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Abstract. The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed 

in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, 

several new ideas have been emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et 

al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. 15 

The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for 

rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering 

explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. 

For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of 

data, i.e. RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with 20 

rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not 

only assessed for areal rainfall estimation performance, but also for use in hydrological modeling. The results show that the 

RCs considering measurement errors derived from laboratory experiments provide useful additional information for areal 

rainfall estimation as well as for hydrological modeling. Moreover, by testing Even assuming higher larger uncertainties for 

RCs,  for RCs asthey observed to be useful up to a certain level for areal rainfall estimation and discharge 25 

simulation.obtained from the laboratory up to a certain level is observed practical.  
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1 Introduction 

The quality of Rrainfall data is one of the mostplays an important information role in the quality of hydrological analyses 

and water resources management. The spatial and temporal resolutions of the data are crucial for the quality of hydrological 

analyses. Different modeling scales usually require different resolutions of input data. A relatively high spatial and temporal 

resolution is required for smaller scale modeling such as in urban hydrology, whereas data with coarser resolution could be 5 

sufficient for larger scale hydrological modeling. Hypothetically, the performance of a model could be objectively judged 

when input data of a high quality is provided. In particular, the spatial and temporal resolution of rainfall data over a study 

area influences the model performance significantly. The quality of areal rainfall estimation depends, on the one hand, on the 

data availability, i.e. rain gauge network density, the temporal resolution of data and/or availability of additional information 

such as Digital Elevation Model (DEM) or radar data, and, on the other hand, on the interpolation techniques used for areal 10 

rainfall estimation. 

Conventional rain gauges provide accurate point rainfall depth, but they are sparsely and irregularly located over the study 

area. This results in missing rainfall information where no rain gauge is available. On the other hand, a dense rain gauge 

network is costly. There are several innovative ideas discussing new manners of measuring rainfall. Weather radar data with 

relatively high spatial and temporal resolution are widely used for rainfall rain-rate estimation purposes, but the data are 15 

subject to several sources of error. Besides, weather radar is not available all over the world. Estimating rainfall using 

satellite data has become of interest for practical purposes, in particular for remote areas, because of good spatial coverage 

and being freely available. The satellite data provide precipitation data globally, but they suffer from the intrinsic weakness 

of the principle behind estimating rainfall, i.e. finding the relationship between observable variables from space (e.g. cloud 

top temperature and the presence of frozen particles aloft) and rain intensity. The satellite data are relatively coarse for local 20 

use. The TRMM PR data, for example, is provided in 3-hour temporal resolution and a 0.25-degree by 0.25-degree spatial 

resolution. Prakash et al. (2016) compared the new GPM-based multi-satellite IMERG precipitation estimates with the 

TRMM Multi-satellite Precipitation Analysis (TMPA) in capturing heavy rainfall over India for the southwest monsoon 

season. They observed notably better estimation from the GPM data. Kidd and Levizzani (2011) and Kidd and Huffman 

(2011) have summarized some of the efforts given to improve the accuracy of satellite rainfall rain-rate estimation. Several 25 

studies investigated rainfall rain-rate estimation using microwave links as another potential source of data (Overeem et al., 

2013; Rahimi et al., 2006; Upton et al., 2005; Zinevich et al., 2009), where a line-averaged precipitation is estimated 

therefrom. Acoustic rain gauges are an economical alternative which analyses the raindrops sound similar to when one 

listens to rain in a tent (de Jong, 2010). Most of the mentioned studies seek for alternatives which either are not initially 

intended for rainfall estimation or have low operational costs.  30 

Haberlandt and Sester (2010) hypothetically presented the potential of using moving cars for rainfall measurement purposes, 

called RainCars (RCs). They pointed at the potential of using RCs because of the widespread availability of cars especially 

in countries such as Germany. They concluded that a large number of hypothetically inaccurate devices could help in 
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improving the estimation of rainfall compared with just a few of accurate devices. The main purpose for implementing RCs 

is to increase the number of observations. This is more important for high temporal resolution data when the spatial 

variability of rainfall becomes larger. Rabiei et al. (2013) investigated the possibility of using RCs for rainfall estimation 

with laboratory experiments. A strong relationship between rainfall intensity and the wiper speed, adjusted with front 

visibility, was observed. The rainfall estimation by the two optical sensors, Hydreon (2015) and Xanonex (2015), 5 

implemented in that study showed also promising results. Whether the derived accuracy of the sensors is sufficient for areal 

rainfall estimation or not is a question which is addressed in this study. Because of the low number of real observations with 

RCs available on roads and lack of a reliable reference for them, the investigations are carried out by computer experiments 

with a view to determining the practicality of the concept. A continuous investigation using RCs with the derived 

uncertainties from laboratory experiments for a long period of time as well as implementing the data in a hydrological model 10 

would answer three important scientific questions: 1) Is the accuracy of optical sensors investigated by Rabiei et al. (2013) 

sufficient for areal rainfall estimation as well as discharge simulation? 2) What is the minimum required accuracy of RCs 

measuring rain rate for areal rainfall estimation as well as for discharge simulation? and 3) What is the influence of using 

RCs over a longer period of time rather than just for certain events? These questions address the main objective of the study 

which is a better assessment of the value of the RCs for areal rainfall estimation rather than only for point measurement 15 

purposes.  

The influence of input data quality on hydrological modeling performances has been under investigation by several studies. 

For example, Shrestha et al.(2006) investigated the influence of data resolution on the performance of a macro-scale 

distributed hydrological model (MaScOD). They split the factors influencing the quality of model performance into three 

categories: (1) the quality of the model, (2) the selected model parameters, and (3) the quality of the input data. The 20 

advantages of using RCs are assumed to provide a denser measurment network and additional information. Xu et al. (2013) 

investigated the influence of rain gauge density and network distribution on the Xinanjiang River in China by the Xinanjiang 

Model. They found that the probability of getting a poor model performance increases significantly when the number of rain 

gauges falls below a certain threshold. They also concluded that the number of rain gauges above a certain threshold does 

not improve the model performance meaningfully. Not surprisingly, Tthey realized that not only the number of stations is 25 

important, but also the spatial configuration of rain gauges.  

This paper is essentially a feasibility study and is organized as follows. The methodologies implemented in this study are 

presented after the this “Introduction”. Chapter 3 provides detailed information regarding the study area and data used in this 

study. The results and corresponding discussions are provided in chapter Chapter 4. Thereafter, a summary of the work and 

comparison of the results is presented with a more general conclusion.  30 
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2 Methods 

Since there are not enough observed data from the few operating RCs and lack of a reliable reference for them, this study 

uses computer simulation. In order to carry out the analyses, rainfall fields as reference data are required. The point data 

from stations and hypothetical RC’s are extracted from the reference data and compared accordingly. There are essentially 

two possibilities to obtain reference data: (1) simulating the rainfall field or (2) using an available data source such as radar 5 

data. The latter choice has the advantage of being closer to reality and avoiding additional rainfall modeling. As a result, it is 

decided to consider radar data as reference and to extract the point data from the radar data. As radar data has its 

deficiencies, the Mean Field Bias method is applied to correct the error in a straightforward way. The positions of RCs are 

provided by a traffic model and rainfall data are extracted from the reference data accordingly. The results are compared 

with what occurs in practice, i.e. using only the rain gauge network. The uncertainties for the rainfall measurement by RCs 10 

are taken from the results of the laboratory experiments (Rabiei et al., 2013). For a more general conclusion, larger 

uncertainties are also investigated. 

2.1 Mean Field Bias correction 

The Mean Field Bias (MFB) correction adjusts the radar data with the observed rain gauge data. Assuming that the rain 

gauge network provides accurate point precipitation data, the radar images could be corrected by: 15 
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where G(ti,j) is the precipitation amount from rain gauge i. j is the time step within a time interval t. R(ti,j) represents the 

precipitation amount on the radar pixel where rain gauge i is located at the time j. In fact, the B coefficient represents the 

relationship between observation data G(ti,j) and the corresponding extracted radar-point data R(ti,j). R and R
*
 are the original 

and corrected radar rainfall, respectively. In this study, a daily time interval is considered for estimating the coefficient B for 20 

each time step, which results in having a constant correction factor for each day, individually. This means that m is 288 as 

the data are provided at a 5 minute temporal resolution. For the days on which Eq. 1 has an indeterminate form, i.e. when no 

rainfall is recorded by the rain gauge network, the B coefficient is set to 1.  

Applying MFB does not have any smoothing effect, or, in other words, the structure of images after using MFB is very 

similar to that in the original radar data. Applying MFB to radar data was considered here to prevent unrealistic radar data 25 
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values, whereas using radar data directly would also be possible since the relative errors obtained in the end would not 

change significantly. 

2.2 Traffic model  

The traffic model used in this study is similar to the one used by Haberlandt and Sester (2010). It is based on the road data 

derived from the Open Street Map (OSM). The traffic density is estimated using the data from the Federal Highway 5 

Research Institute (BASt) which provides the number of cars per day for certain points along federal roads and highways. 

For each particular catchment, those traffic count points within and close to the catchment, concerning federal roads 

(corresponding to the OSM road type “primary”), are selected. The traffic count number per catchment is estimated 

therefrom. Based on this number, cars are generated applying the methodology described in the following. The assumptions 

underlying the traffic model are always conservative assumptions concerning the number and distribution of cars. This 10 

means that the number and spatial distribution of the cars is deliberately considered lower and less dense in the model than in 

reality: 

a) Only larger roads on/and surrounding the study area are considered which includes the “primary” and “secondary” 

OSM road types (corresponding to the German “Bundesstraßen” and “Landstraßen” road types). Because of the 

relatively high practical uncertainties related to the RCs on highways, these road types are excluded. Smaller roads 15 

are also neglected due to the low traffic. 

b) An average speed of 80 km/h is considered to calculate the number of cars for each catchment. The assumed 

average speed is higher than in practice, which results in a lower number of cars than in reality (see Eq. 2). This 

follows the conservative assumption mentioned earlier. 

c) Due to the lack of traffic count data for the “secondary” OSM road type, the traffic count for this road type is 20 

calculated using half the “federal roads” (OSM “primary” roads) traffic count data. This also follows the 

conservative considerations for the traffic model assumptions.  

In order to estimate the number of cars driving simultaneously within and around a catchment, the following equation is used 

for each catchment and each of the two road types separately:  
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where X is the number of cars from the traffic data over a certain time period h,    is the assumed average car speed and z is 

the space between two cars. The number of cars driving simultaneously in and around the catchment area n is then estimated 

using the total roads length l on a catchment. Due to the long period of time considered in this study, the day-night variation 

in traffic count is considered insignificant. However, different RC density scenarios address the possible change in the 

number of RCs. Therefore, the daily average number is used in this study. This number is subsequently used for generating 5 

cars randomly on the OSM road network at each time step. This means that the points representing RCs are not dependent in 

successive time steps, i.e. no car identities are modeled.   

It is important to notice that car speed, wind speed and wind direction influence the performance of RainCars in practice. 

Rabiei et al. (2013) proposed using to use a linear relationship for taking the effect of the car speed for RainCars into 

consideration. A similar approach could be applied for compensating the effect of wind speed, knowing the wind direction.  10 

2.3 Network density of rain stations 

In order to compare the network densities for rain gauges and RC scenarios, the network density of each subcatchment for 

each scenario is calculated in a similar way to that used by Haberlandt and Sester (2010). The network density is calculated 

using the kernel density estimator (Silverman, 1986):  
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where n is the number of observation points (either stations or RCs) within the search radius r = 20000 m and dj is the 

distance to subcatchment cells (the ones for which the density is being calculated from the cell centre). Di is calculated for 

each subcatchment cell and averaged over all subcatchment cells. The kernel density estimator considers not only the 

observation points in the subcatchment, but also the ones within the search radius.  

2.4 Uncertainties for RainCars 20 

In order to consider the uncertainties in rainfall measurement using RCs, the results of laboratory experiments (Rabiei et al., 

2013) are utilized. The relationship between sensor reading (W) and rainfall intensity (R) is named W-R relationship in Eq. 4. 

, whereas sSignal lengths from the optical sensors are considered as sensor readings.   

R̂ a b W            (4) 
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where    is the rainfall intensity, W is the sensor reading, a and b are the linear regression coefficients and ԑ represents the 

random error. The assumption behind the linear regression model is that the error is normally distributed, with mean = 0 and 

variance = σ
2
. This provides a simple error model for the measured uncertainties from RCs.  

Three different linear W-R relationships between sensor readings and rain rate are discussed by Rabiei et al. (2013). The first 

relationship considers wiper frequency as sensor. As wiper activity is influenced by several factors, such as driver 5 

preferences, car speed, number of wiper speed levels defined for each car type, etc, this alternative is considered as 

impractical. The two other remaining alternatives are the W-R relationships derived from the optical sensors. Two optical 

sensors, Hydreon and Xanonex, with promising results were investigated by Rabiei et al. (2013) and suggested for further 

use. The two sensors performed similarly, whereas the Hydreon performed slightly better. Nevertheless, Bbecause of the 

Xanonex shape and its ease of installation on cars, it is was decided to investigate the Xanonex W-R relationship.  The 10 

device bounces infrared beams within through its lens. Rain drops allow escape some of the beams to escape, and 

consequently, drops could be sensed when there is a change in beam intensity. This change in beam intensity is interpreted 

ascould represent the rain rate which is observed by the sensor. More detailed information about the functionality of the 

device could be found in Rabiei et al. (2013). 

Although a relatively strong relationship between the two variables exists, one encounters difficulties for smaller rain rates. 15 

According to the estimated regression line by Rabiei et al. (2013) (see Fig. 2), negative rainfall could be obtained using Eq. 

4, which is not possible. By neglecting the negative values, a systematic positive bias would enter the data. In addition, the 

uncertainties of the devices on the market are usually expressed as a percentage, which illustrates a smaller absolute error 

when smaller values are measured. Considering Implementing Eq. 4 does not account forresolve those two problems. 

Therefore, in order to investigate the uncertainties for the sensor readings, a power regression model is used to describe the 20 

W-R relationship:  

ˆ b
R a W             (5) 

where    is the rainfall intensity, W is the sensor reading, a and b are the regression coefficients and ԑ is the random error. 

Taking the logarithm of both sides of Eq. 5 gives: 

ˆlo g ( ) lo g ( ) lo g ( ) lo g ( )R a b W           (6) 25 

As is assumed for simple linear regression, a constant random error, here log(ԑ), is considered. It should be noticed that the 

error variance is constant in log transformed space and variable in original space. The parameters of the linear regression in 

Eq. 6 are optimal in the log space, but not after back transformation, i.e. in the original space. Negative rain rates can no 

longer be estimated obtained because of the log-log transformation to the data. Implementing this data transformation also 
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leads to a more accurate performance for smaller rainfall values, which is different to the constant value considered by 

Rabiei et al. (2013).  

The traffic model provides coordinates of the RCs for each time step. The rain rate for each RC is extracted from the 

reference data set, i.e. radar data. The device outputs are signal lengths related to rain intensities (Rabiei et al., 2013). In 

order to consider the uncertainties for RCs, the corresponding signal length of each extracted value would be estimated using 5 

the W-R relationship. A normally distributed error log(ԑ) with mean = 0 and variance = σ
2
 is randomly selected and added to 

log(R) before re-transformation.  

2.5 Areal rainfall estimation 

Ordinary Kriging (OK) is an interpolation method which is widely used for several hydrological variables such as 

temperature, rainfall, wind etc. OK is implemented here for interpolating data from both RCs and rain gauges. It is worth 10 

noticing the fact that OK is only optimal when the data are Gaussian. However, the benefit of using RCs can be explored by 

comparing the quality of areal rainfall estimated by rain gauges with situations when only RCs are used instead. A relative 

comparison is carried out, resulting in trivializing the non-Gaussianity of the data. In order to satisfy the assumptions behind 

OK (stationary), only the neighboring extracted values for either rain gauges or RCs are used. However, in rare situations 

when facing negative values, they were set to zero. For a detailed description of the method, please refer to geostatistical text 15 

books such as Isaaks and Srivastava (1990).  

The experimental variogram is estimated using the following equation: 
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where N(h) represents the number of data pairs, h is the separating vector, x the location and m the number of points. Similar 

asAs in Rabiei and Haberlandt (2015), a seasonal average variogram is used here. The experimental variogram is estimated 20 

using radar data when 1000 random radar cells are taken. Only the time steps with an average rainfall above a defined 

threshold are selected for variogram estimation. The following equation is used for estimating climatological variograms 

over n time steps:  

1

1 ( , )
( )

v a r ( )

n

s t

i

h i
h

n i






          (8) 

where γ(h,i) is the variogram for the h distance class and var(i) represents the variance in time step i. An exponential 25 

variogram is considered as the theoretical variogram model: 
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where a, c and c0 are the range, the sill and the nugget effect, respectively.  

The variograms are fitted using radar data with 5 min temporal resolution as the goal is to interpolate rain gauges as well as 

RCs on 5 min temporal resolution.  

2.6 The HBV hydrological model 5 

The hydrological model used in this study, HBV-IWW, is a modified semi-distributed version of the HBV model (Lindström 

et al., 1997). The model has a horizontal spatial discretization in subcatchments, which are linked to each other by river 

reaches. For each of the subcatchments a snow routine, a soil routine, a response routine and a transformation routine is 

applied. The snow routine classifies precipitation as rainfall or snowfall and also takes snow melt into account. After that, the 

sum of the rainfall and snowmelt passes through the soil routine which consists of two modules. The first module calculates 10 

the actual evapotranspiration, while the second module calculates the contributing runoff depending on precipitation and 

actual soil water content. The contributing runoff is then directly linked to the upper groundwater layer of the response 

routine, where surface runoff, interflow, percolation and the actual water content of the upper groundwater layer are 

calculated. Percolation contributes to the lower groundwater layer wherefrom the base flow is calculated. Surface runoff, 

interflow and base flow are finally added together and transformed with a simple triangular unit hydrograph. If more 15 

subcatchments are connected to each other, the Muskingum method is used for river routing.  

The model is calibrated using the Simulated Annealing algorithm (Kirkpatrick, 1984) for which 1000 iterations are 

considered. The objective function is: 

(1 ) (1 ) m in
L o g

O F N S E N S E          (10) 

where NSE is the Nash-Sutcliffe coefficient after Nash and Sutcliffe (1970), and NSELog is the NSE with logarithm of 20 

discharges. A more detailed description of the parameter calibration procedure as well as further details of the HBV-IWW 

model can be found in Wallner and Haberlandt (2015). Unlike the common procedure of calibrating the parameters of a 

hydrological model and validating them afterwards, when two separate time periods are defined, in this study the whole time 

period is considered for calibrating the model parameters. The HBV parameters are calibrated lumped as only the rainfall 

data are to be investigated. This means that all the subcatchments of each catchment have the same model parameter set. For 25 

all the scenarios in the following, the same parameter sets are used for an explicit comparison of the results. As the main 

purpose of the study is to investigate the influence of different means of rainfall measurement, the model calibration is less 

important than in studies dealing with observation data. 
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2.7 Performance measures 

A common way to evaluate the performance of interpolation is  cross-validation, i.e. the leave-one-out approach. The 

resemblance of the estimations to the observations illustrates the quality of the interpolation technique. Since reference radar 

data are considered as the truth in this study, the areal rainfall estimated by each scenario is directly compared with the 

reference areal rainfall. The following criteria are used for evaluation. 5 

The Root Mean Square Error is estimated by: 

* 2

, ,

1

( )

( )

J

i j i j

j

Z Z

R M S E i
J








,      (11) 

the Nash-Sutcliffe coefficient by: 
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and the Percent Bias (Pbias) is estimated by: 10 
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where Z
*
 is the estimated areal rainfall and Z is the corresponding reference areal rainfall. j is the number of time steps 

considered for the subcatchment i. These statistical measures are used also for evaluating the performance of the 

hydrological model where Z
*
 and Z are then the simulated discharges and reference discharges, respectively.  

A positive Pbias indicates overestimation, whereas a negative value indicates underestimation.  15 

3 Study area and data 

A part of the state of Lower Saxony covered by the weather radar located at Hanover airport and the three catchments in Fig. 

1 encompass the study area. As mentioned, the benefit of RCs is investigated by comparing with what occurs in practice, i.e. 

when only rain gauges are considered. In this study, it is assumed that the coordinates of rain gauges and the coordinates of 

53 rain stations provided by the German Weather Service (DWD) are identical.   20 
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 Fig. 1. 

The transparent blue circle in Fig. 1 with a 128 km radius is the area being scanned by the Hanover weather radar, whereas 

the points represent the 53 rain gauges considered in this study. The Digital Elevation Model shows that the northern part of 

the study area is relatively flat and a region with mountainous characteristics is in the south-eastern part. The precipitation 

amount also varies within the study area from around 500 mm/yr in the north to 1700 mm/yr in the mountains (Berndt et al., 5 

2014). The mean annual rainfall in Fig. 1 for each subcatchment shows also the spatial rainfall variation over the study area. 

Those values are derived from radar data, from 2006 to 2010. This is more evident for the Nette catchment as the south-

eastern subcatchment receives a larger amount of rainfall than the other subcatchments. Although the Sieber catchment is 

located in the mountainous area, the mean annual rainfall is relatively low. This could be explained by the fact that the 

catchment is located at the leeward side of the mountains considering the usual west-to-east weather front moving direction.   10 

3.1 Catchments 

Three catchments of the Aller-Leine river basin, which have different characteristics, are considered in this study, Fig. 1. Not 

only are the characteristics of the catchments important, but also are the locations of the rain gauges. The Böhme catchment 

located in the northern part, with a relatively flat terrain, contains eight subcatchments and covers 285 km
2
. This catchment 

varies between 50 m and 150 m in elevation and contains one rainfall station. The Nette catchment has 10 subcatchments 15 

covering 309 km
2
 and is partly located in the mountainous area, where the elevation reaches up to 550 m. In contrast, the 

northern part of this catchment is mostly flat. An important point worth mentioning here is that the only station available in 

this catchment is located in front of the hillside in the southern part. The Sieber catchment is located completely in the 

mountainous area and has two subcatchments covering 45 km
2
. There are some stations close to the catchment, but no 

stations are available within it.  20 

3.2 Radar rainfall 

The C-band Hannover weather radar provides radar data with a 5-min temporal resolution and an azimuth resolution of 1°. 

The spatial resolution along each beam is 1 km. The time period from 2006 to 2010 is considered in this study. The dx-radar 

product provided by the DWD is used and processed as following. First, the reflectivity (Z in mm
6
m

-3
) is transformed to rain 

intensity (R in mm/hr) by the following relationship: 25 

b
Z a R  .         (14) 

Standard DWD parameters (Riedl, 1986; Seltmann, 1997) are used, where a = 256 and b = 1.42. A straightforward clutter 

detection similar to that of Berndt et al. (2014) is applied thereafter. The final step is to interpolate the rain intensities on 

rectangular grids using the Inverse Distance Weighted (IDW) technique. This produces rainfall of 1 km × 1 km spatial 
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resolution. Afterwards, the Mean Field Bias method (see section 2.1) is implemented to adjust radar data with the observed 

rain gauge data.  

As the observed data are not used directly for the objectives of this study, it is decided not to describe them here to avoid any 

confusion. 

3.3 W-R relationship 5 

Rabiei et al. (2013) used a linear regression model to describe the W-R relationship between the Xanonex sensor readings 

and rain intensity. Fig. 2 illustrates this linear relationship with a = 0.2408 and b = -5.4915 (Eq. 4). The dots represent the 

observations in the laboratory whereas the dashed lines show the 95% prediction limits. A detailed description of the 

laboratory experiments is provided in Rabiei et al. (2013). The main disadvantage is when facing small rainfall values. As 

mentioned, by considering this relationship and the error distribution for linear regression, negative rain rates can be 10 

estimated.  

 Fig. 2. 

4 Results and discussion 

In the following, the results of the steps taken for investigating the benefit of using RCs for areal rainfall estimation as well 

as discharge simulation are presented and discussed.  15 

4.1 Traffic model 

The number of cars is estimated using Eq. 2. It is assumed that only a small portion of cars is equipped with sensors 

measuring rainfall. In this study, from 1% to 5% of all cars on the roads are considered to measure rainfall which describes 

all the RC scenarios. For each 5-minute time step, the number of cars is calculated for the 5% scenario. The other scenarios 

are generated therefrom. Table 1 depicts different RCs’ scenarios considered in this study.  20 

 Table 1. 

Fig. 3 shows the road network considered for the three catchments. As seen in Table 1, a denser network than for the other 

catchments is available for the Nette catchment. As the Nette catchment is partly located in mountainous area, even this 

denser network might not provide enough information. This is due to the fact that the RCs are not available overall because 

of the road network. For that reason, in subcatchments such as the south-eastern subcatchment, the number of available RCs 25 

is lower than in the other subcatchments. 

 Fig. 3. 
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4.2 Network density 

Before illustrating the results of the simulations, i.e. areal rainfall as well as runoff simulation comparison, the network 

densities using Eq. 3 for different scenarios are presented. This helps to determine whether the network density influences 

the results.  

Fig. 4 shows the network densities estimated for the scenarios being investigated in this study. Although the density varies 5 

among the catchments, Fig. 4 shows that all the RC scenarios have a higher density than the rain gauge network. Depending 

on the accuracy of the measurement devices, i.e. RCs or rain gauges, the network density has a variable influence. A more 

detailed investigation is provided in subsection 4.6.2.  

 Fig. 4. 

4.3 RainCars Uncertainty 10 

The uncertainty related to rainfall estimation by RCs is described by Eq. 4 to Eq. 6 where ԑ represents the random error. The 

normal distribution that defines the random error for each signal reading (signal length) corresponding to each rain rate has 

the residual variance estimated by the vertical distances between the observations and the regression line. The random error, 

log(ԑ), is then simulated using the normal distribution. As discussed earlier, a power regression model describes the W-R 

relationship in this study. 15 

Fig. 5 (a) shows the W-R relationship after log-log transformation. The same assumption as before is valid, namely that the 

random error is normally distributed and derived from the deviation between observation points and the linear regression 

model. Fig. 5 (b) illustrates the W-R relationship implemented in this study. It is derived using the following steps: 1) 

applying log-log transformation on both axes, 2) applying linear regression on the transformed data (Fig. 5 (a)), 3) estimating 

the residual variance for the normal distribution describing the random error for the linear regression model and 4) 20 

transferring the data back for practical use (Fig. 5 (b)). The coefficient of determination given in Fig. 5 (b) is estimated using 

the transformed log-log regression model in Fig. 5 (a). 

 Fig. 5. 

The data transformation has, in general, two important effects on the W-R relationship: 1) preventing the estimation 

derivation of unrealistic rain rates and 2) skewing the distribution of random error. The latter aspect affects also the 25 

prediction limit in Fig 5. As can be seen in Fig. 5b, the upper and lower limits bend when further from the origin which 

results in larger inaccuracy for the rain rate estimated by RCs for higher rainfall intensities. On the other hand, the positive 

skewness introduces a positive bias that causes overestimation when estimating rain rate by RCs. This can be seen when 

comparing the distances from the model line to the upper and lower prediction limits. Although the W-R relationship has this 
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deficiency, a larger number of RCs and more accurate optical sensors can help compensate this problem. These two aspects 

are addressed in section 4.6.2. and 4.6.3, respectively.   

4.4 Variogram properties used in this study 

The properties of the variograms used in this study are provided in Table 2. 

 Table 2. 5 

The variograms are fitted using radar data in 11 different (mostly 6-month intervals) over the 5 years with 5 min temporal 

resolution as .the  The goal is to interpolate rain gauges as well as rainfall from RCs on a 5 min temporal resolution. A 

relative large range is estimated in winter time which illustrates different seasonal rainfall patterns. It supports the seasonal 

separation for interpolating the data which was discussed earlier. As can be seen, the properties of the variograms change 

even among the same seasons in different years. Therefore, it is was decided to use the variable variograms provided in 10 

Table 2. It was mentioned earlier that negative estimated values were set to zero. However, the nugget values provided in 

Table 2 illustrate the low possibility of facing negative estimation values.  

4.5 Reference discharge 

As mentioned earlier, the simulated discharge for different scenarios will be compared with the reference discharge. The 

reference discharge, the benchmark, is simulated using radar data after applying Mean Field Bias correction (creating the 15 

reference rainfall data) as input to the HBV-IWW model using pre-calibrated model parameters. Because of the lumped 

approach for calibrating the model parameters and the subcatchments with relatively small size, the rainfall characteristics, 

especially its spatial pattern, are the highest influencing factor in discharge simulation.  

The performance of the HBV-IWW model is evaluated on an hourly temporal resolution. Therefore, an aggregation of 5 min 

interpolation data to hourly data is carried out before using it in the hydrological model.  20 

4.6 Comparing areal rainfall and simulated discharge for different sources 

The value of the RCs in comparison to the rain gauge network is assessed by comparing areal rainfall estimations as well as 

the simulated discharges using these data. First, the results of using only the rain gauge network are presented. Thereafter, 

the results of using RCs for rainfall observations are provided and compared with when only the rain gauge network is used.  
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4.6.1 Rain gauge network 

Areal rainfall estimation 

The areal rainfall estimations corresponding to the three catchments shown in Fig. 1 are compared with the reference data. It 

should be noticed again that the comparison is carried out after interpolating the data with 5 min temporal resolution and 

aggregating the data to hourly temporal resolution because of the required temporal resolution for the hydrological model.  5 

Fig. 6 provides the statistical measures for the three catchments under study when evaluating the quality of areal rainfall 

estimation using only rain gauges. This is carried out by comparing the estimated areal rainfall using rain gauges and 

implementing OK with the reference data.  

 Fig. 6. 

For the Böhme catchment having one station in the catchment and one close by provides sufficient rainfall information. As 10 

expected, the closer the subcatchments to the stations, the better the quality of areal rainfall estimation. The areal rainfall 

estimated for the northernmost subcatchment is not as good as for the other subcatchments because there is no station 

nearby. Although the potential for improving RMSE and NSE values exists, the Pbias criterion is in general relatively low. 

This means that the total water volume is estimated relatively well, and therefore for purposes such as hydrological 

modelling the quality of areal rainfall estimation might be sufficient. In all cases, polygons with greed colour represent better 15 

results than the red ones.  

Studying the Nette catchment, the subcatchment that includes a station has, as expected, a superior rainfall estimation quality 

to the other subcatchments. Unpredictably, the quality of areal rainfall estimation for the other subcatchments close to the 

station is weak. For example, although the two southern subcatchments are in the vicinity of a station, the statistical 

measures are relatively poor. A rapid change in elevation is evident when considering the DEM map in Fig. 1. Assuming that 20 

rainfall characteristics change along the elevation gradient, a change in the spatial rainfall pattern is expected. The single 

station is no longer able to provide the actual rainfall even for the surrounding subcatchments. This is in contrast to the 

Böhme catchment where the DEM map shows a flat catchment and the only station on the Böhme catchment is sufficient for 

areal rainfall estimation. 

Although the Sieber catchment is smaller than the other two catchments and is expected to be more easily modelled, the 25 

catchment is located in a mountainous region and suffers from the fact that no rain gauge is available directly within the 

catchment. Owing these facts, the areal rainfall estimation is rather poor, especially when the Pbias is of concern. For such 

conditions, additional means of rainfall measurement would be beneficial.  
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Discharge simulation 

The same statistical measures are used for evaluating the performance of the hydrological model. Depending on the location 

of stations, catchment characteristics and spatial rainfall pattern, each catchment responds differently when only rain gauges 

are used. The reference discharge, the benchmark, is simulated using reference areal rainfall, i.e. radar data after MFB, and 

the pre-calibrated model parameters. 5 

Table 3 provides the statistical measures of simulated discharges when only rain gauges are implemented. Although both the 

Böhme and Nette catchments benefit from having a station in the catchment, the two catchments responded differently. The 

Böhme catchment performs better than the other two catchments. From Fig 7, it can be seen that the quality of the areal 

rainfall estimation for the Böhme catchment is the best. As discussed in the study area and data section (Fig. 1), the 

mountainous area receives more rainfall than the other parts of the catchment. The mountainous part of the catchment can 10 

cause a change in the spatial rainfall pattern. In other words, a fast elevation change (when the contour lines are tightly 

spaced together) can draw the isohyetal lines close together. This can explain the reason that the model performance in the 

Nette catchment is relatively poor. From the mean annual rainfall for each subcatchment provided in Fig. 1, it may also be 

concluded that the two southern subcatchments in the mountainous area produce a big share of the discharge. It is observed 

that one station can be sufficient for areal rainfall estimation for a flat catchment such as the Böhme catchment and would 15 

not be sufficient for a catchment such as the Nette catchment, which is partly located in the mountainous area. There is no 

station located in the Sieber catchment, which explains the poor Pbias in Table 3, although the other two criteria are rather 

good. In the Sieber catchment, not only the characteristics of the two subcatchments are similar, but also the spatial rainfall 

pattern over the two subcatchments which could explain the relatively good NSE values.   

 Table 3. 20 

4.6.2 RCs against rain gauges using errors from laboratory experiments  

Areal rainfall estimation 

A similar strategy is pursued for the moving cars measuring rainfall. As before, the evaluation involves two parts. First, the 

areal rainfall estimation by implementing RCs is compared with the reference rainfall. Thereafter, the simulated discharges 

are compared after using the data in the HBV-IWW hydrological model.  25 

The benefit of using RCs for areal rainfall estimation can be assessed when their performance is compared with the standard 

approach, i.e. using only the rain gauges. To this end, after estimating the statistical measures by comparing with reference 

data, the difference between the statistical measures is addressed. This means that for example for the Root Mean Square 

Error RMSEdiff = RMSERCs – RMSESt. As a result, negative RMSEdiff values as well as positive NSEdiff values represent better 
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areal rainfall estimation when using RCs compared to stations. For Pbias, the specific values are compared without building 

differences.  

Fig. 7 illustrates the statistical measures for the Böhme catchment when the RCs are used for areal rainfall estimation. 

Implementing RCs in general results in better areal rainfall estimation. As expected, the improvement in subcatchments 

away from the stations is more significant than the ones close to them. Also, the number of cars plays an important role. If 5 

the number of RCs increases, the quality of areal rainfall estimation improves. Considering only the two mentioned criteria, 

using RCs for areal rainfall estimation is always superior to using stations in this catchment. The improvement for each 

subcatchment varies depending on the number of RCs as well as the location of the station. PbiasRCs values show an 

overestimation of areal rainfall because of the positive skew of the error distribution as explained earlier (see Fig. 5b). 

 Fig. 7. 10 

Fig. 8 illustrates the statistical measures for different RC scenarios in the Nette and Sieber catchments. 

The use of RCs for rainfall estimation in the Nette catchment has similar advantages as for the Böhme catchment. In contrast 

to that, RCs are not always beneficiary in the Nette catchment. A detailed investigation shows that the rainfall estimation for 

the subcatchment in which the station is located is hard to beat by using RCs. In contrast to all the subcatchments where an 

overestimation is observed, for the Nette basin, the subcatchment with red colour in Pbias responds differently. This can be 15 

explained by the RC network density. This part of the catchment suffers from the fact that RCs are rarely available because 

there are fewer roads as it is located in the mountainous part. 

For the Sieber catchment using RCs also results in better areal rainfall estimation. Increasing the number of RCs has again 

advantages. The improvement in areal rainfall estimation is not as strong as in the other catchments because of the existing 

stations in the vicinity of the catchment. Although RMSE and NSE do not vary significantly, comparing with Fig. 6, the 20 

Pbias criterion improves meaningfully.  

It should be noted that although the Nette catchment benefits from a denser RC network (Fig. 4), because of the spatial 

rainfall pattern, the need for a higher number of RCs or a better location for the only station is evident.  

 Fig. 8. 

Discharge simulation 25 

Table 4 provides the statistical measures of simulated discharges when RCs are implemented. The first column, titled “St.”, 

refers to when only rain gauges are considered, which is included here again to facilitate easy comparison.  
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 Table 4. 

Although the Böhme catchment performs the best among the three catchments when only rain gauges are considered, using 

RCs is still useful. Fig. 8 shows that the areal rainfall estimation improves slightly when using RCs. For analyses requiring 

fine temporal and spatial resolution data, e.g. urban hydrology, using RCs may improve the simulation results more evident. 

Due to the fact that the improvement in discharge simulation is not very strong in this catchment, with the given temporal 5 

and spatial resolution, for such studies the need for using RCs can be considered inessential.  

As discussed earlier, because of the characteristics of the Nette catchment, this catchment has the highest potential for 

improvement by RCs. Implementing even a small number of RCs improves the results significantly. As seen in Fig. 4, the 

Nette catchment has the highest RC network density among the three catchments. This explains the better performance in 

this catchment. As expected, positive Pbias in the simulated discharge indicates overestimation, which follows the areal 10 

rainfall overestimation observed earlier.  

Unlike the other catchments, the Sieber catchment is located in the mountainous area. The NSE and RMSE criteria do not 

improve significantly when using RCs. Taking a deeper look at the traffic model data, from 1% scenario to 5% scenario, the 

number of cars measuring rainfall is 3, 6, 8, 11 and 14, respectively (see Table 1). Only two scenarios can result in better 

discharge simulation, 4% and 5% indicating the least required RC network density for this catchment. As with the other two 15 

catchments, using RCs results in the overestimation of the discharge.  

The network density of the 1% RCs scenario for the Nette catchment is similar to those of the Böhme and Sieber with 2% 

RCs scenarios (Fig. 4). Taking the similarity of the network densities into account, the improvement of the hydrological 

model performance in the Nette catchment is more evident than for the other two catchments. It shows that the RCs are more 

valuable in the catchments such as the Nette when the spatial rainfall pattern varies within the study area (see section 3). 20 

Improving the discharge simulation performance for bigger catchments such as the Nette and Böhme seems to be easier 

more easily achievable with less a lower density of RCs than for smaller catchments such as the Sieber. Additionally, even a 

small number of RCs can improve the discharge simulation significantly. Depending on the quality of the required 

hydrological analyses, the need for the use of RCs is open to discussion. Basically, a higher number of equipped cars are 

needed for mountainous catchments in this study area than for flat catchments. In other words, the need for increasing the 25 

number of observations is evident when the spatio-temporal variation of rainfall is high.   
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4.6.3 RCs against rain gauges using hypothetical errors  

Areal rainfall estimation 

The minimum rainfall measurement accuracy required for the RCs to be useful is investigated in this section. All the 

different accuracies are addressed for the 5% RCs scenario specifically.  

The error for the linear model is estimated on the log-log transformed data, Fig. 5. The normal distribution was defined by 5 

the variance (σ
2
), equal to 0.021, from laboratory experiment results. In order to investigate the importance of the error on 

the results, four other variances of 0.0, 0.01, 0.04 and 0.09 are considered. At the end, the areal rainfall estimation quality as 

well as the performance of the hydrological model was compared with that of using the original variance from the 

laboratory.  

Table 5 provides the averaged statistical measures for each catchment. The areal rainfall estimation considering different 10 

errors for RCs is compared with the reference data. The same assumptions as earlier (see section 4.3.) are taken with 

different variances for the distribution function representing the error range. St. represents the areal rainfall estimation 

performance when only the rain gauges are implemented.  

 Table 5. 

The rainfall overestimation by implementing higher σ
2
 values is evident. For all catchments even assuming a relatively large 15 

uncertainty of σ
2
 = 0.09, NSE and RMSE values improve compared with when only rain gauges are considered. As the Pbias 

is quite large for σ
2
 = 0.04 and σ

2
 = 0.09, the use of RCs for areal rainfall estimation is questionable. In fact, for such cases, 

using rainfall data observed by RCs could be considered as additional information for areal rainfall estimation, e.g. in 

External Drift Kriging or Kriging with Uncertain Data.  

Assuming no inaccuracy for the measurement devices, i.e. St. and σ = 0.0, a negative Pbias still exists representing an 20 

underestimation of areal rainfall. Although OK is an unbiased interpolation technique, its performance is strongly dependent 

on the measurement locations. In an ideal situation, measurements should take place in regard to the variation in spatial 

rainfall patterns. This can not be fulfilled in practice due to the dynamic nature of rainfall. Missing the minima and maxima 

over the study area can lead to overestimation and underestimation, respectively. It is more probable to miss maxima than 

minima due to the fact that high rainfall intensities may occur in places where no RCs or rain gauge observations are 25 

available. Minima can be captured easier than maxima as it covers a larger area, illustrating the positive skewness of the rain 

rate distribution. This might explain the minor negative Pbias derived by RCs even if when σ = 0.0.  
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Discharge simulation 

Table 6 provides the averaged statistical measures of the simulated discharges for each catchment when the 5% RC scenario 

is considered. As expected, the best performance belongs to the RCs scenario for which the measurement error is assumed to 

be zero (σ
2
 = 0.0). The quality of the simulated discharge lowers by increasing the error of the measurement devices (RCs). 

A similar trend can be found as that for areal rainfall estimation, in that the discharge overestimation becomes meaningful by 5 

increasing the uncertainty of the RCs. Implementing RCs with large uncertainty for the measurement values leads to a 

relatively weak discharge simulation. On the other hand, even though using RCs results in discharge overestimation (Pbias 

criterion), the quality of simulated discharges for variances (σ
2
) smaller than 0.04 improves in terms of RMSE and NSE, 

compared with when only rain gauges are considered (St.). As discussed before, in order to overcome the overestimation 

caused by RCs, one may consider RCs as additional information in interpolation techniques. RCs could be corrected in 10 

practice by implementing quantile mapping like the one introduced by Rabiei and Haberlandt (2015). 

 Table 6. 

As observed, the improvement of model performance in the Nette catchment when using RCs is more evident than for the 

other two catchments. Therefore, it is decided to investigate the Nette catchment in more detail by analysing the hydrographs 

for all the scenarios given in Table 6.  15 

Fig. 9 shows the simulated discharge between November 2006 and March 2007. It can be observed that when only rain 

gauges (St.) are used, the model misses some peaks and performs poorly. This illustrates that the local rainfall is often not 

captured. The model performance improves significantly when using RCs. By increasing the uncertainties, i.e. enlarging σ
2
, 

the overestimation of rainfall affects the model performance as well. Considering the uncertainties larger than the uncertainty 

derived from laboratory experiments could in fact illustrate situations that we may encounter in practice and we did not take 20 

into accountconsider here.  

 Fig. 9. 

 

5 Summary and conclusion 

The value of using moving cars for rainfall measurement purposes (RCs) was investigated with laboratory experiments by 25 

Rabiei et al. (2013). They analysed the Hydreon and Xanonex optical sensors against different rainfall intensities. The 

optical sensors showed promising results when used for point rainfall measurement. Because of the low number of real RCs 

available on roads, the main objective of this study was to implement and investigate the errors derived from the laboratory 
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experiments for areal rainfall estimation in a computer simulation. The errors were considered for the theoretical RCs, 

provided by a traffic model, and Ordinary Kriging (OK) is implemented for areal rainfall estimation. Thereafter, the data are 

also used for discharge simulations in the HBV hydrological model. The value of the RCs is compared with when only rain 

gauges are implemented. Radar data was considered as the reference data to directly evaluate the areal rainfall estimation 

rather than following the common approach for evaluating an interpolation technique, i.e. cross-validation. The other sources 5 

of data, i.e. RCs and rain gauges, were extracted from the reference data source, accordingly. A period of 5 years from 2006 

to 2010 and three catchments with different characteristics are considered.  

The results of the study are as follows: 

1) Implementing RCs with the uncertainties derived from the laboratory experiments improves the quality of modelled 

areal rainfall estimation compared with when only rain gauges are used. The same is valid for discharge simulation 10 

when the estimated areal rainfall is implemented in hydrological modeling. However, the improvement is observed 

to be strongly dependent on the catchment characteristics, RC network density and spatial rain variability of 

rainfall. 

2) Because of the positive bias of the error distribution when using a log-transformed W-R relationship, areal rainfall 

overestimation is, in general, observed which resulted in an overestimation of discharges as well. This can be 15 

compensated by either increasing the RC network density or implementing more accurate optical sensors. 

3) By increasing the rainfall measurement uncertainty by RCs, i.e. assuming larger variances for the random error, 

rainfall overestimation increases significantly. Implementing errors up to a certain level is observed 

beneficiaryworthwhile, whereas larger uncertainties resulted in deterioration of results. Although the RCs with large 

errors should not be considered directly for rainfall measurement, relatively good NSE values show the potential of 20 

RCs to be regarded as additional information in interpolation techniques.  

4) It is observed that applying OK for the interpolation of point values for areal rainfall estimation results in 

underestimation of rainfall. This was seen when no uncertainty was considered for RCs as well as for the case when 

only rain gauges were involved. The non-Gaussianity of data and Missing missing the rainfall maxima by ground 

observations (RCs or rain gauges) over the study area may explains this phenomenon. 25 

The hydrological simulations are carried out on hourly temporal resolution data with a lumped model parameter approach 

where the areal rainfall for each subcatchment is estimated separately. The conclusion of this study may not be valid for 

other cases when, for example, a distributed model or a different temporal resolution is being investigated. Depending on the 

target of each study, higher levels of data quality may be required. For instance, following the conclusions by Schilling 

(1991), in which he discussed implementing high spatial (1 km
2
) and temporal (1 min) resolution data for urban hydrology, 30 

the quality of rainfall measurement by RCs might be insufficient. Furthermore, Berne et al. (2004) also concluded that a 

temporal resolution of about 5 min and a spatial resolution of about 3 km are required for urban catchments with an area 
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about 1000 ha. They also stated that for smaller catchments with an area about 100 ha, higher resolution of about 3 min and 

2 km are needed.  

This study only shows the required accuracy that could be considered for RainCars as a future potential of crowdsourcing. 

Environmental factors such as road spray, car speed, wind direction, snow, night/day variations, etc. can influence the 

performance of RCs in practice. Although this study showed that the RCs are beneficiary, field experiments are necessary to 5 

better assess the measurement uncertainty.   
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Table 1. Number of cars driving at the same time for each RCs scenario on each catchment 

 5% 4% 3% 2% 1% 

Böhme
 

38 30 23 15 8 

Nette 138 110 83 55 28 

Sieber 14 11 8 6 3 
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Table 2. Theoretical variogram model parameters used in this study, aeff is the effective range, cc the sill and c0 the nugget 

effect 

Time 

period: 

2006 

(01-03) 

2006 

(04-09) 

2006-07 

(10-03) 

2007 (04-

09) 

2007-08 

(10-03) 

2008 (04-

09) 

2008-09 

(10-03) 

2009 (04-

09) 

2009-10 

(10-03) 

2010 (04-

09) 

2010 (10-

12) 

c0 (-) 0.2 0.1 0.17 0.1 0.13 0.3 0.1 0.1 0.1 0.1 0.1 

cc (-) 1 0.9 0.9 0.85 1 0.7 1 0.85 1 0.87 1 

aeff (m) 60000 24000 42000 24000 42000 36000 48000 22500 45000 27000 48000 
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Table 3. Simulated discharge by rain gauges compared with the reference data 

 Böhme Nette Sieber 

RMSE (m
3
/hs) 0.98 2.8 0.51 

NSE (-)
 

0.95 0.76 0.86 

Pbias (%) -6.2 -22.5 -15.8 
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Table 4. Simulated discharge by RCs compared with the reference data 

Catchment  St. 1% RCs 2% RCs 3% RCs 4% RCs 5% RCs 

Böhme 

RMSE (m
3
/hs) 0.98 0.66 0.6 0.61 0.6 0.57 

NSE (-)
 

0.95 0.98 0.98 0.98 0.98 0.98 

Pbias (%) -6.2 6.4 6.1 7.4 7.6 7.4 

Nette 

RMSE (m
3
/hs) 2.8 1.01 0.84 0.67 0.73 0.76 

NSE (-)
 

0.76 0.97 0.98 0.99 0.98 0.98 

Pbias -22.5 4.8 6.8 5 6.7 7.2 

Sieber 

RMSE (m
3
/hs) 0.51 0.55 0.58 0.53 0.48 0.37 

NSE (-)
 

0.86 0.83 0.81 0.84 0.88 0.92 

Pbias (%) -15.8 7.5 6 4.7 3.2 2.6 
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Table 5. Uncertainties for RCs when estimating areal rainfall and averaging over all subcatchments; 5% traffic model is 

considered 

  σ
2
 = 0.0 σ

2
 = 0.01 σ

2
 = 0.04 σ

2
 = 0.09 σ

2
 = 0.021 St. 

Böhme 

RMSE (mm/h) 0.27 0.27 0.30 0.38 0.28 0.44 

NSE (-)
 

0.85 0.85 0.81 0.70 0.84 0.58 

Pbias (%) -0.49 2.19 10.56 26.26 5.19 -3.22 

Nette 

RMSE (mm/h) 0.28 0.29 0.32 0.42 0.30 0.53 

NSE (-)
 

0.84 0.83 0.80 0.65 0.82 0.43 

Pbias (%) -2.8 0.09 8.5 24.07 3.11 -10.21 

Sieber 

RMSE (mm/h) 0.37 0.37 0.38 0.43 0.37 0.46 

NSE (-)
 

0.69 0.69 0.68 0.6 0.69 0.53 

Pbias (%) -4.55 -1.7 6.4 21.5 1.2 -14.45 
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Table 6. Investigating different uncertainties for RCs when simulating discharge compared with the reference discharge; 5% 

traffic model is considered 

  σ
2
 = 0.0 σ

2
 = 0.01 σ

2
 = 0.04 σ

2
 = 0.09 σ

2
 = 0.021 St. 

Böhme 

RMSE (m
3
/hs) 0.34 0.38 1.05 2.64 0.57 0.98 

NSE (-)
 

0.99 0.99 0.94 0.65 0.98 0.95 

Pbias (%) -1 2.9 15.5 40 7.4 -6.2 

Nette 

RMSE (m
3
/hs) 0.65 0.52 1.56 4.19 0.76 2.8 

NSE (-)
 

0.99 0.99 0.92 0.45 0.98 0.76 

Pbias (%) -4.9 0.9 18.6 52.6 7.2 -22.5 

Sieber 

RMSE (m
3
/hs) 0.37 0.36 0.43 0.71 0.37 0.51 

NSE (-)
 

0.93 0.93 0.9 0.72 0.92 0.86 

Pbias (%) -4.5 -1 9.1 28 2.6 -15.8 
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Fig. 1. Study area, catchments, station network and mean annual precipitation (MAP) from 2006 to 2010 from radar data. 

From north to south: Böhme, Nette and Sieber catchments.  
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Fig. 2. Xanonex W-R relationship (Rabiei et al., 2013) 
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Fig. 3. The road network on which the RCs are modeled.  
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Fig. 4. Network density of the catchments for different scenarios 
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Fig. 5. (a) Xanonex log transformed W-R relationship after Eq. 6 (b) Xanonex W-R relationship after Eq. 5; the red lines 

illustrate the 95% prediction limits 
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Fig. 6. Areal rainfall estimation using rain gauges compared with the reference data in, from left to right, the Böhme, Nette 

and Sieber catchments. Locations of the rain gauges are marked by black dots. The polygons toward green colour present 

better results than the ones toward red colour. 
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Fig. 7. Areal rainfall estimation evaluation using RCs for the Böhme catchment. The blue colour for RMSEdiff and 

NSEdiff illustrates the improvement of the areal rainfall estimation quality when RCs are used compared with when 

only rain gauges are considered. 5 
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Fig. 8. Areal rainfall estimation evaluation using RCs for the Nette and Sieber catchment. The blue colour for RMSEdiff 

and NSEdiff illustrates the improvement of the areal rainfall estimation quality when RCs are used compared with when 

only rain gauges are considered. 
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Fig. 9. Discharge simulation using different sources of data for the Nette catchment, between November 2007 and March 

2008. For RCs only 5% scenario is considered. 5 

 


