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Abstract. Of the many parametric expressions for the soil water retention curve, only a few are suitable for the dry 15 

range. Furthermore, expressions for the soil hydraulic conductivity curves associated with these retention functions 

can exhibit non-physical behavior near saturation. We developed a general criterion that needs to be met by soil 

water retention parameterizations to ensure physically plausible hydraulic conductivity curves. Only three of the 18 

tested parameterizations did not impose any restrictions on the parameters of the most popular conductivity curve 

parameterization, which includes three functions as special cases. One other retention function required one 20 

conductivity parameter to be fixed. 

We employed the Shuffled Complex Evolution parameter estimation method with the objective function 

tailored to various observation methods normally used to obtain retention curve data. We fitted the four 

parameterizations with physically plausible conductivities as well as the most widely used parameterization. We 

then compared the performance of the resulting 12 combinations of retention curve and conductivity curve in a 25 

numerical study with 751 days of semi-arid atmospheric forcing applied to unvegetated, uniform, 1-m freely 

draining columns for four textures. 

Choosing different parameterizations had a minor effect on evaporation, but cumulative bottom fluxes 

varied by up to an order of magnitude between them. This highlights the need for a careful selection procedure for 

the parameterization of the soil hydraulic properties that ideally does not only rely on goodness-of-fit to static soil 30 

water retention data but also on observations of the hydraulic conductivity curve made during dynamic flow 

conditions.  

 

 

 35 
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1. Introduction 

 

The pore architecture of the soil influences its hydraulic behavior, typically described by two curves: the 

relationship between the amount of water present in the soil pores and the matric potential (termed soil water 

characteristic or soil water retention curve), and the relationship between the hydraulic conductivity and either 40 

matric potential or water content (the soil hydraulic conductivity curve). Numerical solvers of Richards’ equation for 

water flow in unsaturated soils require these curves as descriptors of the soil in which the movement of water should 

be calculated. Many parametric expressions for the retention curve and fewer for the hydraulic conductivity have 

been developed for that purpose (see section 2, Leij et al. (1997), Cornelis et al., (2005), Durner and Flühler (2005), 

and Khlosi el al. (2008)).  45 

A brief overview of retention curve parameterizations is given in the following while the references to 

the parameterizations in question are given in section 2, where their equations are presented. The earliest developed 

parameterizations focused primarily on the wet end of the curve since this is the most relevant section for 

agricultural production. Numerical models were struggling with the discontinuity of the first derivative at the air-

entry value. Observations with methods relying on hydrostatic equilibrium (Klute, 1986, p. 644-647) typically gave 50 

a more smooth shape around the matric potential where the soil started to desaturate as an artefact of the sample 

height, as was later demonstrated by Liu and Dane (1995). This led to the introduction of parameterizations that 

yielded a continuously differentiable curve.  

The interest in the dry end of the retention curve was triggered by an increased interest in water scarcity 

issues (e.g. Scanlon et al., 2006; UN-Water, FAO, 2007; UNDP, 2006). For groundwater recharge under deep 55 

vadose zones, the dry end of the soil water retention curve affects both slow liquid water movement in film and 

corner flow (Tuller and Or, 2001; Lebeau and Konrad, 2010) and vapor phase transport (Barnes and Turner, 1998; 

de Vries and Simmers, 2002).  The earlier parameterizations had an asymptote at a small (or zero) water content. 

This often gave poor fits in the dry end, and several parameterizations emerged in which the dry branch was 

represented by a logarithmic function that reached zero water content at some point.  60 

A non-parametric approach was advocated by Iden and Durner (2008). They estimated nodal values of 

volumetric water content from evaporation experiments and derived a smooth retention curve by cubic Hermite 

interpolation. They extrapolated the retention function to the dry range and compute a coupled conductivity function 

based on the Mualem model.  

Liu and Dane (1995) were the first to point out that the smoothness of observed curves around the air-65 

entry value could be an artefact related to experimental conditions. Furthermore, it became apparent that a particular 

parameterization that gave a differentiable curve led to unrealistically large increases of the soil hydraulic 

conductivity near saturation (Durner, 1994; Vogel et al., 2001). This was eventually linked to the non-zero slope at 

saturation (Ippisch et al., 2006), implying the existence of unphysically large pores with air-entry values up to zero. 

This led to the re-introduction of a discrete air-entry value. 70 

Most of the parameterizations are empirical, curve-fitting equations (Kosugi et al., 2002). One exception 

is the very dry range, where measurement techniques are often not so reliable (e.g., Campbell and Shiozawa, 1992) 
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and were not always employed. The proportionality of the water content in this range to the logarithm of the 

absolute value of the matric potential that has frequently been invoked conforms to the adsorption theory of Bradley 

(1936), which considers adsorbed molecules to build up in a film consisting of layers, with the net force of electrical 75 

attraction diminishing with every layer (Rossi and Nimmo, 1994).  

The empirical power-law relationship between water content and matric potential introduced by Brooks 

and Corey (1964) was later given a theoretical foundation by Tyler and Wheatcraft (1990), who showed that the 

exponent was related to the fractal dimension of the Sierpenski carpet used to model the hierarchy of pore sizes 

occurring in the soil. The sigmoid shape of the Kosugi’s (1996, 1999) retention curve was derived rigorously from 80 

an assumed lognormal distribution of effective pore sizes, making this the only parameterization discussed in this 

paper developed from a theoretical analysis. 

Some soils have different types of pore spaces: one type appears between individual grains. Its 

architecture is determined by soil texture, and by the geometry of the packing of the individual grains. The second 

type appears at a larger scale: the soil may consist of aggregates (e.g., Coppola, 2000, and references therein), and 85 

the pore space between these aggregates is very different from those between the grains. Biopores formed by roots 

that have since decayed, soil fauna, etc. also can create a separate type of pore space. In shrinking soils, a network of 

cracks may form. The volume and architecture of these pore spaces are essentially independent of the soil texture 

(Durner, 1994), even though a certain texture may be required for these pores to form. In soils with such distinct 

pore spaces, the derivative of the soil water retention curve may have more than a single peak, and for this reason 90 

multimodal retention curves have been proposed, e.g., by Durner (1994) and Coppola (2000). Most of the parametric 

expressions for the soil water retention curve are unimodal though. Durner (1994) circumvented this by constructing 

a multimodal retention curve by summing up several curves of the same type but with different parameter values. He 

presented excellent fits of bimodal retention functions at the price of adding three or four parameters depending on 

the chosen parameterization. Coppola (2000) used a single-parameter expression for the intra-aggregate pore system 95 

superimposed on a 5-parameter expression for the inter-aggregate pores, thereby reducing the number of fitting 

parameters and the degree of correlation among these.  

The wealth of parameterizations for the soil water retention curve calls for a robust fitting method 

applicable to various parameterizations and capable of handling data with different data errors. These errors arise 

from the various measurement techniques used to acquire data over the full water content range. Parameter fitting 100 

codes are available (e.g., Schindler et al., 2015), but they do not fit the parameterizations focusing on the dry end. 

The first objective of this paper is to introduce a parameter fitting procedure that involves an objective function that 

accounts for varying errors, embedded in a shell that allows a wide spectrum of retention function parameterizations 

to be fitted. 

The analysis by Ippisch et al. (2006) of the effect of the shape of the soil water retention curve on the 105 

hydraulic conductivity near saturation considered van Genuchten’s (1980) parameterization in combination with 

Mualem’s (1976) conductivity model only. Iden et al. (2015) approached the same problem but only examined the 

conductivity curve. They too focused on the van Genuchten-Mualem configuration only. The analysis of Ippisch et 

al. (2016) could well have ramifications for other parameterizations. A second objective of this paper therefore is the 
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development of a more general analysis based on Ippisch et al. (2006) and its application to other parameterizations 110 

of the retention and conductivity curves. 

Several hydraulic conductivity parameterizations that relied only on observations of soil water retention 

data have been developed (see the review by Mualem, 1992). Many of these consider the soil layer or sample for 

which the conductivity is sought as a slab of which the pore architecture is represented by a bundle of cylindrical 

tubes with a given probability density function (pdf) of their radii. This slab connects to another slab with a different 115 

pore radius pdf. By making different assumptions regarding the nature of the tubes and their connectivity, different 

expressions for the unsaturated hydraulic conductivi5ty can be found (Mualem and Dagan, 1978). Raats (1992) 

distinguished five steps in this process: 1) Specify the effective areas occupied by connected pairs of pores of 

different radii that reflect the nature of the correlation between the connected pore sizes; 2) Account for tortuosity in 

one of various ways; 3) Define the effective pore radius as a function of both radii of the connected pairs of pores; 4) 120 

Convert the pore radius to a matric potential at which the pore fills or empties; 5) Use the soil water retention curve 

to convert from a dependence upon the matric potential to a dependence upon the water content. Only step 5 

constitutes a direct effect of the choice of the retention curve parameterization on the conductivity curve. Choices 

made in steps 1-3 result in different conductivity curves associated with any particular retention curve 

parameterization.  125 

The functions based on the pore bundle approach discussed by Mualem and Dagan (1978), Mualem 

(1992), and Raats (1992) that have found widespread application in numerical models can be captured by Kosugi’s 

(1999) generalized model. In this paper, we limit ourselves to three parameterizations as special cases of Kosugi’s 

general model, and discuss them in more detail in section 2. In doing so, we add to the existing body of comparative 

studies of parametric retention curves by explicitly including the associated hydraulic conductivity curves according 130 

to these conductivity models. Papers introducing new parameterizations of the soil water retention curve as well as 

reviews of such parameterizations typically show the quality of the fit to soil water retention data (e.g., van 

Genuchten, 1980; Rossi and Nimmo, 1994; Cornelis et al., 2005; Khlosi et al., 2008). The role of these 

parameterizations is to be used in solutions of Richards’ equation, usually in the form of a numerical model. Their 

performance can therefore be assessed through the water content and water fluxes in the soil calculated by a 135 

numerical Richards solver. This is not often done, one exception being the field-scale study by Coppola et al. (2009) 

comparing unimodal and bimodal retention curves and the associated conductivity curves in a stochastic framework 

on the field scale, for a 10-day, wet period. A third objective therefore is to carry out a numerical modeling exercise 

to examine the differences in soil water fluxes calculated on the basis of various parameterizations by the same 

model for the same scenario. By doing so, the inclusion of the conductivity curves in the comparison is taken to its 140 

logical conclusion by carrying out simulations for all possible combinations of retention and conductivity models.  

Should the differences in the fluxes be small, the choice of the parameterizations can be based on 

convenience. If they are significant, even if the fits to the data are fairly similar, this points to a need of a more 

thorough selection process to determine the most suitable parameterization. 

 145 

2. Theory 
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2.1 Hydraulic conductivity models and their behavior near saturation 

 

Numerous functions have been proposed to describe the soil water retention curve, several of them 

reviewed below. Fewer functions exist to describe the soil hydraulic conductivity curve. When these rely on the 150 

retention parameters, one can use the retention curve to predict the conductivity curve. However, when both 

retention and conductivity data exist, a single set of parameters does not always fit both curves well, even if both 

sets of data are used in the fitting process. It may therefore be prudent to attempt to find a retention-conductivity pair 

of curves that share a number of parameters that could be fitted on retention data only and has additional parameters 

that only occur in the expression for the hydraulic conductivity. 155 

Various theoretical models exist to determine the unsaturated hydraulic conductivity K [LT
-1

] as a function 

of matric potential h [L] or volumetric water content θ from the soil water retention curve (see the Appendix for a 

list of the variables used in this paper). Hoffmann-Riem et al. (1999) and Kosugi (1999) identified a generalized 

model that captured the two most widely used hydraulic conductivity models and several others. The formulation 

according to Kosugi (1999) is: 160 
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where the subscript s denotes the value at saturation, x is an integration variable, and , , and  are dimensionless 

shape parameters. The degree of saturation Se is defined as: 165 
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where the subscript r denotes the irreducable value ( 0).  After a change of variables this gives (Ippisch et al. 2006) 
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where hae [L] is the air-entry value of the soil and S denotes the degree of saturation moving between 0 and the 

actual value Se. Note that the value of S(h) and dS/dh are directly related to the soil water retention curve θ(h) 

through Eq. (2). Specific models can be found by fixing the parameters: Burdine’s (1953) model is obtained with  = 175 

1,  = 2, and  = 2, the popular model of Mualem (1976) results with  = 2,  = 1 and  = 0.5, and the model of 

Alexander and Skaggs (1986) requires  =  =  = 1. When any of these models are used, the soil water retention 

parameters can be used to predict the conductivity curve if no conductivity data are available and the saturated 

hydraulic conductivity can be estimated independently (see Jarvis et al., 2002, and references therein). Note that 

positive values of  ensure that large pores (emptying at smaller values of h ) contribute more to the overall 180 

hydraulic conductivity than small pores, which is physically sound. Parameter   should be positive as well. 

Negative values would lead to a switch of the numerator and denominator (which scales the numerator by its 

maximum value) in Eq. (1), which is illogical. Peters (2014) required that the conductivity curve monotonically 

decreases as the soil dries out and derived a minimal value of -2 for   from that requirement. Indeed, negative 

values of this parameter have been reported (e.g. Schaap and Leij, 2000), even though the three predictive models 185 

mentioned above all have positive values of . 

Driven by the occasionally unrealistic shape of Mualem’s (1976) hydraulic conductivity curve near 

saturation, Ippisch et al. (2006) rigorously analyzed the version of Eq. (3) specific to Mualem’s (1976) model. They 

concluded that the integrand must approach zero near saturation in order to prevent unrealistically large virtual pores 

dominating the hydraulic conductivity of very wet soils, a point raised earlier by Durner (1994). We generalize their 190 

criterion for prohibiting excessively larger pores from dominating the conductivity near saturation for arbitrary 

parameter values (after converting dS/dh to dθ/dh) by 
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 195 

This condition is automatically met by retention curves with non-zero air-entry values, but restricts the permissible 

value of  if the retention curve has non-zero derivatives at saturation, and couples it to this derivative. 

Iden et al. (2015) argued that limiting the maximum pore size of the pore-bundle models that gave rise to 

models of the type of Eq. (1) eliminated the large pores that caused the excessively rapid rise of the hydraulic 

conductivity near saturation. By only modifying the conductivity function without changing the water retention 200 

function, a discrepancy emerges between the retention curve (which reflects the presence of unphysically large 

pores) and the conductivity curve (which does not). Retention curves with a distinct air-entry value maintain the 

desired consistency, at the price of having non-continuous derivatives, which may create problems for numerical 

solvers of Richards’ equation.  

 205 

2.2 Critical evaluation of parametric functions of the soil water retention curve 
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This section summarizes the most popular parameterizations of the soil water retention curve and several 

lesser-known others that were developed to improve the fit in the dry range or at least eliminate the need for the 

physically poorly defined residual water content. At this time, we consider unimodal functions only. The physical 210 

plausibility in terms of the rate of change near saturation of the corresponding conductivity models is verified, 

thereby maintaining the consistency between the retention and the conductivity curves that would have been lost in 

Iden et al.’s (2015) approach. In all cases but one, this physical plausibility is checked for the first time. The 

plausibility check requires that the derivative of each retention curve is determined and the criterion in Eq. (4) is 

used to define the permissible range for . If this range does not include any of the values {1, 2} used by the 215 

conductivity models described above, or if the permitted values are non-physical (< 0), the retention model does not 

have a conductivity model associated with it, which limits its practical value. As above, h denotes the matric 

potential, which is negative in unsaturated soils. Many of the cited papers adopt this notation for its reciprocal, the 

suction. 

The water retention function of Brooks and Corey (1964) is 220 
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This equation is referred to as BCO below. The derivative is 
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where λ is a dimensionless fitting parameter. If θr is set to zero, Campbell’s (1974) equation is obtained.  

The analytical expression for the generalized K(h) function (Eq. 3) for the water retention function of 

Brooks and Corey (1964) is 230 
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Note that the Brooks-Corey retention curve allows all three parameters of the associated conductivity model to be 

fitted. 235 

The derivative of the Brooks-Corey function is discontinuous at hae. Hutson and Cass (1987) added a 

parabolic approximation at the wet end to make the first derivative continuous. For θr = 0, they proposed 
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where hi [L] is the matric potential at the inflection point, given by: 
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The derivative is 245 
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The parameter hae no longer is an air-entry value and should be considered a pure fitting parameter. It should be 

noted that the smooth transition to saturation that this function and several others mimic may at least in part be 250 

caused by the non-zero height of the soil cores used in experiments to determine soil water retention curves. At 

hydrostatic equilibrium, the matric potential along the vertical varies in the soil core, resulting in a differentiable 

shape of the apparent soil water retention curve, even if the soil in the core has a uniform air-entry value that leads to 

a locally non-differentiable curve (Liu and Dane, 1995). 

The parabolic approximation of Hutson and Cass (1987) leads to the following expression for the term in 255 

Eq. (4) 
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where A1 is a constant. This leads to the requirement that  < 1, ruling out the usual models. Although the parabolic 260 

approximation in itself does not preclude the existence of a closed-form expression for K, the restriction on  is 

quite severe, so we do not pursue this further. 

Van Genuchten’s (1980) formulation is also continuously differentiable: 
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where α [L
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], n, and m are shape parameters. This equation is denoted by VGN below. It has the derivative 
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where often m is set equal to 1 – 1/n.  

The limit of the derivative of van Genuchten’s (1980) retention curve near saturation is 

 

 
1

0d

d 




n

rs

n

h

hmn
h




         (9) 

 275 

leading to the requirement that  < n-1. For many fine and/or poorly sorted soil textures, n ranges between 1 and 2. 

Therefore, this restriction can be even more severe than the one required for a parabolic wet end, even excluding 

Mualem’s (1976) conductivity model when n < 2. For this reason we refrain from formulating analytical 

conductivity equations, even though van Genuchten (1980) presented such expressions for Burdine’s (1953) and 

Mualem’s (1976) models. 280 

Vogel et al. (2001) presented a modification to improve the description of the hydraulic conductivity near 

saturation without being aware of the physical explanation of the poor behavior presented later by Ippisch et al. 

(2006). Their retention function reads 
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where hs [L] is a fitting parameter close to zero with which θm can be defined as 
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The derivative is 
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Schaap and van Genuchten (2006) reported a value of hs of –4 cm to work best for a wide range of soils to 295 

improve the description of the near-saturated hydraulic conductivity. The parameter hs should therefore not be 

viewed as an air-entry value.  

Although an expression can be derived for K(h) if  is set to 1 and m = 1 - 1/n, we prefer to adopt the 

formulation by Ippisch et al. (2006), given its solid physical footing. They proposed to introduce an air-entry value 

and scale the unsaturated portion of the retention curve by its value at the water-entry value: 300 
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with derivative 

 305 

     













ae

ae

mnmn

ae

n

rs

hh

hhhhhmn

h ,0

,11

d

d
11



    (11b) 

 

With the common restriction of m = 1 – 1/n, an expression can be found for  = 1 that is slightly more 

general than Eq. (11) in Ippisch et al. (2006): 

 310 
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where 
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n

aehC 1            (11e) 

 

This equation can be used to define conductivity models according to Mualem (1976) and Alexander and Skaggs 

(1986), which both require that  = 1. 

None of the retention models discussed so far performs very well in the dry range. Campbell and Shiozawa 320 

(1992) introduced a logarithmic section in the dry end to improve the fit in the dry range: 
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with derivative 325 
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where θa represents the maximum amount of adsorbed water, A2 is a constant and hd is the matric potential at oven-

dryness, below which the water content is assumed to be zero. The first term in the derivative leads to the 330 

requirement that  < -1, and therefore no conductivity model can be derived from Eq. (12a). 
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Rossi and Nimmo (1994) also preferred a logarithmic function over the Brooks-Corey power law at the dry 

end to better represent the adsorption processes that dominates water retention in dry soils, as opposed to capillary 

processes in wetter soils. They also implemented a parabolic shape at the wet end as proposed by Hutson and Cass 

(1987). Rossi and Nimmo (1994) presented two retention models, but only one (the junction model) permitted an 335 

analytical expression of the unsaturated hydraulic conductivity. Here, the junction model is presented with and 

without the parabolic expression for the wet end of the retention curve. With the discontinuous derivative at the air-

entry value, the expression reads 
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which is denoted RNA below. The derivative is 
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Rossi and Nimmo (1994) required the power law and logarithmic branches as well as their first derivatives 

to be equal at the junction point (θj, hj). With hd fixed (Rossi and Nimmo found a value of -10
5
 m for six out of seven 

soils and -5·10
5
 m for the seventh), these constraints allow two of the five remaining free parameters to be expressed 

in terms of the other three. Some manipulation leads to the expressions: 

 350 
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but other choices are possible. This choice leads to fitting parameters hae, hj, and θs. The associated conductivity 

model is 355 
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 



 
 hhhE d)(          (13f) 360 

 






aehF


           (13g) 

 

The junction model of Rossi and Nimmo (1994) with a continuous first-order derivative achieved through 

the correction by Hutson and Cass (1987) reads 365 
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with the derivative 
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where hc [L] is a fitting parameter, together with λ and θs. The parabolic wet end restricts  to values between 0 and 

1. For this reason, an expression for the conductivity curve is not derived. 

Rossi and Nimmo (1994) also introduced an equation that summed up the power law and logarithmic 

contributions (the sum model): 
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with derivative 
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in which we have 
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and 
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A closed-form expression for the hydraulic conductivity does not exist for this function, and the permitted values for 

 are not physically acceptable. 400 

Fayer and Simmons (1995) used the approach of Campbell and Shiozawa (1992) to have separate terms for 

adsorbed and capillary bound water. If the capillary binding is represented by a Brooks-Corey type function, the 

retention model becomes 
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This expression is denoted FSB below. The derivative is 
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The corresponding conductivity model is 
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where 415 
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Note that the above model is valid if hae does not exceed -1 cm. This condition will usually be met, unless the soil 

texture is very coarse. 

If capillary binding is described by a van Genuchten function, the resulting equation is 425 
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with derivative 
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The derivative has several terms that pose severe restrictions on the value of  (the first term even requires that  

< -1), and other terms that limit the permitted values of n. The conductivity function is therefore omitted here. 

In the original equations of both versions as presented by Fayer and Simmons (1995), the adsorbed water 435 

content reached zero at hd, while there is still some capillary bound water at and below that matric potential, which 

is inconsistent. Furthermore, the terms with ratios of logarithms become negative for matric potentials below hd. We 

therefore modified the original equations by setting the water content to zero below hd. 

Kosugi (1996) and Kosugi (1999) presented a soil water retention curve for soils with a lognormal pore size 

distribution. Khlosi et al. (2008) extended the approach of Campbell and Schiozawa (1992) and Fayer and Simmons 440 

(1995) to Kosugi’s (1996, 1999) model. We again set the water content to zero for matric potentials below hd: 
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with the derivative (see Olver et al., 2010, p. 163 and p. 443) 
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            (18b) 

 

Parameter hm [L] represents the matric potential corresponding to the median pore size, and σ characterizes the width 

of the pore size distribution. The behavior of the derivative near saturation is not readily clear. Expressions for the 450 

corresponding hydraulic conductivity function can only be found for integer values of. For  = 1, the expression 

for the hydraulic conductivity is 
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where Se is obtained by dividing Eq. (18a) by θs. The following functions and derived variables have been used for 

clarity:   
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For  = 2, the expression for the hydraulic conductivity reads: 

 465 
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with 
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There are several terms with zero in the denominator in Eqs. (18c) and (18h). In these terms, the numerator 

is zero as well. The terms exp(P
−2

(h))h
−1

 and exp(P
−2

(h))h
−
2 appearing in Eqs. (18c) and (18h) both become 470 

infinite for all physically acceptable values of hm and σ. As a consequence, the unsaturated hydraulic conductivity 

for both values of  suffers from the non-realistic increase near saturation diagnosed by Ippisch et al. (2006) for van 

Genuchten’s (1980) soil water retention model, and the use of Eqs. (18c-h) is not recommended.   

Groenevelt and Grant (2004) proposed: 
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where g0, g1, and η are fitting parameters. The constant water content for matric potentials larger than -1cm is 

imposed. Groenevelt and Grant (2004) proposed a more flexible curve-shifting approach, but that procedure is 

cumbersome to perform in a global search parameter fitting operation. The derivative is 480 
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This expression does not permit a closed-form expression for the hydraulic conductivity function. 

Peters (2013) introduced four soil water retention models. He used a logarithmic model for adsorbed water 485 

that differed from that of Campbell and Shiozawa (1992) and the capillary model of either van Genuchten (1980) or 

Kosugi (1999). He developed versions for which the water content could be non-zero at the oven-dry matric 

potential hd, which is incorrect but permits closed-from expressions of the hydraulic conductivity function. He also 

presented versions for which the water content is forced to be zero at hd. 

For the versions with nonzero water contents at hd, the capillary bound and adsorbed water contents are 490 

added (Peters, 2013, Eq. (2)) 

 

  )(1)()( hSwhwShS adcap

e          (20) 

 

where the superscripts cap and ad reflect capillary bound and adsorbed water, respectively, and w is a weighting 495 

factor ranging between 0 and 1. The van Genuchten-version with non-zero water content at hd is 
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with derivative 500 
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The parameter ha [L] represents the matric potential at which the soil reaches the maximum adsorbed water content.  

The Kosugi-version with non-zero water content at air-dryness is 505 
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with derivative 
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The van Genuchten-version with zero water content when the soil is air dry is 
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with derivative 
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The Kosugi-version with zero water content at hd is 
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with derivative  525 
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Both water retention functions based on van Genuchten’s (1980) model (Eqs. (21a) and (23a)) lead to the 

requirement that  be smaller than n-1 (see Eq. (9)) and therefore do only have a physically acceptable conductivity 530 

curve associated with them for a very limited range of . The Kosugi-based versions (Eqs. (22a) and (24a)) suffer 

from the same lack of clarity about the behavior of the derivative as Khlosi et al.’s (2008) modified Kosugi function 

and require integer values of . Because of these limitations and the unwieldy nature of the equations (compare Eqs. 

(18c-h)), their practical value seems limited. 

Iden and Durner (2014) proposed modifications of Peters’ (2013) models that permitted an analytical 535 

expression for the conductivity function even if the water content was forced to be zero at hd. To apply the criterion 

of Eq. (4) to this modification, we multiply the derivative of their retention curve (their Eq. (3)) for adsorbed water 

by h
-

: 
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where b is a shape parameter. High values of b lead to a sharp transition between the two linear segments in the 

semi-logarithmic form of the adsorbed water retention curve with different slopes. Iden and Durner recommend 

values of b between 0.1 and 0.3.  

In the limit as h approaches zero, Eq. (25) simplifies to 545 
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The approximation in the last term leads to the requirement that  < -1 for the limit to go to zero for any value of b, 

but small values of b allow larger ranges of . For b = 0.3, trial calculations showed that the value in the limit 550 

appears to be zero for  < 0.2, which still rules out the established conductivity models. For b = 0.1, the limit is zero 

even for large positive values of . It might be recommendable to fix b at 0.1 instead of treating it as a fitting 

parameter.  

The scaling of the capillary soil water retention curves proposed by Iden and Durner (2014) does not 

alleviate the problems with the van Genuchten curve near saturation while the Kosugi-function remains unwieldy. 555 

Conductivity functions for Peters’ (2013) retention models will therefore not be derived. 

In summary, many of the retention curves examined result in conductivity curves with physically 

unacceptable behavior near saturation, even though several of these expressions were derived with the explicit 

purpose of providing closed-form expressions for the hydraulic conductivity. Only the Brooks-Corey function 

(1964) (BCO, Eq. (5a)), the junction model of Rossi and Nimmo (1994) without the parabolic correction (RNA, Eq. 560 

(13a)), and the model of Fayer and Simmons (1995) based on the Brooks-Corey (1964) retention function(FSB, Eq. 

(16a)) lead to an acceptable conductivity model with full flexibility (three free parameters: , γ, τ). The modified van 

Genuchten (1980) retention curve with a distinct air-entry value by Ippisch et al. (2006) (VGA, Eq. (11a)) leads to a 

conductivity model with two fitting parameters if m = 1- 1/n because  = 1.  

 565 

3. Materials and methods 

3.1. Soil water retention and hydraulic conductivity data 

 

Data were obtained from Schelle et al. (2013) who measured soil water retention curves for a range of soil 

textures (clay, silt, silt loam, and sand). They took undisturbed and disturbed samples of a silt loam, a silt, and a sand 570 

near Braunschweig (northern Germany), and of a clay near Munich (southern Germany). The retention data were 

measured on soil samples using different laboratory methods and cover the moisture range from saturation to near 

oven dryness at pF approximately7. For silt, silt loam and sand we used data obtained by suction plates, pressure 

plates and the dew point method.  For clay we used data from the evaporation method HYPROP
®
 (UMS, 2015)  
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(until pF 3), pressure plate and dew point methods but trimmed the disproportionally large data set in the HYPROP
®
 575 

range by stratifying the data into intervals of 0.5 on the pF scale and then randomly picking one data point for each 

interval. This ensured an adequate sensitivity of the fit in the dry range for all textures. For some of the soil samples, 

hydraulic conductivity data were available, including the values at saturation (unpublished). Hydraulic conductivity 

data were obtained by the evaporation method according to Peters and Durner (2008). 

Undisturbed samples of 4.0 cm height and 100 cm
3
 volume were used for the suction plate method, with 4 580 

to 6 replicates for each soil. The HYPROP
®
 setup worked with an undisturbed sample of 5.0 cm height and 250 cm

3
 

volume (one replicate). The pressure plate method required disturbed samples of 1.0 cm height and 5.2 cm
3
 volume 

(5 or 6 replicates for each soil). The dew point method worked with disturbed samples of approximately 10 g dry 

mass (7 to 24 replicates with pF values between 3.5 and 6.2). Additional details are given by Schelle et al. (2013). 

 The fitting routine uses the variance of the data error to determine the weighting factor each data point. We 585 

estimated these on the basis of estimated measurement errors of water level readings, pressure gauges, sample 

masses, etc. 

When the three conductivity parameters are set to the values dictated by Burdine (1953), Mualem (1976), 

or Alexander and Skaggs (1986), hydraulic conductivity curves can be derived from soil water retention data only, 

supplemented by an estimate for the saturated hydraulic conductivity. For the soils with available conductivity data 590 

we compared the hydraulic conductivity curves to the direct measurements. 

 

3.2. Parameter fitting 

3.2.1. Selected parameterizations 

 595 

We fitted the parameterizations that gave physically plausible near-saturated hydraulic conductivity 

behavior: BCO, FSB, RNA (all three conductivity models), and VGA (only Burdine’s (1953) and Mualem’s (1976) 

conductivity models). For comparison we also fitted VGN (only Mualem’s conductivity model) as it is the most 

widely used parameterization at the moment. Table 1 shows the fitting parameters and their physically permitted 

range. 600 

 

3.2.2. The objective function and its weighting factors 

 

A set of parameters describing the soil water retention curve must be optimized to provide the best fit to an 

arbitrary number of data points. To do so, an objective function was minimized, construed by the sum of weighted 605 

squares of the differences between observed and fitted values. The fitted values depend on the parameter values in 

the parameter vector x. Assume qθ observation pairs of water content vs. matric head (hi,θi). Here, θi denotes the ith 

observation of the volumetric water content, hi [L] is the matric head at which that water content was observed 

(expressed as an equivalent water column), and i {1,2,…,qθ} is a counter. In the code, the assumed units are cm 

water column for h and cm
3
 cm

-3
 for θ.  610 

The definition of the objective function FR(xp,R) at the R
th

 iteration during the fitting operation is: 
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 max,

T

,, ,...,2,1),()( RRF fRpRRpR  xxdwx        (27) 

 

Here, dθ denotes a vector of length qθ of squared differences between observations and fits that are functions of the 615 

fitted parameter values xp and the fixed (non-fitted) parameters in vector xf. Together, xp and xf constitute x. Each 

squared difference is weighted. The weight factor vector is denoted by wθ,R. Its dependence on the water content and 

iteration step is explained below. The superscript T indicates that the vector is transposed. To terminate infinite 

loops, the number of iterations is capped by Rmax.  

For relatively wet soils (0 > h> -100 to -200 cm), measurement methods are available that create a 620 

hydrostatic equilibrium in a relatively large sample. In such cases hi reflects the matric potential at the center of the 

sample but θi is that determined for the entire sample. The vertical variation of h results in a non-uniform water 

content, and the average water content of the sample (θi) may not be well represented by the water content 

corresponding to hi. For these cases, the height of the sample can be specified on input. The code then divides the 

sample into 20 layers, calculates h in the center of each layer, computes the corresponding water contents from xp,R, 625 

and averages these to arrive at an estimate of θi. 

If and only if the standard deviation of the measurement error of the individual observations is known, a 

maximum-likelihood estimate of the soil hydraulic parameters can be obtained (Hollenbeck and Jensen, 1998). To 

ensure this, the weighting factors in vector wθ,R must be equal to the reciprocal of the variance of the measurement 

error. Note that this choice eliminates any effect of measurement units because the squared differences have the 630 

same units as the variances by which they are divided (Hollenbeck and Jensen, 1998). Only then can model 

adequacy be examined. A model is considered adequate if the residuals after parameter fitting are solely caused by 

measurement noise (Hollenbeck et al., 2000). Furthermore, only if these conditions are met can confidence intervals 

of fitted parameters be determined (Hollenbeck and Jensen, 1998). Even in that case, the contouring of the 

parameter space for permissible increases of the objective function required to determine the confidence region is 635 

not practically feasible for four or more parameters, and very laborious even for fewer parameters. A popular 

approximation based on the Cramer-Rao theorem was shown to be rather poor by Hollenbeck and Jensen (1998), so 

we refrained from implementing it. Instead we record the evolution of the parameter values through the iterative 

process. Low information content (indicated by large random fluctuations of a parameter value), correlated 

parameters, and parameters trending towards a minimum or maximum permitted value can usually be diagnosed 640 

from such records.  

Data points for a retention curve over the whole moisture range cannot be obtained by a single method. 

Furthermore, measurement errors occur in both hi and θi. To accommodate this, the error standard deviations σh,i and 

σθ,i for h and θ, respectively can be provided individually for any data point i. To improve the performance of the 

fitting routine, the values of σθ,i are scaled to ensure their average equals 0.20, i.e., the same order of magnitude as θ. 645 

The values of σh,i are then scaled by the same scaling factor. The weighting factor wR,I for observation θi during 

iteration R is: 
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 650 

where the asterisk denotes a scaled value. The subscripts i and R label data points and iteration steps as above. The 

gradient is determined from the R
th

 fitted θ(h) relationship defined by xp,R. Thus, the weighting factors are updated 

for every iteration.  

In the code, the gradient is approximated by Δθ/Δh computed from the water contents at hi ± max(1 cm 

H2O, 0.01·hi). For data points acquired at hydrostatic equilibrium, this would require 40 additional calls to the 655 

function that computes the θ corresponding to a given value of h, which would be rather inefficient. Instead, the 

water content is calculated for one virtual layer below and one above the sample. By subtracting the water content of 

the top (bottom) layer in the sample and adding the water content of the virtual layer below (above) the sample, the 

water content corresponding to hi + H/20 (hi - H/20) can be found, with H the sample height in cm. In this way, 

Δθ/Δh can be computed with only two additional calls to the function that defines the parameterized θ(h) 660 

relationship. 

 

3.2.3. Parameter optimization by Shuffled Complex Evolution 

The calibration algorithm employed here is the Shuffled Complex Evolution (SCE) algorithm introduced by 

Duan et al. (1992) with parameter adjustments of Behrangi et al. (2008). The strategy of this algorithm is to form out 665 

of j + 1 parameter sets, where j is the number of model parameters, so-called complexes (e.g. triangles in 2D). Each 

vertex of the complex not only represents one of the j + 1 parameter sets but also the model's skill FR(xp,R) to match 

the observed data when it is forced with the according parameter set xp,R. This skill is usually referred to be the 

objective function value of an objective to be minimized. The vertex with the worst skill or largest objective 

function value is subsequently perturbed in order to find a better substitute parameter set. This strategy is repeated 670 

until the volume of the complex, i.e. the agreement of the parameter sets, is smaller than a threshold. To avoid that 

the search gets stuck in a local optimum, a number of Y complexes are acting in parallel. After a certain number of 

iterations the Y· (j+1) vertexes are shuffled and newly assigned to Y complexes. The algorithm converges when the 

volume of all complexes is lower than a threshold which means that all Y· (j + 1) vertexes are in close proximity to 

each other. Infinite runs of the SCE are avoided by Rmax, but convergence should be the desired target for 675 

termination of the SCE. 

The SCE algorithm used here is configured with two complexes each consisting of (2j + 1) ensemble 

members. The different parameterizations we fitted had 3 to 5 fitting parameters. In each iteration j + 1 parameters 

are randomly selected and the vertex with the worst skill is perturbed. The reflection and contraction step lengths in 

the Simplex method (e.g., Press et al., 1992, p. 402-404) were set to 0.8 and 0.45, respectively. SCE seems to have 680 

an order of about O(j
2
). In our case it required between 280 and 1735 model evaluations to find the optimal 

parameter set. For each parameter estimation run, three sets of initial guesses of the fitting parameters must be 

provided. The results of the three trials were compared to reduce the chance of accepting a local minimum of the 
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objective function. The selection of SCE was based on its widespread usage in hydrological studies and according to 

a preliminary experiment where the SCE outperformed other algorithms like the Simulated Annealing (Kirkpatrick 685 

et al., 1983) and the Dynamically Dimensioned Search algorithm (Tolson et al., 2007) in optimizing more than 80 

analytical test functions with j ranging from 2 to 30.  

 

3.3. Scenario study by numerical simulations 

 690 

As stated in the Introduction, previous tests of parametric expressions of soil water retention functions 

mostly focused on the quality of the fit to direct observations of points on the water retention curve. Here, we will 

also examine how the various parameterizations affect the solution of Richards’ equation by simulating water fluxes 

and soil water profiles for a scenario involving infiltration and evaporation. We set up a hypothetical 999-day 

scenario representative of a desert climate with prolonged drying, infiltration into dry soil, and redistribution after 695 

rainfall, permitting a comprehensive test of the parameterizations. We used the HYDRUS 1-D model version 4.xx 

(Šimůnek et al., 2013, http://www.pc-progress.com/en/Default.aspx?hydrus-1d) to solve Richards’ equation in a 1-

dimensional soil profile. We permitted flow of liquid water as well as diffusive water vapor fluxes. 

We considered an unvegetated uniform soil profile of 1 m depth, initially in hydrostatic equilibrium 

with -400 cm matric potential at the soil surface. The upper boundary conditions were atmospheric (during dry 700 

periods: prescribed matric potential set to -50000 cm; during rain: prescribed flux density equal to the daily rainfall 

rate derived from observed daily sums). At the bottom of the profile, free drainage was assumed. The weather data 

(daily rainfall and temperature) were taken from the NOAA data base (http://www.ncdc.noaa.gov/cdo-web/) for a 

station in Riyadh city (Saudi Arabia) between June 4, 1993 and February 27, 1996. In this period spanning nearly 

three years, there were three clusters of rainfall events (Fig. 1). The second cluster was the heaviest with a maximum 705 

daily sum of approximately 5.4 cm at the day 656. A prolonged dry spell preceded the first rainfall cluster. We used 

the first 250 days of this period as a ‘burn-in’ period to minimize the effect of the initial condition on the calculated 

fluxes. This leaves a period of 751 days for analysis. 

The simulation period involved large hydraulic gradients when water infiltrated a very dry soil, limited 

infiltration of small showers followed by complete removal of all water, deeper infiltration after clusters of rainfall 710 

that delivered large amounts of water followed by prolonged periods in which flow of liquid water and water vapor 

occurred simultaneously. These processes combined permitted a comprehensive comparison of the various 

parameterizations. We were interested in the magnitude of the fluxes of liquid water and water vapor under various 

conditions, and the effect on these fluxes of the choice of parameterization. We did not intend or desire to carry out a 

water balance study. Under semi-arid conditions this would have required a much longer meteorological record, 715 

which was not available. 

The various parameterizations are not implemented in HYDRUS. We therefore used the MATER.IN input 

file to supply the soil hydraulic property curves in tabular form to the model. The retention models BCO, FSB, and 

RNA permitted all three conductivity models (Burdine, Mualem and Alexander and Skaggs) to be used. VGA only 

gives useful expressions for Burdine and Mualem.  VGN only allows Mualem’s conductivity model. Thus, there are 720 
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12 combinations of retention and conductivity curves that we tested on four different textures, leading to 48 different 

simulations (and MATER.IN files) in total.  

 

4. Results and discussion 

4.1 Fitted parameters and quality of the fits 725 

 

 Table 1 presents the fitted parameters for all combinations of texture and parameterization. The parameter 

with the best-defined physical meaning is θs. All parameterizations give comparable values for it for each texture, 

which reflects the relatively narrow data clouds near saturation. The values of θr are relatively high for the three 

parameterizations in which it occurs. The air-entry values (hae) should increase (move closer to zero) from clay to 730 

silt loam to silt to sand, which is the case for BCO, FSB, and RNA, but not for VGA. The data in Fig. 2 support 

relatively similar values for all textures other than clay, which is somewhat surprising. RNA gives rather high values 

in silt and sand, and VGA does very poorly in sand and silt loam. The high value for hae for FSB in clay may be 

related somehow to the very high value of the maximum adsorbed water content θa, which we fixed close to θs. The 

value of θa for clay should be larger than that for silt loam, so it cannot be more than about 0.2 off though. The 735 

spread of hj for RNA across the textures show that this parameter needs to be given the full range (between hd and at 

least the minimum value of hae). Even with initial guesses that differed by several orders of magnitude, the fits were 

still quite consistent, so evidently these values are supported by the data and not an artefact. 

In three of the 48 parameter estimation runs, the fits pushed one of the parameters to one of its bounds 

(even after expanding these to their physical limits), irrespective of their initial guess: FSB for clay (we fixed θa to 740 

0.5), VGN for sand and RNA for silt (we fixed θs on the basis of the data in both cases). For BCO and VGA in 

sandy soil, the code could not converge to a global minimum, indicated by the volume of the complexes, which 

exceeded the threshold. The fitted parameters should be viewed critically in these two cases.  

The Root Mean Square Error (RMSE) of the fits (Table 2) illustrate why VGN has been very popular for 

over three decades. It gives the best fit in three cases (sand, silt and silt loam) and the second-best fit in the fourth 745 

(clay). BCO performs poorest in three cases (sand, silt and silt loam) and second-poorest in one (clay). The other 

three have varying positions, with no clearly strong or weak performers. FSB has the best performance in the finest 

soil (clay).The overall difference in the RMSE values between textures reflects the different scatter in the underlying 

data clouds. 

The soil water retention curves defined by the different pits are plotted in (Fig. 2). The models that were not 750 

developed with dry conditions in mind (BCO, VGA, and VGN) have relatively high water contents in the dry end of 

clay and silt loam. The logarithmic dry end of FSB and RNA eliminates this asymptotic behavior. The cutoff to zero 

of the FSB parameterization is quite strong in fine-textured soils. The fixed value of hd (where the water content is 

zero) of RNA seems to be too small for clay while appearing adequate for the other textures. 

In the intermediate range, all fits are close to one another. RNA underperforms in sand and silt compared to 755 

the others. In the wet range, the absence of an air-entry value in VGN results in a poor fit for sand. Here, the contrast 

between VGN and VGA is very clear. Overall, the inclusion of the water-entry value as a parameter seems 

beneficial to the fits. FSB has the most satisfactory overall performance. 
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For sand, silt, and silt loam, independent observations of K(h) were available. The fits of Burdine’s (1953) and 760 

Mualem’s (1976) parameterizations based on retention data only were remarkably good for all parameterizations. 

The function of Alexander and Skaggs (1986) severely overestimated the hydraulic conductivity in all three cases, 

but very accurately described the slope of the curve for silt loam. Fig.3 demonstrates this for FSB, the results for the 

other parameterizations were comparable. 

 765 

4.2. Simulation results 

4.2.1 Silt 

 

We start the analysis by examining the flux at the bottom of the soil profile. Panels a-e of (Fig. 4) show all 

combinations of parameterizations of the retention and conductivity curves.  770 

The early rainfall cluster event at around t = 300 d did not generate any bottom flux, and therefore only 

wetted up the soil profile. In doing so it increased the effect of the heavier rainfall around t = 656 d on the bottom 

flux. 

For the individual parameterizations, Mualem (M) and Burdine (B) gave reasonably similar results in which 

the second and third rainfall cluster generated a little more downward flow for B than for M. In all cases, Alexander 775 

and Skaggs (AS) gave a more rapid response of a very different magnitude. Clearly visible is a sustained, constant 

flux leaving the column during prolonged dry periods for the AS conductivity curves. This is physically implausible. 

Fig. 4f shows the substantial effect of the parameterization of the water retention curve on bottom fluxes 

when the M-type K(h) function is deployed. The results for B-type K (h) were comparable. Different retention 

curves gave very different responses to the initial conditions, highlighting the need to add a sufficiently long lead 780 

time ahead of the target time window to the simulated time period. RNA’s response to the second and third rainfall 

clusters was about 2.4 times that of the others. At h = -300 cm (pF 2.48), K according to M is at least 5 times higer 

for RNA than for the rest, while the water content at that matric potential and higher values is relatively small (Fig. 

2c). Thus, infiltrated water was transported downward with relative ease, giving rise to the relatively high bottom 

fluxes and low evaporation rates that were computed for RNA (Figs. 4f, 5f).  785 

If the remarkable response of VGA to the initial condition compared to VGN is disregarded, the 

parameterizations other than RNA behaved rather similar, except for the fact that VGA responded much faster to a 

change in the forcings than the other parameterizations. VGN’s response to the initial condition and to rainfall was 

more tailed than that of the other parameterizations. 

Fig. 4g shows the similar comparison of all parameterizations for the AS-type K(h) function. The response 790 

to rainfall was very fast and short-lived, which seems improbable for a silt soil that is far from full saturation. The 

non-physical bottomflux during dry periods (especially for VGA), the slow calculation times (half as fast as the 

others) with the time step always at the smallest permitted value, and non-negligible mass balance errors all point to 

numerical problems associated with AS. 

The evaporative flux was nearly identical for B and M conductivity functions (Fig. 5a-c). Since their 795 

bottom fluxes differed, this necessarily implies that the storage in the soil profile must also be different for B and M. 
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The AS parameterization gave a much more spiky response of evaporative flux to rainfall than B or M, with zero 

evaporation most of the time (Fig. 5a-d). In terms of cumulative evaporation, AS responded more strongly to the 

initial condition (Fig. 5a-c) and, to a lesser degree, to the second rainfall cluster around t = 650 d. Overall, the effect 

of the conductivity function on evaporation was less pronounced than on the bottom flux, and was dominated by the 800 

response to the initial condition. The same was true for the parameterization of the retention curve, as demonstrated 

by the relatively similar shapes of the curves in panels f and g of Fig. 5.Strikingly, the correction of Ippish et al. 

2006, which created the difference between VGN and VGA caused a very fast attenuation of the effect of the initial 

conditions for the bottom flux as well as the evaporation (compare Figs. 4d and e, and Figs 5d and e). 

Given the non-physical behavior of the bottom flux of AS for VGA in particular (Fig. 4d), we also 805 

examined the infiltration. We first compare infiltration for VGA with M and AS-type conductivity (Fig. 6a), and 

clearly see the zero infiltration for VGA during periods without rain contrasted to the impossible non-zero 

infiltration rates for AS during dry spells. For the other water retention parameterizations in combination with AS, 

the effect is less pronounced (Fig. 6b). Still, the AS conductivity should be used with care and the results and mass 

balance checked. 810 

Table 3 summarizes the bottom and evaporative fluxes with the effect of the initial condition removed. For 

evaporation, the differences are inconsequential except for the markedly low values for RNA. For the bottom flux, 

the difference between B and M is small enough to be within the margin of error for typical applications. The effect 

of the parameterization of the retention curve is an order of magnitude between the smallest bottom flux (for VGA) 

and the largest (for RNA). 815 

 

4.2.2. Sand 

 

The relationship between the bottom (Fig. 7) and evaporative fluxes (Fig. 8) as generated by the various 

parameterizations for the sandy soil were comparable to those for silt, and the analysis applied to the silt carries over 820 

to sand. The response to the initial conditions was less pronounced for AS conductivity functions, but still quite 

large. The bottom fluxes in sand responded faster and with less tailing than in silt, and the third rainfall cluster near 

the end of the simulation period produced a clear signal (Fig. 7). 

Notably, the responses of the bottom fluxes to the initial conditions were much smaller in sand than they 

were in silt, probably because the volumetric water content in sand at a matric potential of -300cm (at the bottom of 825 

the soil column) and -400cm (at the top) was already well below 0.1 for all parameterizations (Fig. 2b).  

The FSB (Fig. 7b) and RNA (Fig. 7a) parameterizations were both in their logarithmic dry range when 

bottom fluxes occurred, and gave comparable values. BCO is not well adapted for dry conditions, and this is 

reflected by a bottom flux that is four times lower than the others (Fig 7g). 

The bottom fluxes for BCO and FSB with AS-type K(h) are similar (Fig. 7h), in stark contrast to the bottom 830 

fluxes based on B (Fig. 7f) and M (Fig. 7g) for these parameterizations. The similarity in the fluxes for AS reflect 

the facts that the evaporative fluxes (occurring in the wet range, where BCO and FSB both have Brooks-Corey 

retention curves) are very similar and the spiky response typical for AS results in small difference in storage 
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between BCO and FSB. Consequently, the bottom flux, as the only remaining term of the water balance, cannot 

differ strongly between BCO and FSB. 835 

The difference in the bottom fluxes generated for VGN and VGA with M-type K(h) (Fig. 7g) is even more 

extreme than in case of the silty soil. Here too, the effect of the initial conditions lingers for a long time for VGN, 

even though the magnitude of the effect is smaller. 

For both M and B conductivity functions, the evaporation (Figs. 8b and c) and the bottom flux (Figs. 7a, f, 

and g) for BCO differed from the other parameterizations. These differences seem to have been dominated by the 840 

complementary responses of evaporation and bottom fluxes to the rainfall events around t = 656 d. BCO converted 

roughly 5-7 cm more of this rainfall to evaporation than the other parameterizations, for both B and M. Therefore, 

less water was available for downward flow, resulting in a cumulative bottom flux for BCO that was roughly 6 to 8 

cm smaller than for the other parameterizations. 

The AS-type K(h) function again gave a spiky response (Fig. 8a). Nevertheless, the differences in the 845 

evaporation and the bottom flux compared to those of B and M are not very large. The bottom fluxes resulting from 

rainfall events were considerably smaller for RNA than for the other parameterizations.  

Coarse-textured soils have the sharpest drop in the hydraulic conductivity as the soil desaturates. We 

therefore used the result for the sandy column to study the relationship between the matric potential at the bottom of 

the column and the bottom flux in order to evaluate water fluxes in dry soils. The free drainage lower boundary 850 

condition ensures there is always a downward flux that is equal to the hydraulic conductivity at the bottom at any 

time. Particularly for coarse soils this can still lead to negligible bottom fluxes for considerable periods of time. We 

first consider FSB and RNA, these being the parameterizations specifically developed to perform well in dry soils. 

The difference in matric potentials between FSB and RNA is immediately clear from Figs. 9a, b and 10a, b. 

The effect of the conductivity function is manifest by including Figs. 9c and 10c in the comparison. The effect of the 855 

first rainfall cluster is visible in the matric potential in all cases (Figs. 9 and 10), but not enough to generate a 

significant flux. A flux through the lower boundary first occurs when the matric potential there exceeds (i.e. 

becomes less negative than) -70 cm for FSB (Fig. 9a and b) and -30 cm for RNA (Figs. 10a and b). 

The second rainfall cluster at 600 < t < 700 d did not rely on prewetting: it produced a bottom flux no 

matter how dry the soil was. The third rainfall cluster around day 930 probably would not have generated a bottom 860 

flux for B- and M-type K(h) functions, had the previous rainfall cluster not prewetted the soil. Note that the previous 

rainfall affects matric potentials at 1 m depth for several hundreds of days for B and M-type conductivity functions, 

but only for a few months at most for AS.  

The AS-type K(h) function gave such rapid responses that only the second flux event at about 694 d was a 

result of recent pre-wetting at t  656 d (Figs. 9c and 10c). Despite the very different matric potentials at the bottom, 865 

the cumulative bottom fluxes produced by a single rainfall cluster generated by FSB and RNA were quite similar for 

B and M and only somewhat larger for AS (Figs. 9 and 10).  

The AS conductivity function led the soil to dry out so completely that the atmospheric matric potential 

during dry spells was reached at 1 m depth in a few months (Figs. 9c and 10c). This seems unrealistic, and seems to 

be related to the significant overestimation of the unsaturated hydraulic conductivity by AS evidenced in Fig. 3. 870 
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For comparison, the bottom matric potentials and fluxes are given for BCO as well (Fig. 11). They are very 

different, and given the poor suitability of BCO for dry soils and the poor fitting performance probably incorrect. 

The differences between the parameterizations illustrate the need to carefully consider the suitability of the 

parameterization for the intended purpose. 

 875 

4.2.3. Silt loam and clay 

 

The bottom fluxes from the clay and the silt loam soil for all combinations of parameterizations for the soil 

water retention and hydraulic conductivity curves were similar to those for the silt soil (Figs.12 and 15), with two 

notable exceptions: for RNA, there was a much more damped response to the rainfall around t = 656 d for either the 880 

B or the M-type K(h) function (Fig.12c), in comparison to the rapidly increasing bottom flux in silt. In clay, there 

was virtually no response anymore (Fig.15c). In general, the bottom fluxes for all parameterizations displayed 

comparable behavior with the exception of those with AS-type K(h) functions, which showed very strong responses 

to the initial conditions (Figs. 12 and 15). 

The behavior of the evaporative fluxes from the silt loam and the clay soil for all combinations of 885 

parameterizations for the soil water retention and hydraulic conductivity curves was essentially similar to that for the 

silty soil (Figs. 13 and 16). The main difference was the less gradual response of the evaporation for VGA, 

particularly for clay, which was, in fact, rather similar to the notoriously spiked response of the AS-type 

conductivity function. The relative amounts of evaporation of the various parameterizations varied from one texture 

to another. 890 

For AS in combination with the VGA retention curve, there was significant infiltration during periods of 

zero rainfall (Figs. 14 and 17). This numerical artefact led to erroneous simulations of the bottom flux. This is the 

most significant occurrence of mass balance errors that plague the simulations with AS-type K(h) functions in silt 

loam and clay, as they did in silt. Evidently, the AS parameters for the K(h) curve cause numerical problems in fine-

textured soils. 895 

 

4.3 General ramifications 

 

We found that 14 out of 18 parameterizations of the soil water retention curve were shown to cause non-

physical hydraulic conductivities when combined with the most popular (and effective) class of soil hydraulic 900 

conductivity models. For one of these cases (VGN), Ippisch et al. (2006) demonstrated convincingly that their 

alternative (VGA) significantly improved the quality and numerical efficiency of soil water flow model simulations, 

and our simulations confirmed the profound effect of this modest modification on the model results. We hope that 

the general criterion we developed for verifying the physical plausibility of the near-saturated conductivity will be 

used in the selection of suitable soil hydraulic property parameterizations for practical applications of numerical 905 

modeling of water flow in soils, and likewise will be of help in improving existing parameterizations (as we have 

done in a few cases here) and developing new ones. 



36 

 

The ability of both Burdine’s (1953) and Mualem’s (1976) models of the soil hydraulic conductivity 

function to predict independent observations of the soil hydraulic conductivity curve on the basis of soil water 

retention parameters fitted on water content data only is reasonably good, at least for the limited data available to 910 

test this. The conductivity model of Alexander and Skaggs (1986) overestimated the conductivity of the soils for 

which independent data were available. This resulted in a rapid and unrealistically strong response to changes in 

atmospheric forcings even at 1 m depth, as shown in our simulation study. 

The simulations with different parameterizations showed that under the given boundary conditions the 

choice of the parameterization had a modest effect on evaporation, but strongly affected the partitioning between 915 

soil water storage and deep percolation. The uncritical use of a default soil hydraulic parameterization or selecting a 

parameterization solely based on the quality of the fit to soil water retention data points entails the risk of an 

incomplete appreciation of the potential errors of the water fluxes occurring in the modeled soil. This points to the 

importance of carefully considering the soil hydraulic parameterization to be used for long-term water balance 

studies that aim to determine or predict the variation of seasonal water availability to plants or long-term 920 

groundwater recharge to assess the sustainability of extractions from an underlying aquifer.  If at all possible, 

observations during dynamic flow (water contents, matric potentials, fluxes) should be included in the 

parameterization selection process. In this context it would be interesting to see if parameter-estimation-processes 

based on inverse modeling of a non-steady unsaturated flow experiment would lead to a different choice of 

parameterization than fitting parameters to data points obtained at hydrostatic equilibrium. This requires the 925 

inclusion of all the parametric expressions of interest in the numerical solvers of Richards’ equation capable or 

running in parameter estimation mode.  

 

Code availability 

 930 

The parameter optimization code is available upon request from G.H. de Rooij. At a later time we intend to make the 

code available through a website. 
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Appendix: List of variables 935 

Variables Dimensions Properties, and equation to which the 

variable pertains (where applicable) 

A1 L
-2 

Constant,  Eq. (7) 

A2 - Constant of, Eq. (12a) 

B(h) L n  Function simplifying notation, Eq. (11c) 

b - Shape parameter, Eq. (25) 

C - Constant simplifying notation, Eq. (11c) 

c1 - Constant, Eq. (14a) 

c2 - Constant, Eq. (15a)                             

dθ Varies Vector of length qθ of squared differences 

between observations and fits, Eq. (27) 

E(h) L
-κ 

Function simplifying notation, Eq. (13e) 

F L
λ 

Constant simplifying notation, Eq. (13e) 

FR(xp,R) - Objective function 

G - Constant simplifying notation, Eq. (16c) 

g0, g1 - Fitting parameter, Eq. (19a) 

H L Sample height 

h L Matric potential 

ha L Matric potential at which the soil reaches 

the maximum adsorbed water content 

hae L Air entry value of the soil 

hc L Fitting parameter 

hd L Pressure head at oven dryness 

hi L Matric potential at the inflection point 

hj L Pressure head at junction point 

hm - Fitting parameter representing the matric 

potential at median pore size 

hs L Minimum capillary height 

I - Constant simplifying notation, Eq. (16c) 

J L
-𝞴-κ Function simplifying notation, Eq (16c) 

  j - Counter 

K L T
-1 

Unsaturated hydraulic conductivity 

Ks L T
-1

 Saturated hydraulic conductivity 

L - Constant simplifying notation, Eq. (18c) 
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M1 - Constant simplifying notation, Eq. (18c) 

M2 - Constant simplifying notation, Eq. (18g) 

m - Shape parameter of θ(h) 

n - Shape parameter of θ(h) 

P(h) - Function simplifying notation, Eq. (18c) 

R - Iteration step 

RMAX - Maximum number of iteration 

S L
3
 L

-3
  Variable running from 0 to Se 

S
ad 

- Adsorbed water, Eq. (20) 

S
cap 

- Capillary water, Eq. (20) 

Se - Degree of saturation  

T - Indicates that the vector is transposed 

w - Weighting factor ranging between 0 and 1, 

Eq. (20) 

w θ,R - Weight factor vector 

wR,i - Individual weighting factor in w θ,R 

x Varies Integration variable 

x Varies Parameter vector 

x f Varies Vector of  non- fitted parameters 

x p,R Varies Vector of  fitted parameters 

Y - Number of complexes 

α L
-1 

Shape parameter of θ(h) 

β - Constant 

γ - Shape parameter of K(h) 

ζ1 - Constant, Eq. (14a) 

ζ2 - Constant, Eq. (15a)                      

η - Fitting parameter 

θ L
3
 L

-3
 Volumetric water content 

θa L
3
 L

-3
 Curve fitting parameter representing the 

volumetric water content when h = -1cm 

θi L
3
 L

-3
 ith observation of the volumetric water 

content 

θj L
3
 L

-3
 Volumetric water content at junction point 

θm L
3
 L

-3
 Water content at hm 

θr L
3
 L

-3  
Residual water content 

θs L
3
 L

-3
 Saturated water content 

κ - Shape parameter of K(h) 



39 

 

λ - Fitting parameter of θ(h) 

σ   Fitting parameter that characterizes the 

width of the pore size distribution 

σh,i, σθ,i - Error standard deviations respectively for 

the ith matric potential and the ith water 

content 

σ
*

h,i, σ
*
θ,i - Scaled values of  σh,i, σθ,i 

σ
*

i,R - Scaled standard deviation of (hi, θi) during 

iteration R 

τ - Shape parameter of K(h) 
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Author contribution 

 

RM gathered the soil hydraulic functions from the literature and carried out the parameter optimization runs with the 940 

SCE-based code. RM and GHdR designed the test problem (column size, initial and boundary conditions) for the 

test simulations with HYDRUS-1D. RM set up, ran, and analyzed these model simulations. GHdR wrote the shell of 

the optimization code and carried out the mathematical analysis of the soil hydraulic functions. HM carried out the 

experiments that generated the data used in the paper. JM wrote the SCE parameter optimization code. RM and 

GHdR wrote the paper. All authors were involved in checking and improving the paper. 945 
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Figures: 

 

 

Figure 1: The record of daily rainfall sums from Riyadh city that was used in the numerical scenario study. Three rainfall clusters 

are visible. The largest daily rainfall amount (5.4 cm) fell on day 656. The observation period starts at June 4, 1993, and ends at 1100 

February 27, 1996. 
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Figure 2: Observed and fitted retention curves for the different soil textures. 
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Figure 3: The observed and fitted hydraulic conductivity curve according to Burdine (1953), Mualem (1976) and Alexander and 

Skaggs (1986) using the fitted parameters of the Fayer and Simmons soil water retention curve (1995) for (a) sand, (b) silt, and 

(c) silt loam. 
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 1120 

Figure 4: The cumulative bottom fluxes leaving a silt soil column for the different combinations of soil water retention curve and 

hydraulic conductivity parameterizations. Panels a through e present the results for the indicated retention parameterizations (see 

Table 1). Panels f and g organize the results according to the conductivity function: either Mualem (1976) (f) or Alexander and 

Skaggs (1986) (g). 
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Figure 5: Cumulative evaporation from a silt soil column for the different combinations of soil water retention and hydraulic 

conductivity parameterizations. Panels a through e present the results for the indicated retention parameterizations (see Table 1). 

Panels f and g organize the results according to the conductivity function: either Mualem (1976) (f) or Burdine (1953) (g). 
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 1130 

Figure 6: Cumulative infiltration in a silt profile for the VGA parameterization (see Table 1) with conductivity functions 

according to Mualem (1976) and Alexander and Skaggs (1986) (a) and four different parameterizations for the retention curve 

(see Table 1) with the Alexander and Skaggs conductivity function (b). 
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Figure 7: As Fig. 4, but for a sandy soil column. Unlike Fig. 4, the results of Burdine’s (1953) conductivity curve are shown 1135 

(panel f).  
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Figure 8: Cumulative evaporation from a sandy profile for the different combinations of retention curve parameterizations (see 

Table 1) and hydraulic conductivity functions: Burdine (1953) (a), Mualem (1976) (b) or Alexander and Skaggs (1986) (c). 1140 
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Figure 9: Pressure head hBot and flux density vBot at the bottom of the sand column for the FSB parameterization (see Table 1) 

and the conductivity functions of Mualem (1976) (a), Burdine (1953) (b) and Alexander and Skaggs (1986) (c). 

 1145 
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Figure 10: As Figure 9, but for the RNA parameterization (see Table 1).  
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Figure 11: As Figure 9, but for the BCO parameterization (see Table 1). 
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Figure 12: Cumulative bottom fluxes from a silt loam profile for all combinations of parameterizations (see Table 1) and 

Mualem’s (1976) (a) and Alexander and Skaggs’ (1986) conductivity functions (b), and for the RNA parameterization with all 

three conductivity functions (c). 1155 
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Figure 13: Cumulative evaporation from a silt loam profile for all parameterizations (see Table 1) with Mualem’s (1976) 

conductivity function (a) and the VGA parameterization with conductivity functions according to Mualem (1976) and Alexander 1165 

and Skaggs (1986) (b). 
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Figure 14: Cumulative infiltration from a silt loam profile for four parameterizations (see Table 1) with the Alexander and 

Skaggs (1986) conductivity function (a) and for the VGA parameterizations with conductivity functions according to Mualem 

(1976) and Alexander and Skaggs (1986) (b). 1185 
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Figure 15: As Fig. 12, for clay. 
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Figure 16: As Fig. 13, for clay. 
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Figure 17: As Fig. 14, for clay. 
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Tables: 

Table 1: The fitting parameters for five parameterizations, their physically permitted ranges, and their fitted values for four 

textures. The three-character parameterization label is explained in the main text. The equations to which these labels refer are 

given in the first column.  1245 
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    Texture 

     Silt Sand Clay Silt loam 

Parameter-

ization 

Fitted 

parameter 

Unit Range     

 

BCO 

Eq. (5a) 

 

θr - 0 - θs 0.000127 0.013300 0.000004 0.000015 

θs - θr - 1 0.445 0.366 0.516 0.358 

hae cm -∞ - 0 -21.426 -7.161 -50.577 -30.440 

λ - 0 - ∞ 0.197 0.520 0.091 0.163 

 

FSB 

Eq. (16a) 

θs - θa - 1 0.449 0.366 0.519 0.358 

θa - 0 - θs 0.177 0.048 0.500 0.312 

hae cm hd - 0 -11.537 -11.508 -16.783 -11.668 

λ - 0 - ∞ 0.254 0.719 0.152 0.364 

 

RNA 

Eq. (13a) 

θs - 0 - 1 0.460 0.382 0.522 0.358 

hae cm hj -0 -2.826 -1.884 -50.856 -30.250 

hj cm hd - hae -2876 -359000 -49.882 -11641 

 

VGA 

Eq. (11a) 

θr - 0 - θs 0.000133 0.012880 0.000019 0.000041 

θs - θr- 1 0.461 0.366 0.514 0.358 

α cm
-1 

0 - ∞ 0.0197 0.8391 0.0055 0.0093 

n - 1 - ∞ 1.252 1.511 1.127 1.219 

hae cm -∞ - 0 -0.0015 -6.4626 -47.2530 -0.0081 

 

VGN 

Eq. (8a) 

θr - 0 - θs 0.000025 0.013560 0.001160 0.000003 

θs - θr - 1 0.461 0.370 0.509 0.360 

α cm
-1

 0 - ∞ 0.0200 0.1353 0.0042 0.0095 

n - 1 - ∞ 1.251 1.528 1.127 1.219 



64 

 

 

 

Table 2:  Root mean square of errors (RMSE) for the different parameterizations. 

 

 

Parameterization 

Texture 

Silt Sand Clay Silt loam 

BCO 0.1422 0.1164 0.1858 0.1122 

FSB 0.1248 0.1163 0.1205 0.1068 

RNA 0.0341 0.0130 0.2192 0.1101 

VGA 0.0118 0.1164 0.1604 0.0412 

VGN 0.0118 0.0111 0.1547 0.0411 
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Table 3: Cumulative bottom and evaporative fluxes (positive upwards) for silt from day 281 (the start of the first rainfall) 

onwards for Burdine and Mualem conductivity functions with the different parameterizations. The hydraulic conductivity at h 

= -300 cm (the initial condition at the bottom) is also given. 1275 

 Cumulative bottom flux (cm) Cumulative evaporation (cm) K(-300) (cm d
-1

) 

Parameterization Burdine Mualem Burdine Mualem Mualem 

BCO -0.70 -0.500 34.147 34.445 0.00080 

FSB -1.240 -0.910 33.219 33.736 0.00147 

RNA -4.337 -3.650 27.046 28.184 0.00702 

VGA - -0.248 - 34.956 0.00014 

VGN - -0.744 - 34.359 0.00119 
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