
Authors’ response for the manuscript “Combined assimilation of streamflow and snow water 

equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions” by J. M. 

Bergeron, M. Trudel and R. Leconte 

 

We would like to thank the referees for providing constructive comments for the manuscript. Their 

suggestions paved the way for many changes in the revised version of the manuscript. The main changes 

introduced are the following: 

1) A rearrangement of information on the generation of synthetic observations and meteorological 

input, as well as their ensemble versions, into individual sections. Additional clarifications were 

also added. 

2) A section specifically on the generation of ensemble streamflow predictions.  

3) Additional comparisons of results with other studies that share some similarities in section 4.1.1, 

4.2.1 and 4.2.2. 

4) A new figure comparing the error distributions used with their analogous normal distributions 

obtained using similar parameters. Justifications for the use of those distributions were added 

to the sections where they are introduced (sections 4.1.1 and 4.1.2) 

Many other small changes were made as suggested by the referees. These changes can be seen in the 

marked-up version of the manuscript with changes tracked below, following the point-by-point response 

to each of the referees. 

 

Italicized text: Referee's comment 

AR: Authors' response 

 

Comments to Referee #1 

In this study, the authors explore the assimilation of discharge, SWE and SCA in a hydrologic model for 

the potential to improve streamflow forecasting in a mountainous basin in western Canada. Synthetic 

data sets are developed and used. The authors first determine which state variables are adequately 

predicted by the three data types that are candidate for assimilation. SCA was found to not be a good 

predictor. Then, the impact of assimilating SWE and discharge on hydrologic forecasts was tested.  

Overall, this is an interesting study with good results. Forecasts were improved with SWE and Q 

assimilation both when assimilated individually and simultaneously. It is demonstrated that the data 

were useful for adjusting several model states (VOL, GWL, and SWE) in the CEQUEAU model. The 

methods in this paper show promise for applications in forecasting provided the results remain 

consistent for non-synthetic studies. 



General comments: 

 1) There needs to be more detail provided in the methods section. As is, it appears as though the 

methods are valid, but I could not replicate this study with the information provided. I find myself having 

to assume I know what the authors did during some steps. Therefore, specific comments about where to 

add necessary detail are provided below. 

AR: Information has been rearranged into new sections and additional details were added as 

recommended in the specific comments section. Section 3.1, dealing with the overall approach used 

during the synthetic experiment, now has three subsections explaining specifically how synthetic 

observations (3.1.1), synthetic meteorological input (3.1.2) and ESPs (3.1.3) were generated. Sections 

3.2.2 and 3.2.3 now deal exclusively with meteorological ensemble and observation ensemble 

generation, respectively. Some information may appear to be redundant at first, but this is because 

similar approaches were used to generate perturbations required in the creation of single-valued 

synthetic observations/meteorological input and their ensemble version.  

 

2) In the results section, the authors should make a stronger effort to link their findings to other studies. 

There are several papers referenced that explore assimilation of SWE and/or discharge in snow-

dominated areas. There are also likely studies that have examined this type of data in other modeling 

and forecasting contexts. While there are a few comments about results from other studies, the authors 

should try to add more to the discussion. 

AR: Comparisons with other studies have been added in multiple sections, including the state vector 

configuration when assimilating streamflow (4.1.1) and the impact of streamflow (4.2.1) and SWE (4.2.2) 

data assimilation on streamflow forecasts.  Additional references will also be introduced for comparison 

purposes. 

 

 Specific comments:  

Page 2, line 30. The last sentence might be better as a statement rather than a question. It seems out of 

character with the rest of the introduction. 

AR: The sentence has been reformulated as a statement: 

“The importance of state vector configuration when using multivariate DA for hydrological modeling has 

yet to be investigated.” 

 

Page 3, line 9: “such that the difference in elevation reaches about 1700m” is oddly stated. The 

difference in elevation between what? If 1700m is the total relief of the mountain, simply state it that 

way. 



AR: The difference in elevation between the highest and lowest point in the watershed reaches about 

1700m. This has been clarified in the revised manuscript. 

 

 Page 4, line 8: US Army Corps of Engineers should be capitalized. Also, is the inclusion of “1956” 

intended to be a citation? There is nothing listed in the references regarding this. 

AR: The missing reference has been added and capitalized. 

 

Page 4, line 17: SI is not in equation 1. How is it relevant to this discussion? 

AR: SI is in the denominator of equation 1. It is one of three parameters used to convert snow water 

equivalent into snow cover area. It is included, along with other parameters, to be transparent in our 

approach and help readers understand the method used to produce the results shown in the 

manuscript. 

 

Page 4, Line 18-19: As written it is implied that Hall et al. (2002) calibrated the three parameters in 

Equation 1. I do not think that is the case. Additional explanation of this calibration is needed. Who 

conducted the calibration? Was it conducted for this region? If not, is it considered to be universally 

applicable? 

AR: The reference was initially meant to be a reference for the MODIS data, but this was not clear from 

the way the sentence was structured.  

All the model parameters were not calibrated in the same way. CEQUEAU has numerous parameters 

that have been manually calibrated by engineers working for Rio Tinto, our industrial partner. These 

include snow, soil, evapotranspiration and transfer parameters. However, since snow cover area is not 

explicitly computed by CEQUEAU, a depletion curve had to be appended. The details pertaining to the 

depletion is not found in CEQUEAU’s user manual or in any other study using or detailing how CEQUEAU 

works. To be transparent in our approach, we explain how the depletion curve is computed, requiring 

three parameters. The calibration of those parameters was conducted using the SCE-UA method (Duan 

et al, 1992) to minimize the root mean square difference between simulated snow cover area and 

MODIS data for each whole square within the Nechako watershed. The parameters are therefore not 

likely to be “universally applicable”, but the approach may be. 

The sentence has been reworked in the revised version of the manuscript to include more information 

about the calibration process. 

 

Page 4, line 20: Tampered not tempered. 



AR: This has been corrected in the revised manuscript for all occurrences of the term. 

 

Page 6, line 6-8: this statement is becoming repetitive. It was mentioned several times in this section that 

it has been shown useful in hydrologic studies. I recommend removing earlier statements like this, or 

combine them into one or two sentences. 

AR: The sentence has been modified to better transition into the following section. 

 

Page 6, lines 14-24: It isn’t clear what variables are referred to when using the term “observations”. This 

may be stated earlier, but it would help the reader if they were explicitly stated here. 

AR: The term “observations” used in the manuscript refers to observations to be assimilated using the 

EnKF, namely streamflow, SWE and SCA. The expression “meteorological input” or “weather input” is 

used to refer to precipitation and mean air temperature. There is one occasion in the manuscript where 

the expression “meteorological observation” is used and has been corrected to avoid confusion. 

Additional clarifications have also been added to explicitly state what are “observations” and 

“meteorological input”. 

 

In general, this section lacks detail. In what way and by how much were the data perturbed? How do you 

get synthetic observations by perturbing “true states”? More specific terminology and combining or 

pulling in information from Section 3.2 would be helpful in understanding the procedure of creating 

synthetic data.  

AR: Initially, sections 3.2.2 and 3.2.3 described how both the individually perturbed and ensemble 

version of meteorological input and observations were generated since they both used a similar 

approach using the same perturbation factors. The information was added in the “Hyper-parameter 

tuning” section since it partly dealt with specifying errors, which is required when generating ensembles.  

However, this could lead to confusion between the two sets and appeared to create a void in the 

description of the synthetic experiment. To avoid confusion, the information from sections 3.2.2 and 

3.2.3 strictly dealing with initial perturbations of observations and meteorological input have been used 

to create additional subsections (3.1.1 and 3.1.2) following the overview of the synthetic experiment. 

 

The methods section includes very little description of how ESP forecasts are generated. A more thorough 

explanation should be provided for readers unfamiliar with the process. Please clarify whether only 20 

years of meteorological data (1990-2000) were used to generate the ESP ensembles. Also, was only the 

mean value of the state variable predicted by the EnKF used to generate each ensemble in the ESP 

forecast, or were multiple state values from the state variable ensemble used? 



AR: ESPs were generated everyday over the entire study period (10 years) using a forecast horizon 

spanning 50 days. The multiple state values resulting from the EnKF were used to generate ESPs and is 

the only factor differentiating ensemble members during the forecast phase. The same true 

meteorological input and model parameters were during the forecast phase. No meteorological 

ensemble was used to generate ESPs. Although this generates forecasts which are not “realistic” since 

they get better over the forecast horizon, this is a way to evaluate the potential impact of data 

assimilation on streamflow forecasts, which is one of the two goals of the study. Using a meteorological 

ensemble forecast would simply add unnecessary noise. An additional section (3.1.3) has been added on 

ESP generation. 

 

Page 10, line 24 onward: What is the timestep of the data evaluated? Hourly, daily, etc? I cannot find 

where this is explicitly stated, but it is important to understanding the results of the study. If the 

streamflow is evaluated at a daily timestep, it makes sense that the SWE is not beneficial for predicting 

streamflow; however, results might be quite different if output is evaluated at a monthly or seasonal 

timestep. In addition, I could not find the interval between assimilation, is it done at each model 

timestep, daily, weekly? 

AR: The time step is daily. This has been clarified in the revised manuscript by mentioning a daily time 

step for the model and daily availability for the observations.  

 

Page 14, lines 1-6 and Figure 8: It is not quite clear what VOL is in the model. As presented on page 4, it 

appears to be water that is being routed to the outlet (i.e. runoff). If that is the case, the quick decline in 

adjusting the VOL state on the CRPSS makes sense not because of a linear relationship with discharge, 

but because of the likely short residence time of the water represented by VOL within the watershed. The 

authors discuss the residence time issue in the next paragraph with respect to GWL and SML, I would like 

to see similar insight regarding the VOL as the linear relationship explanation is not obvious.  

AR: The initial impact strength is due to the close link between streamflow and VOL. Since the 

correlation between the streamflow observation and VOL is relatively high, VOL globally experiences a 

positive update (as seen in Fig. 4). In return, since simulated streamflow depends strongly on VOL, 

simulated streamflow initially experiences an important positive impact. However, the duration of this 

impact is indeed caused by the water residence time. A short-lived impact on CRPSS as a function of 

forecast horizon would be caused by a relatively short residence time. This was not obvious from the 

way it was stated in the initial manuscript and has been clarified. Additional clarifications have also been 

added to section 2.2 concerning the role of VOL and streamflow. 

 

Page 16, lines 14-16 and Figure 10: It would be helpful to add a sentence putting results from Figure 10 

in context of results from assimilating only Q or only SWE.  



AR: A few sentences have been added to address the comparison between the combined and individual 

data assimilation scenarios: 

“CRPSS values for combined assimilation of both streamflow and SWE observations were superior to 

CRPSS values for individual assimilation of streamflow or SWE over all forecast horizons, with the 

exception of forecast horizons higher than 45 days, where CRPSS values for SWE DA are slightly higher. 

This reveals that while the updated VOL and GWL by streamflow data assimilation may be very 

beneficial for short-term forecasts, they do not further improve the mid-term forecasts when combined 

with SWE data assimilation in comparison with the scenario where only SWE data is assimilated.” 

 

Page 17, lines 28-29: The SCA was not tested on the forecasts due to the lack of improvements in state 

variables (page 13, lines 19-20). The authors should not make any conclusions regarding the impact on 

forecast skill from this study, and restate this with respect to state variable improvements.  

AR: This has been corrected in the revised manuscript. 

 

Page 18, line 4: The statements made in this paragraph are not hypotheses, they are assumptions and 

limitations 

AR: This has been corrected in the revised manuscript. 

 

References : 

Duan, Q. Y., Sorooshian, S. and Gupta, V.: Effective and Efficient Global Optimization for Conceptual 

Rainfall-Runoff Models, Water Resour. Res., 28(4), 1015–1031, doi:10.1029/91wr02985, 1992. 

 

 

  



Comments to Referee #2 

The manuscript titled Combined assimilation of stream flow and snow water equivalent for mid-term 

ensemble stream flow forecasts in snow-dominated regions is an attempt to apply the Ensemble Kalman 

Filter to the application of stream flow prediction in regions where the majority of the water involved 

comes from snow.  

The manuscript undertakes a set of studies, the first is to ascertain which of the 7 possible state variables 

they consider are sensitive to the assimilation of the 3 observation types they consider. They indicate that 

snow cover appears to not be an important factor in the forecasts that they seek.  

The manuscript is well written and upon a second reading easy to follow. However, i do have a couple of 

points that need to be addressed before i can sign off on publication 

Major Comments:  

1) My first concern relates to the generation of the ensemble perturbations and the perturbations to the 

observations. You indicate that you use Gamma, lognormal of beta distributions yet the EnKF is highly 

reliant on these perturbations, and hence the errors being Gaussian distributed. My query, and i am 

requesting graphs of these, is to see the distributions plots for the distributions that you mentions with 

the parameters in the manuscript. My hunch is that these will look quite close to a Gaussian distribution 

of some form and as such is why you obtain the results, which are great results, but it could be 

misleading to have these distributions when really they are close to a Gaussian. 

AR: Many studies skip the controlled experiment and go straight to the assimilation of real data, but we 

feel this is not the ideal approach. As a first step to test DA potential on streamflow predictions, a near-

ideal framework should be constructed in order to reduce the number “outside variables” that can 

influence results and mislead the analysis. Since the EnKF is used, all perturbations should have a normal 

distribution in order to obtain optimal results. However, observations like the ones used in our study 

have physical limits that cannot be breached (eg: SWE must be >= 0). Alternatives approaches must be 

used. In our study, we decided to use different distributions that 1) resemble normal ones when the 

mean is away from the limits, 2) prevent any violation of the physical limits of the variable and 3) are 

unbiased. The distributions introduced in the manuscript fit that description. 

Examples of beta distributions obtained using the parameters presented in the manuscript, along with 

their analogous normal distributions obtained using the same mean and variance, are shown below (Fig. 

R1a of this response, has been added as Fig. 4a in the revised manuscript). The variance is defined as a 

function of the mean in such a way that it is largest at 0.5 and smallest at the extremes in an attempt to 

reflect MODIS SCA retrieval’s greater uncertainty during the transition periods when patchy snow is 

prominent. The beta distribution also prevents perturbations from violating the physical limits of the 

variable, which the normal distribution cannot guarantee. A visual glance at the graphs shows that the 

beta distributions resemble normal distributions most near 0.5 and deviate more as the mean gets 

closer to the extremes. 



In a similar fashion, examples of gamma and lognormal distributions using the parameters (variance 

values) described in the manuscript are show in Fig. R1b of this response (has been added as Fig. 4b in 

the revised manuscript). A mean of 1 has been used for all examples for an easier comparison between 

examples, but the distributions themselves are visually independent of the mean since the variance is 

defined as directly proportional to the mean. The distributions resemble most a normal one for small 

variances relative to the mean, but important deviations can be noted as the relative variance increases 

due to the lower limit (zero) imposed on gamma and lognormal distributions. The variances shown are 

the ones used to perturb SWE and streamflow observations, as well as meteorological input. 

While those distributions may or may not reflect entirely the real error of the observations and 

meteorological input, therefore yielding “optimistic” results, we feel they are a good compromise 

between the “normality” required by the EnKF and physical limits of the variables. As future works, one 

could investigate other distributions, introduce a bias, etc. and analyse their impact, but this falls 

outside the scope of the current manuscript. 

The assumptions and limitations of the method are stated in the conclusion. In order to make it clearer 

that the experiment is near ideal, an additional sentences has been added in the revised manuscript. 

  



 

Figure R1. Examples of a) beta and b) gamma and lognormal distribution compared with their analogous 

normal distributions using the same mean and variance. 

2) You need to provide a better justification to the use of these distributions on page 7. 

AR: A paragraph has been added in the revised manuscript to justify the use of non-normal distributions. 

Essentially, it is to satisfy hard boundaries on observations and meteorological input. Since all 

observations and meteorological input in the study have limits (ex: range between [0 infinity] or [0 1]), 

adding a normally distributed perturbation can mean those limits are sometimes exceeded. A simple 



way to get around this problem might be to set all exceeding values at the boundary (ex : all negative 

values set to zero). However, this introduces a bias, which is another and likely bigger problem. Other 

distributions were therefore used to satisfy the physical limits, while keeping some visual similarities 

with a normal distribution if possible. 

 

3) You need to rewrite the paragraph starting on page 6 at line 14 as it is confusing as it would appear 

that it looks like you are referring to equations. 

AR: As suggested by another Referee, the word “step” has been added before each number in 

parentheses to avoid confusion. 

 

4) The statement on page 17, line 30 does not make sense and is confusing about the need for linear 

relationships which you really should have with the EnKF. 

AR: The sentence is a relic of a previous formulation and has been removed. 

 

5) On page 9 you are finishing the details about the localization but i am concerned that because you 

achieve this wrt the true state that this may not be the case in the real data situation and you need some 

sort of disclaimer here as you are kind of using the true localization which would not be the case in 

reality. 

AR: This was meant to be discussed in the conclusion, in the paragraph explaining the assumptions and 

limitations of the results. This seems like a more appropriate section in the manuscript than the 

experimental design since 1) the results are not known yet in the experimental design section and 2) it 

allows us to generalize all results as valid within the synthetic limitations of the experiment. This avoids 

repetition since it applies to all steps, not only the covariance localization. An additional sentence has 

been added in the conclusion to explicitly state that dependency.  

 

Minor comments:  

1) Page 3, line 27 remove to 

AR: This has been corrected in the revised manuscript. 

 

2) Page 5, line 17, you mention the gain yet you have not defined it. 



AR: The whole paragraph has been moved to the end of the section, as well as partly merged with the 

(previously) last paragraph and reworked to avoid repetition. 

 

3) Page 11, line 33, remove the first that 

AR: This has been corrected in the revised manuscript. 

 

4) Page 15, line 15, sits is not a very scientific way to describe where the site is.  

AR: The expression “sits at 682 mm” does not refer to the physical location of the site, but mean annual 

maximum SWE as described earlier in the sentence. Nonetheless, this has been rephrased to “contains a 

mean annual maximum SWE of 682 mm” 

 

5) General comment. you use both Gaussian and normal please be consistent and only use one of them 

AR: This has been corrected in the revised manuscript by using “normal” throughout the manuscript. 

 

  



Comments to Referee #3 (Kevin He) 

The authors present a set of synthetic experiments in assessing the potential added value of assimilating 

streamflow, SWE, SCA (via EnKF) into the CEQUEAU model in short- to medium-range streamflow 

forecasting at the Nechako watershed located in BC, Canada. Results indicate that streamflow DA and 

SWE DA lead to improvements in short-term forecast and medium-term forecast (during snow melt 

period), respectively. Assimilation of streamflow and SWE simultaneously yields even better results at 

both scales. However, assimilating SCA does not show any benefit. Overall, the methodology and results 

are sound and meaningful, yet not innovative. The paper is very well written and organized. I think it will 

be of interest to the readership of HESS. 

My major comment is that, from the perspective of water resources management, the bias of the mean 

(or median) ESP forecast is typically an important factor considered in water-related decision making 

(e.g., water supply allocation, reservoir release/hydropower generation schedule, among others). In light 

of this, when assessing EPS forecast skill, the bias is normally analyzed. 

AR: We have been working closely with Rio Tinto and they, like many other water resources managers, 

also consider the bias to be an important metric (maybe even the most important), especially during the 

melt period. While this has been computed for all scenarios, as with many other metrics, we felt this 

actually added little to the discussion that did not justify the doubling of the number of figures for 

forecasts. This is because we have generated bias-free synthetic observations and meteorological input. 

This approach will likely always result in a nonzero bias due to the non-linearity of the hydrological 

model (e.g. two distributions of the same amount of rain can lead to different quantities of cumulated 

streamflow due to evapotranspiration, etc.) and the finite period used in the study, but it should ideally 

be very small.  

In our case, average streamflow bias is less than 1 % for the open loop compared with the true state. 

Zooming on each year at a time, simulated and true cumulated streamflow difference oscillates around 

5 % on average over the 10 years considered. This is mainly why the assimilation of SWE can lead to 

some improvement. If bias was always perfect, adding or removing snow would not lead to 

improvements. Although this bias value is improved in various ways with data assimilation, the window 

for improving bias remains small however. For the real world Nechako basin, average bias is estimated 

at around 20 %. 

In current works that has not yet been published, biased precipitations are purposely added to test the 

robustness of the approach. Real data assimilation has also been evaluated. In both of those cases, bias 

becomes a central part of the results as it is significantly far from null to begin with (there is something 

to potentially improve upon). As it is currently however, we feel that adding figures of bias would 

contribute very little to the discussion due to the near-ideal framework used in the synthetic 

experiment.  

 



In the case of this study, the score MSSS is applied in the sensitivity analysis part (Figures 4, 6 and 7) but 

not the forecast part (Figures 8-12). The relevant results should be added (either in tabular or graphic 

form) and discussed. 

AR: The use of MSSS during the sensitivity analysis part and CRPSS during the forecast part was done to 

facilitate comparisons between other similar studies. The MSSS and CRPSS are relatively similar metrics 

used in different contexts. The mean square error (non-normalized version of the MSSS) is often used as 

a metric duration calibration or comparison between two curves, while the CRPS is mostly used to 

evaluate ESPs since it is adapted to ensembles. In the limit where an ensemble reaches 1 member, the 

CRPS simply becomes the mean absolute error. Although it is not exactly the same as the mean square 

error, the two carry much of the same information for non-ensemble curves. For ensembles, one should 

use the mean or median to compute the MSSS, which could yield very different results than the CRPSS 

since the latter is sensitive to the precision of the ensemble and not only its accuracy. However, in our 

case, the two respond in a very similar fashion as can been seen in Fig. R2 (below) in this response. 

Similar graphs can be generated for all comparisons made using the CRPSS, but we believe this would 

add very little to the discussion.  

 



 

Figure R2. CRPSS and MSSS relative to the true state for a sample of forecasts. 

 

My minor comments include 1) the authors need to be clear about how often the forecasts are issued 

(every day, once a week, or once per month in the study period from 8/15/1990 to 8/14/2000). If it is 

once a month, the authors need to discuss the sample size issue (10 years) when discussing the skill 

scores; 



AR: This has been clarified in a new section (3.1.3) of the revised manuscript dedicated to ensemble 

streamflow predictions. 

 

2) Line 7 of Page 2, “Franz” should be “Franz et al.”; 

AR: This has been corrected in the revised manuscript. 

 

3) Lines 26-27 of Page 3, august should be August; delete “to”; 

AR: This has been corrected in the revised manuscript. 

 

4) Line 8 of Page 4, (Fig. 2), Army Corps of Engineers; 

AR: This has been corrected in the revised manuscript. 

 

5) Lines 14-23 of Page 6, other than use (1), (2),. . ., it would less confusing when using (#1), (#2), . . ., or 

(Step 1), (Step 2), etc. ; 

AR: This has been modified in the revised manuscript by using the term “step” before each number. 

 

6) Line 5 of Page 7, delete “to”; 

AR: This is a typo and has been replaced with “the”. 

 

7) Line 6 of Page 8, modify “than”; 

AR: This has been corrected in the revised manuscript by removing that part of the sentence. This was 

done in rearrangement of the sections to split the information relating to the generation of synthetic 

observations and observation ensembles. 

 

8) Lines 20-22 of Page 8, rework on the sentence; 

AR: The sentence has been reworked in the revised manuscript to: 



 “This approach avoids introducing a systematic bias when assimilating SCA values at 0 or 100 %. When 

values are at 0 % (or 100 %), perturbations can only introduce higher (or lower) values in order to 

remain within the physical limits of the observations. This approach also gives the observations a greater 

uncertainty during the transition periods when SCA, which loosely follows the greater uncertainty 

attributed to MODIS observations over the same period (Hall and Riggs, 2007).” 

9) Line 12 of Page 10, change MSS to MSSS; 

AR: This has been corrected in the revised manuscript. 

 

10) Line 20 of Page 10, in order to. 

AR: This has been corrected in the revised manuscript. 
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Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. 

Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by 

having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span 

of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in 10 

the state vector. This study examines the impact of multivariate synthetic data assimilation using the Ensemble Kalman Filter 

(EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British-

Columbia, Canada. Synthetic data includes daily snow cover area (SCA), daily measurements of snow water equivalent 

(SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the 

continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state 15 

vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the 

observations are the ones worth considering adding to the state vector. The performance of the assimilation of basin-wide 

SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the 

simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but 

mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more 20 

importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The 

combined assimilation of streamflow and SWE performs better than their individual counterparts, offering improvements 

over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This 

highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions. 

Keywords. Ensemble Kalman Filter, hydrological modeling, ensemble forecast, snow accumulation and melt, multivariate 25 

data assimilation 
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1 Introduction 

Water resource management for reservoirs located in snow dominated regions relies on an accurate portrayal of the snow 

water equivalent (SWE) spatial and temporal distribution in order to make accurate streamflow predictions. Some water 

resources managers make use of Ensemble Streamflow Prediction (ESP) to plan reservoir operations over various lengths of 

time. ESPs have the benefit of integrating weather forecast uncertainty, either by making use of weather ensemble 5 

predictions (de Roo et al, 2003) or by using historical weather data (Day, 1985) as input in a hydrologic model. However, 

ESPs depend heavily on the model’s initial conditions (Franz et al, 2008). Presently, many water resources managers still use 

a manual approach to adjust the initial state of the watershed based on available observations and the user’s experience (Liu 

et al, 2012). 

 10 

Data assimilation (DA) methods, such as the Ensemble Kalman Filter (EnKF; Evensen, 2003) can improve the estimation of 

the initial state of the watershed while also providing an uncertainty on this initial state (Liu and Gupta, 2007). Several 

authors have already shown the added value of DA in snow-dominated watersheds to improve the estimation of the state of 

the watershed (De Lannoy et al, 2012; Dechant and Moradkhani, 2011; Nagler et al, 2008; Slater and Clark, 2006; Andreadis 

and Lettenmaier, 2006). Some studies have also integrated DA in ensemble forecast systems for relatively short-term (up to 15 

5-10 days) hydrologic forecasts (Abaza et al, 2015; Abaza et al, 2014; He et al., 2012), but studies focusing on longer 

forecast periods are scarce even though the need exists for water resource managers. 

 

Multivariate DA applications in hydrology are becoming more frequent, but generally focus on streamflow and soil moisture 

(Samuel et al, 2014; Trudel et al, 2014; Lee et al, 2011), omitting snow water equivalent. In snow-dominated watersheds, the 20 

key initial states include not only information about the hydric state, such as soil moisture and streamflow, but also the snow 

cover state, such as snow water equivalent (SWE) and snow cover area (SCA). To the authors’ knowledge, no published 

studies pertain to the combined assimilation of information about a watershed’s hydric and snow state. Since the lasting 

impact of hydric DA and snow DA can be quite different given the different physical processes driving them, the 

simultaneous DA of both types of data could yield improvements over a potentially longer length of time. 25 

 

However, data assimilation performance depends on various factors, such as the choice of variables to be updated by an 

observation (hereby referred to as the state vector configuration). Abaza et al. (2015) have demonstrated this importance 

when assimilating streamflow in a hydrologic model. Going from univariate to multivariate DA increases the number of 

degrees of freedom, which increases the complexity of the matter. Is the state vector configuration still important in 30 

multivariate DA?The importance of state vector configuration when using multivariate DA for hydrological modeling has 

yet to be investigated. 
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The study’s main objectives are to 1) investigate the potential impact that multivariate data assimilation of hydric 

(streamflow) and snow-related (SWE and SCA) data can have on short-term (1-5 days) and mid-term (up to 50 days) 

streamflow forecast, and 2) to explore how this impact varies as a function of the state vector configuration. 

2 Materials and methods 

2.1 Study area description and data 5 

Simulations were conducted in a synthetic setting based on the Nechako watershed located in British-Columbia, Canada 

(Fig. 1). The watershed includes a reservoir, which drains an area of approximately 14000 km
2
. The reservoir is managed by 

Rio Tinto mainly for hydroelectricity production purposes. The watershed includes part of the Coast Mountains in the west 

region, such that the difference in elevation between the highest and lowest point in the watershed reaches about 1700 m. At 

these latitude and altitude, most (estimated at 53%) of the precipitation falls as snow. 10 

 

There are various types of data gathered regularly over the watershed. First are seven weather stations managed by Rio 

Tinto, three of which measure daily precipitation and air temperature only (yellow circles). Three others also include snow 

pillows (red squares), which measure snow water equivalent. The northernmost snow pillow is located at Mount Wells, the 

southernmost at Mount Pondosy and the westernmost at Tahtsa Lake. Maximum seasonal SWE observations average 615, 15 

853 and 1393 mm for the Mount Wells, Mount Pondosy and Tahtsa Lake snow pillows respectively. The distribution of 

snow on the ground follows a strong East-West gradient such that measurements at Tahtsa Lake typically yield much more 

snow that Mount Well and Mount Pondosy. The northernmost weather station (blue triangle) is located next to the spillway 

at Skins Lake and also takes hydrometric measurements. Historical daily water levels can then be converted into natural 

inflows by also taking into account spilled and turbined flow. Finally, daily snow cover area (SCA) data derived from the 20 

spaceborne sensor MODIS/Terra are also considered (Hall et al, 2002). Because of its spatial coverage and relatively high 

temporal resolution, remotely sensed snow data from MODIS have proven to be valuable in a number of hydrologic studies 

(Bergeron et al, 2014; Roy et al, 2010; Tang and Lettenmaier, 2010; Andreadis and Lettenmaier, 2006; Clark et al, 2006), 

including one applied to the Nechako watershed (Marcil et al, 2016). 

 25 

The meteorological observations gathered over a period of 10 year (from 15
th

 august August 1990 to 14
th

 august August 

2000) will bewere used to as a basis upon which a synthetic experiment (see below) will tested the added value of three types 

of synthetic observations (streamflow, SWE and SCA) for data assimilation purposes. The only datasets actually used is 

were the meteorological station data, as well as some streamflow observations (owned by Rio Tinto) and MODIS/Terra daily 

L3 snow cover data (Hall et al, 2002) for the initial model calibration performed prior to the synthetic experiment presented 30 

in this manuscript. All thewhile observation data are were created synthetically to mimic streamflow, SWE and SCA data 
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that could be measured or estimated using hydrometric, snow pillow and MODIS data, respectively. More details on the 

creation of synthetic observations and meteorological input in sections 3.1.1 and 3.1.2 respectively. 

2.2 Model description 

The hydrologic model used is was the spatially distributed, conceptual model CEQUEAU (Charbonneau et al, 1977). It is 

currently being used by Rio Tinto Alcan to model hydrologic processes including streamflow at the outlet of the Nechako 5 

watershed, considered to be the spillway where the hydrometric station is also located. All variables are computed at a daily 

time step using a set of parameters to calibrate and daily meteorological input consisting of mean air temperature and 

precipitation. The set of parameters used in this study was the result of a manual calibration performed by Rio Tinto by 

comparing the simulated streamflow at the outlet with the corresponding real streamflow observations. A summary of the 

main processes concerning the production and transfer functions is presented here to facilitate the understanding of the state 10 

variables used in this study. 

 

CEQUEAU divides the watershed into regular square pixels called “whole squares” over which the production function is 

computed (Fig. 2). The current version of CEQUEAU uses the snow model presented by the U.S. army Army corps Corps of 

engineers Engineers (1956) to simulate most snow-related processes. The SWE is actually computed separately for forested 15 

and open areas, which have their own set of parameters, but is aggregated here as a weighted sum according to the 

proportion of forested and open areas within each whole squares. The only variable computed separately (i.e. outside from 

CEQUEAU) is SCA, which is computed using a depletion curve (Anderson 1973). The depletion curve used here follows 

Andreadis and Lettenmaier (2006), which uses a three parameter beta distribution: 

SCA! = B"# $ %&'(
)*+,%&'-./0(0123 451670 81679 ,         (1) 20 

where SCA! is the resulting snow cover area over a whole square :, SWE!  is the simulated snow water equivalent over the 

same area, SWE);<0! is the annual maximum snow water equivalent since the beginning of the accumulation period over the 

same area, >? represents the value of SWE above which it is assumed there is always 100% snow cover and 5167 and 8167 

are shape parameters for the beta distribution itself. The calibration of those three parameters was conducted using the SCE-

UA method (Duan et al, 1992) to minimize the root mean square difference between simulated snow cover area and 25 

MODIS/Terra daily L3 snow cover data (Hall et al, 2002) averaged within each whole square within the Nechako 

watershed.These three parameters were previously calibrated to match MODIS/Terra daily L3 snow cover data (Hall et al, 

2002). It is important to note that SCA is computed as an output only and is therefore not considered to be a state variable 

since it has no impact on future simulations if its value is tempered tampered with. 

 30 
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CEQUEAU then uses three conceptual reservoirs to simulate various hydrologic processes from the available water resulting 

from rain or snow melt. There is an optional lake reservoir, an upper reservoir (called “soil moisture reservoir” in this study) 

and a lower reservoir (called “groundwater reservoir” in this study). 

 

All in all, the state variables simulated over each whole square includes snow water equivalent (SWE), a snow ripening 5 

index (SRI), a snow temperature index (STI), the soil moisture level (SML), the groundwater level (GWL) and the lake 

water level (LWL) should there be one. There are 644 whole squares in the case of the Nechako watershed. 

 

Each whole square is itself divided into “partial squares” according to the subpixel drainage divide. There are a total of 1082 

partial squares in the case of the Nechako watershed. Available water from whole squares (whether from surface runoff or 10 

drained from the soil and/or groundwater reservoirs) is divided into these partial squares according to the fraction of whole 

square area drained by partial squares to form volumes (VOL). These volumes that are  represent the total amount of water 

available for transferred from one partial square to the next. The actual amount of water transferred at a specified rate to 

formover a given period is called streamflows and is defined as follows : 

>@D = #
FGH IJKL M VOLL

NO
L ,           (2) 15 

where >@D is the streamflow at partial square P, QD is the number of partial squares directly upstream,  IJKL  is a transfer 

coefficient and FK is the time step. VOL is therefore a state variable, but Sstreamflow, like SCA, is not considered to be a 

state variable since it has no impact on future simulations if its value is tempered tampered with. 

2.3 Ensemble Kalman Filtering 

The Ensemble Kalman Filter (EnKF) is a data assimilation method developed by (Evensen (1994). It is an approach often 20 

used in hydrology, mainly due to its ability to consider non-linearities in the model and its relative simplicity to implement. 

The EnKF is a sequential method, meaning it relies only on current observations to update state variables as opposed to non-

sequential approaches such as smoothers (Evensen and van Leeuwen, 2000) and recursive methods (McMillan et al, 2013) 

methods.  

 25 

However, the method has practical and theoretical limitations. Firstly, the EnKF relies on an ensemble representation of 

model and observation errors that are valid in the limit where ensemble sizes approach infinity. This is not feasible in 

practice, so a finite sample is used instead which aims to be sufficiently large such that sampling errors are negligible while 

ensuring that computational power and memory limitations are met. The method also makes use of model and observation 

covariance matrices to compute the gain during the updating process. These covariance matrices assume a linear relationship 30 

between variables. Inaccurate analyses may result for cases where this assumption does not hold. Despite these limitations, 
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the EnKF’s usefulness in hydrology has nonetheless been shown in numerous studies, which is why it is also used in this 

study. 

 

The EnKF propagates an ensemble of model runs based on a Monte Carlo implementation to represent model errors. The 

model covariance matrix (RGT) at a time K is computed from the state vector (JGT) holding the U ensemble members and their 5 

simulated variables; and the ensemble mean of the state vector (JGTVVV), therefore implicitly taking the model dynamics into 

consideration: 

RGT = #
X"# ,JGT Y JGTVVV3,JGT Y JGTVVV3

Z
,          (3) 

When an observation is available, it is perturbed to form an ensemble of observations that are used to update each ensemble 

member. The updating step applies the Kalman gain ([G), which is computed from observation (\G) and model covariance 10 

matrices as well as an observation operator (]G), which relates the model states to the observation: 

[G = RGT]GZ^]GRGT]GZ _ \G`"#,          (4) 

The Kalman gain acts as a weighted average between the observation and state vector to yield a post-filter analysis (JGa) 

computed as such: 

JGa = JGT _ [G^bG Y ]GJGT`,          (5) 15 

The EnKF has practical and theoretical limitations. Firstly, the EnKF relies on an ensemble representation of model and 

observation errors that are valid in the limit where ensemble sizes approach infinity. This is not feasible in practice, so a 

finite sample is used instead which aims to be sufficiently large such that sampling errors are negligible while ensuring that 

computational power and memory limitations are met. The method also makes use of model and observation covariance 

matrices to compute the gain during the updating process. These covariance matrices assume a linear relationship between 20 

variables. Inaccurate analyses may result for cases where this assumption does not hold. Despite these limitations, the 

EnKF’s usefulness in hydrology has nonetheless been shown in numerous studies, which is why it is also used in this study. 

The EnKF also assumes normally distributed, bias-free and time-independent errors for both the model and the observations. 

Since these assumptions are not always met, which means that optimality is not guaranteed, a synthetic experiment is 

recommended to test the applicability of the method to the specific case being studied. 25 

 

The Ensemble Kalman filter aims to minimize the resulting analysis error under several assumptions such as having 

normally distributed, bias-free and time-independent errors, as well as linear relationships between variable errors during the 

updating step. Though these assumptions are not always met, which means that optimality is not guaranteed, the value of the 

EnKF for hydrologic applications has nevertheless been shown repeatedly (Abaza et al, 2015; Samuel et al, 2014; Trudel et 30 

al, 2014; Brocca et al, 2012; Forman et al, 2012; Xie and Zhang, 2010; Weerts and El Serafy, 2006). 
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3 Experimental design 

3.1 Synthetic experiment 

Synthetic experiments, like the ones done by Xie and Zhang (2010) or Weerts and El Serafy (2006), are testbeds used A 

synthetic experiment is a useful approach to test the robustness of a data assimilation method or to tune various hyper-

parameters. This is because the true state is known since it is initially created from known inputs. 5 

 

For the current study, interpolated meteorological observations input and a specific set of parameters were used to run 

CEQUEAU, the output of which was considered to be the true state (step 1) (see Fig. 3). Synthetic observations, which 

include daily streamflow, SWE and SCA (step 2), and meteorological input, which include daily mean air temperature and 

precipitation (step 3), were then obtained by applying a perturbation to the true state and true meteorological input 10 

respectively. This means that the observations sets described thus far are not directly used, but synthetically generated using 

known parameters and perturbation. The synthetic observation ensemble (step 4) and meteorological ensemble (step 5) were 

created by further perturbing the synthetic observations and meteorological input. Ideally, these meteorological and 

observation ensemble perturbations should reflect the true errors of the synthetic meteorological input and observations for 

an optimal analysis. An ensemble of hydrologic states (step 6) was then obtained by running CEQUEAU using the synthetic 15 

meteorological ensemble. The EnKF was then applied using both the model and observation ensembles to produce an 

analysis (step 7), which was used as an initial state to produce ensemble streamflow predictions (ESP; step 8) using the true 

meteorological input. Additional details pertaining to the procedure used in generating perturbations and ensembles are 

included in the following sections. 

 20 

Using the true meteorological input implies that over a sufficiently large forecast horizon, every DA scenario considered in 

this study is likely to converge to the true state, but at different rates. By comparing the relative gains in performance over 

the ensemble with no data assimilation (open loop), one can then observe the length of time upon which DA impacts ESPs 

without having erroneous meteorological input affecting the results. 

3.1.1 Synthetic observation perturbation 25 

Three types of observations awere considered; namely streamflow, snow water equivalent (SWE) and snow cover area 

(SCA). These synthetic observations were generated using a daily time step since their real-world counterparts are usually 

available on a daily basis. 

 

In order to abide by EnKF assumptions, observations errors should ideally have a normal distribution. However, this is not 30 

practical due to the physical limits of the observations. For example, SWE observations cannot be negative and adding a 

normally distributed perturbation to SWE could result in some values being negative. Raising the negative values to zero or 
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above would introduce a bias. Therefore, other distributions that share similarities with a normal distribution, while ensuring 

that physical limits are respected, were used to generate synthetic observations. 

 

Synthetic watershed-wide SCA were created using perturbations that follow a beta distribution since SCA is bounded 

between 0 and 1. SCA observations are expressed as bG0D~c"#,dG0De5G0D0 8G0D3, where dG0D is the cumulative probability of a 5 

temporally correlated normal random field with zero mean and unit variance at time t for observation j, and 5G0D and 8G0D are 

positively valued shape parameters. The shape parameters may be expressed in terms of the mean fG0D and variance gG0Dh , but 

it must follow that gG0Dh i fG0D,j Y fG0D3. The variance was arbitrarily set to gG0Dh = fG0D,j Y fG0D3klm, such that the resulting 

shape parameters are 5G0D = nofG0D  and 8G0D = no,j Y fG0D3. Examples of beta distributions for different means using the 

same definition of variance as described above are shown in Fig. 4a. The distribution has a null variance and greater 10 

deviation from a normal distribution when the snow covers either 0 or 100 % of the watershed, as well as a variance greatest 

and resembling most a normal distribution at 50 % SCA. This approach avoids introducing a systematic bias when 

assimilating extreme values of SCA. When values are at 0 % (or 100 %), perturbations can only introduce higher (or lower) 

values in order to remain within the physical limits of the observations. This approach also gives the observations a greater 

uncertainty during the transition periods when SCA, which loosely follows the greater uncertainty attributed to MODIS 15 

observations over the same period (Hall and Riggs, 2007).  

 

Synthetic streamflow and SWE observations were created in a similar fashion than synthetic meteorological inputs, but using 

perturbations that have a lognormal distribution since both observations are bounded to the left at 0 and are theoretically 

unbounded to the right. Observation values bG0!D can be expressed as bG0D~pqr"#,dG0DefG0D0 gG0Dh 3sbG0!~t"#,dG0!efu 0 guh3, where 20 

dG0! is the cumulative probability of a temporally correlated Gaussian random field with zero mean and unit variance. The 

true state was used for fuG0D  for both streamflow and SWE, while the relative variance guG0Dh  was set to 20 % and 10 % 

respectively. The error distributions using these parameters are shown in Fig. 4b. As with the meteorological input error, 

tThe exact value of these variances is arbitrary for feasibility purposes. However, since the conclusions of this study will 

likely be used to help setup real-world applications, the variances chosen should ideally be relatively similar to the error of 25 

their corresponding real observations. Since these real observation errors are not known, rough estimates are used.  

 

The use of these distributions is a compromise between the normal distribution of observations required by the EnKF and the 

physical limits of the observations without introducing a bias. 

 30 
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3.1.2 Meteorological input perturbation 

Both the true daily precipitation and temperature values were perturbed using a gamma distribution, which has the benefit of 

generating positive values exclusively. Perturbations were implemented such that the weathermeteorological input vG0! 
(precipitation or temperature) at time K over the partialwhole square : is the result of the inverse gamma function given the 

cumulative probability RG0! of a spatially and temporally correlated Gaussiannormal random field with zero mean and unit 5 

variance. This can be expressed mathematically as vG0!~w"#,RG0!exG0!yG0!3, where xG0!  and yG0!  are shape and scale factor 

respectively. The shape and scale factors can be expressed in terms of mean fG0! and variance gG0!h , such that xG0! = fG0!h kgG0!h  

and yG0! = gG0!h kfG0!. In this study, synthetic precipitations are generated using the value of the true precipitation for fG0! and a 

relative variance of 50%, such that gG0!h = mzl M fG0!. Figure 4 shows the resulting error distribution using these parameters. 

Similarly, perturbed temperatures use the true temperatures for fG0! and an absolute standard deviation of 1°C. Within the 10 

synthetic study where the feasibility of the approach is tested, the exact value of these perturbations is arbitrary, so long as it 

is coherent between scenarios. The values used were such that the performanceNash-Sutcliffe efficiency (Nash and Sutcliffe, 

1970) of the simulated streamflow resulting from CEQUEAU using the perturbed meteorological input compared with 

synthetic streamflow was roughly similar to the performance of the simulated streamflow using real-world meteorological 

input compared with real streamflow observations.mean streamflow ensemble generated using CEQUEAU was roughly 15 

similar to the performance of the simulated streamflow using real-world meteorological input compared with observations. 

3.1.3 Ensemble streamflow predictions generation 

ESPs were generated using the ensemble of state variables resulting from the EnKF as initial states, true meteorological 

input and true model parameters.  Using the true meteorological input implies that over a sufficiently large forecast horizon, 

every DA scenario considered in this study is likely to converge to the true state, but at different rates. By comparing the 20 

relative gains in performance over the ensemble with no data assimilation (open loop), one can then observe the length of 

time upon which DA impacts ESPs without having erroneous meteorological input affecting the results. This still generates 

an ensemble of streamflows since each ensemble member has its own initial states (VOL, SWE, SRI, STI, SWL, GWL, 

LWL). 

 25 

ESPs were generated everyday over the entire study period (10 years) using a forecast horizon spanning 50 days. 

3.2 Hyper-parameter tuning 

The use of the EnKF requires the tuning of hyper-parameters, such as model and observation errors, and ensemble size. 

Improper specification of these hyper-parameters could lead to filter divergence (Houtekamer and Mitchell, 1998). 
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3.2.1 Ensemble size 

The ensemble size should ideally approach infinity to reduce to the impact of sampling when covariance matrices are 

computed, but this is not feasible given the limits of computing power and memory. In practice, the ensemble size is chosen 

such that computing time is more reasonable while ensuring that sampling error remains small.  

 5 

Tests were carried out using ensemble sizes of 8, 16, 32, 64 and 128 members. An ensemble size of 64 members was used 

for this study. This number was chosen as a function of the stability between successive runs and computing resources 

available. It was found to be a reasonable trade-off between having sufficiently consistent results between simulations, such 

that the sampling error would be dwarfed in comparison with the impact of the actual data assimilation, without exceeding 

the computing resources available.  10 

3.2.2 Meteorological input perturbationensemble generation 

In order to reduce the impact of model error misrepresentation, the pPerturbation factors similar to the ones used to generate 

synthetic meteorological inputs were used to generate an ensemble spread were the same as the ones used to generate 

synthetic meteorological inputs. This means that at every time step, meteorological ensemble (v{G0!) were generated using an 

inverse gamma function given the cumulative probability R{G0! of a spatially and temporally correlated normal random field 15 

with zero mean and unit variance, mathematically expressed as v{G0!~w"#,R{G0!ex{G0! 0 y{G0!3 , where the shape factors are 

defined by x{G0! = f{G0!h kg{G0!h  and y{G0! = g{G0!h kf{G0! . The prime symbol is used to distinguish between the ensemble 

variables/parameters and the synthetic variables/parameters. Precipitations were generated using the value of the synthetic 

precipitation (vG0!) for f{G0!  and a relative variance of 50%, such that g{G0!h = mzl M vG0! , while temperature ensembles were 

generated using synthetic temperatures for f{G0! and a standard deviation of 1°C. Using similar perturbation factors between 20 

synthetic and ensemble versions of the meteorological input reduced the probability of filter divergence cause by a 

misrepresentation of the model error. Errors from CEQUEAU-specific parameters were not taken into consideration, such 

that the parameter set used for the generation of the true state were the same for the ensemble generation. 

 

Both the daily precipitation and temperature values were perturbed using a gamma distribution, which has the benefit of 25 

generating positive values exclusively. Perturbations were implemented such that the weather input vG0!  (precipitation or 

temperature) at time K over the partial square : is the result of the inverse gamma function given the cumulative probability 

RG0! of a spatially and temporally correlated Gaussian random field with zero mean and unit variance. This can be expressed 

mathematically as vG0!~w"#,RG0!ex0 y3, where x and y are shape and scale factor respectively. The shape and scale factors can 

be expressed in terms of mean f|  and variance g|h , such that x = f|hkg|h  and y = g|hkf| . In this study, synthetic 30 

precipitations are generated using the value of the true precipitation for f| and a relative variance g|h of 50%. Similarly, 
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perturbed temperatures use the true temperatures for f| and an absolute standard deviation of 1°C. Within the synthetic study 

where the feasibility of the approach is tested, the exact value of these perturbations is arbitrary, so long as it is coherent 

between scenarios. The values used were such that the performance of the mean streamflow ensemble generated using 

CEQUEAU was roughly similar to the performance of the simulated streamflow using real-world meteorological input 

compared with observations. 5 

3.2.3 Synthetic observation error representationObservation ensemble generation 

As with model error representation, the perturbation factors used to generate an ensemble of observations were the same 

assimilar to the ones used to generate synthetic observations. Streamflow and SWE observation ensembles were created 

using perturbations that have a lognormal distribution centered around the synthetic observations vG0D with a relative variance 

of 20 % and 10 % respectively. Watershed-wide SCA ensembles were created using a beta distribution centered around the 10 

synthetic observation vG0D with a variance of g{G0Dh = vG0D,j Y vG0D3klm. Using similar perturbation factors avoided problems 

caused by a misrepresentation of the observation errors. Three types of observations are considered; namely streamflow, 

snow water equivalent (SWE) and snow cover area (SCA). 

 

Synthetic streamflow and SWE observations were created in a similar fashion than synthetic meteorological inputs, but using 15 

perturbations that have a lognormal distribution. Observations bG0! can be expressed as bG0!~t"#,dG0!efu0 guh3, where dG0! is 

the cumulative probability of a temporally correlated Gaussian random field with zero mean and unit variance. The true state 

was used for fu for both streamflow and SWE, while the relative variance guh was set to 20 % and 10 % respectively. As 

with the meteorological input error, the exact value of these variances is arbitrary for feasibility purposes. However, since 

the conclusions of this study will likely be used to help setup real-world applications, the variances chosen should ideally be 20 

relatively similar to the error of their corresponding real observations. Since these real observation errors are not known, 

rough estimates are used. 

 

Synthetic watershed-wide SCA were created using perturbations that follow a beta distribution since SCA is bounded 

between 0 and 1. SCA observations are expressed as bG0!~B"#,dG0!e50 83 , where 5  and 8  are positively valued shape 25 

parameters. The shape parameters may be expressed in terms of fu and guh, but it must follow that guh i fu,j Y fu3. The 

variance was arbitrarily set to guh = fu,j Y fu3klm , such that the resulting shape parameters are 5 = nofu  and 8 =
no,j Y fu3. This translates as a null variance when the snow covers either 0 or 100 % of the watershed and a variance 

greatest at 50 % SCA. This prevented introducing a systematic bias when assimilating SCA values at 0 or 100 %, as well as 

giving the observations a greater uncertainty during the transition periods when SCA, which loosely follows the greater 30 

uncertainty attributed to MODIS observations over the same period (Hall and Riggs, 2007). 
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3.2.4 Covariance localization 

The main disadvantage in using a finite sample to compute covariance matrices is that the resulting covariance matrices are 

not exact. This may result in theoretically zero covariance elements between two theoretically uncorrelated variables to 

become small, but non-zero, which may deteriorate the performance of the EnKF.  

 5 

One way to overcome this dilemma is to use covariance localization, where covariances are forced to zero between some 

variables. One option is the Schur product where a covariance matrix is multiplied element-wise by a distance-dependant 

correlation function (Houtekamer and Mitchell, 2001). However, there are other geophysical characteristics, such as 

landcover and elevation, which could be considered in the covariance localization. This would further increase the number of 

parameters to set and the degree of subjectivity in setting those parameters when the degrees of dependence are unknown.  10 

 

Another approach was used in this study, which is based on the improvements observed in the state vector. First, the open 

loop is executed, as well as a data assimilation scenario with one observation and the corresponding spatialized state variable 

included in the state vector (ex: 1 snow pillow assimilated and all modelled SWE included in the state vector). Then, the two 

runs are compared with the true state on a spatial basis. In the case of CEQUEAU, these can be whole or partial squares 15 

depending on the variable analysed. The covariance matrix is localized such that the areas that do not show an improvement 

for the data assimilation scenario over the open loop are set to zero. This process is repeated for each observation.  

 

While this process remains susceptible to the sampling error from the finite ensemble size, it is a simple approach that 

exploits the availability of the true state in a synthetic experiment and limits the state vector size according to observed 20 

improvements. 

 

In this study, only SWE observations have a corresponding state variable, so covariance localization will has only been 

applied to the SWE variable. 

3.2.5 State vector configuration 25 

Though the state vector often comprises only of the variables corresponding to the observations or those judged to be 

relevant enough by the user, there are potentially many state variables which could benefit from the assimilation of available 

data if there exists a linear (or approximately linear) relationship between the modelled variables and the observations.  

 

To determine which variable could benefit from being included in the state vector, one could execute multiple scenarios 30 

where each possible combination is compared with the true state. However, this could get very laborious even for a relatively 

small number of state variables. The current approach suggests reducing this number by first adding state variables one at a 
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time. The variables which show a global improvement can then be added to the state vector. Assuming that not all variables 

are added to the state vector, this reduces the number of combinations to try. 

3.3 Metrics 

Various metrics are were used to quantify results. The Mean Square Skill Score (MSSS), based on the Mean Square Error 

(MSE), are was used to assess the differences between various data assimilation scenarios and the open loop during the state 5 

vector configuration and covariance localization processes. The MSE for a variable of interest J is defined as: 

}SE^J` = #
XH ^JG� Y JG�`hXG�# ,          (6) 

where U is the number of time steps, JG�  is the ensemble mean analysis of the state variable of interest at time K and JG� is the 

corresponding true state. It is often more convenient to express this score as a unitless skill score: 

}SSS^J` = j Y �%'^�`
�%'���^�`,           (7) 10 

where }SE���^J` is a mean square error of reference; the open loop in this case. The MSSS is bounded by [-∞,1] and 

indicates an improvement as the skill score increases. Values above zero indicate an improvement over the reference (open 

loop) and a value of one indicates a perfect score; a perfect correspondence between the mean of the analysis and the true 

state. 

 15 

The ensemble forecast performance is was assessed using the Continuous Rank Probability Score (CRPS; Hersbach, 2000) 

and its associated skill score (CRPSS). For this synthetic study, the CRPS is adapted as follows: 

C��S^J0 �` = #
XH � �@,JG�3 Y @^JG�`�

h��
"�

XG�# �J,        (8) 

where @,JG�3 and @^JG�` are the cumulative distribution function of the ensemble forecast at a horizon � and the true state, 

respectively. The CRPS has the same units as the variable of interest and is bounded by [0, +∞]. A lower CRPS is a better 20 

score. As with the MSE and MSSS, it is often convenient to express the CRPS in its skill score form:  

C��SS^J0 �` = j Y ���%^�0�`
���%���^�0�`,          (9) 

where C��S���^J0 �` is the continuous rank probability score of the open loop used as a reference in this case. Like the 

MSSS, the CRPSS is bounded by [-∞, 1], with higher values indicating a better score. Values above zero indicate an 

improvement over the reference and a value of one indicates a perfect score. 25 
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4 Results and discussion 

4.1 State vector configuration and covariance localization 

Before investigating the effect of data assimilation on streamflow forecasts, a state vector configuration analysis is was 

conducted. This is was done in order to find out which variables, among the 7 listed previously (VOL, SWE, SRI, STI, SWL, 

GWL, LWL), should be included in the state vector for each type of data assimilated in order to reduce the number of 5 

comparisons to make. 

4.1.1 Streamflow data assimilation 

First presented are the results from the case where only streamflow at the outlet is was assimilated. Streamflow at the outlet 

is computed by the model, but it is output-only. Therefore, in order for the assimilation of streamflow to have any impact on 

the modelled states, additional variables must needed to be added to the state vector. 10 

 

Figure 4 5 shows a boxplot of the MSSS computed for each variable on the whole watershed when they are individually 

included in the state vector using the open loop scenario as a reference. Values above 0 means there is an improvement for a 

particular partial (for volumes) or whole (for other state variables) square compared with the open loop. The boxes range 

between the 25
th

 and 75
th

 percentiles, with a red bar to show the median, and the whiskers range between the maximum and 15 

minimum values. Outliers are not shown for visibility purposes. Results for the case where water volumes (VOL) are 

included along with the streamflow at the outlet show an improved score for each partial square on the watershed. This is not 

entirely surprising given the close relationship between streamflow and volume. This suggests a necessity to include VOL in 

the state vector when assimilating streamflow at the outlet for streamflow predictions.  

 20 

Results also show a deterioration of snow water equivalent (SWE) for nearly 75% of whole squares on the watershed. 

Although there is some improvement for some whole squares, this suggests that including SWE in the state vector when 

assimilating streamflow at the outlet is unlikely to be beneficial for streamflow predictions. Although SWE does have an 

important impact on streamflow, there is a time lag between the snowmelt occurrence and the increase of streamflow at the 

outlet. Since the EnKF assumes linear relationships between variables, the non-linearity between SWE and streamflow can 25 

result in a non-optimal analysis. In this case, the results are actually worse than open loop for most whole squares. Clark et 

al, . (2008) discuss the issue of non-linearities between streamflow and other variables. To overcome this issue, one could 

use either a recursive approach, which allow adjustments of previously simulated variables, or smoother approach to DA, 

which also uses “future” observations to update current state variables. However, this may not be necessary given the 

positive impact of streamflow DA on VOL, as well as in a multivariate DA scenario where other variables, such as SWE in 30 

this case, are also assimilated. 
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As for the snow ripening index (SRI) and snow temperature index (STI), the median sits around 0, meaning there is no 

improvement for 50% of the whole squares. This suggests little change can be obtained in the analysis by including those 

variables in the state vector. Similar to the case with SWE, there is likely a time lag issue between streamflow and these 

variables. However, there is also a weaker link between these variables such that a change in SRI or STI is not as strongly 

linked to an eventual change in streamflow as much as it is for a change in SWE. 5 

 

Finally, results for the three conceptual reservoirs soil moisture level (SML), groundwater level (GWL) and lake water level 

(LWL) show an improvement for over half of the whole squares, with a greater number of whole squares improved for the 

GWL and slightly above 0 median for SML. This suggests that including these three variables in the state vector can 

potentially yield improvements for streamflow predictions. Though the relationship between the water level in these 10 

conceptual reservoirs and streamflow at the outlet is not exactly linear, mainly due to reservoirs having multiple orifices (see 

Fig. 2) and the time lag before water reaches the outlet, it may be sufficiently near linear that such that streamflow DA yields 

an overall improvement for most whole squares. For example, the median correlation coefficient of a simple linear 

regression between each reservoir for each whole square and the streamflow at the outlet is 0.12, 0.49 and 0.15 for SML, 

GWL and LWL respectively.  15 

 

Samuel et al (2014) and Trudel et al (2014) found that updating soil moisture with streamflow observations actually 

deteriorated soil moisture simulation compared with real soil moisture observations. However, there are notable differences 

between these studies and the present one. Aside from the different features of the study area and model structure, the use of 

synthetic data instead of real data likely strengthens the link between variables and observations. Since synthetic 20 

observations are constructed using the same model and parameters as the model in which the observations are assimilated, 

there is no difference in scale between observations and modelled variables, which is often an important source of error for 

studies using real data. 

 

Nonetheless, Tthe inclusion of VOL, SML, GWL and LWL in the state vector were will therefore be considered during the 25 

assimilation of streamflow at the outlet. The impact of each scenario for streamflow predictions will beare compared in 

section 4.2.1. 

4.1.2 SWE data assimilation 

The same analysis is was performed for SWE data assimilation from synthetic snow pillows. However, unlike streamflow, 

SWE is a state variable such that any changes made upon it will have repercussions on future simulations. SWE at the 30 

location of the snow pillows should therefore be included in the state vector and also potentially whole squares in the vicinity 

that are correlated with these locations. A spatial analysis is was performed first to determine the spatial extent upon which 

each snow pillow may affect modelled SWE in other whole squares. 
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Figure 5 6 shows the MSSS of SWE on the spatial level for the snow pillows located at Mount Wells, Mount Pondosy and 

Tahtsa Lake, using the open loop scenario as a reference. For each figure, the whole square which shows the most 

improvement is the area where the corresponding snow pillow is located. Whole squares which show improvements are 

mainly located around snow pillows, but the range differs for each snow pillows. Various areas in remote locations also 5 

show improvements for each snow pillow. As mentioned earlier, relationship with geophysical factors, such as distance from 

snow pillow, elevation and land cover, could be used to explain this variation, but a simpler approach was used such that the 

covariance localization was limited to whole squares showing improvements only. The covariance elements representing all 

the other whole squares were set to zero. 

 10 

As for the state vector configuration, Fig. 6 7 shows the MSSS computed for each variable within the extent of whole 

squares which were positively impacted by SWE DA during the covariance localization process. The open loop scenario was 

used again as a reference. The results show no significant improvement for any other variable except for SWE itself, which 

yields only positive MSSS values by design. The lack of overall improvement for water-related variables (VOL, SML, 

GWL, LWL) is coherent with the time delay with changes in SWE. As for the other snow-related variables (STI, SRI), 15 

although there may be a relationship with SWE, it is non-linear (U.S. army Army corps Corps of engineersEngineers, 1956), 

which is further weakened by the distance separating SWE at a snow pillow from STI or SRI at another location. 

 

Only the inclusion of SWE surrounding a given snow pillow in the state vector will beare considered during the assimilation 

of SWE for streamflow predictions in section 4.2.2. 20 

 

4.1.3 SCA data assimilation 

Like streamflow, snow cover area (SCA) is not a state variable. It is computed in parallel with CEQUEAU without having 

any direct effect on future simulations. In order to have any impact during the assimilation process, there must exist a linear 

or sufficiently near linear correlation between SCA and state variables. The update step should bring improvements to the 25 

state variables if the computed correlation also reflects the true correlation.  

 

Figure 7 8 shows a boxplot of the MSSS computed for each variable when they are individually included in the state vector. 

The open loop scenario is used as a reference. Results show that global snow cover data assimilation yields little or no 

improvement for all state variables compared to the open loop scenario. For most cases, a strong deterioration is observed, 30 

suggesting that the current use ofway SCA data is used in this study is not well adapted for the current assimilation purposes 

using the EnKF. Marcil et al. (2016) have shown that there exists a relationship between the SCA and the percentage of 

cumulated streamflow at the outlet, but it is neither linear nor is cumulated streamflow a state variable. The EnKF 
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requirement that relationships between variables be linear and synchronized severely limits the value of global SCA data for 

the current application. This result is coherent with the findings presented by Clark et al (2006). Using a model which 

incorporates snow cover area as a state variable, such as the Snowmelt Runoff Model (SRM; Martinec, 1974) or the Soil and 

Water Assessment Tool (SWAT; Arnold et al, 1998), could overcome the issue of nonlinearities between variables, while 

using recursive or smoother approaches to data assimilation could help with the time lag issue between observations and 5 

state variables. 

 

Given the absence of overall improvement for all the state variables, the impact of SCA DA on streamflow predictions will 

was not be considered in this study. 

4.2 Streamflow forecasts 10 

Aside from granting insight into the sensitivity of the system to the state vector configuration, the analysis in the previous 

section presented a list of state vector configurations likely to favour streamflow predictions improvements based on the 

improvement of various state variables. This section will presents ensemble streamflow prediction results for each 

configuration selected for each type of data assimilated. 

 15 

4.2.1 Streamflow data assimilation 

Focusing on the case where only streamflow at the outlet are assimilated, Fig. 8 9 presents the CRPSS of predicted 

streamflow at the outlet over a forecast horizon of 50 days using the open loop as a reference. Only the state vector 

configurations that showed some improvements in the state vector configuration analysis section are shown.  

 20 

Firstly, high values of CRPSS for short-term forecasts can be observed for the case where only volumes are included in the 

state vector (blue curve). The CRPSS subsides asymptotically to zero over time, which shows assimilating streamflow to 

update volumes improves streamflow predictions compared to the open loop only for a few days, after which the impact of 

streamflow assimilation becomes insignificant. The duration of the impact depends on the residence time of the water stored 

in the model’s partial squares (VOL). A relatively short-lived impact would mean a relatively short residence time. The high 25 

initial impact This is not surprising given the nearly linear relationship between streamflows and volumes. Assimilation of 

streamflow observations generate a globally positive update on volumes, as seen in This is coherent with the overall 

improvement observed for volumes in the state vector configuration analysis (Fig. 54)., which in turn strongly affects 

simulated streamflows. 

 30 

Secondly, adding each of the three water reservoirs individually to the volumes yields different results. Even though lake 

water levels showed improvements over the majority of whole squares, the impact on streamflow predictions (red curve) is 
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marginal compared to the case where only volumes are included in the state vector. This is because the weights attributed to 

lakes in CEQUEAU are very low for most whole squares. Only about 0.5% of the entire watershed is modelled using the 

conceptual lake reservoir and its parameters, unlike the soil moisture and groundwater reservoirs, which are present in every 

whole squares. Adding SML (green curve) or GWL (magenta curve) instead of LWL increases not only the initial CRPSS, 

but also slows the decrease over time. This is consistent with the improvements observed for the updated water levels for 5 

over half of the whole squares compared with the open loop case, which translate as added improvements over the case 

where only volumes are included in the state vector. The slower decrease over time is also coherent with the increase in time 

it takes for water in the reservoirs to reach the outlet compared with water already in the routing system. The groundwater 

reservoir is shown to have an initially similar, but longer-lasting positive impact than the soil moisture reservoir. The soil 

moisture reservoir controls mainly the fast-flowing surface runoff, the amount of evapotranspiration leaving the system and 10 

the amount of water infiltrating into the ground water reservoir. The ground water reservoir has a numerically unlimited 

capacity, with no way out for the water except through evapotranspiration and the outlets that feed the routing system, 

making its impact on streamflows last longer than the relatively ephemeral soil moisture reservoir. 

 

Finally, the scenario where all four variables are added to the state vector is analysed (orange curve). The difference noted 15 

with the other curves is mainly caused by the simultaneous inclusion of SML and GWL, since all the other curves already 

have VOL included, while LWL was already shown to have very little impact on streamflow at the outlet. Comparing the 

fully combined case with the VOL+GWL case, although the initial improvement is similar between the two, with the former 

slightly above, the latter has a slower decrease over time. This suggests that the addition of SML interferes with the GWL 

update. As seen for the state vector configuration analysis (Fig. 45), the assimilation of streamflow at the outlet had a 20 

positive impact on a greater number of whole squares for the GWL than the SML. Here, the increased number of 

deteriorated SML, which infiltrates into the groundwater reservoirs, hinders the GWL updates such that the results show 

some deterioration compared with the VOL+GWL case, even though it is still an improvement over the VOL only updates. 

 

These results have some similarities and differences with other studies. For example, Abaza et al (2015) assimilated 25 

streamflow at the outlet using the EnKF to update two state variables (soil moisture in the intermediate and deep layers of 

the hydrological model used in their study) using a time step of 3 hours. The resulting gain in CRPS was high for the first 

time step and decreased quickly as a function of the forecast horizon such that mainly the first 24h benefited from the data 

assimilation. Chen et al (2013) found similar results with multiple performance criteria when assimilating streamflow using a 

variant of the EnKF (the ensemble square-root filter) to update various state variables represented by conceptual reservoirs. 30 

The observed improvement duration was even shorter, lasting less than 12 hours during flash flood events. The difference in 

impact duration is likely related to the different water retention time in each watershed. These studies were conducted on 

much smaller watersheds (all less than 800 km
2
) than the Nechako watershed (around 14000 km

2
), further highlighting that 

the performance of assimilation techniques  is related to watershed characteristics.  
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4.2.2 SWE data assimilation 

Following the same method as with streamflow, this section focuses on the case where only SWE from snow pillows are 

were assimilated. Since the state vector configuration analysis showed only improvement for the SWE variable, it will bewas 

the only variable added to the state vector for streamflow forecast. However, since there are three observations available, 5 

Fig. 9 10 presents the CRPSS of predicted streamflow at the outlet when assimilating SWE from each snow pillow 

individually and collectively. 

 

An interesting result is that the impact of each snow pillow on streamflow predictions varies greatly. The impact of the snow 

pillows located at Mount Wells (green curve) and Mount Pondosy (blue curve) are dwarfed in comparison with the impact of 10 

the snow pillow located at Tahtsa Lake (magenta curve). This is coherent with results from Marcil et al (2016) over the same 

watershed. The lower impact of the Mount Pondosy snow pillow is explained by the relatively small region of influence 

observed in Fig. 5b6b. As for Mount Well, even though it has the largest area of influence (Fig. 5a6a), it is also the snow 

pillow affecting the regions with the lowest altitudes and also the least amount of maximum SWE. Although the regions 

affected by the Mount Wells snow pillow contains a mean annual maximum SWE of 410 mm, it is 40% less than for the 15 

region affected by the Tahtsa Lake snow pillow, which sits atcontains a mean annual maximum SWE of 682 mm. 

 

Nonetheless, assimilating all three snow pillows yields better results for mid-term streamflow forecasts (Fig. 910, red 

curve). Even though the Tahtsa Lake snow pillow carries the most importance, the other snow pillows have a positive effect 

on regions that are not reached by the Tahtsa Lake snow pillow area of effect. The assimilation of all three snow pillows 20 

does yield short-term forecasts improvements, but a better score is reached over time. This is because the impact of SWE 

over streamflow at the outlet occurs during snowmelt, which can occur at a much later date than when SWE observations 

are assimilated. Although the curve gives the impression of a monotonous increase over time, this is only due to the limit 

imposed on the forecast horizon. At a further horizon, the curve should eventually peak and decrease asymptotically to zero 

since there is no accumulation of snow from year to year. Over time, the simulation should eventually become 25 

indistinguishable from the open loop scenario.  

 

Franz et al (2014) also assessed the impact of SWE data assimilation on ensemble predictions, but using real observations. 

Their results showed little improvement of forecast performance through SWE data assimilation, but they highlighted the 

role of a possible bias in the observations, as well as the difference in scale between the point-scale observations and the 30 

basin average SWE simulated by the model.  In this synthetic experiment, no bias was specified on observations and there is 

no difference in scale between modelled and observed SWE, which could explain the differences observed between the two 
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studies. Biased observations and meteorological input were purposely omitted in this study, but may be added in future 

works to test the robustness of the approach. 

4.2.3 Combined streamflow and SWE data assimilation 

The focus now shifts to the case where streamflow at the outlet are simultaneously assimilated along with SWE from the 

three snow pillows. The state vector configuration which provided the best results from the streamflow data assimilation case 5 

are used (VOL+GWL) along with the best configuration from SWE data assimilation (SWE only). Although these 

configurations worked best with their respective data assimilation case, they could behave differently when both streamflow 

and SWE are assimilated together. 

 

Table 1 presents four configurations for the combined assimilation of streamflow and SWE observations. These 10 

configurations differ in the overlap of their effect during the update phase such that some configurations allow both 

observations to simultaneously update the same variable, while others do not.  

 

The performance of these configurations on the CRPSS for predicted streamflow at the outlet is presented in Fig. 1011. 

While all four configurations perform in a very similar way for short-term streamflow predictions, the group forms two pairs 15 

that differ in that the blue-magenta group allows SWE observations to update modelled streamflow, while the green-red pair 

does not. Although allowing SWE data assimilation to update VOL and GWL changes very little, a drop in performance 

occurs if streamflow assimilation updates modelled SWE. This is coherent with the state vector configuration analysis 

performed in the previous section (Fig. 4 5 and Fig. 67), where SWE data assimilation is shown to have a weak impact on 

VOL and a median MSSS around 0 for GWL, while streamflow assimilation deteriorated around 75% of SWE whole 20 

squares when they were included in the state vector. 

 

Overall, the simultaneous assimilation of streamflow and observed SWE yields important improvements over the entire 

forecast horizon analysed, with the streamflow data assimilation improving mainly short-term streamflow forecasts and 

SWE data assimilation improving mainly mid-term streamflow forecasts. CRPSS values for combined assimilation of both 25 

streamflow and SWE observations were superior to CRPSS values for individual assimilation of streamflow or SWE over all 

forecast horizons, with the exception of forecast horizons higher than 45 days, where CRPSS values for SWE DA are 

slightly higher. This reveals that while the updated VOL and GWL by streamflow data assimilation may be very beneficial 

for short-term forecasts, they do not further improve the mid-term forecasts when combined with SWE data assimilation in 

comparison with the scenario where only SWE data is assimilated.  30 

 

Furthermore, the assimilation of eachthe two data types (streamflow and SWE) differs not only by their impact over the 

forecast horizon, but also over the time of the year. Fig. 11 12 and Fig. 12 13 show the monthly CRPS for the open loop 
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(black curve), the streamflow data assimilation including VOL and GWL (blue curve), the SWE data assimilation of all 

snow pillows (red curve) and the simultaneous, but separated, streamflow and SWE data assimilation (VG-S; green curve) 

for short-term (average of horizon from 1 to 5 days) and mid-term (average of horizon from 25 to 50 days) streamflow 

forecasts. The CRPS is shown for the open loop to show the performance change over the time of the year and the period 

when improvement is most needed. Recall that the CRPS ranges from zero to infinity, with zero being a perfect forecast. The 5 

period from May to July, which corresponds to the melt period, is therefore the period when the CRPS is highest for short- 

and mid-term forecasts are the most problematic. The scores for mid-term forecasts are lower than for short-term forecasts 

because the true weather is used as input for forecasts such that the open loop slowly converges to the true states over time. 

 

Assimilating streamflow results in an improved score over the entire year for short-term forecasts, although little gain is 10 

obtained for mid-term forecasts. This steady improvement is to be expected since streamflow here is always nonzero and 

observations are available all-year round. On the other hand, the impact of the assimilation SWE from snow pillows is 

limited mainly to the melt period for both short-term and mid-term forecasts. However, this period corresponds to the 

problematic period when most gain can be obtained. The assimilation of SWE provides a better score than the assimilation of 

streamflow for the same period and improves going from short-term to mid-term forecasts. SWE assimilation complements 15 

streamflow assimilation as observed from the performance of the simultaneous assimilation, which yields both the steady 

improvements over the year and the important gain during the snowmelt period.  

5 Conclusion 

This study investigated the impact that multivariate data assimilation can have on streamflow forecasts using the CEQUEAU 

hydrologic model applied over the Nechako watershed in a synthetic experiment. The study also showed the importance of 20 

the state vector configuration on streamflow forecasts when using the EnKF. 

 

Streamflow data assimilation was found to improve short-term streamflow forecast considerably. However, the impact 

dissipated relatively rapidly as a function of the forecast horizon, which was slowed by adding groundwater conceptual 

reservoir levels to the state vector. Improvements were observed for all months of the year; low-flow and high-flow periods 25 

alike.  

 

On the other hand, the assimilation of snow water equivalent data from synthetic snow pillow data yielded streamflow 

forecast improvements mainly during the snowmelt period. Although the period lasts approximately three months, the 

impact was found to be greater than streamflow data assimilation over the same period. It was also noted that assimilating 30 

each snow pillow data individually yielded different results, with various radii of influence, such that the improvement from 

assimilating all three snow pillows simultaneously covered most of the watershed and yielded streamflow forecasts which 
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outperformed forecasts from any single snow pillow data assimilation. Over the forecast horizon, the peak of improvement 

was greater than or equal to the 50 days limit over which forecasts were simulated, which contrasts the short-lived impact of 

streamflow data assimilation. 

 

Given their complementarity, streamflow and snow water equivalent data were assimilated simultaneously. The resulting 5 

streamflow forecast inherited the strengths from both types of data, having a strong, positive impact for both short-term and 

mid-term forecasts. Improvements were obtained for all periods of the year, but mainly during the snowmelt period, which is 

normally the most problematic.  

 

The assimilation of basin-wide snow cover area failed to improve the simulation of any state variable, which deteriorated 10 

streamflow forecasts. The most probable factor was determined to be the absence of snow cover area as a state variable or a 

proxy with a sufficiently linear relationship with SCA. This was compounded by the nonlinear relationship between SCA 

and the state variables, which is required by the EnKF. Suggestions to improve the method to accommodate for snow cover 

area are to use a model which incorporates snow cover area as a state variable and/or to use a data assimilation approach 

which takes into account a time lag between observations and state variables. 15 

 

The results obtained are conditional to some hypothesesassumptions and limitations. First, all results depend on the general 

method and parameters used in creating the synthetic framework. sSince this is a synthetic experiment, it is assumed that a 

real experiment would behave similarly to a simulation using CEQUEAU with a specific set of parameters and inputs. 

Second, the potential impact of data assimilation on streamflow forecasts observed depended on using the true weather 20 

inputs. Using real weather inputs may decrease this impact. Third, it is assumed that the error representations for the model 

inputs and the observations are known. In this study, they have been generated using specific distributions and variances to 

compromise between the need for normal distributions and the need to remain within the physical limits of the variables 

without introducing a bias, independent and unbiased. Finally, the impact of errors from the model parameters is assumed to 

be negligible, such that the set of parameters was not altered from the true simulation’s set of parameters. 25 

 

The assumptions and limitationshypotheses listed reveal several challenges posed by the assimilation of multiple types of 

observations for streamflow forecasting purposes. Future works include investigating into the performance of multivariate 

data assimilation in the presence of biases and unknown errors, as well as the economic impact of streamflow forecasts 

generated with multivariate data assimilation on real management practices. 30 
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Table 1: Overview of multivariate DA scenarios. 

 Streamflow DA updates:  SWE DA updates: 

Method VOL + GWL? SWE?  VOL + GWL? SWE? 

VG-S yes no  no yes 

VG2-S yes yes  no yes 

VG-S2 yes no  yes yes 

VG2-S2 yes yes  yes yes 
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Figure 1: The Nechako watershed and the locations of weather stations, snow pillows and a hydrometric station. All of these 

contain at least daily weather data. The outlet is considered to be at the spillway, located at the blue triangle. The intake is located 

at the Tahtsa Intake weather station (westernmost yellow circle). 
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Figure 2: Diagram of the processes included in CEQUEAU’s production function. 
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Figure 3: Flowchart for the production of ensemble streamflow predictions obtained from various data assimilation scenarios. 
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Figure 4. Examples of a) beta and b) gamma and lognormal distribution compared with their analogous normal distributions 

using the same mean (μ) and variance (σ2). 
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Figure 54: Box plot of the Mean Square Skill Score for each variable when assimilating streamflow at the outlet. The open loop is 

used as a reference. Outliers are not shown for visibility purposes. 
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Figure 65: Distribution of the Mean Square Skill Score of SWE over the watershed when assimilating SWE located at a) Mount 

Wells, b) Mount Pondosy and c) Tahtsa Lake. The open loop is used as a reference. Values below -1 are cut off from the legend. 
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Figure 76: Box plot of the Mean Square Skill Score for each variable when assimilating SWE from all three snow pillow locations. 

The open loop is used as a reference. Outliers are not shown for visibility purposes. 
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Figure 87: Box plot of the Mean Square Skill Score for each variable when assimilating basin-wide snow cover area. The open loop 

is used as a reference. Outliers are not shown for visibility purposes. 
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Figure 98: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating streamflow at the outlet. The 

open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 
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Figure 109: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating SWE from all three snow 

pillow locations. The open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 

 



38 

 

 

Figure 1110: Continuous Rank Probability Skill Score of the streamflow ensemble when assimilating streamflow at the outlet and 

SWE from all three snow pillow locations. The open loop is used as a reference. The forecast horizon varies from 1 to 50 days. 

Lack of parentheses indicates that the variable is affected by both types of observations. 
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Figure 1211: Continuous Rank Probability Score for short-term forecasts (average of forecast horizons 1 through 5 days) of 

various data assimilation scenarios as a function of the month of the year. 
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Figure 1312: Continuous Rank Probability Score for mid-term forecasts (average of forecast horizons 25 through 50 days) of 

various data assimilation scenarios as a function of the month of the year. 
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