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Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. 

Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by 

having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span 

of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in 10 

the state vector. This study examines the impact of multivariate synthetic data assimilation using the Ensemble Kalman Filter 

(EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British-

Columbia, Canada. Synthetic data includes daily snow cover area (SCA), daily measurements of snow water equivalent 

(SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the 

continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state 15 

vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the 

observations are the ones worth considering adding to the state vector. The performance of the assimilation of basin-wide 

SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the 

simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but 

mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more 20 

importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The 

combined assimilation of streamflow and SWE performs better than their individual counterparts, offering improvements 

over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This 

highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions. 

Keywords. Ensemble Kalman Filter, hydrological modeling, ensemble forecast, snow accumulation and melt, multivariate 25 

data assimilation 
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1 Introduction 

Water resource management for reservoirs located in snow dominated regions relies on an accurate portrayal of the snow 

water equivalent (SWE) spatial and temporal distribution in order to make accurate streamflow predictions. Some water 

resources managers make use of Ensemble Streamflow Prediction (ESP) to plan reservoir operations over various lengths of 

time. ESPs have the benefit of integrating weather forecast uncertainty, either by making use of weather ensemble 5 

predictions (de Roo et al, 2003) or by using historical weather data (Day, 1985) as input in a hydrologic model. However, 

ESPs depend heavily on the model’s initial conditions (Franz et al, 2008). Presently, many water resources managers still use 

a manual approach to adjust the initial state of the watershed based on available observations and the user’s experience (Liu 

et al, 2012). 

 10 

Data assimilation (DA) methods, such as the Ensemble Kalman Filter (EnKF; Evensen, 2003) can improve the estimation of 

the initial state of the watershed while also providing an uncertainty on this initial state (Liu and Gupta, 2007). Several 

authors have already shown the added value of DA in snow-dominated watersheds to improve the estimation of the state of 

the watershed (De Lannoy et al, 2012; Dechant and Moradkhani, 2011; Nagler et al, 2008; Slater and Clark, 2006; Andreadis 

and Lettenmaier, 2006). Some studies have also integrated DA in ensemble forecast systems for relatively short-term (up to 15 

5-10 days) hydrologic forecasts (Abaza et al, 2015; Abaza et al, 2014; He et al., 2012), but studies focusing on longer 

forecast periods are scarce even though the need exists for water resource managers. 

 

Multivariate DA applications in hydrology are becoming more frequent, but generally focus on streamflow and soil moisture 

(Samuel et al, 2014; Trudel et al, 2014; Lee et al, 2011), omitting snow water equivalent. In snow-dominated watersheds, the 20 

key initial states include not only information about the hydric state, such as soil moisture and streamflow, but also the snow 

cover state, such as snow water equivalent (SWE) and snow cover area (SCA). To the authors’ knowledge, no published 

studies pertain to the combined assimilation of information about a watershed’s hydric and snow state. Since the lasting 

impact of hydric DA and snow DA can be quite different given the different physical processes driving them, the 

simultaneous DA of both types of data could yield improvements over a potentially longer length of time. 25 

 

However, data assimilation performance depends on various factors, such as the choice of variables to be updated by an 

observation (hereby referred to as the state vector configuration). Abaza et al. (2015) have demonstrated this importance 

when assimilating streamflow in a hydrologic model. Going from univariate to multivariate DA increases the number of 

degrees of freedom, which increases the complexity of the matter. The importance of state vector configuration when using 30 

multivariate DA for hydrological modeling has yet to be investigated. 
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The study’s main objectives are to 1) investigate the potential impact that multivariate data assimilation of hydric 

(streamflow) and snow-related (SWE and SCA) data can have on short-term (1-5 days) and mid-term (up to 50 days) 

streamflow forecast, and 2) to explore how this impact varies as a function of the state vector configuration. 

2 Materials and methods 

2.1 Study area description and data 5 

Simulations were conducted in a synthetic setting based on the Nechako watershed located in British-Columbia, Canada 

(Fig. 1). The watershed includes a reservoir, which drains an area of approximately 14000 km
2
. The reservoir is managed by 

Rio Tinto mainly for hydroelectricity production purposes. The watershed includes part of the Coast Mountains in the west 

region, such that the difference in elevation between the highest and lowest point in the watershed reaches about 1700 m. At 

these latitude and altitude, most (estimated at 53%) of the precipitation falls as snow. 10 

 

There are various types of data gathered regularly over the watershed. First are seven weather stations managed by Rio 

Tinto, three of which measure daily precipitation and air temperature only (yellow circles). Three others also include snow 

pillows (red squares), which measure snow water equivalent. The northernmost snow pillow is located at Mount Wells, the 

southernmost at Mount Pondosy and the westernmost at Tahtsa Lake. Maximum seasonal SWE observations average 615, 15 

853 and 1393 mm for the Mount Wells, Mount Pondosy and Tahtsa Lake snow pillows respectively. The distribution of 

snow on the ground follows a strong East-West gradient such that measurements at Tahtsa Lake typically yield much more 

snow that Mount Well and Mount Pondosy. The northernmost weather station (blue triangle) is located next to the spillway 

at Skins Lake and also takes hydrometric measurements. Historical daily water levels can then be converted into natural 

inflows by also taking into account spilled and turbined flow. Finally, daily snow cover area (SCA) data derived from the 20 

spaceborne sensor MODIS/Terra are also considered (Hall et al, 2002). Because of its spatial coverage and relatively high 

temporal resolution, remotely sensed snow data from MODIS have proven to be valuable in a number of hydrologic studies 

(Bergeron et al, 2014; Roy et al, 2010; Tang and Lettenmaier, 2010; Andreadis and Lettenmaier, 2006; Clark et al, 2006), 

including one applied to the Nechako watershed (Marcil et al, 2016). 

 25 

The meteorological observations gathered over a period of 10 year (from 15
th

 August 1990 to 14
th

 August 2000) were used as 

a basis upon which a synthetic experiment (see below) tested the added value of three types of synthetic observations 

(streamflow, SWE and SCA) for data assimilation purposes. The only datasets actually used were the meteorological station 

data, as well as some streamflow observations (owned by Rio Tinto) and MODIS/Terra daily L3 snow cover data (Hall et al, 

2002) for the initial model calibration performed prior to the synthetic experiment presented in this manuscript. All the 30 

observation data were created synthetically to mimic streamflow, SWE and SCA data that could be measured or estimated 
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using hydrometric, snow pillow and MODIS data, respectively. More details on the creation of synthetic observations and 

meteorological input in sections 3.1.1 and 3.1.2 respectively. 

2.2 Model description 

The hydrologic model used was the spatially distributed, conceptual model CEQUEAU (Charbonneau et al, 1977). It is 

currently being used by Rio Tinto to model hydrologic processes including streamflow at the outlet of the Nechako 5 

watershed, considered to be the spillway where the hydrometric station is also located. All variables are computed at a daily 

time step using a set of parameters to calibrate and daily meteorological input consisting of mean air temperature and 

precipitation. The set of parameters used in this study was the result of a manual calibration performed by Rio Tinto by 

comparing the simulated streamflow at the outlet with the corresponding real streamflow observations. A summary of the 

main processes concerning the production and transfer functions is presented here to facilitate the understanding of the state 10 

variables used in this study. 

 

CEQUEAU divides the watershed into regular square pixels called “whole squares” over which the production function is 

computed (Fig. 2). The current version of CEQUEAU uses the snow model presented by the U.S. Army Corps of Engineers 

(1956) to simulate most snow-related processes. The SWE is actually computed separately for forested and open areas, 15 

which have their own set of parameters, but is aggregated here as a weighted sum according to the proportion of forested and 

open areas within each whole squares. The only variable computed separately (i.e. outside from CEQUEAU) is SCA, which 

is computed using a depletion curve (Anderson 1973). The depletion curve used here follows Andreadis and Lettenmaier 

(2006), which uses a three parameter beta distribution: 

SCA𝑖 = B−1 (
SWE𝑖

min(SWEmax,𝑖,𝑆𝐼)
|𝛼𝑆𝐶𝐴, 𝛽𝑆𝐶𝐴) ,         (1) 20 

where SCA𝑖 is the resulting snow cover area over a whole square 𝑖, SWE𝑖  is the simulated snow water equivalent over the 

same area, SWEmax,𝑖 is the annual maximum snow water equivalent since the beginning of the accumulation period over the 

same area, 𝑆𝐼 represents the value of SWE above which it is assumed there is always 100% snow cover and 𝛼𝑆𝐶𝐴 and 𝛽𝑆𝐶𝐴 

are shape parameters for the beta distribution itself. The calibration of those three parameters was conducted using the SCE-

UA method (Duan et al, 1992) to minimize the root mean square difference between simulated snow cover area and 25 

MODIS/Terra daily L3 snow cover data (Hall et al, 2002) averaged within each whole square within the Nechako 

watershed.. It is important to note that SCA is computed as an output only and is therefore not considered to be a state 

variable since it has no impact on future simulations if its value is tampered with. 
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CEQUEAU then uses three conceptual reservoirs to simulate various hydrologic processes from the available water resulting 

from rain or snow melt. There is an optional lake reservoir, an upper reservoir (called “soil moisture reservoir” in this study) 

and a lower reservoir (called “groundwater reservoir” in this study). 

 

All in all, the state variables simulated over each whole square include snow water equivalent (SWE), a snow ripening index 5 

(SRI), a snow temperature index (STI), the soil moisture level (SML), the groundwater level (GWL) and the lake water level 

(LWL) should there be one. There are 644 whole squares in the case of the Nechako watershed. 

 

Each whole square is itself divided into “partial squares” according to the subpixel drainage divide. There are a total of 1082 

partial squares in the case of the Nechako watershed. Available water from whole squares (whether from surface runoff or 10 

drained from the soil and/or groundwater reservoirs) is divided into these partial squares according to the fraction of whole 

square area drained by partial squares to form volumes (VOL). These volumes  represent the total amount of water available 

for transfer from one partial square to the next. The actual amount of water transferred over a given period is called 

streamflows and is defined as follows : 

𝑆𝐹𝑗 =
1

∆𝑡
∑ 𝑒𝑥𝑡𝑘 ⋅ VOL𝑘

𝑀𝑗

𝑘 ,           (2) 15 

where 𝑆𝐹𝑗 is the streamflow at partial square 𝑗, 𝑀𝑗 is the number of partial squares directly upstream,  𝑒𝑥𝑡𝑘  is a transfer 

coefficient and ∆𝑡 is the time step. VOL is therefore a state variable, but streamflow, like SCA, is not considered to be a state 

variable since it has no impact on future simulations if its value is tampered with. 

2.3 Ensemble Kalman Filtering 

The Ensemble Kalman Filter (EnKF) is a data assimilation method developed by Evensen (1994). It is an approach often 20 

used in hydrology, mainly due to its ability to consider non-linearities in the model and its relative simplicity to implement. 

The EnKF is a sequential method, meaning it relies only on current observations to update state variables as opposed to non-

sequential approaches such as smoothers (Evensen and van Leeuwen, 2000) and recursive methods (McMillan et al, 2013).  

 

 25 

The EnKF propagates an ensemble of model runs based on a Monte Carlo implementation to represent model errors. The 

model covariance matrix (𝑃𝑡
𝑏) at a time 𝑡 is computed from the state vector (𝑥𝑡

𝑏) holding the 𝑁 ensemble members and their 

simulated variables; and the ensemble mean of the state vector (𝑥𝑡
𝑏̅̅ ̅), therefore implicitly taking the model dynamics into 

consideration: 

𝑃𝑡
𝑏 =

1

𝑁−1
(𝑥𝑡

𝑏 − 𝑥𝑡
𝑏̅̅ ̅)(𝑥𝑡

𝑏 − 𝑥𝑡
𝑏̅̅ ̅)

⊤
,          (3) 30 
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When an observation is available, it is perturbed to form an ensemble of observations that are used to update each ensemble 

member. The updating step applies the Kalman gain (𝐾𝑡), which is computed from observation (𝑅𝑡) and model covariance 

matrices as well as an observation operator (𝐻𝑡), which relates the model states to the observation: 

𝐾𝑡 = 𝑃𝑡
𝑏𝐻𝑡

⊤(𝐻𝑡𝑃𝑡
𝑏𝐻𝑡

⊤ + 𝑅𝑡)
−1,          (4) 

The Kalman gain acts as a weighted average between the observation and state vector to yield a post-filter analysis (𝑥𝑡
𝑎) 5 

computed as such: 

𝑥𝑡
𝑎 = 𝑥𝑡

𝑏 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥𝑡
𝑏),          (5) 

The EnKF has practical and theoretical limitations. Firstly, the EnKF relies on an ensemble representation of model and 

observation errors that are valid in the limit where ensemble sizes approach infinity. This is not feasible in practice, so a 

finite sample is used instead which aims to be sufficiently large such that sampling errors are negligible while ensuring that 10 

computational power and memory limitations are met. The method also makes use of model and observation covariance 

matrices to compute the gain during the updating process. These covariance matrices assume a linear relationship between 

variables.  The EnKF also assumes normally distributed, bias-free and time-independent errors for both the model and the 

observations. Since these assumptions are not always met, which means that optimality is not guaranteed, a synthetic 

experiment is recommended to test the applicability of the method to the specific case being studied. 15 

3 Experimental design 

3.1 Synthetic experiment 

Synthetic experiments, like the ones done by Xie and Zhang (2010) or Weerts and El Serafy (2006), are testbeds used to test 

the robustness of a data assimilation method or to tune various hyper-parameters. This is because the true state is known 

since it is initially created from known inputs. 20 

 

For the current study, interpolated meteorological input and a specific set of parameters were used to run CEQUEAU, the 

output of which was considered to be the true state (step 1) (see Fig. 3). Synthetic observations, which include daily 

streamflow, SWE and SCA (step 2), and meteorological input, which include daily mean air temperature and precipitation 

(step 3), were then obtained by applying a perturbation to the true state and true meteorological input respectively. This 25 

means that the observations sets described thus far are not directly used, but synthetically generated using known parameters 

and perturbation. The synthetic observation ensemble (step 4) and meteorological ensemble (step 5) were created by further 

perturbing the synthetic observations and meteorological input. Ideally, these meteorological and observation ensemble 

perturbations should reflect the true errors of the synthetic meteorological input and observations for an optimal analysis. An 

ensemble of hydrologic states (step 6) was then obtained by running CEQUEAU using the synthetic meteorological 30 
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ensemble. The EnKF was then applied using both the model and observation ensembles to produce an analysis (step 7), 

which was used as an initial state to produce ensemble streamflow predictions (ESP; step 8) using the true meteorological 

input. Additional details pertaining to the procedure used in generating perturbations and ensembles are included in the 

following sections. 

3.1.1 Synthetic observation perturbation 5 

Three types of observations were considered; namely streamflow, snow water equivalent (SWE) and snow cover area (SCA). 

These synthetic observations were generated using a daily time step since their real-world counterparts are usually available 

on a daily basis. 

 

In order to abide by EnKF assumptions, observations errors should ideally have a normal distribution. However, this is not 10 

practical due to the physical limits of the observations. For example, SWE observations cannot be negative and adding a 

normally distributed perturbation to SWE could result in some values being negative. Raising the negative values to zero or 

above would introduce a bias. Therefore, other distributions that share similarities with a normal distribution, while ensuring 

that physical limits are respected, were used to generate synthetic observations. 

 15 

Synthetic watershed-wide SCA were created using perturbations that follow a beta distribution since SCA is bounded 

between 0 and 1. SCA observations are expressed as 𝑦𝑡,𝑗~ℬ
−1(𝑄𝑡,𝑗|𝛼𝑡,𝑗, 𝛽𝑡,𝑗), where 𝑄𝑡,𝑗 is the cumulative probability of a 

temporally correlated normal random field with zero mean and unit variance at time t for observation j, and 𝛼𝑡,𝑗 and 𝛽𝑡,𝑗 are 

positively valued shape parameters. The shape parameters may be expressed in terms of the mean 𝜇𝑡,𝑗 and variance 𝜎𝑡,𝑗
2 , but 

it must follow that 𝜎𝑡,𝑗
2 < 𝜇𝑡,𝑗(1 − 𝜇𝑡,𝑗). The variance was arbitrarily set to 𝜎𝑡,𝑗

2 = 𝜇𝑡,𝑗(1 − 𝜇𝑡,𝑗)/50, such that the resulting 20 

shape parameters are 𝛼𝑡,𝑗 = 49𝜇𝑡,𝑗  and 𝛽𝑡,𝑗 = 49(1 − 𝜇𝑡,𝑗). Examples of beta distributions for different means using the 

same definition of variance as described above are shown in Fig. 4a. The distribution has a null variance and greater 

deviation from a normal distribution when the snow covers either 0 or 100 % of the watershed, as well as a variance greatest 

and resembling most a normal distribution at 50 % SCA. This approach avoids introducing a systematic bias when 

assimilating extreme values of SCA. When values are at 0 % (or 100 %), perturbations can only introduce higher (or lower) 25 

values in order to remain within the physical limits of the observations. This approach also gives the observations a greater 

uncertainty during the transition periods when SCA, which loosely follows the greater uncertainty attributed to MODIS 

observations over the same period (Hall and Riggs, 2007).  

 

Synthetic streamflow and SWE observations were created using perturbations that have a lognormal distribution since both 30 

observations are bounded to the left at 0 and are theoretically unbounded to the right. Observation values 𝑦𝑡,𝑗  can be 

expressed as 𝑦𝑡,𝑗~ln𝒩
−1(𝑄𝑡,𝑗|𝜇𝑡,𝑗 , 𝜎𝑡,𝑗

2 ),. The true state was used for 𝜇𝑡,𝑗 for both streamflow and SWE, while the relative 
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variance 𝜎𝑡,𝑗
2  was set to 20 % and 10 % respectively. The error distributions using these parameters are shown in Fig. 4b. The 

exact value of these variances is arbitrary for feasibility purposes. However, since the conclusions of this study will likely be 

used to help setup real-world applications, the variances chosen should ideally be relatively similar to the error of their 

corresponding real observations. Since these real observation errors are not known, rough estimates are used.  

 5 

The use of these distributions is a compromise between the normal distribution of observations required by the EnKF and the 

physical limits of the observations without introducing a bias. 

3.1.2 Meteorological input perturbation 

Both the true daily precipitation and temperature values were perturbed using a gamma distribution, which has the benefit of 

generating positive values exclusively. Perturbations were implemented such that the meteorological input 𝑧𝑡,𝑖 (precipitation 10 

or temperature) at time 𝑡 over the whole square 𝑖 is the result of the inverse gamma function given the cumulative probability 

𝑃𝑡,𝑖 of a spatially and temporally correlated normal random field with zero mean and unit variance. This can be expressed 

mathematically as 𝑧𝑡,𝑖~Γ
−1(𝑃𝑡,𝑖|𝜅𝑡,𝑖𝜃𝑡,𝑖), where 𝜅𝑡,𝑖  and 𝜃𝑡,𝑖  are shape and scale factor respectively. The shape and scale 

factors can be expressed in terms of mean 𝜇𝑡,𝑖 and variance 𝜎𝑡,𝑖
2 , such that 𝜅𝑡,𝑖 = 𝜇𝑡,𝑖

2 /𝜎𝑡,𝑖
2  and 𝜃𝑡,𝑖 = 𝜎𝑡,𝑖

2 /𝜇𝑡,𝑖. In this study, 

synthetic precipitations are generated using the value of the true precipitation for 𝜇𝑡,𝑖 and a relative variance of 50%, such 15 

that 𝜎𝑡,𝑖
2 = 0.5 ⋅ 𝜇𝑡,𝑖. Figure 4 shows the resulting error distribution using these parameters. Similarly, perturbed temperatures 

use the true temperatures for 𝜇𝑡,𝑖 and a standard deviation of 1°C. Within the synthetic study where the feasibility of the 

approach is tested, the exact value of these perturbations is arbitrary, so long as it is coherent between scenarios. The values 

used were such that the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) of the simulated streamflow resulting from 

CEQUEAU using the perturbed meteorological input compared with synthetic streamflow was roughly similar to the 20 

performance of the simulated streamflow using real-world meteorological input compared with real streamflow observations. 

3.1.3 Ensemble streamflow predictions generation 

ESPs were generated using the ensemble of state variables resulting from the EnKF as initial states, true meteorological 

input and true model parameters.  Using the true meteorological input implies that over a sufficiently large forecast horizon, 

every DA scenario considered in this study is likely to converge to the true state, but at different rates. By comparing the 25 

relative gains in performance over the ensemble with no data assimilation (open loop), one can then observe the length of 

time upon which DA impacts ESPs without having erroneous meteorological input affecting the results. This still generates 

an ensemble of streamflows since each ensemble member has its own initial states (VOL, SWE, SRI, STI, SWL, GWL, 

LWL). 

 30 

ESPs were generated everyday over the entire study period (10 years) using a forecast horizon spanning 50 days. 
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3.2 Hyper-parameter tuning 

The use of the EnKF requires the tuning of hyper-parameters, such as model and observation errors, and ensemble size. 

Improper specification of these hyper-parameters could lead to filter divergence (Houtekamer and Mitchell, 1998). 

3.2.1 Ensemble size 

The ensemble size should ideally approach infinity to reduce the impact of sampling when covariance matrices are 5 

computed, but this is not feasible given the limits of computing power and memory. In practice, the ensemble size is chosen 

such that computing time is more reasonable while ensuring that sampling error remains small.  

 

Tests were carried out using ensemble sizes of 8, 16, 32, 64 and 128 members. An ensemble size of 64 members was used 

for this study. This number was chosen as a function of the stability between successive runs and computing resources 10 

available. It was found to be a reasonable trade-off between having sufficiently consistent results between simulations, such 

that the sampling error would be dwarfed in comparison with the impact of the actual data assimilation, without exceeding 

the computing resources available.  

3.2.2 Meteorological ensemble generation 

Perturbation factors similar to the ones used to generate synthetic meteorological inputs were used to generate an ensemble 15 

spread. This means that at every time step, meteorological ensemble (𝑧′𝑡,𝑖) were generated using an inverse gamma function 

given the cumulative probability 𝑃′𝑡,𝑖 of a spatially and temporally correlated normal random field with zero mean and unit 

variance, mathematically expressed as 𝑧′𝑡,𝑖~Γ
−1(𝑃′𝑡,𝑖|𝜅′𝑡,𝑖 , 𝜃′𝑡,𝑖), where the shape factors are defined by 𝜅′𝑡,𝑖 = 𝜇′𝑡,𝑖

2 /𝜎′𝑡,𝑖
2  

and 𝜃′𝑡,𝑖 = 𝜎′𝑡,𝑖
2 /𝜇′𝑡,𝑖. The prime symbol is used to distinguish between the ensemble variables/parameters and the synthetic 

variables/parameters. Precipitations were generated using the value of the synthetic precipitation (𝑧𝑡,𝑖) for 𝜇′𝑡,𝑖 and a relative 20 

variance of 50%, such that 𝜎′𝑡,𝑖
2 = 0.5 ⋅ 𝑧𝑡,𝑖, while temperature ensembles were generated using synthetic temperatures for 

𝜇′𝑡,𝑖 and a standard deviation of 1°C. Using similar perturbation factors between synthetic and ensemble versions of the 

meteorological input reduced the probability of filter divergence cause by a misrepresentation of the model error. Errors 

from CEQUEAU-specific parameters were not taken into consideration, such that the parameter set used for the generation 

of the true state were the same for the ensemble generation. 25 

3.2.3 Observation ensemble generation 

As with model error representation, the perturbation factors used to generate an ensemble of observations were similar to the 

ones used to generate synthetic observations. Streamflow and SWE observation ensembles were created using perturbations 

that have a lognormal distribution centered around the synthetic observations 𝑧𝑡,𝑗 with a relative variance of 20 % and 10 % 

respectively. Watershed-wide SCA ensembles were created using a beta distribution centered around the synthetic 30 
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observation 𝑧𝑡,𝑗 with a variance of 𝜎′𝑡,𝑗
2 = 𝑧𝑡,𝑗(1 − 𝑧𝑡,𝑗)/50. Using similar perturbation factors avoided problems caused by a 

misrepresentation of the observation errors.  

3.2.4 Covariance localization 

The main disadvantage in using a finite sample to compute covariance matrices is that the resulting covariance matrices are 

not exact. This may result in theoretically zero covariance elements between two theoretically uncorrelated variables to 5 

become small, but non-zero, which may deteriorate the performance of the EnKF.  

 

One way to overcome this dilemma is to use covariance localization, where covariances are forced to zero between some 

variables. One option is the Schur product where a covariance matrix is multiplied element-wise by a distance-dependant 

correlation function (Houtekamer and Mitchell, 2001). However, there are other geophysical characteristics, such as 10 

landcover and elevation, which could be considered in the covariance localization. This would further increase the number of 

parameters to set and the degree of subjectivity in setting those parameters when the degrees of dependence are unknown.  

 

Another approach was used in this study, which is based on the improvements observed in the state vector. First, the open 

loop is executed, as well as a data assimilation scenario with one observation and the corresponding spatialized state variable 15 

included in the state vector (ex: 1 snow pillow assimilated and all modelled SWE included in the state vector). Then, the two 

runs are compared with the true state on a spatial basis. In the case of CEQUEAU, these can be whole or partial squares 

depending on the variable analysed. The covariance matrix is localized such that the areas that do not show an improvement 

for the data assimilation scenario over the open loop are set to zero. This process is repeated for each observation.  

 20 

While this process remains susceptible to the sampling error from the finite ensemble size, it is a simple approach that 

exploits the availability of the true state in a synthetic experiment and limits the state vector size according to observed 

improvements. 

 

In this study, only SWE observations have a corresponding state variable, so covariance localization has only been applied to 25 

the SWE variable. 

3.2.5 State vector configuration 

Though the state vector often comprises only of the variables corresponding to the observations or those judged to be 

relevant enough by the user, there are potentially many state variables which could benefit from the assimilation of available 

data if there exists a linear (or approximately linear) relationship between the modelled variables and the observations.  30 
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To determine which variable could benefit from being included in the state vector, one could execute multiple scenarios 

where each possible combination is compared with the true state. However, this could get very laborious even for a relatively 

small number of state variables. The current approach suggests reducing this number by first adding state variables one at a 

time. The variables which show a global improvement can then be added to the state vector. Assuming that not all variables 

are added to the state vector, this reduces the number of combinations to try. 5 

3.3 Metrics 

Various metrics were used to quantify results. The Mean Square Skill Score (MSSS), based on the Mean Square Error 

(MSE), was used to assess the differences between various data assimilation scenarios and the open loop during the state 

vector configuration and covariance localization processes. The MSE for a variable of interest 𝑥 is defined as: 

MSE(𝑥) =
1

𝑁
∑ (𝑥𝑡̅ − 𝑥𝑡

T)2𝑁
𝑡=1 ,          (6) 10 

where 𝑁 is the number of time steps, 𝑥𝑡̅ is the ensemble mean analysis of the state variable of interest at time 𝑡 and 𝑥𝑡
T is the 

corresponding true state. It is often more convenient to express this score as a unitless skill score: 

MSSS(𝑥) = 1 −
MSE(𝑥)

MSEref(𝑥)
,           (7) 

where MSEref(𝑥) is a mean square error of reference; the open loop in this case. The MSSS is bounded by [-∞,1] and 

indicates an improvement as the skill score increases. Values above zero indicate an improvement over the reference (open 15 

loop) and a value of one indicates a perfect score; a perfect correspondence between the mean of the analysis and the true 

state. 

 

The ensemble forecast performance was assessed using the Continuous Rank Probability Score (CRPS; Hersbach, 2000) and 

its associated skill score (CRPSS). For this synthetic study, the CRPS is adapted as follows: 20 

CRPS(𝑥, 𝑓) =
1

𝑁
∑ ∫ (𝐹(𝑥𝑡

𝑓
) − 𝐹(𝑥𝑡

T))
2+∞

−∞
𝑁
𝑡=1 d𝑥,        (8) 

where 𝐹(𝑥𝑡
𝑓
) and 𝐹(𝑥𝑡

T) are the cumulative distribution function of the ensemble forecast at a horizon 𝑓 and the true state, 

respectively. The CRPS has the same units as the variable of interest and is bounded by [0, +∞]. A lower CRPS is a better 

score. As with the MSE and MSSS, it is often convenient to express the CRPS in its skill score form:  

CRPSS(𝑥, 𝑓) = 1 −
CRPS(𝑥,𝑓)

CRPSref(𝑥,𝑓)
,          (9) 25 

where CRPSref(𝑥, 𝑓) is the continuous rank probability score of the open loop used as a reference in this case. Like the 

MSSS, the CRPSS is bounded by [-∞, 1], with higher values indicating a better score. Values above zero indicate an 

improvement over the reference and a value of one indicates a perfect score. 
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4 Results and discussion 

4.1 State vector configuration and covariance localization 

Before investigating the effect of data assimilation on streamflow forecasts, a state vector configuration analysis was 

conducted. This was done in order to find out which variables, among the 7 listed previously (VOL, SWE, SRI, STI, SWL, 

GWL, LWL), should be included in the state vector for each type of data assimilated in order to reduce the number of 5 

comparisons to make. 

4.1.1 Streamflow data assimilation 

First presented are the results from the case where only streamflow at the outlet was assimilated. Streamflow at the outlet is 

computed by the model, but it is output-only. Therefore, in order for the assimilation of streamflow to have any impact on 

the modelled states, additional variables needed to be added to the state vector. 10 

 

Figure 5 shows a boxplot of the MSSS computed for each variable on the whole watershed when they are individually 

included in the state vector using the open loop scenario as a reference. Values above 0 means there is an improvement for a 

particular partial (for volumes) or whole (for other state variables) square compared with the open loop. The boxes range 

between the 25
th

 and 75
th

 percentiles, with a red bar to show the median, and the whiskers range between the maximum and 15 

minimum values. Outliers are not shown for visibility purposes. Results for the case where water volumes (VOL) are 

included along with the streamflow at the outlet show an improved score for each partial square on the watershed. This is not 

entirely surprising given the close relationship between streamflow and volume. This suggests a necessity to include VOL in 

the state vector when assimilating streamflow at the outlet for streamflow predictions.  

 20 

Results also show a deterioration of snow water equivalent (SWE) for nearly 75% of whole squares on the watershed. 

Although there is some improvement for some whole squares, this suggests that including SWE in the state vector when 

assimilating streamflow at the outlet is unlikely to be beneficial for streamflow predictions. Although SWE does have an 

important impact on streamflow, there is a time lag between the snowmelt occurrence and the increase of streamflow at the 

outlet. Since the EnKF assumes linear relationships between variables, the non-linearity between SWE and streamflow can 25 

result in a non-optimal analysis. In this case, the results are actually worse than open loop for most whole squares. Clark et 

al. (2008) discuss the issue of non-linearities between streamflow and other variables. To overcome this issue, one could use 

either a recursive approach, which allow adjustments of previously simulated variables, or smoother approach to DA, which 

also uses “future” observations to update current state variables. However, this may not be necessary given the positive 

impact of streamflow DA on VOL, as well as in a multivariate DA scenario where other variables, such as SWE in this case, 30 

are also assimilated. 
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As for the snow ripening index (SRI) and snow temperature index (STI), the median sits around 0, meaning there is no 

improvement for 50% of the whole squares. This suggests little change can be obtained in the analysis by including those 

variables in the state vector. Similar to the case with SWE, there is likely a time lag issue between streamflow and these 

variables. However, there is also a weaker link between these variables such that a change in SRI or STI is not as strongly 

linked to an eventual change in streamflow as much as it is for a change in SWE. 5 

 

Finally, results for the three conceptual reservoirs soil moisture level (SML), groundwater level (GWL) and lake water level 

(LWL) show an improvement for over half of the whole squares, with a greater number of whole squares improved for the 

GWL and slightly above 0 median for SML. This suggests that including these three variables in the state vector can 

potentially yield improvements for streamflow predictions. Though the relationship between the water level in these 10 

conceptual reservoirs and streamflow at the outlet is not exactly linear, mainly due to reservoirs having multiple orifices (see 

Fig. 2) and the time lag before water reaches the outlet, it may be sufficiently near linear such that streamflow DA yields an 

overall improvement for most whole squares. For example, the median correlation coefficient of a simple linear regression 

between each reservoir for each whole square and the streamflow at the outlet is 0.12, 0.49 and 0.15 for SML, GWL and 

LWL respectively.  15 

 

Samuel et al (2014) and Trudel et al (2014) found that updating soil moisture with streamflow observations actually 

deteriorated soil moisture simulation compared with real soil moisture observations. However, there are notable differences 

between these studies and the present one. Aside from the different features of the study area and model structure, the use of 

synthetic data instead of real data likely strengthens the link between variables and observations. Since synthetic 20 

observations are constructed using the same model and parameters as the model in which the observations are assimilated, 

there is no difference in scale between observations and modelled variables, which is often an important source of error for 

studies using real data. 

 

Nonetheless, the inclusion of VOL, SML, GWL and LWL in the state vector were considered during the assimilation of 25 

streamflow at the outlet. The impact of each scenario for streamflow predictions are compared in section 4.2.1. 

4.1.2 SWE data assimilation 

The same analysis was performed for SWE data assimilation from synthetic snow pillows. However, unlike streamflow, 

SWE is a state variable such that any changes made upon it will have repercussions on future simulations. SWE at the 

location of the snow pillows should therefore be included in the state vector and also potentially whole squares in the vicinity 30 

that are correlated with these locations. A spatial analysis was performed first to determine the spatial extent upon which 

each snow pillow may affect modelled SWE in other whole squares. 
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Figure 6 shows the MSSS of SWE on the spatial level for the snow pillows located at Mount Wells, Mount Pondosy and 

Tahtsa Lake, using the open loop scenario as a reference. For each figure, the whole square which shows the most 

improvement is the area where the corresponding snow pillow is located. Whole squares which show improvements are 

mainly located around snow pillows, but the range differs for each snow pillows. Various areas in remote locations also 

show improvements for each snow pillow. As mentioned earlier, relationship with geophysical factors, such as distance from 5 

snow pillow, elevation and land cover, could be used to explain this variation, but a simpler approach was used such that the 

covariance localization was limited to whole squares showing improvements only. The covariance elements representing all 

the other whole squares were set to zero. 

 

As for the state vector configuration, Fig. 7 shows the MSSS computed for each variable within the extent of whole squares 10 

which were positively impacted by SWE DA during the covariance localization process. The open loop scenario was used 

again as a reference. The results show no significant improvement for any other variable except for SWE itself, which yields 

only positive MSSS values by design. The lack of overall improvement for water-related variables (VOL, SML, GWL, 

LWL) is coherent with the time delay with changes in SWE. As for the other snow-related variables (STI, SRI), although 

there may be a relationship with SWE, it is non-linear (U.S. Army Corps of Engineers, 1956), which is further weakened by 15 

the distance separating SWE at a snow pillow from STI or SRI at another location. 

 

Only the inclusion of SWE surrounding a given snow pillow in the state vector are considered during the assimilation of 

SWE for streamflow predictions in section 4.2.2. 

4.1.3 SCA data assimilation 20 

Like streamflow, snow cover area (SCA) is not a state variable. It is computed in parallel with CEQUEAU without having 

any direct effect on future simulations. In order to have any impact during the assimilation process, there must exist a linear 

or sufficiently near linear correlation between SCA and state variables. The update step should bring improvements to the 

state variables if the computed correlation also reflects the true correlation.  

 25 

Figure 8 shows a boxplot of the MSSS computed for each variable when they are individually included in the state vector. 

The open loop scenario is used as a reference. Results show that global snow cover data assimilation yields little or no 

improvement for all state variables compared to the open loop scenario. For most cases, a strong deterioration is observed, 

suggesting that the way SCA data is used in this study is not well adapted for the current assimilation purposes using the 

EnKF. Marcil et al. (2016) have shown that there exists a relationship between the SCA and the percentage of cumulated 30 

streamflow at the outlet, but it is neither linear nor is cumulated streamflow a state variable. The EnKF requirement that 

relationships between variables be linear and synchronized severely limits the value of global SCA data for the current 

application. This result is coherent with the findings presented by Clark et al (2006). Using a model which incorporates snow 
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cover area as a state variable, such as the Snowmelt Runoff Model (SRM; Martinec, 1974) or the Soil and Water Assessment 

Tool (SWAT; Arnold et al, 1998), could overcome the issue of nonlinearities between variables, while using recursive or 

smoother approaches to data assimilation could help with the time lag issue between observations and state variables. 

 

Given the absence of overall improvement for all the state variables, the impact of SCA DA on streamflow predictions was 5 

not considered in this study. 

4.2 Streamflow forecasts 

Aside from granting insight into the sensitivity of the system to the state vector configuration, the analysis in the previous 

section presented a list of state vector configurations likely to favour streamflow predictions improvements based on the 

improvement of various state variables. This section presents ensemble streamflow prediction results for each configuration 10 

selected for each type of data assimilated. 

4.2.1 Streamflow data assimilation 

Focusing on the case where only streamflow at the outlet are assimilated, Fig. 9 presents the CRPSS of predicted streamflow 

at the outlet over a forecast horizon of 50 days using the open loop as a reference. Only the state vector configurations that 

showed some improvements in the state vector configuration analysis section are shown.  15 

 

Firstly, high values of CRPSS for short-term forecasts can be observed for the case where only volumes are included in the 

state vector (blue curve). The CRPSS subsides asymptotically to zero over time, which shows assimilating streamflow to 

update volumes improves streamflow predictions compared to the open loop only for a few days, after which the impact of 

streamflow assimilation becomes insignificant. The duration of the impact depends on the residence time of the water stored 20 

in the model’s partial squares (VOL). A relatively short-lived impact would mean a relatively short residence time. The high 

initial impact is not surprising given the nearly linear relationship between streamflows and volumes. Assimilation of 

streamflow observations generate a globally positive update on volumes, as seen in Fig. 5, which in turn strongly affects 

simulated streamflows. 

 25 

Secondly, adding each of the three water reservoirs individually to the volumes yields different results. Even though lake 

water levels showed improvements over the majority of whole squares, the impact on streamflow predictions (red curve) is 

marginal compared to the case where only volumes are included in the state vector. This is because the weights attributed to 

lakes in CEQUEAU are very low for most whole squares. Only about 0.5% of the entire watershed is modelled using the 

conceptual lake reservoir and its parameters, unlike the soil moisture and groundwater reservoirs, which are present in every 30 

whole square. Adding SML (green curve) or GWL (magenta curve) instead of LWL increases not only the initial CRPSS, 

but also slows the decrease over time. This is consistent with the improvements observed for the updated water levels for 



16 

 

over half of the whole squares compared with the open loop case, which translate as added improvements over the case 

where only volumes are included in the state vector. The slower decrease over time is also coherent with the increase in time 

it takes for water in the reservoirs to reach the outlet compared with water already in the routing system. The groundwater 

reservoir is shown to have an initially similar, but longer-lasting positive impact than the soil moisture reservoir. The soil 

moisture reservoir controls mainly the fast-flowing surface runoff, the amount of evapotranspiration leaving the system and 5 

the amount of water infiltrating into the groundwater reservoir. The groundwater reservoir has a numerically unlimited 

capacity, with no way out for the water except through evapotranspiration and the outlets that feed the routing system, 

making its impact on streamflows last longer than the relatively ephemeral soil moisture reservoir. 

 

Finally, the scenario where all four variables are added to the state vector is analysed (orange curve). The difference noted 10 

with the other curves is mainly caused by the simultaneous inclusion of SML and GWL, since all the other curves already 

have VOL included, while LWL was already shown to have very little impact on streamflow at the outlet. Comparing the 

fully combined case with the VOL+GWL case, although the initial improvement is similar between the two, with the former 

slightly above, the latter has a slower decrease over time. This suggests that the addition of SML interferes with the GWL 

update. As seen for the state vector configuration analysis (Fig. 5), the assimilation of streamflow at the outlet had a positive 15 

impact on a greater number of whole squares for the GWL than the SML. Here, the increased number of deteriorated SML, 

which infiltrates into the groundwater reservoirs, hinders the GWL updates such that the results show some deterioration 

compared with the VOL+GWL case, even though it is still an improvement over the VOL only updates. 

 

These results have some similarities and differences with other studies. For example, Abaza et al (2015) assimilated 20 

streamflow at the outlet using the EnKF to update two state variables (soil moisture in the intermediate and deep layers of 

the hydrological model used in their study) using a time step of 3 hours. The resulting gain in CRPS was high for the first 

time step and decreased quickly as a function of the forecast horizon such that mainly the first 24h benefited from the data 

assimilation. Chen et al (2013) found similar results with multiple performance criteria when assimilating streamflow using a 

variant of the EnKF (the ensemble square-root filter) to update various state variables represented by conceptual reservoirs. 25 

The observed improvement duration was even shorter, lasting less than 12 hours during flash flood events. The difference in 

impact duration is likely related to the different water retention time in each watershed. These studies were conducted on 

much smaller watersheds (all less than 800 km
2
) than the Nechako watershed (around 14000 km

2
), further highlighting that 

the performance of assimilation techniques  is related to watershed characteristics.  

4.2.2 SWE data assimilation 30 

Following the same method as with streamflow, this section focuses on the case where only SWE from snow pillows were 

assimilated. Since the state vector configuration analysis showed only improvement for the SWE variable, it was the only 

variable added to the state vector for streamflow forecast. However, since there are three observations available, Fig. 10 
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presents the CRPSS of predicted streamflow at the outlet when assimilating SWE from each snow pillow individually and 

collectively. 

 

An interesting result is that the impact of each snow pillow on streamflow predictions varies greatly. The impact of the snow 

pillows located at Mount Wells (green curve) and Mount Pondosy (blue curve) are dwarfed in comparison with the impact of 5 

the snow pillow located at Tahtsa Lake (magenta curve). This is coherent with results from Marcil et al (2016) over the same 

watershed. The lower impact of the Mount Pondosy snow pillow is explained by the relatively small region of influence 

observed in Fig. 6b. As for Mount Well, even though it has the largest area of influence (Fig. 6a), it is also the snow pillow 

affecting the regions with the lowest altitudes and also the least amount of maximum SWE. Although the region affected by 

the Mount Wells snow pillow contains a mean annual maximum SWE of 410 mm, it is 40% less than for the region affected 10 

by the Tahtsa Lake snow pillow, which contains a mean annual maximum SWE of 682 mm. 

 

Nonetheless, assimilating all three snow pillows yields better results for mid-term streamflow forecasts (Fig. 10, red curve). 

Even though the Tahtsa Lake snow pillow carries the most importance, the other snow pillows have a positive effect on 

regions that are not reached by the Tahtsa Lake snow pillow area of effect. The assimilation of all three snow pillows does 15 

yield short-term forecasts improvements, but a better score is reached over time. This is because the impact of SWE over 

streamflow at the outlet occurs during snowmelt, which can occur at a much later date than when SWE observations are 

assimilated. Although the curve gives the impression of a monotonous increase over time, this is only due to the limit 

imposed on the forecast horizon. At a further horizon, the curve should eventually peak and decrease asymptotically to zero 

since there is no accumulation of snow from year to year. Over time, the simulation should eventually become 20 

indistinguishable from the open loop scenario.  

 

Franz et al (2014) also assessed the impact of SWE data assimilation on ensemble predictions, but using real observations. 

Their results showed little improvement of forecast performance through SWE data assimilation, but they highlighted the 

role of a possible bias in the observations, as well as the difference in scale between the point-scale observations and the 25 

basin average SWE simulated by the model.  In this synthetic experiment, no bias was specified on observations and there is 

no difference in scale between modelled and observed SWE, which could explain the differences observed between the two 

studies. Biased observations and meteorological input were purposely omitted in this study, but may be added in future 

works to test the robustness of the approach. 

4.2.3 Combined streamflow and SWE data assimilation 30 

The focus now shifts to the case where streamflow at the outlet are simultaneously assimilated along with SWE from the 

three snow pillows. The state vector configuration which provided the best results from the streamflow data assimilation case 

are used (VOL+GWL) along with the best configuration from SWE data assimilation (SWE only). Although these 
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configurations worked best with their respective data assimilation case, they could behave differently when both streamflow 

and SWE are assimilated together. 

 

Table 1 presents four configurations for the combined assimilation of streamflow and SWE observations. These 

configurations differ in the overlap of their effect during the update phase such that some configurations allow both 5 

observations to simultaneously update the same variable, while others do not.  

 

The performance of these configurations on the CRPSS for predicted streamflow at the outlet is presented in Fig. 11. While 

all four configurations perform in a very similar way for short-term streamflow predictions, the group forms two pairs that 

differ in that the blue-magenta group allows SWE observations to update modelled streamflow, while the green-red pair does 10 

not. Although allowing SWE data assimilation to update VOL and GWL changes very little, a drop in performance occurs if 

streamflow assimilation updates modelled SWE. This is coherent with the state vector configuration analysis performed in 

the previous section (Fig. 5 and Fig. 7), where SWE data assimilation is shown to have a weak impact on VOL and a median 

MSSS around 0 for GWL, while streamflow assimilation deteriorated around 75% of SWE whole squares when they were 

included in the state vector. 15 

 

Overall, the simultaneous assimilation of streamflow and observed SWE yields important improvements over the entire 

forecast horizon analysed, with the streamflow data assimilation improving mainly short-term streamflow forecasts and 

SWE data assimilation improving mainly mid-term streamflow forecasts. CRPSS values for combined assimilation of both 

streamflow and SWE observations were superior to CRPSS values for individual assimilation of streamflow or SWE over all 20 

forecast horizons, with the exception of forecast horizons higher than 45 days, where CRPSS values for SWE DA are 

slightly higher. This reveals that while the updated VOL and GWL by streamflow data assimilation may be very beneficial 

for short-term forecasts, they do not further improve the mid-term forecasts when combined with SWE data assimilation in 

comparison with the scenario where only SWE data is assimilated.  

 25 

Furthermore, the assimilation of each data types (streamflow and SWE) differs not only by their impact over the forecast 

horizon, but also over the time of the year. Fig. 12 and Fig. 13 show the monthly CRPS for the open loop (black curve), the 

streamflow data assimilation including VOL and GWL (blue curve), the SWE data assimilation of all snow pillows (red 

curve) and the simultaneous, but separated, streamflow and SWE data assimilation (VG-S; green curve) for short-term 

(average of horizon from 1 to 5 days) and mid-term (average of horizon from 25 to 50 days) streamflow forecasts. The CRPS 30 

is shown for the open loop to show the performance change over the time of the year and the period when improvement is 

most needed. Recall that the CRPS ranges from zero to infinity, with zero being a perfect forecast. The period from May to 

July, which corresponds to the melt period, is therefore the period when the CRPS is highest for short- and mid-term 
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forecasts are the most problematic. The scores for mid-term forecasts are lower than for short-term forecasts because the true 

weather is used as input for forecasts such that the open loop slowly converges to the true states over time. 

 

Assimilating streamflow results in an improved score over the entire year for short-term forecasts, although little gain is 

obtained for mid-term forecasts. This steady improvement is to be expected since streamflow here is always nonzero and 5 

observations are available all-year round. On the other hand, the impact of the assimilation SWE from snow pillows is 

limited mainly to the melt period for both short-term and mid-term forecasts. However, this period corresponds to the 

problematic period when most gain can be obtained. The assimilation of SWE provides a better score than the assimilation of 

streamflow for the same period and improves going from short-term to mid-term forecasts. SWE assimilation complements 

streamflow assimilation as observed from the performance of the simultaneous assimilation, which yields both the steady 10 

improvements over the year and the important gain during the snowmelt period.  

5 Conclusion 

This study investigated the impact that multivariate data assimilation can have on streamflow forecasts using the CEQUEAU 

hydrologic model applied over the Nechako watershed in a synthetic experiment. The study also showed the importance of 

the state vector configuration on streamflow forecasts when using the EnKF. 15 

 

Streamflow data assimilation was found to improve short-term streamflow forecast considerably. However, the impact 

dissipated relatively rapidly as a function of the forecast horizon, which was slowed by adding groundwater conceptual 

reservoir levels to the state vector. Improvements were observed for all months of the year; low-flow and high-flow periods 

alike.  20 

 

On the other hand, the assimilation of snow water equivalent data from synthetic snow pillow data yielded streamflow 

forecast improvements mainly during the snowmelt period. Although the period lasts approximately three months, the 

impact was found to be greater than streamflow data assimilation over the same period. It was also noted that assimilating 

each snow pillow data individually yielded different results, with various radii of influence, such that the improvement from 25 

assimilating all three snow pillows simultaneously covered most of the watershed and yielded streamflow forecasts which 

outperformed forecasts from any single snow pillow data assimilation. Over the forecast horizon, the peak of improvement 

was greater than or equal to the 50 days limit over which forecasts were simulated, which contrasts the short-lived impact of 

streamflow data assimilation. 

 30 

Given their complementarity, streamflow and snow water equivalent data were assimilated simultaneously. The resulting 

streamflow forecast inherited the strengths from both types of data, having a strong, positive impact for both short-term and 
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mid-term forecasts. Improvements were obtained for all periods of the year, but mainly during the snowmelt period, which is 

normally the most problematic.  

 

The assimilation of basin-wide snow cover area failed to improve the simulation of any state variable. The most probable 

factor was determined to be the absence of snow cover area as a state variable or a proxy with a sufficiently linear 5 

relationship with SCA. Suggestions to improve the method to accommodate for snow cover area are to use a model which 

incorporates snow cover area as a state variable and/or to use a data assimilation approach which takes into account a time 

lag between observations and state variables. 

 

The results obtained are conditional to some assumptions and limitations. First, all results depend on the general method and 10 

parameters used in creating the synthetic framework. Since this is a synthetic experiment, it is assumed that a real 

experiment would behave similarly to a simulation using CEQUEAU with a specific set of parameters and inputs. Second, 

the potential impact of data assimilation on streamflow forecasts observed depended on using the true weather inputs. Using 

real weather inputs may decrease this impact. Third, it is assumed that the error representations for the model inputs and the 

observations are known. In this study, they have been generated using specific distributions and variances to compromise 15 

between the need for normal distributions and the need to remain within the physical limits of the variables without 

introducing a bias. Finally, the impact of errors from the model parameters is assumed to be negligible, such that the set of 

parameters was not altered from the true simulation’s set of parameters. 

 

The assumptions and limitations listed reveal several challenges posed by the assimilation of multiple types of observations 20 

for streamflow forecasting purposes. Future works include investigating into the performance of multivariate data 

assimilation in the presence of biases and unknown errors, as well as the economic impact of streamflow forecasts generated 

with multivariate data assimilation on real management practices. 
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Table 1: Overview of multivariate DA scenarios. 

 Streamflow DA updates:  SWE DA updates: 

Method VOL + GWL? SWE?  VOL + GWL? SWE? 

VG-S yes no  no yes 

VG2-S yes yes  no yes 

VG-S2 yes no  yes yes 

VG2-S2 yes yes  yes yes 
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Figure 1: The Nechako watershed and the locations of weather stations, snow pillows and a hydrometric station. All of these 

contain at least daily weather data. The outlet is considered to be at the spillway, located at the blue triangle. The intake is located 

at the Tahtsa Intake weather station (westernmost yellow circle). 
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Figure 2: Diagram of the processes included in CEQUEAU’s production function. 
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Figure 3: Flowchart for the production of ensemble streamflow predictions obtained from various data assimilation scenarios. 
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Figure 4. Examples of a) beta and b) gamma and lognormal distribution compared with their analogous normal distributions 

using the same mean (μ) and variance (σ2). 
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Figure 5: Box plot of the Mean Square Skill Score for each variable when assimilating streamflow at the outlet. The open loop is 

used as a reference. Outliers are not shown for visibility purposes. 
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Figure 6: Distribution of the Mean Square Skill Score of SWE over the watershed when assimilating SWE located at a) Mount 

Wells, b) Mount Pondosy and c) Tahtsa Lake. The open loop is used as a reference. Values below -1 are cut off from the legend. 
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Figure 7: Box plot of the Mean Square Skill Score for each variable when assimilating SWE from all three snow pillow locations. 

The open loop is used as a reference. Outliers are not shown for visibility purposes. 
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Figure 8: Box plot of the Mean Square Skill Score for each variable when assimilating basin-wide snow cover area. The open loop 

is used as a reference. Outliers are not shown for visibility purposes. 
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Figure 9: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating streamflow at the outlet. The 

open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 
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Figure 10: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating SWE from all three snow 

pillow locations. The open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 
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Figure 11: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating streamflow at the outlet and 

SWE from all three snow pillow locations. The open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 

Lack of parentheses indicates that the variable is affected by both types of observations. 



36 

 

 

Figure 12: Continuous Rank Probability Score for short-term forecasts (average of forecast horizons 1 through 5 days) of various 

data assimilation scenarios as a function of the month of the year. 
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Figure 13: Continuous Rank Probability Score for mid-term forecasts (average of forecast horizons 25 through 50 days) of various 

data assimilation scenarios as a function of the month of the year. 
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