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RESPONSE TO ANONYMOUS REVIEWERS

Martin Hanel, Petr Maca et al., 2016-11-7

We thank all anonymous reviewers for their time and constructive comments on the manuscript, which pointed us towards
some further explorations and discussion. The comments lead to substantial changes in the organization of the manuscript,
several additions, modifications of 2 figures and supplementary material. The point-by-point response is included bellow with
your comments in bold and our response in regular font. We also attach the pdf with highlighted changes. Please note, that the
changes resulting from comments of individual reviewers are highlighted in the manuscript versions included in the interactive
discussion.

REVIEWER #1
Find below the main points to be corrected:

1. Measurement Unit: R-factor is further expressed in MJ hal cm hl (equivalent to k] mm m2 h1), which is the
unit most often used in the Czech Republic. However, here you address your result to the International public and you
should adapt it to the most used measurement unit (please replace cm with mm and multiply by 10).

We agree, that using Czech conventional unit might be confusing for international audience. The units were changed as
requested in the new version of the manuscript (including main text, tables and figures).

2. Comparison with other datasets: You estimated the mean R-factor in Czech Republic around 640 MJ mm ha-1 h-1
yr-1 using 10-minutes data. The Mean R-factor in Czech Republic at 30 minutes is 524 MJ mm ha-1 h-1 yr-1 according
to the rainfall erosivity map of Europe. If you take into account the calibration factor used by Panagos et al (2016) for
transferring data between 10-minutes and 30-minutes is 0.8205 then both datasets (Czech republic, European) have the
same Mean (640 * 0.8205 = 525). Taking into account that for the European application another dataset has been used,
both results are similar. Congratulations for the results.

Thank you for this point. This information is now included in the main text.

3. Length of time-series and short period of stations (Paragraph P21.3-13): You need to restructure this paragraph
somehow. Panagos et al (2015) have used the best available high temporal resolution data at European scale and ac-
cording to Table 1 in their publications the mean length period is more than 17.5 years (half of the countries had
records more than 20 years). Only countries with low erosivity (Finland, Estonia, Latvia, Romania) had records cov-
ering short periods. Angulo-Martinez (2009) estimated the R-factor in Ebro based on 10 years data. So, you cannot
compare the data availability in Europe (or in one country or at regional level) with the 1 station made available by
Verstraeten(2006). Moreover, your estimates are based on 14 years data.

Our intention was not to assert that Panagos et al. (2015) or Angulo-Martinez et al. (2009) used insufficient data for R-factor
assessment, rather we tried to point out, that although the best available high temporal resolution records in some regions might
be considerably shorter than the length recommended by guidelines, the R-factor often needs to be estimated at these locations
using the available data. The second point was, that in the case when only short records are available, it is possible to reduce
the uncertainty by regional analysis or/and by employing appropriate covariates into the analysis. To make these points clear,
the paragraph has been modified.

4. Whole section 3.2: You need to restructure this section by giving a short description of each model used (IDW,
GLS, OK, RK. Etc) and avoid the whole part on Fixed and stochastic component. Those 2 parts seems like technical
note from the geostatistical books. References will be enough while you have simply to describe the models used in your
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case. 5. Figures should be self-explained. So In Figure 3, the reader cannot understand what GLS, SK, etc is. Please put
the explanations in the caption.

We agree, that it is not necessary to include details that can be found in statistical books, therefore the whole section 3.2 was
rewritten a substantially shortened.

Some additional adjustments requested:

P1, L17: Soil erosion by water is a widespread problem throughout Europe (Van der Knijff et al., 2000). Citation
to the paper of 2000. There is a more recent and accurate development of soil erosion map in Europe (2015) and you
should update this citation with the new one.

The sentence was updated.

L2P28: Replace datastes with datasets.

This was corrected.

In the introduction, I would also expect one sentence (plus necessary citations) regarding other recently developed
rainfall erosivity datasets at national scale. There are new R-factor datasets for Italy, Greece, Brazil, Chile, China,
Australia, New Zealand etc.

This was added.

P3 L8-9: The trends in rainfall erosivity were studied by Hanel et al. (2015), who found significant a positive trend (=
4% per decade) in 51-year records for 11 stations (more than a half of the considered stations). Trend on what? And
compared to what? Increase or decrease?

The information was clarified.

Please replace sub-title: 2.3 Spatial Data with Precipitation maps or Precipitation Spatial datasets. Spatial data can
be everything.

The section was renamed to “Gridded precipitation data”.

P7L.24: REML stands for??? Please explain

The abbreviation REML - restricted maximum likelihood - is explained in a new section 3.2.
Figure 1: please delete the word The map and rephrase the caption

The caption was modified.

P15 : Last paragraph: The ranges you presented are quite wide. I doubt that with 80-year data records the range can
be +-15%.

The surprisingly large width of the confidence interval for the Rfactor estimate based on 80 years of data relates to large
variation of annual rainfall erosivity, which is due to its non-linear relation to rain intensity and depth. Note for instance, that
for the same station and 10 year record the width of the confidence interval for 10 min annual maxima and rainfall total is 70%
and 40% that for rainfall erosivity, respectively. This difference only slightly decreases for longer averaging periods. Assuming



5

that decrease in width of the confidence interval with number of years is proportional to corresponding standard deviation and
assuming independence between years, the width of the confidence interval should be inversely proportional to the square root
of the number of years. For the confidence interval around the estimated Rfactor this leads to drop from + 40% to £+ 14%
40/ \/g), which matches our estimate well. Note, that in the case of dependence between years, the standard deviation (and
thus the confidence interval) is expected to be larger.

We added a short note on this.

Conclusions: what is the areal-average. Please correct it.

The sentence was modified.
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REVIEWER #2
Specific comments:

In general, I agree with the authors that the rainfall erosivity index is a good indicator of areas subjected to soil
erosion. However, I do not believe that using only 14-15 years of measurements it is possible to obtain a good estimate
of long-term rainfall erosivity, everywhere. The period covered by the datasets is short and may (or may not) contain
outliers which generally affect the mean values. Even if some authors are inclined to remove the outliers from the series
(see Janecek et al., 2013), I do not think it is a correct approach because these outliers often are the major contributors
(up to 80%) of the total amount of soil eroded from an area (see for example Martinez-Casasnovas et al., 2002; Fang
et al., 2013). In this respect, the authors based their long-term analysis on a single dataset (C2TREBO1, with 80 years
available). As I understand, this station shows a value of R = 669 (MJ ha-1 mm h-1) which falls perfectly around the
mean value calculated for the entire region (ca. 640). The same consideration can be extended to the CV value (CV =
21.6 for C2TREBO01, considering 15 years, and CV=23.3 for the entire region — see natural variability for 96 stations in
Table 2). In other words, this station is indicative of the average conditions of the region and it is not surprising that the
bootstrap analysis indicated in section 3.3.1 and appendix b gives no strong differences if periods of different length are
considered. It would be interesting to look at another station, with similar length, but showing a higher variability of
the rainfall erosivity factor. If the authors have this information, this can be added to improve the paper. If not, please,
add some comments that emphasize this uncertainty.

Thank you for pointing this out. Indeed the coverage probability and the width of the confidence interval is influenced by
variability of the erosivity index at a location. Since the only station with similar record length that is available to us is located
close to C2TREBO1 and has similar characteristics, we demonstrate this effect using simulated data. At most sites (including
C2TREBO1), the annual erosivity index (£ 730) can be described by gamma distribution (assessed by the Anderson-Darling
test), i.e. EI130 ~ T'(a, 3), with v and 3 the shape and rate parameter, respectively. It can be shown, that in order to change the
coefficient of variation by factor k, the parameters have to be modified as follows:

B
2

g=L

a*=R 12

(with o* and 8* the modified shape and rate), provided the R-factor (R = mean E'130) remains constant. We estimated o and
[ using the whole record from the C2TREBO1 station and modified these parameters considering k£ = 0.5,1 and 2. The scheme
from appendix B was used to assess the coverage probability and confidence intervals, except point 2, where the sample of
length [ was generated from the modified distribution. The results are shown in the right panel of Fig. 1. It is clear, that the
confidence intervals as well as the coverage probability for k£ = 1 correspond reasonably with those from the left panel of the
same figure. It is also clear (and expected) that the confidence interval width increases with coefficient of variation. For instance
for 15 year record and doubling of coefficient of variation it ranges from 0.5 to 1.57. For increasing record lengths the coverage
probability increases and the width of the confidence interval decreases. Note that the confidence interval for erosivity index
with large coefficient of variation remains large (>50%) even for 80 years of data. The coverage probability, on the other hand,
decreases only slightly with CV.
In reaction to your comment we extended Fig. 6 of the manuscript and added a paragraph at the end of section 4.3.

During the last 2-3 decades, an increase in the rainfall erosivity factor is documented in different areas of the world
due to climate change (see among the others Fiener et al., 2013; Nearing et al., 2004; Porto et al., 2013; Capra et al.,
2015; Zhang et al., 2005). This is documented also by the first author in a previous contribution (see Hanel et al., 2016)
for some stations in Czech Republic. I suggest to show a figure with the 80 values of R (calculated for C2TREB01) vs
time (years) in order to see if no increasing trend can be detected during the period 1989-2003. If there is an increasing
trend in this period, it means that the 96 values of R are not stationary and this needs some more comments.
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Figure 1. The average confidence intervals (relative to the long-term mean R-factor, 669 MJ ha~! mm h™'; gray area) and the coverage
probability (thick lines) for different record lengths based on the station C2TREBO]1 - Ttebor (left) and simulated data (right). The dotted
line corresponds to the coverage probability of 90%.
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Figure 2. Annual erosivity index (EI30) for station C2TREBO1
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It is true, that positive trend was detected for some stations in the Czech Republic for the period 1961-2011 in our previous
study. Looking at the period 1989-2003 no clear trend is obvious (Fig. 2). We added a sentence on that in the section 2.2.

The authors said (citing also Goovaerts, 1999; Angulo-Martinez et al., 2009) that using covariates like longitude,
latitude and elevation or long-term precipitation it is possible to cover the existing gaps of direct evaluation of R. I want
to emphasize here that such correlations are acceptable only where the R values are obtained using indirect methods
that involve, for example, rainfall values at daily or monthly scale (see Capra et al., 2015). When short time steps are
considered (and R requires time intervals shorter than 30 minutes) these correlations fail (see for example Porto, 2016),
unless climatic conditions are uniform over large areas. But, as the authors recognize, R values are very much affected
by local conditions and this complicates things. I am sure the authors want to add some more comments here.

The correlation between the Rfactor and various covariates is discussed in the beginning of section 4.2 (i.e. correlation
between Rfactor and 7,¢q is 0.75, for 7, it is 0.44, for r,95 0.54, elevation 0.32, longitude 0.49 and latitude -0.25). Fig. 3
bellow show scatter plots of Rfactor and selected covariates. The relevance of these covariates for the Rfactor is also obvious
from the cross-validation of different GLS models (see tab. 1) bellow. Finally, a GLS model considering 7,,., can explain
around 59% variability of Rfactor, 7,95 around 31% and 7., or longitude around 21% of variability. The elevation is, on the
other hand, rather poor covariate, when not considered in combination with some characteristics of precipitation.

However, in line with your comment, we agree that the correlation between Rfactor and long term characteristics of precip-
itation, its variability and topographic indices, which is considerable in our dataset, might be very different in more complex
regions as documented by Capra et al. (2015) or Porto (2016). A note on this was added.

Table 1. Cross-validation of GLS models with different combinations of covariates compared to IDW interpolation. (See table 1 of the
manuscript for the explanation of acronyms.)

GLS model WI  RMSE MAE rMAE AVst SDst
IDW 0.78 164.33  123.68 020 625.69 162.15
R~ 7imea 0.83 139.47 108.74 0.18 619.06 146.62
R~ Tmea +X 0.84 138.80 106.75 0.17 600.22 148.66
R~ 7Tmea +Tpos +Y | 090 116.98 92.62 0.15 63557 17548
GLSg 091 114.37 89.95 0.14 635.64 177.47
GLSMm 0.90 115.38 90.57 0.15 63534 175.12
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Figure 3. Scatter plots for Rfactor and selected covariates.
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REVIEWER #3
More specific remarks:

1) I find it impossible to recalculate any of the results obtained due to the complete lack of parameter values for the
different equations tested; I suggest to add a table with parameter values whenever possible

We agree, that for practical purposes, it is useful to provide parameters allowing estimation of the R-factor. However, in
our opinion, it is sufficient to include estimated parameters for the best interpolation model (GLS ) only, since it is in general
preferred over the other models. Note also, that the parameter matrices for some other models are huge and their practical
implementation would be rather difficult. The estimated parameters for the best interpolation model (GLS g) are now included
in the revised manuscript (Sect. 4.2).

2) Detailed information on input data is missing (station name, exact period of recording, details about covariate
values.. . .) in addition a table with information on R-factor characteristics (mean R-factor) of the stations is missing,
this may already be included into the table of input information - please provide; I am aware that these details will need
about two pages of the manuscript, however without this information, the manuscript lacks much of detail.

We believe, that such table is too large to fit in the manuscript. However, we agree that such detailed information might
be interesting/useful for some readers. Therefore we extended the manuscript with a supplement providing this information
(station identificator, name, coordinates, altitude, covariate values, the at-site R factor and the number of missing/unreliable
years within the considered period 1989-2003).

3) Please reconsider the number of digits you are using to describe results. Given the fact that you are dealing with
confidence intervals in the range of + 10 (minimum) it does not make sense to provide R-factors with 2 digits after the
decimal. See for instance page 12, line 7 or Table 1. Please reconsider throughout the whole manuscript.

In response to anonymous referee #1 we already modified units in which the R-factor is presented in the manuscript. We
agree that it is sufficient to provide rounded R-factor values. This was checked throughout the manuscript.

4) For practical purposes (a useful application of the USLE) it will be necessary to provide at least monthly R factors,
because they are needed as input into the USLE management factor. I understand that it might beyond the scope of this
paper, however I would strongly suggest to provide these data in the future.

We understand this point, but it is indeed out of the scope of this paper to consider monthly R-factor values. Please note,
that for instance it might be good to purchase the covariate values (gridded data) for individual months. To increase a potential
practical impact of our study, however, we at least provide a typical seasonal distribution of the erosivity index in the modified
manuscript (see Sect. 4.1).

5) I am missing some information about stationarity of the data used for the study. Can you provide some information
here?

The erosivity index shows no clear trend in the considered period (1989-2003). This is now noted in Sect. 2.2 (also as a
reaction to anonymous referee #2).

6) Page 2, line 29: It is interesting to note that, while the mean R-factor values of maps based on a European dataset
(Panagos et al., 2015) are quite similar to those derived in this manuscript, their range is much smaller. For the extreme
case of an R factor of 152 (recorded at one site in Czech Republic) this would practically increase a soil loss according
to some USLE approach for >100%.
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Thank you for this point. It is true, indeed, that the range of R-factor values for the Czech Republic is narrower in the map
provided by Panagos (2015) - further denoted PNGS2015 - compared to our results. This is likely due to different (and smaller)
number and location of stations used for derivation of the maps. The range of the R-factor values for the Czech Republic from
PNGS2015 is ca <340 - 900 [MJ ha-1 mm h-1]. After correction for temporal resolution (conversion from 30 min to 10 min,
also provided in PNGS2015) it becomes ca <414 - 1097 [MJ ha-1 mm h-1]. While the maximum at-site R-factor is 1520 [MJ
ha-1 mm h-1] (O1RASKO1), the second largest at-site R-factor only slightly exceeds 1100 [MJ ha-1 mm h-1], corresponding
well with the maximum from PNGS2015.

Note that the R-factor map, when derived without the OIRASKO1 station, is very similar to the map presented in the
manuscript - the maximum, mean and spatial distribution of R-factor changes only very slightly, suggesting our model is rather
robust. We added a note on this. In addition, in response to comment #8 we modified Fig.3, showing now also R-factor maps
based on different sets of stations.

7) Page 4, line 25: Is the gridded information data set using the same time period as the station specific data set?
Please provide this information.

Yes, the period considered for the derivation of the gridded data is the same as for the station data. It is now stated explicitly
in the manuscript (see Sect. 2.3).

8) Figure 3: This Figure does not provide useful information at present — either rework for a better graphical repre-
sentation or skip

The figure was modified - we decreased the number of panels. The four displayed maps now show the estimated R-factor
according to the “best” model (GLSg) fitted on full set of 96 stations. Other 3 panels demonstrate the effect of excluding
stations with large R-factor values, responding to comment #6.

9) Figure 7: . . .. only those below 600 m (dashed).

Thank you for spotting this error. It is now corrected.
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Rainfall erosivity factor in the Czech Republic and its
Uneertaintyuncertainty

Martin Hanel 2, Petr Maca', Petr Basta', Radek VInas', and Pavel Pech!

!Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 1176, Prague 6, Czech Republic
2T. G. Masaryk Water Research Institute, Podbabska 30, Prague 6, Czech Republic

Correspondence to: Martin Hanel (hanel @fzp.czu.cz)

Abstract. In the present paper, the rainfall erosivity factor (R-factor) for the area of the Czech Republic is assessed. Based on
10-minute data for 96 stations and corresponding R-factor estimates, a number of spatial interpolation methods are applied and
cross-validated. These methods include inverse distance weighting, standard, ordinary and regression kriging with parameters
estimated by the method of moments and restricted maximum likelihood and a generalized least-squares (GLS) model. For
the regression-based methods, various statistics of monthly precipitation as well as geographical indices are considered as
covariates. In addition to the uncertainty originating from spatial interpolation, also the uncertainty due to estimation of the
rainfall kinetic energy (needed for calculation of the R-factor) as well as the effect of record length and spatial coverage are
addressed. Finally, the contribution of each source of uncertainty is quantified. The average R-factor for the area of the Czech
Republic is 64-640 MJ ha~! em-mm h~', with values for the individual stations ranging between 32-and-+52-320 and 1520
MJ ha~! em-mm h~!. Among various spatial interpolation methods, the GLS model relating R-factor to the mean altitude,
longitude, mean precipitation and mean exeess—{raction of precipitation above the 95th percentile of monthly precipitation
performed best. Application of the GLS model also reduced the uncertainty due to the record length, which is substantial when
the R-factor is estimated for individual sites. Our results revealed that reasonable estimates of the R-factor can be obtained

even from relativelly-relatively short records (15-20 years), provided sufficient spatial coverage and covariates are available.

1 Introduction

Erosion is a natural geological phenomenon resulting from the removal of soil particles by water or wind. Soil erosion by wa-
ter is a widespread problem throughout Europe (Van-derKnijff-et-al52000)(Van der Knijff et al., 2000; Panagos et al., 2015).
Erosion is usually triggered by a combination of factors like climate (e.g. long dry periods followed by heavy rainfall), topog-
raphy (steep slopes), inappropriate land use, land cover patterns (e.g. sparse vegetation), ecological disasters (e.g. forest fires)
and soil characteristics (e.g. a thin layer of topsoil, silty texture or low organic matter content).

Although measurements of soil erosion exist, they are often used as a basis for development, modification or verification of
soil erosion models (applicable at larger scales), which are relating soil loss to indicators of relevant factors. A classic exam-
ple is the Universal soil loss equation (USLE, Wischmeier and Smith, 1978) or the Revised USLE (Renard et al., 1997). Both

methods express the long-term average annual soil loss as a product of rainfall erosivity factor (R-factor), soil erodibility factor,
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slope length factor, slope steepness factor, cover-management factor and support practice factor. The experimental data indicate
that when factors other than rainfall are held constant, soil losses from cultivated fields are directly proportional to an erosivity
index (£130) calculated as the total rainfall kinetic energy times the maximum 30-min intensity (Renard et al., 1997). The
R-factor is then obtained as a long-term average annual rainfall erosivity index. In addition to point estimate of the R-factor a

spatial information (map) is often required for practical purposes. Number of such maps have been released recently at national
Lu and Yu, 2002; Yin et al., 2007; Bonilla and Vidal, 2011

larger (Panagos et al., 2015) scales.

Because of large spatiotemporal variability of rainfall, long records from a dense network of stations are in general required in

order to provide reliable estimates of the R-factor and/or to develop rainfall erosivity maps. For instance, Wischmeier and Smith (1978) or

Verstraeten et al. (2006) recommend at least 22 years of data to be used for estimation of the R-factor. On the other hand, lack

of high-resolution rainfall data in combination with a need for soil erosion risk assessment often leads to situations where the
R-factor is-estimated-based-onrelatively-short-has to be estimated from shorter records. For instance, many-of-the-a number of
stations used recently for the derivation of rainfall erosivity maps for Europe (Panagos et al., 2015) were shorter than 20 years
and even-a-number-of-several records shorter than 10 years were considered. Similarly, the comparison of the spatial interpola-
tion methods in the Ebro Basin (Angulo-Martinez et al., 2009) was based on 10 years of data (for a large number of stations)

and Catari et al. (2011) assessed the uncertainty in the estimated R-factor considering a 13-year record for eight stations. Fhese

record decreases but can be reduced by combination of data from different sites (Catari et al., 2011) or by considering covariates

that are better sampled or/and their variation over space and time is smaller (Goovaerts, 1999). For the spatial interpolation of
the R-factor, often variables like longitude, latitude and elevation (Goovaerts, 1999; Angulo-Martinez et al., 2009) or long-term
precipitation (Lee and Lin, 2014) are considered.

In addition to spatial and temporal variability, the expression for the rainfall kinetic energy (needed for estimation of the
erosivity index) and spatial interpolation are also relevant sources of uncertainty for the development of an R-factor map.
The rainfall kinetic energy can be estimated by a number of expressions (see e.g. van Dijk et al., 2002). Therefore, several
authors assessed the effect on the estimated R-factor. For instance, Catari et al. (2011) mentioned variation due to kinetic
energy calculation of about 10%. Similarly, many spatial models can be used to predict the R-factor values over the area. The
differences between several spatial interpolation methods have been reported e.g. by Angulo-Martinez et al. (2009). Catari et al.
(2011) compared the contribution of different sources of variability to the overall uncertainty in the estimated basin average
R-factor in NE Spain, concluding that while the uncertainty in annual erosivity index is dominated by the temporal variability
(explaining more than 40% of variation) for long-term R-factor the kinetic energy calculation becomes more important.

Several maps of the R-factor for the whole Europe have been released in recent decades. For instance, Van der Knijff et al.
(2000) applied simple relationships between seasonal and annual rainfall and R-factor and Panagos et al. (2015) used many

high-resolution station datastes-datasets (with various record length and observation periods) to derive an R-factor map based

; Oliveira et al., 2013; Borrelli et al., 2016; Panagos et al., 2016a; Meddi et al.,
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on a Gaussian process model. The values derived for the Czech Republic from these maps range between 35-and-76-350 and
700 MJ ha=! em-mm h~'.

A number of estimates of the R-factor have been also published specifically for the Czech Republic. See e.g. the overview
by Krasa et al. (2014), who mention also results from a number of national projects. Official guidelines for soil erosion risk
assessment recommend the value 26-200 MJ ha~! em-mm h™ to be used for all agricultural land in the Czech Republic. Only
recently this value was increased to 46-400 MJ ha=—! em-mm | h~! (Jane&ek et al., 2007, 2012a). These values are relatively
small with respect to the neighboring countries and some of the research published for the area. For instance, Janecek et al.
(2006) published values of R-factor in the range of 43—+06-430-1060 MJ ha~! em-mm h~! and concluded that considerably
larger values of R-factor (45-66-450-600 MJ ha~! em-mm h~!) should be used for practical application of USLE in the Czech
Republic (instead of 26-200 MJ ha—! em-mm h~'). Even larger values of R-factor are reported by Krdsa et al. (2015). On the
other hand, Janecek et al. (2012b), using a regression between daily erosion index (£130) and daily precipitation in order to
predict annual E 730, report values of R-factor between +5-ard—126-150 and 1200 MJ ha~! em-mm h~!, with an average for
arable land of 36—46-300-400 MJ ha—! em-mm h~!. Similarly, JaneCek et al. (2013) derived an R-factor for the Czech Republic
from daily data considering the fraction of erosive events in each year for each station and the areal-average annual sum of the
erosivity index. In addition, they excluded years with the largest and years with the smallest erosivity index from the analysis.
This resulted in a recommendation to use 46-400 MJ ha~! em-mm h~! for all agricultural land in the Czech Republic. The

trends in rainfall-eresivity-annual rainfall erosivity index were studied by Hanel et al. (2015), who found significant a-pesitive
increasing trend (= 4% per decade) in 51-year records for 11 stations (more than a half of the considered stations). However,

recent values of erosivity index were not exceptional when compared to a longer (91-year) record available at a single station.

The present paper compares several methods of spatial interpolation of the R-factor over the Czech Republic and evaluates
the bias and uncertainty due to expression for the kinetic energy, spatial model, record length and spatial coverage. The paper
is structured as follows. The study area and data considered for calculation and spatial interpolation of the R-factor are given in
Section 2. Section 3 describes the methods used for estimation of the R-factor, spatial interpolation and uncertainty assessment.

The results are presented and discussed in Section 4. The paper is closed with concluding remarks (Section 5).

2 Study area and data
2.1 Study area

Because of relatively complex orography and combination of Atlantic, Mediterranean and continental effects, the precipitation
patterns over the area of the Czech Republic are rather variable (see Fig. 4). The precipitation is mostly due to enhanced
westerly flows in winter (Atlantic influence), except for the eastern part of the Czech Republic, which is typically influenced
by the Mediterranean Sea. The Mediterranean influences are also dominant over the whole area in summer (e.g. Bradka, 1972;
Brazdil, 1980).

The mean annual total precipitation varies from about 400 mm in the western part of the Czech Republic up to more than

1400 mm in the mountains to the north (Tolasz et al., 2007). Almost two-thirds of the annual total falls in the warm half of
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Figure 4. The map-of-thestudy area with tfeft-altitude and location of 96 stations used for spatiat-interpetation-and-derivation of the R-factor
map (rightleft) and mean annual precipitation are-together with location of additional stations used for assessment-ef-uncertainty assessment
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the year (April-September). The maximum precipitation amounts can be quite large at short timescales, thus contributing
considerably to the annual total precipitation. Stekl et al. (2001) point to historical records of 237 mm in 1 hour (25 May 1872),
345 mm in 1 day (29 July 1897), 537 mm in 3 days (6-8 July 1997) and 617 mm in 5 days (4-8 July 1997).

2.2 Pluviograph records

A database of 10-min digitized pluviograph records was used in our study. Since a considerable amount of precipitation falls
as snow during winter, the data are in general available only for mid-May to mid-September (further referred to as year). This
is, however, the period when heavy precipitation usually occurs. The data were digitized by the Czech Hydrometeorological
Institute (CHMI). Detailed identification and reconstruction of unreadable, damaged or missing records comprised part of the
digitization process (see Kvéton et al., 2004, for details). Consistency of the aggregated 10-min data with daily records from
control ombrometers was further checked by Hanel and Méca (2014). Identified inconsistent days were marked unreliable and
the years with more than 10% of unreliable data were excluded from the analysis. A set of 96 stations covering the study area
for the period 1989-2003 was selected (based mainly on data availability) in order to provide reasonable spatial coverage and
record length for the spatial interpolation of rainfall erosivity. The distance between neighbouring stations is 542 km (17 km

on average) and the stations are located at altitudes from 150 to 1118 m (450 m on average). Note that although significant

ositive trend in annual erosivity index has been reported by Hanel et al. (2015) for several stations in the Czech Republic, no
clear trend is observed (not shown) in the considered period (1989-2003). Detailed information on the considered stations is
included in the supplement to this paper.
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To analyze the temporal variability and the effect of the number of stations used for the spatial interpolation, also the longest
available record (C2TREBO1 - Tieboii), with 80 years of data and an-additienal-24-additional 40 stations (usually with slightly
different time period than 1989-2003), was-were considered (see Sect. 3.3). The location of the stations is indicated in Fig. 4.

The database of 10-min digitized pluviograph records was also used for the estimation of average at-site rainfall event
characteristics (event depth, event duration, maximum 10-min intensity, mean event rate, time to peak, depth to peak and
number of events), which were later linked with selected spatial interpolation models (see Hanel and Maca, 2014, for details

on the considered rainfall event characteristics).
2.3 Spatial-Gridded precipitation data

Gridded (1 km resolution) statistics of monthly precipitation for the period 1989-2003 (the same as for the station data) provided

by the CHMI were considered as covariates for the spatial interpolation models. Specifically, we used the average (May—
September) precipitation (7yea ), coefficient of variation of monthly (May—September) precipitation (7., ) and the mean exeess
fraction of precipitation above the 95% quantile of monthly (May—September) precipitation (7p95). Please note that these
gridded statistics are based on much larger numbers of stations (usually more than 750 stations were available for each month

and year) than were used in our study for spatial interpolation of the R-factor.

3 Methods
3.1 Rainfall erosivity factor

A standard methodology for the assessment of at-site rainfall erosivity factor (Wischmeier and Smith, 1978) was applied. A
continuous 6-hour interval without precipitation is used to separate individual rainfall events. To be considered erosive, the
cumulative rainfall of an event should be greater than 12.7 mm or the event should have at least one peak greater than 6.35 mm
in 15 minutes. The latter criterion was modified to 8.5 mm in 20 minutes in order to match the temporal resolution of our
dataset. Similar modification was reported by Meusburger et al. (2012). The proportion of erosive events that are included on
the basis of the intensity criterion is, however, small.

The rainfall erosivity factor is defined as a long-term average annual sum of the event erosivity index (F730 [MJ mm ha~!
h~! yr—!], Wischmeier and Smith, 1978),

EISO:I:;()ZQ‘U,', (1)
where
e; = 28.3[1 — 0.52exp(—0.042r;)] 2

is the unit rainfall energy [MJ ha—! mm~1!] (van Dijk et al., 2002), v; and r; are the rainfall volume [mm] and intensity [mm
h~!] during a time interval 4, respectively, and I3 is the maximum rainfall intensity during a period of 30 min in the event

[mm h~1].
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The unit rainfall energy in eq. 2 is from van Dijk et al. (2002), who assessed many expressions for its calculation. To assess

the related uncertainty, the R-factor was also estimated using an additional 14 expressions for e; (see Appendix A for their

definition).

3.2 Spatial interpolation models

At-site dataset of rainfall erosivity factors was further explored using spatial interpolation models. Following the classifica-
tion of spatial interpolation models for rainfall erosivity provided by Angulo-Martinez et al. (2009) selected local, glebal;

geesfdﬂsﬁed%aﬁdﬂ*eek eostatistical, mixed and global models were tested.

The local models, which described the spatial distribution of rainfall erosivity using local at-site information of R-factor, were

represented by the model based on inverse distance weighting IDW}{Angule-Martinez-et-al52009and-; see e.g. Angulo-Martinez et al., 20

Meusburger et al., 2012).

nn

2. doj
7j=1

with—exponent-as a weighted average of R-factor estimates from a selected number of stations. Weights are inversel
roportional to the distance (between interpolated location and corresponding station) raised to the power reentrolling-the
decay-ofweight-with-distanee—Parameters—nn—and-. The number of considered stations and the value of parameter r were

estimated during the model cross-validation (see sections 3.2.1 and 4).

ing (SK), ordinary kriging (OK), simple eekriging-cookriging (SC) and ordinary cokriging medels-(OC) models (Goovaerts,
1997, 1999). The eokriging models S€and-OC-arithmetic mean of at-site R-factor values was used as the estimator of mean

value for simple kriging and cokriging models. The cokriging models were tested using a set of seven rainfall event charac-

teristics (see section 2.2) as a cokriging variate.

covariance structures were described by the Matérn models (Minasny and McBratney, 2005; Haskard, 2007; Pardo-Iguzquiza and Chica-O
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15 Thefixed-term—for-the rest-of the-models (GLS—and-RK)—-was—mixed models were represented using a set of different

regression kriging models, further denoted as RK (Hengl et al., 2004, 2007). Their spatial covariance structures of residuals

were described using the Matérn models. The spatially varied means of R-factors were estimated using three types of inputs:

1. location information represented by longitude (z), latitude (y) and altitude z,
2. spatial rainfall information expressed by the combinations of ryea, 7cv and 7595 and

20 3. information consisting of combinations of both previous types of spatial covariates.
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The global spatial interpolation models were represented b
the set of generalized linear models GLS. The deterministic components were estimated using the same types of inputs as in the
case of mixed models. Their random error terms were represented using the Matérn and exponential modelstMinasny-and-MeBratney; 2005

The REME-approach-was-appliedinparameterestimationfor-GLS model residuals was studied by the means of exponential
variance function (see. 206 in Pinheiro and Bates, 2000). The parameters of all tested GLS models —Fhe-GES-medels-with-the

estimated with the restricted maximum likelihood (REML) method (Kitanidis, 1993;

3

Pinheiro and Bates, 2000; Minasny and McBratney, 2

3.2.1 Model selection

Standard leave-one-out procedure (Minasny and McBratney, 2007; Angulo-Martinez et al., 2009) was used for the validation

of spatial interpolation models. The following indices were considered:
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Willmott’s agreement index (WI)

S [Ris(@i) — Ri(ws)]?
WIi=1- = — , €)
5> (|Rs(@:) — R (@s)| + | Ri(@:) — B (ws)])?

=1

3

Mean absolute error (MAE)

1
MAE:gZ‘RS(xi)—RI(xi)L “4)

Relative mean absolute error (rMAE)

1 |Rs(ws) — Ry(s))|
rMAE = - ; Fos (@) , ©)

Root mean square error (RMSE)

n

RMSE = %Z[Rs(xi) — Ry(;))?, (6)

i=1

where Rg(x;) is the rainfall erosivity calculated for station i, R;(x;) is the spatially interpolated value of the rainfall
erosivity for the same station, and Rg(x;) and R;(x;) are the mean rainfall erosivities calculated for the station data and
obtained from spatial interpolation, respectively.

The choice of the validation criteria follows the discussion about RMSE and MAE presented by Willmott and Matsuura
(2005), who recommended the use of MAE for the estimation of average model error over the RMSE, since RMSE can be
influenced by outlying observations. The WI was also considered for consistency with other relevant studies (for example, see
Angulo-Martinez et al., 2009).

The model selection aimed at identification of robust spatial interpolation methods from the considered groups and also
at identification of optimal structure and parameters of the particular models including various combinations of covariates,
covariance models, number of nearest stations considered for the HIDW-and-Si;-OkK-and-Ri-local, geostatistical and mixed

models, etc.
3.3 Uncertainty assessment

The uncertainty in the derived R-factor map originates from the formulation of the kinetic energy term, spatial interpolation
model and spatial and temporal variability. While the effect of the former two can be assessed by direct comparison of results
for different expressions of rainfall kinetic energy and different spatial interpolation models, the effect of spatial and temporal

variability is evaluated here by simple bootstrap resampling procedures, which are briefly summarized in the rest of this section.
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3.3.1 Temporal variability

Record length influences the width of the confidence interval around the R-factor estimate. Due to the temporal variability,
sufficient record length is required in order to provide an estimate of the R-factor such that the long-term average R-factor
(further denoted the “true R-factor") would be covered by the estimated confidence interval. Therefore, we derived the confi-

113

dence intervals for various record lengths together with the probability that the ‘“’true R-factor" lies within the corresponding
confidence interval (further denoted the “coverage probability") using our longest available record, i.e. the station C2TREBO1
(Trebotl) with 80 years of data. This can be done using a nested bootstrap procedure in which a sample of required length (e.g.
10, 20, or 80 years) is drawn (with replacement) from the original record and further resampled. This allows for determination
of the confidence interval and examination whether the “true R-factor" is included. To obtain the coverage probability, the
whole procedure has to be repeated many times. Here we evaluated the coverage probabilities for the record lengths 10-80

years. For details, see Appendix B.
3.3.2 Record length and spatial coverage

Long records from a dense network of stations should be ideally available to derive an R-factor map. In reality, however,
long records are often available only for a relatively small number of stations and a balance between record length and spatial
coverage has to be found. It is then not clear whether longer records or better spatial coverage should be preferred.

Specifically, we asked (a) what is the relationship of error in the estimated R-factor to the spatial and temporal coverage and
how spatial and temporal coverage influences (b) the width of the confidence interval around the estimated R-factor and (c) the
coverage probability (i.e. the probability that the estimated confidence interval includes the “true R-factor").

To be able to assess these questions, a simulation study was conducted. The procedure is fully described in Appendix C,
and here we provide only general overview. As a reference, a synthetic dataset of monthly (May—September) erosivity index
(E£130) was created by permutation of 10 years of data available for 120 stations as follows: First, a 100-year-long sequence of
months May—September was created and a random year (from the available period) was assigned to each month in each year.
Data for each of the 120 stations were then rearranged according to this year—month sequence and the data were aggregated
by years. This resulted in a dataset of 100 years for 120 stations. This procedure preserves the annual cycle of erosivity index
and its spatial variability, while it assumes independence of erosivity index between individual months. This dataset is further
denoted as the “full dataset". Please note that although many different replications of this “full dataset" can be obtained, only
one replication is used in this study. We do not expect the results (presented further) to vary significantly when different
replication is considered.

The R-factor in this “full dataset" was estimated and a simple GLS model of the form R ~ NAVY + rpe. + Y was fitted.
This model was used to predict the R-factor for an additional 62 locations (coincident with real stations, but independent of the
“full dataset"). This is further denoted the “validation dataset". The assessment of the effects of spatial and temporal coverage
was based on a repetitive resampling of the subsets of the “full dataset", fitting a GLS model and predicting the R-factor for

the “validation dataset" (for details, refer to Appendix C).

10
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Within the simulation study, we evaluated the RMSE, the width of the 90% confidence interval and the coverage probability
for record lengths of 5,10, 15,20,30,---,100 years for 10,20, ---,120 stations. Since it has been frequently noted that areal
averaging is in general preferred to spatial interpolation in the Czech Republic (Janecek et al., 2006, 2012b, 2013), at least
for agricultural areas (in general low-altitudes), we also assessed this “areal-average model" (i.e. constant R-factor for all
locations). The “areal-average model" was applied for the whole “validation dataset" and considering only the stations with

altitude below 600 m.
3.3.3 Comparison of uncertainties
To compare the contribution of different sources of uncertainty, the R-factor was predicted for the “validation data" using:

— the best GLS model of the R-factor considering 15 different expressions for kinetic energy (see Appendix A)
— selected classes of spatial interpolation models

— GLS models based on different number of stations and years (see Sect. 3.3.2)

The coefficient of variation C'V for each set of the estimated R-factors was calculated to summarize the variability due to
different sources, similarly as done by Catari et al. (2011) or Panagos et al. (2015). For comparison, we also evaluated C'V' for
the R-factor estimates considering various record lengths for the C2TREBO1 (Ttebori) station (see Sect. 3.3.1). Finally, C'V
for the R-factor estimate for each of the 96 stations (representing natural variability) was evaluated using a simple bootstrap

resampling of the annual erosivity values.

4 Results and discussion

4.1 R-factor

The estimated R-factor (considering the kinetic energy relationship proposed by van-Bijket-al52002van Dijk et al., 2002, eq.
2) for the 96 stations used for spatial interpolation ranges between 32-320 (U1KOPIO1 - Kopisty, NW Czech Republic) and 152
1520 (OIRASKOLI - Raskovice, NE Czech Republic) MJ ha=! emrmm h™!, and averages 64-640 MJ ha—! em-mm h™ !, Note

that the second largest R-factor (station H2DESTO1 - De$tné v Orlickych hordch) equals 1108 MJ ha~! mm h~!. R-factor

values for individual stations can be found in supplement to this paper. Figure 5 shows average R-factor values for subsets of
stations based on maximum station elevation included in the subset. For instance, the average R-factor for the elevations up to

300 m is slightly less than 55-550 MJ ha=! em-mm h~! and for elevations up to 600 m slightly more than 66-600 MJ ha~! em
mm h~!. The average contribution of individual months to the annual total R-factor is 17% for May, 19% for June, 28% for

July, 26% for August and 10% for September.
TFhese-vatues-The at-site R-factor estimates correspond well with those published by Janecek et al. (2006) and Krasa et al.

(2015), but are considerably larger than values recommended by the official guidelines for the Czech Republic (Janecek

11
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Figure 5. Average R-factor for subsets of stations with smaller elevation than that plotted on horizontal axis. The leftmost point corresponds

to a station with the lowest altitude, the rightmost point to the overall average R-factor.

et al., 2007, 2012a) and those published by Janecek et al. (2012b, 2013). In part, differences might be due to the modi-
fications to the standard USLE methodology considered by Janecek et al. (2012b, 2013), e.g. calculation of the R-factor
as a trimmed mean (excluding years with the two smallest and two largest annual erosivity values) of the annual erosiv-
ity index. Perhaps in small part measure, the differences can be also attributed to the different time period used for R-

factor assessment (here 1989-2003, in other studies often the series from 1960 and earlier were considered). The estimated

average R-factor, after reduction for temporal resolution (from 10 to 30 minutes; Panagos et al., 2016b), becomes 525 MJ
ha—! mm h~!, which almost equals the average R-factor from the rainfall erosivity map of Europe - 524 MJ ha—! mm h—!

for the Czech Republic (Panagos et al., 2015). In addition to different temporal resolution, Panagos et al. (2015) considered

also different stations and kinetic energy formulation (i.e. that of Brown and Foster, 1987, see Fig. 8 for comparison with

van Dijk et al., 2002 used here). Although the spatial distribution of the R-factor over the Czech Republic appears rather
homogeneous in Panagos et al. (2015) the range of the at:site R-factors (after correction for temporal resolution) corresponds
well with that from Panagos et al. (2015) when the station with the maximum rainfall erosivity (OIRASKOI) is left out. The
effect of this station on the resulting R-factor map is further discussed in following section.

4.2 Model selection

The estimated at-site R-factor is positively correlated with average precipitation (ry,e,), coefficient of variation of monthly
precipitation (7¢,) and the mean exeess-fraction of precipitation above the 95% quantile of monthly precipitation (r,g5) de-
rived from the gridded data (see Sect. 2.3), with correlation coefficients 0.75, 0.44 and 0.54, respectively. Further, positive
correlation was also found with altitude (0.32) and longitude (0.47) and weak negative correlation (-0.25) with latitude. These

variables have been primarily used also as covariates in the relevant spatial interpolation methods. Note, that correlation ma

12
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be substantially weaker or different variables may be relevant in other regions, especially regions with complex topograph
see e.g. Capra et al., 2015 or Porto, 2016).

To explore these relationships further, we analyzed a set of GLS models with various combinations of fixed component
covariates and spatial stochastic covariance structure. The number of fixed term covariates ranged from one to five. Two
theoretical models of spatial covariance and a heteroscedastic error model were considered (see section 3.2). The best GLS
model according to the cross-validation results of WI, RMSE and rMAE had four fixed term covariates: 7'mea, 7pos, altitude, and
longitude, exponential spatial correlation structure and exponential heteroscedastic error. The coefficient of determination for
regression between at-site R-factor values and R-factor values predicted by this GLS model equals to 0.7, which is comparable
to results of Meusburger et al. (2012). This was followed by a GLS model with fixed term covariates longitude, latitude,
altitude, 7,,¢, and 7., and Mathérn spatial covariance structure, which had the lowest value of MAE. These two GLS models

are further referred to as GLSg and GLSy, respectively. The GLSy model with estimated coefficients reads as:

R =10.246Tea + 2902.462 7595 — y — 0.130 2 + 3649.792 )

with y the latitude [km] (in the Czech S-42 - Pulkovo 1942/Gauss-Kriiger zone 3 projection) and z the altitude [m]. The
arameters are transformed such that the equation can be directly applied to observed covariates. Please note, that r,,., and
are based on (1 km

bias in the resulting R-factor. This is due to area reduction effects influencing areal-average rainfall event characteristics
see e.g. Svoboda et al., 2016, for discussion).

Figure 6 further demonstrates the effect of excluding station(s) with large R-factor on the interpolated R-factor in the case
of GLSy model. Although the mean and maximum R-factor decrease and local R-factor patterns change slightly when stations
with large R-factor are excluded, the differences are small (especially with respect to other sources of uncertainty, see further)
suggesting our model is rather robust.

In addition to GLS models, other spatial interpolation methods were considered. Table 2 presents cross-validation in-

ridded data (see Sect. 2.3). Calculating these indices using station data would likely lead to positive

dices, spatial average and standard deviation of interpolated R-factor.
interpolation-model-The estimated average R-factor ranges from 62:62-t6-65-66-626 to 657 MJ ha=! em-mm h™?.
Comparing the R-factor estimated by different spatial interpolation models, the largest similarities were found between the
GLSg, GLSy and RKyyy po . GLSy and RK ey v,
altitude, 7,,cq and 7.,. The correlation coefficient 6:99-between estimates of GLSy and GLSy; anrd-6:97-equals 0.99 and

models had fixed terms inputs formed from longitude, latitude,

Tev

between the GLSg model and RKyy, ;. .. ., models 0.97. These similarities were confirmed on the rasters of differences

between values of the GLSg model and remaining spatial interpolation models (see Fig. 7). The median absolute difference
between the GLSg and GLSy; models was 2:00-20.0 MJ ha~! em-mm h ™!, with standard deviation of differences +:92-19.2 MJ
ha~! emm-mm h~!. For the differences between the GLSg, and the best RK model, the median absolute difference and standard

deviation was roughly double.

13
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Figure 6. R-factor estimated by-differentspatiatinterpotation-models-with the GLSrisrepresented-gy model using all available stations (to

left) and GLSg model fitted considering only stations with 2~ td m
bellow 1500 MJ ha~* mm h~" (top right), tatitade-1100 MJ ha—l mm h—1 bottom left) and attitade1000 MJ ha~' mm h~! (bottom right).

Blue points in the top left panel indicate the full set of 96 stations, red dots in other panels correspond to stations excluded from fittin
procedure.

The largest differences were found between the GLSg model and the spatial interpolation models, which did not take into
account the long-term rainfall characteristics. The largest difference of R-factor estimates (74-+2-741 MJ ha=! em-mm h™')
was found between the GLSg and OK models. Large values of MAE, rMAE and RMSE and small values of WI for IDW, SK,
OK, SC and OC models show that spatial distribution of R-factor could not be sufficiently described by the models, which
emphasized the stochastic component of R-factor, or explain R-factor using local information. The spatial interpolation models
with fixed term covariates based on 7,cq OF T, O Tpg5 Were superior to the models without fixed component linked to the

long-term rainfall characteristics (cf. the cross-validation results of RKxvyz).

14
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Figure 7. Differences [MJ ha~* em-mm | h™'] between the GLSg and other spatial interpolation models, GLSg, - generalized linear model

with exponential covariance structure, GLSy - generalized linear model with Matérn covariance structure, IDW - inverse distance weighting,

SK - simple kriging, OK - ordinary kriging, SC - simple cokriging, OC - ordinary cokriging, RK - stands for regression kriging.

Including the stochastic information obtained from rainfall event characteristics in simple cokriging and ordinary cokriging
models also did not improve the spatial interpolation of R-factor. The presented SC and OC models were selected from seven
different types of cokriging models. They differed according to the rainfall event characteristic, which was used for the second
cokriging variate. The best SC and OC models were those, which linked their stochastic component with the maximum 10-min
intensity and on site R-factor. Including these rainfall event characteristics did not, however, improve the spatial interpolation
of R-factor over the spatial models based on the long-term rainfall event characteristics (seeTable-see Table 2).

The success of models including long-term precipitation characteristics might be surprising in part because daily or subdaily
rainfall data are in general preferred for calculation of the R-factor over monthly or annual data (Angulo-Martinez et al., 2009).

The potential of long-term rainfall characteristics for R-factor estimation is also stressed by Lee and Lin (2014), who explored

15
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Figure 8. Estimated R-factor [MJ ha™! em-mm | h~!] considering different kinetic energy formulations (see Appendix A).

Table 2. Cross-validation indices for the best variants of each spatial interpolation model. AVst - at-site average; SDst - at-site standard

deviation; AVsp - spatial average; SDsp - standard deviation of spatial R-factor. The best cross-validation indices are marked in bold font.

WI RMSE MAE rMAE AVst SDst AVsp SDsp
IDW 0.78 164316433 12:37-123.68 020 625762569 162116215 649564946 165416537
SK 079 163016301 124812478 021 627062698 163716373 647364733  17:45174.49
OK 079 16:60-16596  12:65126.48 021 630763072 174617462 656665659 13:57-135.70
sC 073 169716972 134213115 022 634363126 139813977 644564453 1546151.57
ocC 079 158815878  1249-121.86 021 632963286 158915890 656365632 13:8-138.13
RKxvz 079 174417144 134313134 022 636963686 194519149 653765369 18:78-187.78
REKt o0 1 0.89 126912689 9369359 0.15 636963687 185718567 626262622 +6:8+168.13
RK iy, rypenstev 090 24912191 9319313 0.15 636263618 183718374 632863277 15:88158.78
GLSw 090 +63-11538 8989057 014015 633963534 175817512 632862827  +5:88-149.29
GLSk 091091 14411437 9008995 014014 635663564 177517747 6278627.80 153315335

relationships between rainfall and erosivity index at daily, monthly and annual time-scales and concluded that the relationship

between annual erosivity index and annual rainfall is closer than that for the other time-scales.

The average R-factor varies considerably when different formulas for kinetic energy are considered (see Fig. 8). The smallest

average R-factor is obtained by the RWa relationship (56-500 MJ ha=! em-mm h™') and the largest value by the standard USLE

(79790 MJ ha—! em-mm h™'). The average (64-640 MJ ha~! esrmm h™") corresponds well with the value estimated using the

van Dijk formula (difference is 8:6-6 MJ ha~! em-mm h~!). The range between estimates for individual stations is proportional

to the estimated R-factor (corresponding roughly to 40%). This also has an effect on the estimated spatial distribution of the

R-factor values.
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Figure 9. The average confidence intervals (relative to the long-term mean R-factor, 66:9-669 MJ ha=? emr-mm h~!; gray area) and the

coverage probability (red-tinethick lines) for different record lengths based on the station C2TREBOLI ¢- Tiebofi (left) and simulated data
(right). The dotted line corresponds to the coverage probability of 90%.

4.3 Temporal variability

Wischmeier and Smith (1978) used a 22-year record to derive the rainfall erosivity factor because of "apparent cyclical patterns
in rainfall data". The same is repeated by Renard et al. (1997) with a remark that longer records are advisable especially in the
case that coefficient of variation of annual precipitation is large. This recommendation is often mentioned in rainfall erosivity
studies. However, due to data availability, shorter records are often considered at least in addition to longer records (e.g.
Angulo-Martinez et al., 2009; Meusburger et al., 2012; Oliveira et al., 2013; Lee and Lin, 2014; Panagos et al., 2015). For a
105-year record from Belgium, Verstraeten et al. (2006) tested whether rainfall erosivity derived from running 10- and 22-year
averages is significantly different than that form using the overall (105-year) mean. They concluded that while a 22-year period
is sufficient, reliable estimates of R-factor cannot be based on 10 years of data. Apart from their study, the actual effect of the
sample size on the estimate of the R-factor was seldom investigated.

Fig. 9(left) gives the estimated confidence intervals (gray area) together with the coverage probability, i.e. the probability that
the long-term mean R-factor (66:9-669 MJ ha=! em-mm h~!) lies within the confidence intervals for record lengths between
10 and 80 years for the Tiebon station (C2TREBO1). The 90% confidence interval for record length 10 years ranges from 46-to
95-400 to 950 MJ ha=! eﬁfmvn\lwhfl (i.e. == 40%), narrows to 56—-87-500-870 MJ ha=! em;rry&h’l (£ 25-30%) for 20 years 5
53-83-and 530-830 MJ ha~! em-mm h~! (& 20-25%) for 30 years and remains relatively wide, i.e. 58—77-580-770 MJ ha~!
emrmm h™! (& 15%) even for an 80-year record. Note, that the temporal variability of erosivity index is considerably larger

than in the case of annual total or maxima. For instance, the standard deviation of annual erosivity index is more than double
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that of annual precipitation total and more than 40% larger than for annual 1-hour precipitation maxima (estimated for the same
station). The coverage probability (red line in Fig. 9(left)) of the 90% confidence interval is around 75% for 10-year record and

from 82% for 15-year record it increases only slowly with increasing record length up to 87% for the 80-year record.

The width of the confidence interval as well as the coverage probability are influenced by the variability of the at-site erosivit

index. This is demonstrated in Fig. 9(right) for synthetic data generated from Gamma distribution with parameters estimated

from the C2TREBOI record (denoted ACV = 1) and with parameters modified such that the coefficient of variation of the
modified distribution is half and double that of the C2TREBOI record (ACY = 0.5 and ACV. = 2, respectively) and the mean
R-factor remains constant. Note that Gamma distribution was not rejected by the Anderson-Darling test at 0.05 significance
level at most of the stations including C2TREBOL. It is clear, that the confidence intervals as well as the coverage probability
for the erosivity index simulated with parameters estimated from C2TREBOI (i.e. ACV = 1) correspond reasonably with
those based on observed data. It is also clear (and expected) that the width of the confidence interval increases with coefficient

of variation. For instance for 15 year record and doubling of coefficient of variation it ranges from 0.5 to 1.57. For increasin
record lengths the coverage probability increases and the width of the confidence interval decreases. Note that the confidence

interval for erosivity index with large coefficient of variation remains relatively large (>50%) even for 80 years of data. The

coverage probability, on the other hand, decreases only slightly with coefficient of variation.
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Figure 10. The RMSE, width of the confidence interval and the coverage probability for a GLS model (solid lines) and the “areal-average"
model considering all stations (dotted lines) and only those below 600 m (detted-dashed lines) based on simulated data with various record

lengths and number of stations.

4.4 Spatial and temporal coverage

Fig. 10 shows the average RMSE, coverage probability and relative width of the 90% confidence interval for the validation data
in cases of the GLS model (solid line), “areal-average" model (dotted line) and “areal-average" model considering only stations

with altitude less than 600 m (dashed line). In the case of the GLS model, the RMSE for small numbers of stations and years is
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relatively large (a2 36-300 MJ ha~! em-mm h~!). However, it quickly drops to ~ +6-100 MJ ha~! em-mm h~! for 25 stations
and then decreases almost linearly to ~5-50 MJ ha=! em-mm h~! for 100 stations. The RMSE for both “areal-average" models
depends on the number of stations only up to 25 stations and remain almost constant for larger number of stations (= +-110
MJ ha~! ems-mm h™! when validated against all stations and ~ +6-100 MJ ha—* em-mm h~! when only stations below 600 m
are used). The RMSE depends only slightly on the number of years used for estimation of the R-factor in the case of all models
(GLS and both “areal-average" models). With respect to RMSE, the “areal-average" model is beneficial only when less than 20
stations are available. The RMSE for individual stations might be considerably larger. The 90% quantile RMSE (not shown)
is around 60-600 MJ ha—! em-mm h~! for both “areal-average" models (mostly independently of the number of stations) and
from 206-2000 MJ ha=! em-mm h~! (10 stations) to 45-450 MJ ha=! em-mm h~! (30 stations) and 25-250 MJ ha=! em-mm
h~! (100 stations) for the GLS model with 15 years of data.

The width of the 90% confidence interval (Fig. 10, middle panel) for the GLS model drops from 120% (5 stations) to 50%
(25 stations) and 30% (100 stations). This value corresponds well with the width of the confidence interval for the full record
of the C2TREBO1 (Ttebon) station (see Fig. 9). The confidence interval for both “areal-average" models is approximately half
that for the GLS model. The impact of the record length is small.

The coverage probability (Fig. 10, right panel) for the GLS model increases from 70 to 90% for 5 and 10 stations, respec-
tively. The coverage probability further increases only when more than 20 years of data are used. For shorter records, the
coverage probability decreases to ~ 80% for 100 stations. This is a consequence of faster reduction of the confidence interval
width when compared to the decrease of the RMSE. Similarly, the coverage probability decreases for both “areal-average"
models, since the RMSE is almost constant for more than 25 stations while the width of the confidence interval decreases. As
with the RMSE, the coverage probability might be considerably lower for individual stations, especially in the case of both
“areal-average" models (for a number of stations close to 0), while the coverage probability is larger than 70% for most of the
stations in the case of the GLS model.

The results for all evaluated characteristics indicate that appropriate spatial coverage is more important than the length of
the record, at least in situations when other relevant information to build a spatial model is available. However, at least 15-20

years of data should be considered (if possible) to provide reasonable coverage probabilities.
4.5 Comparison of different sources of uncertainty

Using the “validation data" and the GLS model, we calculated the coefficient of variation (C'V') associated with formulation of
the kinetic energy, spatial interpolation and spatial and temporal coverage (Table 3). In addition, C'V was also calculated for
estimates of the R-factor based on different record lengths for the C2TREBO1 (Tteboii) station and for the set of 96 stations
considered for spatial interpolation. For the latter, the estimated C'V' was 23% on average (9—43% for all stations). This value
can be interpreted as an indicator of natural variability of the R-factor based on a 15 year record. Almost the same value (21%)
is estimated for the C2TREBO1 (Ttfeboil) station and 15-years of data. The contribution of the kinetic energy formulation
(=13%) and spatial interpolation (= 9%) is about half of this value. As expected, C'V of the estimates for the C2TREBO1
(Tteborn) station decreases with increasing record length (38, 16 and 12% for 5, 50 and 80 years, respectively).
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Table 3. The coefficient of variation (C'V') for the R-factor estimated considering different formulas for kinetic energy, spatial interpolation
methods, record length and spatial coverage. In the second column, the average C'V" for all considered stations is given, the last two columns

indicate the range of the C'V' from all stations in the “validation dataset”.

Source Coefficient of variation [%]
Kinetic energy 127  (11.8 - 144
Spatial interpolation 9.4 a.s - 297

Number of stations (GLS model, 15 years )

10 stations 31.0 (19.6 - 69.1)

30 stations 10.3 (7.6 - 214

50 stations 7.6 6.0 - 139
Number of years (GLS model, /00 stations )

5 years 13.0 (109 - 223)

15 years 6.4 49 - 11.8)

50 years 49 34 - 95
Number of years (C2TREBO1 - Ttfeboi)

5 years 37.6 -

15 years 21.6 -

50 years 16.1 -

80 years 11.8 -

Natural variability (96 stations, 15 years )
23.3 9.1 - 43.0)

The same applies for the GLS model, for which, in addition, C'V also decreases with increasing number of stations. When
comparing corresponding record lengths, the C'V is considerably smaller for the GLS model than for individual stations,
providing a sufficient number of stations is considered in the model. For instance, for the R-factor based on 15 years of data,
the average C'V is 31, 10, 7 and 6.4% for 10, 30, 50 and 100 stations, respectively, while for the station data and same record
length the average C'V was 23%. In addition, considering 100 stations C'V" is only 13(5)% for 5(50) years. From Table 3 it is
evident that not only the average C'V decreases but the same holds also for the stations with maximum variation. For instance,
using 100 stations and 15 years, the maximum C'V in the “validation set" is 12% for a GLS model and 43% for the station data.
As the C'V decreases with more stations and longer records, the relative importance of the expression for the kinetic energy
and spatial interpolation increases. The assessment of the sources of uncertainty could be done more formally using an analysis

of variance (ANOVA) model (e.g. Yip et al., 2011) or slightly more flexible linear mixed-effects model (see e.g. Hanel and
Buishand, 2015).
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5 Summary and conclusions

In the present paper we estimated the rainfall erosivity factor (R-factor) for the area of the Czech Republic. The at-site values
of the R-factor based on a 15-year record for 96 stations were considered in several spatial models in order to provide estimates
of the R-factor for the whole area of the Czech Republic.

The spatial interpolation models included inverse distance weighting, simple and ordinary kriging, simple and ordinary
cokriging, regression kriging with parameters estimated by the method of moments and the GLS modelsestimated-using-the
REME. Several covariates have been considered to explain the spatial variation of the R-factor over the area.

In addition, uncertainty due to kinetic energy formulation, spatial model and spatial and temporal coverage was assessed by
direct comparison of different methods and simulation studies.

The most important findings can be summarized as follows:

— The average R-factor in the period 1989-2003 for the considered stations is 64-640 MJ ha~! ema-mm h~!, with values
for the individual stations between 32-and+52-320 and 1520 MJ ha=! em-mm h™L.

— The at-site R-factor is considerably correlated with average precipitation, coefficient of variation of monthly precipita-
tion, the mean exeessfraction of precipitation above the 95% quantile of monthly precipitation and longitude, while the

correlation with altitude and latitude is weak.

— From the considered spatial models, a GLS model with altitude, latitude, mean precipitation and the mean exeess-fraction
of precipitation above the 95% quantile of monthly precipitation provided the best performance according to three of

four cross-validation indices.

— With respect to the cross-validation statistics, the spatial interpolation models that included long-term rainfall character-

istics performed considerably better than those based on local interpolation and/or geographical information only.

— The resulting map based on the GLS model does not change considerably, when stations with largest R-factor are
excluded.

— When the number of stations and years available for interpolation is small, the relative contribution of the uncertainty
due to kinetic energy estimate and spatial interpolation method is small compared to that due to the choice of the stations

and time period.

— Although the RMSE and confidence interval width decrease and coverage probability in general increases with record

length and number of stations, reasonable estimates of R-factor may be obtained from relatively short records (e.g. 15-20

years) providing there-is-good-spatial-eeveragesufficient number of stations are available and appropriate covariates can
be found.
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— The confidence intervals around the R-factor estimates remain relatively wide even for long records, especially at
locations with large natural variability of the annual erosivity index and are considerably wider than those for annual
rainfall total or precipitation maxima.

— The spatial model should be in general preferred over the “areal-average”-exeeptfor-situations-when-areal-averaging of
R-factor estimates from individual stations unless only very short records for a small number of stations are available ;

or-situations-when-or appropriate covariates cannot be used.

Appendix A: Considered formulations of rainfall kinetic energy

For the application of the universal soil loss equation, Wischmeier and Smith (1978) derived a logarithmic relationship between

rainfall intensity and kinetic energy of the form (converted to metric units):

e; =210+ 89log(r;/10), (A1)

where (as in eq. 2), r; is the rainfall intensity [mm h~!] during time interval i. Note that slightly different coefficients are
provided by Renard et al. (1997). The logarithmic relationship implies that there is no upper limit to kinetic energy, whereas
research has suggested that a maximum value does exist (see van Dijk et al., 2002, for references). Therefore, Wischmeier
and Smith (1978) considered constant rainfall kinetic energy for intensities greater than 76 mm h~!. Other authors used a

relationship of the form

€ = emax[]- - aexp(—bri)], (A2)

where e, denotes the maximum kinetic energy contents and a and b are empirical constants. Many different combinations
of the parameters ey, .y, @ and b have been published. Van Dijk et al. (2002) therefore proposed a relationship given in eq. 2 as
one providing estimates that are close to the average of many formulas for calculation of e,,. In the present paper, in addition
to formulas given in eq. 2 and eq. A1, which are further referred to as “van Dijk" and “USLE", respectively, we calculated the

e; considering a set of coefficients for eq. A2 given in table 4.

Appendix B: A resampling scheme for the assessment of temporal variability

Here we describe a nested bootstrap procedure in which samples of required length [ (e.g. 10, 20, 80 years) are repeatedly drawn
from the original (observed) record and resampled to obtain the R-factor estimate with corresponding confidence interval.
Finally, the probability that the “true R-factor" (here the estimate based on the full record) lies within the confidence interval
is estimated.

The resampling is performed in the following steps:
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Table 4. Coefficients for calculation of rainfall kinetic energy in eq. A2. The acronyms used throughout the paper are given in the first

column.

€max a b

LP 289 0.54 0.059 Laws and Parsons (1943)
CA 28.0 0.76 0.090 Carter et al. (1974)

BF 29.0 0.72 0.050 Brown and Foster (1987)
MG 29.0 0.72 0.082 McGregor et al. (1995)
KI 29.3 0.28 0.018 Kinnell (1981)

RWa 264 0.67 0.035 Rosewell (1986)

RWb 281 0.60 0.040 Rosewell (1986)

Mla 246 046 0.037 Mclsaac (1990)

MIb 29.2 051 0.011 Mclsaac (1990)

Mlc 28.8 045 0.033 Mclsaac (1990)

MId 251 040 0.045 Mclsaac (1990)

Mle 26.8 0.29 0.049 Mclsaac (1990)

CT 359 0.56 0.034 Coutinho and Tomas (1995)

1. choose the number of bootstrap samples for derivation of the confidence intervals (ncy) and the number of bootstrap

samples for the assessment of the coverage probability (nc p); in our study we set ncr = ncop = 500
2. draw a sample of length [ with replacement from the original series of annual erosivity and denote this sample s
3. draw a sample of length [ with replacement from s and use it to calculate the average erosivity (i.e. the R-factor)
4. repeat the previous step ncy times

5. calculate the 90% confidence interval from the nc estimates of the R-factor from step 3 and check whether this interval

includes the true R-factor
6. repeat steps 2—5 no ptimes

7. calculate the coverage probability associated with the record length [ as the proportion of cases when the confidence

interval from step 5 included the true R-factor

8. repeat the whole process for different record lengths [

Please note that the described procedure provides ncp estimates of the confidence intervals for specific [ and only their
average is presented in the paper. Setting ncp = 1 might be sufficient in the situation that only the confidence intervals would

be of interest.
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Appendix C: A resampling scheme for the assessment of spatial and temporal coverage

The following scheme describes a nested bootstrap procedure for assessment of the RMSE, coverage probability and the width
of the 90% confidence interval for a GLS model considering different length of the precipitation data and different number of
stations. The assessment is based on resampling of a synthetic dataset of 100 years for 120 stations (denoted “full dataset") and

validated against the independent “validation dataset" (see Sect. 3.3.2). The procedure is summarized as follows:

1. draw a sample of nyr years for nsta stations from the “full dataset" and calculate the R-factor for each station

2. fit a GLS model of the form R~NAVY—A—rmea+¥—-R ~ NAVY + rye. + Y using the sample from the previous
step

3. simulate data for the given nsta stations from the fitted model (see e.g. Pinheiro and Bates, 2000)
4. refit the model and use this refitted model to predict the R-factor for the *“validation dataset"
5. repeat the previous two steps 500 times

6. calculate the 90% confidence interval around the estimated R-factor and the RMSE for each station of the “validation

dataset” from the 500 samples obtained in steps 2—5

7. repeat the previous steps (1-6) 500 times

[0 ]

. repeat the whole procedure for different nyr and nsta

The RMSE, confidence interval and coverage probability for the “areal-average" model used for comparison was derived by

replacing the estimates from the refitted model in step 4 by the areal-average of the simulated data from step 3.

Acknowledgements. The research has been conducted within the framework of the project “Erosion runoff - increased risk of the residents
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