Flow Index from Hydrology of Soil Type (BFIHOST; 1 

dimensionless); ranging from 0 (less permeable basin) to 1 (more permeable); temperature 2 

regimes in groundwater-fed (permeable) basins are expected to be more influenced by 3 

groundwater inputs than in impermeable basins. 4 

The 35 study sites are representative of a wide range of UK basin types in terms of the above 5 

properties: (1) upland/lowland (ALTBAR approximately within 20-700 m and PROPWET 6 

within 24-80%); (2) small and medium size (AREA ~0.5-415 km2); (3) 7 

impermeable/permeable (BFIHOST 0.24-0.92). In addition, the study sites feature 8 

combinations of all three meta-properties. 9 

3 Methods 10 

This section describes the analytical methods used. Firstly, as stated in the introduction, linear 11 

multiple regressions fitted with the Multi-level (ML) modelling technique was chosen as the 12 

core method because it allowed to analyse the multiple-site data in terms of both overall 13 

climate–WT associations (linked to research Aim 1) and site-specific responses (linked to 14 

research Aim 2; role of basins as modifiers of those associations). Although linear regressions 15 

are only approximating climate–WT associations (eg AT-WT associations are better 16 

described with logistic models; Mohseni et al., 1998), they were considered a sensible 17 

compromise. Secondly, with regards to overall climate-WT associations, ML model selection 18 

was done with Multi-Model Inference (MMI), a state-of-the-art technique that selects sets of 19 

good models rather than a single best model (Grueber et al., 2011), to yield more robust 20 

models than with standard single model selection, especially given the number of climate 21 

predictors used. Lastly, any relation between site-specific climate-WT responses and basin 22 

properties were tested formally using an analysis of variance (ANOVA). 23 

The study work flow is summarised in Fig. 3: (a) WT observed data linked with (b) modelled 24 

climate variables, then (c) all converted to seasonal (three-month) average series used within 25 

(d) ML modelling / MMI framework producing (e) five output models (individual seasons 26 

and all seasons; Aim 1), and (f) sets of basin properties (Aim 2). 27 

3.1 Multi-level modelling 28 

To take into account the hierarchical nature of the water temperature dataset (e.g. data 29 

measured at the same site, sites located on the same river), ML modelling was used to build 30 

linear models with water temperature as the predicted variable, and the six climate variables 31 
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as explanatory variables. When analysing multiple-site datasets, there are two common 1 

alternatives: (a) performing one regression for individual sites, or (b) one regression on all 2 

sites pooled together. On the one hand, site-specific regressions can make results highly 3 

uncertain (sites may have few data-points; fitting numerous regressions is more prone to 4 

identify spurious relationships, ie Type II errors). Thus, drawing out general patterns (e.g. 5 

variation between sites, effect of site characteristics) can be difficult. On the other hand, full 6 

pooling of sites ignores the clustering of samples within groups (eg measurements from a 7 

given site, or sites on the same river, may be more similalr), which may hide important 8 

differences between groups and may cause problems with statistical inference (e.g. violation 9 

of the assumption of independence between samples, sites with large or small numbers of 10 

samples equally influencing the model outcome). 11 

To overcome these issues, ML modelling can take into account the hierarchical structure in a 12 

dataset, ie the different ‘levels’ at which data can be grouped (eg data at sites, sites within 13 

basins, basins within countries), thus allowing for the pooling of data from multiple sites. A 14 

ML model has two components, which correspond to generic patterns (i.e. similar to a 15 

regression on fully-pooled data) and to level-specific patterns. The generic patterns, which are 16 

described by the explanatory variables as in a standard regression, are called the ‘fixed 17 

component’ or ‘fixed effects’ of the model. The unexplained variation between levels (eg 18 

patterns specific to a site) is termed the ‘random component’ or ‘random effects’. The random 19 

component captures the fact that levels may respond differently to a given predictor. For 20 

example, stream temperature could be very responsive to climate at one site (high slope 21 

value) but unresponsive at another (low slope value). In some cases, levels may have the same 22 

response to predictors but may have differing averages, ie differing with regards to their 23 

intercepts (eg two sites with same temporal patterns but with one site systematically cooler 24 

than another due to local characteristics or recoding procedure); such ML models are 25 

commonly known as ‘random intercept only’. 26 

In our analyses, a three-level data structure was applied: individual observations (level 1) 27 

nested within monitoring sites (level 2) nested within river stretches (level 3). In addition, a 28 

time variable was included as a predictor to take into account any linear trend in the time 29 

series. To avoid instability issues when fitting models, the predictors were centred (i.e. 30 

predictor values minus their mean). 31 
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3.2 Model selection with multi-model inference 1 

Following standard ML modelling practice (e.g. Zuur et al., 2009), the model selection was 2 

applied in two stages: (a) selection of the random component variables; (b) selection of the 3 

fixed component variables. 4 

First, the random component selection was done as follows. With all predictors included in 5 

the fixed component, all combinations of predictors in the random component were fitted. 6 

The models were then ranked using Akaike’s Information Criterion (AIC; Akaike, 1974). AIC 7 

is used to select models offering the best compromise between fit and predictor parsimony; a 8 

model with a lower AIC achieves a better rati of fit vs number of predictors. Note that a 9 

variation of AIC was used: AICc, which is AIC corrected for small-size datasets. Selection 10 

was done for the four seasonal series as well as the ‘all season’ series. In each case, the single 11 

combination of predictors giving the lowest AICc was retained as the random component. 12 

Secondly, with the random component selected, the fixed component model selection 13 

followed the MMI approach, which selects sets of ‘good’ models rather a single ‘best’ one. 14 

Using a traditional model selection technique, like stepwise regression, the single model with 15 

the best (i.e. lowest) AICc would be selected. This presents two issues: (a) due to the 16 

algorithms underlying these types of selection techniques, some model formulations may end 17 

up not being tested thus causing a sub-optimal selection; (b) given models with similar AICc 18 

values have similarly good performance, it is not statistically correct to keep the lowest AICc 19 

model only as the best model and discard the others. MMI addresses these issues by selecting 20 

sets of good models. In practice, all possible combinations of predictors using from one to six 21 

of the climate variables described above were fitted. The resulting models were ranked based 22 

their AICc. All models within four points of the lowest AIC were selected (Zuur et al., 2009). 23 

Each set of models was then summarised as an ‘average model’ (predictor coefficients over 24 

all models in the set are averaged). Akaike weights (Burnham and Anderson, 2002) were then 25 

calculated; these are the re-scaled AICc scores of the models included in a MMI selection set. 26 

The weights, which add up to 1, give an indication of how important relatively to each others 27 

are  the models within a MMI set. For example, results showed that the ‘all seasons’ model is 28 

based on two models with Akaike weights 0.74 and 0.26: the former model has more 29 

influence on the resulting average model than the latter.  30 

The Akaike weights form the basis to calculate the Relative Importance (RI) of each 31 

predictor: RI is how one reports on the role of each explanatory variable in MMI.. For a given 32 
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predictor, RI is calculated as the sum of the Akaike weights (re-scaled AICc) of the models in 1 

which that predictor is included. RI ranges from 0 (variable never included) to 1 (included in 2 

all models). For example, results showed that the ‘all seasons’ model is based on two models 3 

with Akaike weights 0.74 and 0.26; the explanatory variable P is only included in the latter 4 

model, hence its RI is 0.26, while the other five predictors are in both models and have a RI of 5 

1 (see Table 3 below). With MMI, RI is analogous conceptually to predictor significance, 6 

assessed with p values,in standard regression Model. This is why p values are not calculated 7 

nor given in the Results section, but instead RI values for predictors are featured (a predictor 8 

with a higher RI is more significant). Grueber et al. (2011) cover the above points in details 9 

and give a very good example of such an application of MMI in a natural sciences context. 10 

3.3 Analysis of basin property influence 11 

For those explanatory variables that were included in the random effects (i.e. different sites 12 

can have different coefficients), any relation between site-specific coefficients and basin 13 

properties was investigated by using maps and scatter plots of coefficients against basin 14 

properties, and by applying ANOVA to confirm observed patterns. For each coefficient and 15 

basin property, ANOVA is comparing formally (a) a model assuming there is no difference in 16 

coefficient between sites against (b) a model assuming the coefficient is function of the basin 17 

property. A basin property is considered having significant influence on the WT–climate 18 

variable relationship when the ANOVA p value is <0.05. To quantify the influence of these 19 

properties, either alone or combined, linear regressions of the site-specific coefficients against 20 

these properties were fitted. 21 

4 Results 22 

The result section has three parts:  23 

 Selection and performance of the five models (all seasons, winter, spring, summer, 24 

autumn). 25 

 Analysis of the fixed component of the five ML models to inform on climate-WT 26 

associations (research Aim 1); results are split in three sub-sections (relative 27 

importance of the predictors, form and strength of predictor-WT associations, relative 28 

contributions of predictors to modelled WT). 29 
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 Analysis of the random component of the five ML models to inform on site-specific 1 

climate-WT responses (for those predictors included as random effects), followed by 2 

ANOVA to assess the role of basins as modifiers of the climate–WT associations. 3 

(research Aim 2). 4 

4.1 Model selection and performance 5 

As described above, selecting the five ML models was done in two stages. First, with all 6 

predictors included in the fixed component of the ML model, combinations of predictors as 7 

random effects were tested, and the combination yielding the lowest AICc was retained. As a 8 

result, the following variables were included as random effects (i.e. variables for which 9 

different sites have different coefficients): all seasons = AT and SWR; winter = SH; summer 10 

= P; autumn = SWR; no predictor was included for spring (random intercept only). Second, 11 

all combination of the predictors in the fixed components were tested with MMI. The number 12 

of models included in each final set as selected by MMI was: all seasons = 2; winter = 4; 13 

spring = 12; summer = 6; autumn = 14. 14 

With ML models, standard R2 are not appropriate; conditional R2 (Nakagawa and Schielzeth, 15 

2013), which are analogue to standard R2 but designed for ML models, were calculated. 16 

Conditional R2 were: 0.96 for both all seasons models; 0.88 for all four winter models; within 17 

0.88-0.89 (mean 0.88) for the 12 spring models (mean 0.88); within 0.84-0.85 (mean 0.84) for 18 

the six summer models; within 0.88-0.89 (mean 0.88) for the 14 autumn models. 19 

With MMI, each set of models is summarised as an ‘average model’, for which a given 20 

variable coefficient is its average value over all models in the set. The average model 21 

coefficients are presented in Table 3.. All average models have good fits consistent with 22 

conditional R2 given above, and as evidenced by plots of modelled against observed water 23 

temperature data in Fig. 4. Thereafter, if unqualified, the term ‘model’ means the average 24 

model for a given set of selected models 25 

4.2 Relative influence of climate drivers 26 

4.2.1 Relative importance of the predictors 27 

As explained above, within the MMI framework, the significance of a predictor is captured 28 

with its relative importance RI in the selected model sets (RI = 0, predictor never retained; RI 29 
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= 1, predictor retained in all models of set). Predictor RIs for all average models are given in 1 

Table 3. First, there is no predictor with a zero RI for any average model. This means that all 2 

predictors are used in all or part of the sets of selected individual models. Predictors can be 3 

ordered by decreasing importance: AT (RI=1 for all models); SWR (RI=1 for four models, 4 

and 0.64 for the summer one); WS (RI=1 for two models, and 0.33-0.68 for others); SH (RI=1 5 

for two models, 0.34-0.53 for others); P (RI=1 for one model, 0.15-0.41 for others); LWR 6 

(RI=1 for one model, 0.13-0.25 for others). 7 

Second, each model has its own set of most important predictors (with RI > 0.50 as a 8 

threshold, i.e. predictor included in half of the selected individual models): all seasons, all 9 

predictors except P; winter, AT, SWR, WS, and SH; spring, AT, SWR, and WS; summer, all 10 

predictors; autumn, AT and SWR. 11 

4.2.2 Form and strength of associations between climate predictors and water 12 

temperature 13 

The section focuses on the fixed effect coefficients of the predictors (i.e. coefficients valid for 14 

all sites). Predictors AT, SWR and SH have positive coefficients for all models (i.e. increases 15 

of these predictors are associated with a consistent warming effect on water temperature). 16 

Predictors LWR, WS, and P have positive or (mostly) negative coefficients (i.e. increases of 17 

these predictors are associated with warning or cooling, depending on season; Table 3). 18 

The strength of the association varies with season. Comparing the absolute value of the 19 

seasonal coefficients for each variable (not between variables as they have different scales): 20 

AT, lowest in winter, highest in autumn; SWR, lowest in autumn, highest in winter; LWR, 21 

lowest in winter, highest in summer; WS, lowest in autumn, highest in summer; SH, lowest in 22 

autumn, highest in winter; P, lowest in summer, highest in autumn. 23 

4.2.3 Relative predictor contributions 24 

By definition, the predictors may have different units and orders of magnitude. Their 25 

coefficients cannot be compared directly to get an indication of their relative contribution to 26 

WT predictions. Instead, for each generic average model (see coefficients in Table 3), 27 

predicted WT values were generated for the whole period of record, then the percentage 28 

contributions of each predictor to these predicted WT values were calculated (ie a time series 29 

of predicted WT and of percentage contributions for the six predictors). Boxplots of the 30 
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percentage contributions for the six predictors and the five models are featured on the left-1 

hand side of Fig. 5 (for readability, outliers are not displayed). The thick black central line 2 

corresponds to the median percentage contribution. The shorter the boxes and whisker extents 3 

are, the more constant are predictor contributions to modelled WT, with longer extents 4 

representing more variation. While, the boxplots inform about contribution differences 5 

between models, plotting predictor contributions against modelled WT (right-hand side of 6 

Fig. 5) shows that the contribution variability, for a given model, is in many cases related to 7 

WT rather than random (i.e. some predictors are more or less influential depending on thermal 8 

conditions). 9 

AT is the main contributor except in winter (second to SH); its median contribution is around 10 

12% for winter, and 30-35% for the other models. In all cases, AT contribution increases as 11 

WT increases (AT has more influence at warmer WT). 12 

SWR influence is quite constant for all models (medians ranging from +4.5% to 7.5%; up to a 13 

maximum of +15.8% in winter) except autumn, for which it is very limited (median +0.13%). 14 

Within each model, SWR contribution is fairly stable across the WT range but showing 15 

slightly more variability for colder WT. 16 

LWR is the second contributor for the ‘all seasons’ and the summer models. Its contribution is 17 

negative except for spring, but in all cases, the contribution decreases as WT increases (i.e. 18 

LWR has more influence on colder WT). 19 

WS has a negative contribution for all models except autumn. WS is most influential for 20 

colder WT (e.g. down to a minimum of -13.70% for all seasons model, -11.74% for summer); 21 

its contribution decreases as WT becomes warmer (e.g. around -1% for most models). WS 22 

contributions are more variable for colder WT (ie more scatter right-hand side plots; Fig. 5) 23 

than for warmer WT. For autumn, WS has limited influence, with its contribution ranging 24 

from +0.17% to +0.90%. 25 

SH contribution is highest in winter (main contributor with median +27.20%) and for ‘all 26 

seasons’, but otherwise limited for the other seasons (medians ranging +2.10% to +7.23%). 27 

SH contributions are independent from WT. 28 

P has limited influence with its contributions ranging from -1.13% (minimum, spring) to 29 

+0.22% (maximum, winter). Its contributions show very little variability and no pattern in 30 

relation to WT. 31 
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4.3 Role of basin properties 1 

The site-specific coefficients were initially mapped against elevation and permeability to 2 

explore basin modification of the WT–climate relationship, and any pattern linked to 3 

easting/northing. While there was no clear easting/northing pattern, the maps showed 4 

potential associations between coefficients and basin properties. 5 

Then, ANOVA was run on those descriptors to identify the ones significantly associated with 6 

the model site-specific coefficients. Associations between meta-properties/descriptors and 7 

site-specific coefficients are showed in Table 4. Note: no property was found to be associated 8 

with P coefficients in summer. 9 

To quantify the influence of the properties, either alone, or combined, simple linear 10 

regressions of the site-specific coefficients were fitted and ranked with AICc following the 11 

MMI technique used above. Models are featured in Table 5. The best models are the ones 12 

with the lowest AICc (displayed in bold characters); while all models featured are within four 13 

AICc points, hence are considered equally good (Zuur et al., 2009). Depending on the site-14 

specific coefficient, the R2 range from 0.125 (autumn SWR) to 0.411 (‘all seasons’ AT). In 15 

each case, a single regression (on BFIHOST or ALTBAR) is the best model AICc-wise, 16 

although most of the multiple regressions are within 4 AICc points so equally valid models. In 17 

the UK context, these meta-properties are themselves not independent: (i) high upland basins 18 

are more often impermeablebecause permeable geology predominantly occurs in the UK 19 

lowlands; (ii) there are comparatively more larger basins at lower elevations. Results in Table 20 

5 demonstrate this. For the ‘all seasons’ AT coefficient models, single regressions on 21 

BFIHOST, ln(AREA), and ALTBAR achieves a R2 of 0.370, 0.284, and 0.127, respectively, 22 

but the multiple regressions with either two or all of them only achieve R2 within 0.381–23 

0.411. The comparatively small gain when adding several predictors is due to the three 24 

properties co-varying. Similar comments can be made on the other models. 25 

5 Discussion 26 

This section has two parts: 27 

 Discussion of the ML modelling fixed components (national-scale patterns of climate-28 

WT associations; research Aim 1); this includes outcomes of MMI, physical 29 

interpretation of the models, and dependence between climate-WT association and 30 

season/temperature. 31 
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 Discussion of the ML modelling random components (site-specific climate-WT 1 

responses to assess their modification by basin properties; research Aim 2); identified 2 

basin properties are first considered individually, then combined. 3 

5.1 Influence of climate drivers 4 

This section discusses results related to the fixed component of the ML models, which 5 

provide information on national-scale patterns (i.e. patterns valid for every sites used in the 6 

analysis). As explained above, these patterns would be analogue conceptually to those sought 7 

by using cluster analysis or fully-pooled regressions but without their shortcomings (e.g. loss 8 

of information, issues with dependent observations). The use of ML modelling adressed one 9 

of the limitation of empirical regression-based models, for which temperatures are predicted 10 

at specific sites only. Note: the four seasonal models are by definition related to the ‘all 11 

seasons’ model, since they are based on subsets of the same original dataset, so that seasonal 12 

patterns are not independent from the ‘all seasons’ patterns. 13 

The six climate predictors investigated were identified as significant within the MMI 14 

framework (note: MMI applied to the selection of the fixed component part of the ML models 15 

only). Standard model selection techniques (e.g. stepwise) would have most likely excluded 16 

the predictors that are not retained in all models of the MMI selected model sets (i.e. 17 

predictors with lower RI values). In this regard, this study illustrated how MMI can be useful 18 

in picking the effect of secondary controls, otherwise masked by dominant primary drivers. 19 

The models broadly make sense against known physical processes. In interpreting model 20 

results, it important to bear in mind that the aim of the study was to assess the relative 21 

empirical associations between WT and the set of climate drivers, therefore the models are not 22 

explicitly process-based. In addition, the climate variables are inter-related in some extent 23 

(e.g. P associated with more cloud cover, hence reduced SWR and greater SH), and the 24 

analysis is based on 3-month averaged data, which may cause some aspects of the physical 25 

processes to be lost by the averaging (e.g. distinction between variable like SWR, only 26 

contributing during daylight and others like LWR contributing continuously). 27 

All models flag a close association between AT and WT. This finding is consistent with the 28 

literature: it is well documented that AT and WT are both influenced by similar climatic 29 

drivers (e.g. incoming radiation), and tend towards thermodynamic equilibrium (Caissie, 30 

2006). Both variables consequently tend to co-vary positively, making AT a very useful 31 

predictor (as it has been widely demonstrated in the literature; e.g. Webb and Nobilis, 1997), 32 
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although the association is only partly causal only (Johnson, 2003). SWR (insolation from 1 

sun) is physically a positive input of energy; and it is appropriately captured in the models 2 

with positive coefficients. In this study, LWR is the downward component of longwave 3 

radiation (see Table 2). From an energy budget perspective, LWR therefore corresponds to a 4 

positive flux toward the river water. Consequently, LWR contribution to WT should be 5 

positive. Results (Table 3 and Fig. 5) show this is not necessarily the case. LWR corresponds 6 

to radiation diffused by clouds, so co-varies positively with cloud cover (in addition, a 7 

pairwise plot of the study dataset shows that within a given season LWR inversely co-varies 8 

with SWR). Therefore, the negative WT-LWR associations would either be due to LWR 9 

acting as a proxy for processes driving colder water temperatures (e.g. cloud cover), or be a 10 

model artefact due to the LWR/SWR collinearity. SH represents the mass of water vapour in 11 

moist air. The rate of evaporation at the water surface is directly proportional to the SH 12 

gradient (the more humid the air, the lower the evaporation rate). All models give a positive 13 

association between SH and WT. As SH increases, the evaporation rate decreases, and 14 

consequently, cooling due energy loss as latent heat decreases as well. WS has a cooling 15 

effect by increasing evaporation at the water surface, which would be captured by a negative 16 

contribution to WT. In addition, WS plays a significant role in air–water energy exchanges by 17 

increasing mixing, which would manifest as increased cooling or warming depending on the 18 

AT-WT gradient. For all models but autumn, WS has an overall negative contribution 19 

(cooling). For the autumn model, the variable RI and its percentage contribution are both low, 20 

so the positive association has to be considered with caution. P have positive or negative 21 

coefficients depending on model. When rainfall occurs, its temperature may be higher or 22 

lower than that of the river depending on season. In addition, P can also act as a proxy for 23 

cloud cover, thus for reduced SWR and increased LWR; in some cases it might also capture 24 

the effect of increased streamflow and thermal inertia. P has limited importance and 25 

percentage contribution in all the models, which is probably due to precipitations being event-26 

based whereas other variables are continuous (e.g. AT). 27 

The form and strength of the climate-WT association vary depending on season and on WT 28 

range, as showed by the variability in predictor coefficients and contributions. This most 29 

likely captures that the dominating climate drivers and physical processes (e.g. 30 

evaporation/condensation, radiative fluxes; see energy budget above) may change from one 31 

season to another, or within the same season, from colder to warmer weather conditions. As a 32 

consequence, the impact of short (e.g. seasonal climatic drought) and long term climate 33 
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variability or change, and of mitigation schemes (e.g. increasing riparian tree shading) on 1 

stream temperature may not be uniform across time (e.g. higher long-term temperature 2 

increases in winter and spring; Langan et al., 2001). 3 

Probably because AT performs very well as a predictor (e.g. Webb and Nobilis, 1997), most 4 

empirical models have been based on single AT-WT regressions (Caissie, 2006) with very 5 

few using other climate predictors (e.g. AT and solar radiation; Jeppesen and Iversen, 1987). 6 

The present study demonstrated the potential of several other climate variables to contribute 7 

explanatory power (even if they are weaker predictors than AT), which can be beneficial 8 

when trying to tease out the relative influences of the various interconnected processes 9 

controlling water temperature regimes.. Although this was not the primary objective of the 10 

study, the models could be used to generate seasonal water temperatures for the whole spatial 11 

and temporal extent of the CHESS datasets (whole country, 1971–2007 period of records), for 12 

example allowing to investigate broader geographical pattern, or the impact of extreme events 13 

like drought. 14 

5.2 Role of basin properties 15 

The analysis of the random component of the models (i.e. site-specific) identified 16 

permeability, elevation, and basin size as the main modifiers of the climate-WT response 17 

(note: unlike for the fixed component, the random predictors were selected using standard 18 

AIC, i.e. there is only one random component formulation for each of the five models). The 19 

use of ML modelling addressed the limitations of empirical regression-based models to work 20 

across different spatial scales (see above; Caissie, 2006). The basin properties are first 21 

reviewed individually, then together to assess how their respective influences may combine 22 

within a basin (i.e. are all influences cumulating, or one property dominating?) 23 

For all models and for all predictors (all seasons AT, autumn SWR, winter SH), the more 24 

(less) permeable the basin, the lower (higher) the coefficients. Thus, water temperature in 25 

impermeable basins appears to be more sensitive to seasonal climate data than in permeable 26 

basins. Indeed, in permeable basins, the temperature regime is comparatively more influenced 27 

by the groundwater input to the river; groundwater temperature tends to have more inertia and 28 

to have a dampeningr effect on river WT (groundwater warmer than river in winter, cooler in 29 

summer) - see for example, Webb and Zhang (1999), Hannah et al. (2004), Caissie, 2006, 30 

Kelleher et al. (2012). This pattern is consistent with Garner et al. (2014), which used 31 
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different temperature monitoring sites and basin properties to investigate air–water 1 

temperature associations only. 2 

With regard to basin size,  with the ‘all seasons’ model, WT in smaller basins is more 3 

sensitive to AT but less sensitive to SWR than in larger basins. With the autumn model, WT 4 

in smaller basins is more sensitive to SWR. With the winter model, WT in smaller basins is 5 

more sensitive to SH. 6 

Although, there are seemingly contradictory patterns for SWR, this can be explained by the 7 

modelling. Where studies typically use only one variable to represent the whole climate (e.g. 8 

AT, Garner et al., 2014), several climate predictors are considered herein. As noted in the 9 

Introduction, AT and SWR co-vary in some extent. In the ‘all seasons’ model, AT and SWR 10 

were both selected to capture the between-site variability of the climate-WT response, while 11 

in the autumn model, only SWR was retained. As a consequence, in the autumn model, SWR 12 

represents climate control, most probably capturing part of the WT variability explained by 13 

AT when both variables are included as in the ‘all seasons’ model. Overall, WT is more 14 

sensitive to seasonal climate data in smaller basins. Then, the inclusion of both AT and SWR 15 

in ‘all seasons’ allows to refine the assessment of river thermal sensitivity beyond climate as a 16 

whole, to different types of energy processes: smaller streams are more sensitive to air-water 17 

heat exchanges but less sensitive to radiative fluxes than larger streams. One can hypothesize 18 

that smaller streams have a lower volume of water to heat up than larger streams but also are 19 

likely to experience greater relative shading by riparian trees than wider rivers downstream. 20 

This finding, at first, looks partly inconsistent with Garner et al. (2014), who concluded that 21 

larger basins were more sensitive to climate than smaller ones, because (i) headwater stream 22 

being located at the start of the network have less time than larger streams to reach 23 

equilibrium with AT further downstream, and (ii) headwater streams are more likely to be 24 

shaded (riparian woodlands, topography). However, Garner et al. (2014) was based on cluster 25 

analysis; small basins were included in one cluster only, which also included permeable 26 

basins. As a consequence, it is likely that permeability and size influences were in some 27 

extent confounded. In contrast, the sites used in this paper cover all combinations of 28 

size/permeability basin types. Secondly, as noted by Kelleher et al. (2012), within the small 29 

stream type, one needs to distinguish between shaded (i.e. due to with riparian woodland or 30 

topography) and exposed streams, with shaded streams behaving more like permeable 31 

streams. Only basin-wide land cover information was available for 29 out of 35 sites: 27 32 
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basins are under 20% woodland. While one cannot exclude woodland being concentrated on 1 

the riparian corridor of each site, it is sensible to assume the 35 sites have a mix of shaded and 2 

exposed streams. Although it would explain the pattern with ‘all seasons’ SWR (more 3 

shading, less incoming sun), the shaded headwater argument has to be considered 4 

inconclusive in relation to the wider climate controls. 5 

With regard to basin elevation, results can be summarised as follows: (i) ‘all seasons’ model, 6 

WT in higher elevation basins is more sensitive to AT but less sensitive to SWR; (ii) winter 7 

model, WT in higher elevation basins is more sensitive to SH. These patterns can be 8 

explained partly by elevation, partly by the fact that permeability, size and elevation are not 9 

strictly independent in the UK. As noted above, elevation and rainfall co-vary greatly in the 10 

UK, so that upland basins are wetter than lowland basins, hence associated with greater 11 

precipitation (i.e. with more cloud cover and consequently, less influenced by SWR). In terms 12 

of basin types, the study sites have no upland permeable basins (the UK geology is such that 13 

this type hardly occurs in any case), plus high elevation basins tend to be smaller basins. The 14 

patterns observed with elevation, which are consistent with those for permeability and size, 15 

are most likely partly reflecting the upland basins are also largely impermeable and smaller. 16 

Although each property has been statistically identified as having an influence, the latter point 17 

leads to investigating how these influences may combine. The regression models of site-18 

specific coefficients against permeability, size, and elevation presented in Table 5 provide 19 

some quantification of the influence of basin properties, both on their own, and combined. In 20 

each case, the best model uses a single basin property, although the retention of other 21 

properties in the MMI sets confirms the role of all three. In three cases out of four (‘all 22 

seasons’ AT, autumn SWR, winter SH), permeability (BFIHOST) is dominant. Therefore, the 23 

patterns described above would be primarily set by basin permeability, then by size and 24 

elevation. At one end of the spectrum, small, upland, and/or impermeable basins are the most 25 

exposed to atmospheric heat exchanges, at the other end, large, lowland, and permeable 26 

basins are the least exposed. 27 

6 Conclusions 28 

By focusing on a nation-wide set of water temperature sites and extensive climate dataset, this 29 

study addressed some of the limits of previous UK papers (limited number of WT sites, 30 

climate predictors, and /or geographical extent); it also investigated formally seasonal 31 
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patterns, and, by using a wide range of basin descriptors, improved knowledge of the role of 1 

basin properties as modifiers of climate–WT associations. 2 

With regards to the need to explore alternative modelling techniques to maximise data utility, 3 

ML modelling allowed to model climate-WT responses both at site and at national scales, 4 

thereby adressing the limitation of empirical regression-based models compared to 5 

deterministic models (Caissie, 2006). While the present ML models took into account 6 

discrepancies in temperature sampling (eg data from sites with 15-min recording may show 7 

different patterns from sites with weekly data), the effect of these discrepancies were not 8 

investigated explicitly, and would merit further research. In addition, the model selection 9 

based on the MMI approach permitted to investigate climate variables that would been most 10 

likely excluded by standard selection techniques, and identify their influence as secondary 11 

controls. 12 

In relation to research Aim 1 (improved understanding of large-scale climate–WT 13 

associations), the modelling exercise showed that all of the six climate predictors investigated 14 

in this study play a role as a control of water temperature. AT and SWR are important for all 15 

models/ seasons, while LWR, SH, and WS are important for some models/ seasons only. The 16 

form and strength of the seasonal climate data-stream temperature association vary depending 17 

on season and on water temperature. The dominating climate drivers and physical processes 18 

may change across seasons, and across the stream temperature range. The impact of climate 19 

variability or change, whether short or long term (e.g. seasonal supra-seasonal, or inter-annual 20 

climatic drought, long-term air temperature increasees), and the benefit of mitigation 21 

measures (e.g. increasing shading) on stream temperatures need to be assessed accordingly. 22 

While this study focused on wider spatial paterns, it is noteworthy that stream temperature 23 

could also be influenced by micro-climate effects (as far as metadata could be scrutinised, the 24 

study sites were free of such effects), future research could investigate how micro-climate and 25 

climate data spatial resolution may influence the models. 26 

In relation to research Aim 2 (assessing influence of basin properties as modifiers of climate-27 

WT associations), the study confirmed the role of basin permeability, size, and elevation as 28 

modifiers of the climate-WT associations. The primary modifier is basin permeability, then 29 

size and elevation. Smaller, upland, and/or impermeable basins are the ones most influenced 30 

by atmospheric heat exchanges, while the larger, lowland and permeable basins are least 31 

influenced (note: some basin types occur less frequently or hardly in the UK, e.g. upland 32 

permeable). This means that, in addition to seasons and temperature range, the impact of 33 
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seasonal climate data on stream temperatures and the benefits of mitigation schemes may vary 1 

with location. This study shows the importance of accounting properly for the spatial and 2 

temporal variability of climate-stream temperature associations and their modification by 3 

basin properties. 4 
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Table 1. Climate–water temperature studies carried out in the UK. 1 

Reference Number 

of Sites 

Number 

of 

Basins 

Location Number 

of 

Climatic 

Variables 

Length of 

Study 

Period 

Wilby et al. (2014)  36 2 central England 1 2 years 

Garner et al. (2014)  38 38 England & Wales 1 18 years 

Broadmeadow et al. (2011) 10 2 south England 3 3 years 

Brown et al. (2010)  6 1 north England 2 2 years 

Hrachowitz et al. (2010) 25 1 northeast Scotland 0 2 years 

Hannah et al. (2008)  2 1 northeast Scotland 7* 2 years 

Malcolm et al. (2004)  6 1 northeast Scotland 1 3 years 

Hannah et al. (2004)  1 1 northeast Scotland 9* 6 months 

Webb et al. (2003) 4 1 southwest England 1 5 years 

Langan et al. (2001)  1 1 northeast Scotland 1 30 years 

Webb and Zhang (1999) 2 2 South England 5 2 seasons 

Evans et al. (1998) 1 1 west England 9* 17 days 

Crisp (1997) 5 1 northwest Wales 1 3 years 

Webb and Zhang (1997)  11 1 southwest England 4 2 seasons 

* includes different measurements of related climatic variables 2 

3 
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Table 2. CHESS data. 1 

Climate Variable Abbreviation Units Process 

Air temperature AT oK Convective energy exchanges at water 

surface; energy loss or gain 

Long wave radiation LWR W m-2 Downward energy bounced back by 

clouds; energy gain 

Specific humidity SH kg kg-1 Air moisture content; higher humidity 

reduces evaporation rate; energy loss 

(evaporation) or gain (condensation) 

Precipitation P kg m-2d-1 

(mm d-1) 

Advective exchanges; energy loss or 

gain 

Short wave radiation SWR W m-2 Downward direct energy (i.e. 

insolation); energy gain 

Wind speed WS m s-1 Increases evaporation (energy loss) and 

convective exchanges (air mixing; 

energy loss or gain) 

2 
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Table 3. Generic response for the five average models. 1 

 all seasons winter spring summer autumn 

 Coef. RI Coef. RI Coef. RI Coef. RI Coef. RI 

AT 0.5824  1.00  0.3955  1.00  0.6815  1.00  0.4969  1.00  0.6860  1.00  

SWR 0.0055  1.00  0.0193  1.00  0.0073  1.00  0.0049  0.64  0.0003  1.00  

LWR -0.0149  1.00  0.0001  0.13  0.0020  0.18  -0.0126  0.52  -0.0013  0.25  

WS -0.1348  1.00  -0.0685  0.68  -0.0774  0.63  -0.3028  1.00  0.0181  0.33  

SH 0.4664  1.00  0.6658  1.00  0.0772  0.34  0.1542  0.53  0.0507  0.37 

P 0.0003  0.26  0.0007  0.15  -0.0041  0.38  -0.0004  1.00  -0.0045 0.41 

2 
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Table 4. Basin descriptors significantly related to site-specific model coefficients (ANOVA; 1 

p≤0.05). 2 

Model Predictor Basin Meta-

property 

FEH Descriptor Type of 

Association 

all seasons AT Elevation ALTBAR Positive 

  
Permeability BFIHOST Negative 

  
Size AREA* Negative 

all seasons SWR Elevation ALTBAR Negative 

  
Size AREA Positive 

autumn SWR Permeability BFIHOST Negative 

  
Size AREA* Negative 

winter SH Elevation PROPWET Positive 

  
Permeability BFIHOST Negative 

  
Size AREA* Negative 

*tested on natural log 3 

4 
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Table 5. Linear regressions of site-specific coefficients as function of basin properties 1 

(models ordered by increasing AICc; best model in bold characters, all other models are 2 

within four AICc points of best model hence selected via MMI). 3 

WT Model Coefficient Linear Regression R2 AICc 

all seasons AT BFIHOST 0.370 -31.3 

  

BFIHOST+ALTBAR 0.403 -30.1 

  

BFIHOST+ln(AREA) 0.381 -29.3 

  

BFIHOST+ln(AREA)+ALTBAR 0.411 -28.3 

all seasons SWR ALTBAR 0.177 -277.5 

  

ALTBAR+ln(AREA) 0.183 -275.2 

  

ln(AREA) 0.089 -274.0 

autumn SWR BFIHOST 0.125 -223.1 

  

ln(AREA) 0.115 -222.6 

  

BFIHOST+ln(AREA) 0.136 -220.9 

winter SH BFIHOST 0.192 48.7 

  

ln(AREA) 0.162 50.0 

  

BFIHOST+ln(AREA) 0.203 50.8 

  

BFIHOST+PROPWET 0.192 51.3 

  

PROPWET 0.123 51.6 

  

PROPWET+ln(AREA) 0.178 51.9 

4 
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 1 

Figure 1. Multiple interdependent climate controls of water temperature; Q* is the sum of K 2 

and L corresponds to Q* (heat flux due to net radiation);; Qa corresponds to advective heat 3 

exchanges, which include precipitation (direct climatic component) and also smaller advective 4 

fluxes due to inflow/outflow into river, hyporheic exchange, or groundwater (not shown on 5 

figure); [adapted from Caissie (2006) and Hannah et al. (2008)]. 6 
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 1 

Figure 2. Location map of the study sites. 2 
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 1 

Figure 3. Study flow chart. 2 
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 1 

Figure 4. Plots of observed and modelled water temperature for the five models. 2 
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 1 

Figure 5a. Contributions of climate predictors to modelled WT (all seasons, winter, and 2 

spring): left-hand side, boxplots of percentage contributions of climate predictors to modelled 3 

WT values for all data-points (except outliers); right-hand side, scatter plots of percentage 4 

contributions of climate predictors to modelled WT values against modelled WT values for all 5 

data-points; colour-coding for all plots: magenta, AT; red, SWR; green, LWR; dark blue, WS; 6 

cyan, SH; black, P. 7 

 8 
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 1 

Figure 5b. Contributions of climate predictors to modelled WT (summer and autumn): left-2 

hand side, boxplots of percentage contributions of climate predictors to modelled WT values 3 

for all data-points (except outliers); right-hand side, scatter plots of percentage contributions 4 

of climate predictors to modelled WT values against modelled WT values for all data-points; 5 

colour-coding for all plots: magenta, AT; red, SWR; green, LWR; dark blue, WS; cyan, SH; 6 

black, P. 7 


