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Supplementary Sections 

1. Model and catchment selection 

From the original 608 catchments from the Global Runoff Data Center (GRDC, 2015) database with an area over 

100’000 km2, we finally selected 81 study catchments. Regarding the CMIP5 models, there were originally 20 

models providing the required mrros, mrro and pr outputs, from which a final set of 14 CMIP5 models was 

selected (Table S1). 

The first selection step was to discard the models providing too many time series with only constant values for 

either mrro or mrros (none of the models was giving constant pr values). As a first step, the maximum number of 

catchments with constant value tolerated for a model was set to 40. It means that if a model was giving a constant 

time series for more than 40 catchments, we discarded it. Then, from the remaining models, the catchments that 

had a constant time series from at least one model were further discarded.  

The second selection step was to discard the models yielding too many negative values for Reff as calculated from 

mrro and mrros (see main Eq. 4). As a first step, we discarded models providing at least one negative value in their 

Reff time series for more than 154 catchments (arbitrary first-step threshold). Furthermore, the catchments were 

then discarded that had at least one negative value in their Reff time series from any of the remaining models. Table 

S2 summarizes the models and number of catchments discarded in those two selection steps, for each of the RCP 

2.6 and RCP 8.5 scenarios. Finally, after all smaller nested catchments were removed, the final set of 81 study 

catchments (main Fig. 1) and 14 CMIP5 models (Table S1) emerged for this study.  

S2. Quantification of agreement between RCP 2.6 and RCP 8.5 

In order to quantify the differences between the projected changes under the climate change scenario RCP 2.6 and 

those under the scenario RCP 8.5, we calculated a simple indicator of agreement a [-] for each catchment: 

𝑎 =  
𝑚𝑖𝑛 𝑣! , 𝑣!
𝑚𝑎𝑥 𝑣! , 𝑣!

 𝑖𝑓 𝑠𝑔𝑛 𝑣! =   𝑠𝑔𝑛 𝑣!   (S1-a) 

𝑎 =  −
𝑚𝑖𝑛 𝑣! , 𝑣!
𝑚𝑎𝑥 𝑣! , 𝑣!

 𝑖𝑓 𝑠𝑔𝑛 𝑣! ≠   𝑠𝑔𝑛 𝑣!   (S1-b) 
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Where v1 is the value of the variable (in our study, the frequency of dry/wet events, the mean seasonal soil 

moisture, or the inter-annual variability of the latter) under RCP 2.6 and v2 is the value of the variable under RCP 

8.5. Furthermore, sgn(x) is the sign function: it returns -1 if x<0 and 1 if x>0; v1 and v2 are always different from 0. 

From Eq. S1-a and S1-b, the agreement value a will have a negative value if the sign of v1 and v2 are different 

(represented in two shades of red in the SM Fig. S5, S6 and S7), and a positive value if they are of the same sign 

(represented in two shades of green in the Fig. S5, S6 and S7).  
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Supplementary Tables 

 

Table S1. Final selected set of 14 CMIP5 models for this study. 

Model Name Institution 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 

CCSM4 National Center for Atmospheric Research 

CESM1-CAM5 Community Earth System Model, Community Atmosphere Model 

CSIRO-Mk3.6.0 
Commonwealth Scientific and Industrial Research Organization in collaboration 

with Queensland Climate Change Centre of Excellence 

FGOALS-g2 Flexible Global Ocean-Atmosphere-Land System Model 

FIO-ESM The First Institute of Oceanography, SOA, China 

GISS-E2-H 

GISS-E2-R 
NASA Goddard Institute for Space Studies 

IPSL-CM5A-MR Institut Pierre-Simon Laplace 

MPI-ESM-MR 

MPI-ESM-LR 
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 

MRI-CGCM3 Meteorological Research Institute 

NorESM1-MNorESM1-ME Norwegian Climate Centre 
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Table S2. Models and number of catchments discarded in the two model-catchment selection steps described in 

section S1. 

 Scenario RCP 2.6 Scenario 8.5 

Step 1: models giving >40 constant time series 
IPSL-CM5A-LR 

MIROC-ESM 

IPSL-CM5A-LR 

MIROC-ESM 

Number of catchments with constant time series 26 27 

Step 2: models giving >154 time series with at least one 

negative Reff value 

BCC-CSM1.1 

BCC-CSM1.1(m) 

CNRM-CM5 

MIROC-ESM 

MIROC5 

BCC-CSM1.1 

BCC-CSM1.1(m) 

CNRM-CM5 

MIROC-ESM 

MIROC5 

Number of catchments with constant time series 192 203 

 

 

Table S3. Soil hydraulic parameters for different soil texture types after Rawls et al. (1982). 

Soil texture Ks (m/s) θir (-) θs (-) β (-) 

Sand 5.83 x 10-4 0.02 0.44 0.17 

Loamy sand 1.70 x 10-4 0.04 0.44 0.15 

Sandy loam 7.19 x 10-5 0.04 0.45 0.12 

Loam 3.67 x 10-5 0.03 0.46 0.09 

Silt loam 1.89 x 10-5 0.02 0.50 0.09 

Sandy clay loam 1.19 x 10-5 0.07 0.40 0.11 

Clay loam 6.39 x 10-6 0.08 0.46 0.09 

Silty clay loam 4.17 x 10-6 0.04 0.47 0.07 

Sandy clay 3.34 x 10-6 0.11 0.43 0.08 

Silty clay 2.50 x 10-6 0.06 0.48 0.06 

Clay 1.67 x 10-6 0.09 0.48 0.07 
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Supplementary figures 
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Figure S1. Proportion of the three major USDA soil textures prevailing in the catchments, as given from 

(Nachtergaele et al., 2008). For the calculations of θuz (main Eq. 3), only the dominant soil texture in each 

catchment (left bar in each bar plot) was used. The second and third most important soil textures in each catchment 

are represented by the middle and right bar in each subplot, respectively.  
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Figure S2. Mean monthly precipitation (in mm) from the GPCC dataset (Schneider et al. 2011) (light blue line) 

and from the CMIP5 ensemble mean of the 14 models in Table S1 (pink line). Results are shown for each 

catchment and the period 2006-2014, and for both radiative forcing scenarios RCP 2.6 in panel (a) and RCP 8.5 in 

panel (b). The month numbering is: January as month 1 through to December as month 12. The markers on the 

lines represent the dry season months according to the season definition given in the main section 2.4. The blue 

markers are the dry season months determined from the GPCC dataset and the red markers are the dry season 

months determined from the CMIP5 model ensemble mean.  
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Figure S3. Coefficient of variation (standard deviation divided by the long-term mean value) of monthly average 

unsaturated soil water content among the years in study period 2006-2099. Results are shown for each of the 14 

CMIP5 models (Table S1), both climate scenarios (‘o’ marker for RCP 2.6 and ‘x’ marker for RCP 8.5). The 

months numbering is: January as month 1 through to December as month 12. 
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Figure S4. Mean monthly relative degree of water saturation over the unsaturated soil zone. Results are shown for 

two radiative forcing (RCP) scenarios (red and pink lines for RCP 2.6, blue and green lines for RCP 8.5), and for 

the two study periods (red and blue lines for 2006-2025, pink and green lines for 2080-2099). The solid lines 

represent the ensemble mean model result and the dashed lines represent 1 standard deviation around the mean of 

the corresponding result derived from individual models.  The relative degree of soil water saturation (with value 1 

corresponding to full saturation) represents the unsaturated soil water content normalized by the saturated soil 

water content (soil porosity). The month numbering is: January as month 1 through to December as month 12. 
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Figure S5. Map of model result agreement (as defined in SM section S2) between the two radiative forcing 

scenarios RCP 2.6 and RCP 8.5, regarding the change in occurrence frequency of dry (panel a) and wet (panel b) 

soil moisture events.  

Figure A5

(a)

(b)
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Figure S6. Map of model result agreement (as defined in SM section S2) between the two radiative forcing 

scenarios RCP 2.6 and RCP 8.5, regarding the change in mean seasonal soil water content during the dry (panel a) 

and the wet (panel b) season.   
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Figure S7. Map of model result agreement (as defined in SM section S2) between the two radiative forcing 

scenarios RCP 2.6 and RCP 8.5, regarding the change in inter-annual variability of seasonal soil moisture during 

the dry (panel a) and the wet (panel b) season.   
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