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Abstract. This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Nether-

lands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We

focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter (EnKF-OI) and the exact second-order sampling

formulation (EnKFESOS) for mitigating the undersampling of the estimation and observation errors covariances, respectively.

A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within5

a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons

starting from Tetrachloroethene and ending with Vinylchloride is modelled under anaerobic environmental conditions for five

decades. Yearly pseudo-concentration data is used to condition the forecast concentration and degradation rates in presence of

model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OI, for accurately cali-

brating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts10

the weights of the involved covariances for each individual measurement. The EnKFESOS is shown to maintain much better

the parameters ensemble spread leading to more robust estimates of the state and parameters. On average, a well tuned hybrid

EnKF-OI and the EnKFESOS respectively suggest around 48% and 21% improved concentration estimates and around 70%

and 23% improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model

degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the15

quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on the background

information is relatively moderate.

1 Introduction

Subsurface contamination has received significant attention in the last few decades. Consequent cleanup costs have increased

the awareness of environmental issues related to contaminated fields (Appelo and Postma, 1994; Drécourt et al., 2006). His-20

torically, it was believed that subsurface contamination could be remediated to natural background contamination levels by
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digging in the soil and pumping out the contaminated groundwater. However, it was not too long before it was discovered

that there were simply too many contaminated areas to completely remediate. In addition, all available cleaning technologies,

including source removal, are economically not viable to fully resolve the problem (Cunningham and Berti, 1993; Starr and

Cherry, 1994; Todd and Mays, 2005).25

Governmental authorities are now considering another approach to remediation based on management of industrial ground-

water contamination at regional scales. The idea is simply to prevent groundwater contamination from causing negative effects

on humans or ecology, and to control any undesired spreading beyond the boundary of the contaminated site. In the European

Water Framework Directive, an option was offered allowing groundwater aquifers to remain contaminated when remediation

is too costly and when an adequate monitoring system of the contaminated area is set up (Chave, 2001; Mostert, 2003; Hering30

et al., 2010). This procedure relies mostly on natural attenuation of contaminant plumes without the need for a direct human

intervention. This is often possible given that the size and concentration of dissolved contaminants are frequently subjected to

considerable decline due to natural, and eventually human induced, biodegradation processes. The challenge is then to predict

in a cost effective way what type and when contaminants may cause a risk, so monitoring and, if needed, remediation may be

undertaken to prevent any unacceptable spreading beyond specific planes of compliance. One efficient way to implement such35

monitoring system at a regional scale is to use prediction models with monitoring data and combine them using advanced data

assimilation techniques (McLaughlin, 2002; Reichle et al., 2002).

Various numerical groundwater contaminant models have been developed in the literature (e.g., Freeze and Cherry, 1979;

Pollock, 1994; Dawson et al., 2004; Sun and Wheeler, 2006; Bear and Cheng, 2010). The idea behind forming such models

is to simulate and predict the dynamic fluxes and energies, defined as state variables (e.g. groundwater pressure, contaminant40

concentration), as accurately as possible based on some selected parameters (e.g., porosity, permeability, sorption) that describe

the subsurface geometry, fluid and rock properties, and surface-subsurface interactions (Moradkhani et al., 2005).

Groundwater contaminant models can be subject to several sources of uncertainties due to poorly known parameters, inputs,

and boundary conditions. For instance, we often know very little about the time at which contamination started, the amount

of contaminant mass present in a pure phase source zone, the location of the pure phase, and the rate at which biodegradation45

is taking place (Franssen and Kinzelbach, 2009; Gharamti et al., 2013). Other uncertain aspects are the heterogeneity of the

parameters, such as the hydraulic conductivity, groundwater recharge and the redox state of the groundwater. Therefore, model

predictions of where and when a contaminant crosses a plane of compliance, with what concentration and how long it takes

before a pure phase source zone dries up, can be quite uncertain.

One way to reduce uncertainty in model predictions and parameters is to assimilate data into the model. Data assimilation50

(DA) methods follow a Bayesian formulation by combining prior information of a dynamical system with available measure-

ments to obtain an analysis of the system state and parameters (Hoteit et al., 2012; Gharamti et al., 2014a). Sequential DA

techniques, such as the ensemble Kalman filter (EnKF), assimilate the data as it becomes available. The EnKF (Burgers et al.,

1998; Evensen, 2003) is a popular DA method in hydrology, operating in consequent forecast and an analysis steps. During

the forecast, an ensemble of state realisations is run forward in time using the dynamical model. At the time of the update, a55

linear Kalman filter (KF) type analysis (Kalman, 1960; Gharamti et al., 2011) is applied to the ensemble members. The EnKF
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is relatively simple to implement, requiring only forward integrations of the dynamical and observational models. The EnKF

has been proven useful in various subsurface hydrology applications (e.g., Chen and Zhang, 2006; Hendricks Franssen and

Kinzelbach, 2008; Zhou et al., 2011; Li et al., 2012; Crestani et al., 2013; Panzeri et al., 2013; Gharamti and Hoteit, 2014).

The parameters most often calibrated are those characterising the flow and the general transport of the contaminants, such as60

permeability and porosity. Very few applications have tackled the estimation problem of reactive modelling parameters us-

ing sequential DA techniques. Bailey et al. (2013) used the EnKF to estimate spatially variable selenium and nitrate reaction

rates in near-surface agricultural soil profiles. In another study, Bailey et al. (2012) used the ensemble smoother to infer the

denitrification rate constants from synthetic observations of nitrate concentrations.

It is now widely recognised that the performance of the EnKF strongly depends on the ensemble size; a large enough ensem-65

ble is required to obtain good performances. Gharamti et al. (2014b) proposed an efficient hybrid EnKF assimilation scheme for

state and parameters estimation, in which the predicted EnKF statistics are complemented with predefined static background

covariance in order to mitigate for filter inbreeding and undersampling (Hamill and Snyder, 2000). The hybrid filter was applied

to a small-scale synthetic reactive transport model and was found computationally efficient, providing reliable estimates using

fairly small ensembles (50 members). In this study, we test the hybrid EnKF with a realistic large-scale contaminant model and70

further extend its formulation to allow for serial processing of the observations during the analysis step. For this, the objective

function involved in the adaptive scheme is designed in such a way that the weighting between the background and the filter

flow-dependent statistics is adjusted for each assimilated observation. Such updating strategy could be more convenient given

that observations from different sources and locations carry varying degrees of information to the system. This generalises the

adaptive scheme of Gharamti et al. (2014b), allowing the weighting between the ensemble and the background covariances to75

change not only between different assimilation times but also for different observations at any update step.

The stochastic EnKF assimilates perturbed observations during the analysis step in order to (asymptotically) match the

second moment of the KF (Burgers et al., 1998). This often introduces noise, which may become significant when the rank

of the observational error covariance is larger than the ensemble size (Nerger et al., 2005). Ensemble square root filters, such

as the Ensemble Transform Kalman Filter (ETKF, Bishop et al., 2001), the Singular Evolutive Interpolated Kalman filter80

(SEIK, Pham, 2001; Hoteit et al., 2002), and the Deterministic Ensemble Kalman Filter (DEnKF, Sakov and Oke, 2008) do

not require observations perturbations. Yet, the stochastic EnKF tends to "re-Gaussianize" the ensemble distribution, which

improves the stability of the filter, unlike other deterministic schemes that follow the shape of the background distribution

(Lawson and Hansen, 2004). In a recent study, Hoteit et al. (2015) proposed a serial EnKF algorithm to mitigate the observation

sampling errors in the EnKF. The algorithm, referred to as EnKF with exact second-order observation perturbation sampling85

(EnKFESOS), is straightforward to implement in any existing serial EnKF code, requiring only removing a single rank from

the sample forecast covariance matrix to exactly match the first two moments of the KF. Compared to the EnKF and the

determinstic filters, the EnKFESOS was shown to provide more accurate estimates of the state of a 40-variable Lorenz-96 model.

Here, we consider the EnKFESOS in a realistic large-scale system and further study the impact of mitigating the observation

undersampling errors in the EnKF’s analysis not only on the state but also on the parameters estimates. This is the first study90
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addressing the application of the EnKFESOS scheme for parameters estimation. The idea is to investigate whether accounting

for observation sampling errors can lead to a better tuning of the unknown parameters or not.

We focus on two aspects that are known to limit the efficiency of the EnKF; namely the undersampling of the forecast er-

rors in the forecast step and the observation errors in the analysis step. We consider an industrial groundwater contamination

problem at the port of Rotterdam in the Netherlands. Many areas at the port site are contaminated due to various industrial activ-95

ities. Contamination with chlorinated hydrocarbons (CH) have been detected at the port area. Reductive dechlorination process

of four hazardous CH components; namely Tetrachloroethene (PCE), Trichloroethene (TCE), 1,2-Dichloroethene (DCE) and

Vinyl Chloride (VC), is believed to be one of the main reactive processes taking place at the port site. We simulate this process

using a coupled three-dimensional Flow-Transport-Reaction (3D-FTR) model for a single plume. The contaminant data col-

lected in 2012 by the municipality of Rotterdam, is used for initialising the contaminant migration, which propagates to surface100

and deep aquifer layers (≈ 50 m below sea level). We use "synthetic" CH concentration data on a yearly basis, for a total of

50 years, to calibrate four biodegradation rates of the reaction chain. To the best of our knowledge, this is the first study in

which biodegradation parameters of a reductive dechlorination process are estimated in a real-world system using a sequential

DA procedure. Hydraulic parameters of the groundwater flow model are not incorporated in the assimilation system as part of

the unknown parameters. They are estimated in an offline procedure using borehole data and a probabilistic approach given105

the associated geologic lithofacies. On top of the biodegradation, the concentrations of the components are also constrained

using the EnKF, the hybrid EnKF and the EnKFESOS schemes. Sensitivity analyses are performed to study the efficiency and

the accuracy of the assimilation schemes under different experimental settings. The filtering schemes are evaluated based on

the accuracy of the estimated solute concentrations, the handling of the posterior distributions of the biodegradation rates, and

computational complexity.110

The rest of this paper is organised as follows. Section 2 presents the ensemble filtering schemes. Section 3 describes the

large-scale subsurface reactive transport model and its numerical implementation. Section 4 presents the assimilation setup and

the experimental scenarios. Results of the assimilation experiments are presented and analysed in Section 5. Conclusions and

further discussion are given in Section 6.

2 The Data Assimilation Framework115

The aim of DA is to combine measured observations and a dynamical model in order to compute the best possible estimates

of the past, current and future states of the system, together with estimates of the associated uncertainties (Nichols, 2010). We

follow the standard discrete nonlinear dynamical system:

xk+1 =Mk (xk,Θk) +ηk+1, (1)

where xk ∈ RNx denotes a state vector of Nx variables at time tk, Θk ∈ RNΘ is the vector of model parameters,Mk: RNx120

→ RNx is the nonlinear operator that propagates the model state from tk to tk+1. ηk+1 ∈ RNx is a model error accounting for

model uncertainties, commonly assumed to follow a Gaussian distributionN (0,Qk+1). The measurements obey the following
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observational system:

yk+1 =Hk+1 (xk+1) + εk+1, (2)

where yk+1 ∈ RNy is a vector of Ny observations at time tk+1, Hk+1: RNy → RNx is an observational map including125

grid interpolations, and could be nonlinear. The observation errors εk+1 ∈ RNy are assumed Gaussian with zero mean and

covariance Rk+1. We also assume independent model and observation errors.

Following the Bayesian filtering problem, the objective is to evaluate the joint probability density function (pdf), i.e.,

p(xk,Θk|y0:k), of the system state xk and the parameters Θk given all available observations y0:k. The observations, y0:k, are

used to update the model forecast. The updated estimate is then used to compute a future prediction. Likewise, the estimation130

problem can be also tackled using variational approaches that involve minimisation of a cost function (Dimet and Talagrand,

1986; Courtier et al., 1994; Hoteit et al., 2005; Altaf et al., 2013). Variational DA techniques, such as 3DVar and 4DVar, are

widely used in geoscience applications. These methods look for an optimal state trajectory that best fits observational data over

a time window, but do not offer an efficient framework for quantifying uncertainties in the solution. In this study, we will only

consider the sequential Bayesian filtering problem.135

2.1 The Ensemble Kalman Filter for State-Parameters Estimation

The computation of p(xk,Θk|y0:k) is not feasible in real applications owing to the nonlinear character of the model and

observation operators in addition to the very large dimension of the subsurface flow and transport system. The ensemble

Kalman filter (EnKF) is an efficient Monte Carlo method that computes an approximation of the joint pdf, using the first two

moments, at reasonable computational requirements. The EnKF represents the distribution of the system using a collection140

of state vectors, called ensemble. Generally, the true pdf of the system might not be accessible through this Monte Carlo

approximation given the finite ensemble size. We follow the state-parameters augmentation procedure (Annan et al., 2005)

and denote by ψ the jointly concatenated state and parameters vector. The parameters are time-invariant so that their time-

propagation function is simply the identity operator.

To illustrate, starting at time tk−1 from an analysis ensemble,
{
ψa,ik−1: xa,ik−1,Θ

a,i
k−1

}Ne

i=1
, which represents p(ψk−1|y0:k−1),145

the EnKF propagates the dynamical model (1) to compute the forecast ensemble at the time of the next available observation,

tk. Incoming measurements are then used to update the joint ensemble. The EnKF algorithm is summarised below.

– Forecast Step: The analysis members are integrated forward in time to obtain the forecast ensemble from which we

estimate the first two moments as follows:

ψ̂
f

k =

 x̂f,ik

Θ̂f,i
k

=
1

Ne


Ne∑
i=1

M
(
xa,ik−1,Θ

a,i
k−1

)
Ne∑
i=1

Θa,i
k−1

≡ 1

Ne

Ne∑
i=1

ψf,ik , (3)150

P̂f
k =

 P̂f
xx P̂f

xθ

P̂f
θx P̂f

θθ

≡ 1

Ne− 1

Ne∑
i=1

(
ψf,ik − ψ̂

f

k

)(
ψf,ik − ψ̂

f

k

)T
. (4)
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The joint sample covariance P̂f
k consists, as shown in (4), of the sample state covariance P̂f

xx, the state-parameters

cross-correlation P̂f
θx and the sample parameters covariance P̂f

θθ matrices. The joint state-parameters forecast estimate

(mean) is denoted by ψ̂
f

k . The complexity of the forecast step grows with the ensemble size. If one supposes that CM
is the cost for integrating the model to the next observation time, the computational requirement of the forecast step is155

NNeCM , where N is the final simulation time (Gharamti et al., 2014a).

– Analysis Step: When the observation yk becomes available, the joint forecast members ψf,ik are updated using the

Kalman-update step; i.e.

ψa,ik =ψf,ik + K
(
yk + εik − H̃kψ

f,i
k

)
, (5)

where K = P̂f
kH̃

T
k

(
H̃kP̂

f
kH̃

T
k + Rk

)−1

is the Kalman gain and the analysis state is:160

ψ̂
a

k =
1

Ne

Ne∑
i=1

ψa,ik ≡ ψ̂
f

k + K
(
yk + ε̂k − H̃kψ̂

f

k

)
, with ε̂k =

1

Ne

Ne∑
i=1

εik. (6)

The observation perturbations, denoted by εik, are sampled from a Gaussian distribution of zero mean and covariance

Rk. The observational operator H̃k =
[
Hk,O

]
, acting on the augmented state-parameter vector, is assumed linear for

simplicity, and the matrix O is a zeros matrix. Computationally, the update step in hydrological applications is usually

less demanding than the forecast step, with a complexity of NNeNyNx +NN2
e (Nx +NΘ). The observations used in165

the update equation of (5) are processed in one single batch. In our implementation, we will consider the serial EnKF

update formulation in which the observations are assimilated one at a time. The reason for this will become clear in

section 2.3.

2.1.1 EnKF Limitations

The performance of the EnKF strongly depends on the accuracy of the forecast error covariance matrix P̂f . The errors in170

P̂f are essentially due to: (1) model errors and the use of small ensemble sizes, and (2) propagation of errors in the sample

covariance matrix P̂a at the previous step. The Gaussian assumption of the system’s distribution is also a limiting factor but

this was proven to be less problematic (Hoteit et al., 2008). The Gaussianity of the estimates often breaks when the parameters

are also included as part of the state vector during assimilation (e.g., Liu et al., 2016).

The main advantage of the ensemble approximation (Eqs. 3 and 4) is that it does not involve any linearisation and allows175

to represent the first two moments of the state and parameters by an ensemble of vectors (Evensen, 2003). The use of large

ensembles is practically not possible and thus the sample covariance P̂f
k may not well approximate the KF forecast covariance,

Pf
k . As such, the joint forecast pdf of the system’s state and parameters at any time tk is only partially sampled, which means

that there exists a null subspace in the error space that is not covered by the ensemble (Song et al., 2010; Mandel et al., 2011).

To mitigate this, we will a use hybrid formulation of the forecast state and parameters statistics before performing the EnKF180

update (e.g., Wang et al., 2007). Further details are given in section 2.2.

6



The limited ensemble size may also introduce noise in the update step of the EnKF when the rank of the observation

error covariance is large (Hoteit et al., 2015). This is because the number of observation perturbations may not be enough

to sample the observation error covariance matrix, Rk. In addition, spurious correlations between the observation and the

forecast perturbations may also introduce noise in the EnKF update (e.g., Bowler et al., 2013; Hoteit et al., 2015). To illustrate,185

the EnKF analysis assumes zero cross-correlations between the observation perturbations and the forecast ensemble; i.e.:

Ne∑
i=1

εik

(
ψf,ik − ψ̂

f

k

)T
= 0. (7)

This can be easily seen by subtracting eq. (5) from eq. (6). After arranging the terms and using eq. (4), one obtains:

∆ =
(
I−KH̃k

) 1

Ne− 1

Ne∑
i=1

(
ψf,ik − ψ̂

f

k

)
εik
T
KT + K

1

Ne− 1

Ne∑
i=1

εik

(
ψf,ik − ψ̂

f

k

)T (
I−KH̃k

)T
, (8)

P̂a
k =

(
I−KH̃k

)
P̂f
k

(
I−KH̃k

)T
+ KRkK

T + ∆, (9)190

where ∆ is the sampling error term; not accounted for in the EnKF. Consequently, the ensemble analysis covariance matches

the optimal KF covariance, Pa
k, only when the observational sampling errors and the cross-correlation terms in ∆ are indeed

zero. This can be numerically achieved by assimilating the observations serially using the so-called EnKF with exact second-

order perturbations sampling, EnKFESOS, as will be discussed in more details in section 2.3.

2.2 The Hybrid EnKF195

The hybrid EnKF and optimal interpolation (EnKF-OI) scheme was introduced as a way to mitigate for small ensemble sizes

and model deficiencies in the EnKF (Hamill and Snyder, 2000). Using small ensembles results in rank deficient forecast co-

variance matrices, which strongly limit the fit to the observations (Song et al., 2010). Neglecting model errors might further

produce small ensemble spread, and consequently unrealistic confidence in the forecast (Song et al., 2013). The standard so-

lution for rank deficiency or covariance underestimation is to apply inflation and localization. Inflation artificially inflates the200

spread of the ensemble around the mean state (Hamill et al., 2001; Hoteit et al., 2002). It is also a simple way to account for

neglected model errors (Pham et al., 1998). Covariance localization eliminates spurious correlations by a Schur product multi-

plication of the under-sampled covariance matrix with a function of local support (Houtekamer and Mitchell, 2001; Sakov and

Bertino, 2011). Inflation and localization, although efficient and widely used (especially in atmosphere and ocean application),

are generally model dependent and require important tuning efforts. They further do not introduce any new directions to di-205

versify the ensemble, limiting the filter update to a small-dimensional ensemble subspace (Song et al., 2010, 2013). Moreover,

global model parameters are not local quantities and therefore localization techniques might not be as straightforward (Deve-

gowda et al., 2007). In addition, the parameters are dynamically constant quantities (static in time), and thus large ensembles

are usually needed to well approximate the parameters distributions (Hendricks Franssen and Kinzelbach, 2008; Zhou et al.,

2012).210

The hybrid approach estimates the EnKF’s forecast error covariance by a weighted sum of the ensemble covariance and

a stationary covariance matrix, typically used in a variational or an optimal interpolation (OI) assimilation system. More
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specifically, the background state-state and state-parameters covariances are estimated as:

P̃Hybrid
xx = αP̂EnKF

xx + (1−α)Pb
xx, (10a)

P̃Hybrid
θx = βP̂EnKF

θx + (1−β)Pb
θx, (10b)215

where P̂EnKF
xx and P̂EnKF

θx are the sample covariance and cross-correlation matrices of the EnKF ensemble, respectively. The

background covariances are denoted by Pb
xx and Pb

θx, respectively. It was indeed shown by Hamill and Snyder (2000) that this

additional stationary background covariance may help representing part of the ensemble’s null space that is not described by

the limited ensemble. This procedure is based on physically reliable statistics, although flow-independent, unlike inflation and

localization (Wang et al., 2009). The scalar quantities α and β are weighting factors, taking values between 0 and 1.220

2.2.1 Practical Implementation

The static background covariance, Pb
xx, is often built on the basis of a long inventory of forecast errors (Wang et al., 2009). It

is usually assumed to be of low-rank, rx, and can be factorised into spectral modes using Proper Orthogonal Decomposition

(POD) as follows;

Pb
xx = SΩST = SΩ

1
2

(
SΩ

1
2

)T
= ŜŜT , (11)225

where S is a matrix of spectral coefficients, Ω carries information about the associated spectral variances and Ω
1
2 is its Cholesky

decomposition of Ω. The background perturbation matrix, Ŝ, has rx columns, with rx much smaller than the number of state

variables. The background state and parameters cross-covariance, Pb
θx, can be also approximated by a low-rank, rθ, matrix

using singular value decomposition (SVD) if the number of parameters is not equal to the number of state variables (and thus

the matrix Pb
θx is not square). This decomposition is useful in practice in order to reduce computational burden and memory230

storage. Accordingly, the complexity of the analysis step (referred to as Oa) in the hybrid EnKF-OI scheme becomes:

OaEnKF-OI = NNeNyNx +NN2
e (Nx +NΘ) +NNe (Nxrx +NΘrθ) ,

= OaEnKF +NNe (Nxrx +NΘrθ) . (12)

Given that rx and rθ are usually small in subsurface flow and transport problems (Gharamti et al., 2014b), the complexity of

the analysis step of the hybrid EnKF-OI is only marginally larger than that of the EnKF. The complexity of the forecast step of235

the EnKF and the hybrid EnKF-OI is the same when both are implemented with the same ensemble size.

The weighting factors α and β need to be specified in eqs. (10a) and (10b). Careful tuning of α and β is very important

(Hamill and Snyder, 2000). The simplest way is to select them based on trial and error but this can be computationally very

intensive. A more efficient approach was introduced by Gharamti et al. (2014b) and consists of optimising a one-dimensional

(1D) objective function at every update step of the state and the parameters. Based on Kalman’s update formulation, assimi-240

lating observations causes the uncertainties in the prior estimates to shrink. Thus, using the Kullback-Leibler (KL) divergence

(Kullback and Leibler, 1951), one can choose α and β that maximise the information gains at the analysis time tk. In this study,
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we opt to assimilate the observations serially and thus one can adaptively compute optimal weighting factors as follows:

argmax
α
F(α) = argmax

α
tr
[
P̃f
xx− P̃a

xx

]
,

= argmax
α

tr

[
P̃f
xxH

T
(
HkP̃

f
xxH

T
k + Rk

)−1

HkP̃
f
xx

]
,245

single observation
≡ argmax

α

1

d

Nx∑
m=1

(
c[m]
xx

)2
, (13)

where tr [·] denotes the trace of a matrix and d is a scalar quantity equivalent to observation variance
(
HkP̃

f
xxH

T
k + Rk

)
when

assimilating one observation. c
[m]
xx is the mth forecast variance-component corresponding to one observed variable. Similarly,

one can define the objective function for the parameters’ weighting factor as follows:

argmax
β
G(β) = argmax

β
tr
[
P̃f
θθ − P̃a

θθ

]
,250

single observation
≡ argmax

β

1

d

NΘ∑
m=1

(
c
[m]
θx

)2
, (14)

where c
[m]
θx is the forecast cross-correlation component between themth parameter and one observed variable. Such KL criterion

describes the information gain from each individual observation as it reflects the difference between the prior and the posterior

distributions. The interesting point here is that for each observation, different weights would be assigned to the background and

the ensemble statistics. The maximisation problems in (13) and (14) are 1D and bounded, yielding minimal forecast variance255

after the update. In terms of implementation, we perform the optimisation, over the interval [0,1], using a computationally

efficient scheme combining both golden-section search and repeated parabolic interpolation (Forsythe et al., 1977).

2.3 Exact Second-Order Observation Perturbations Sampling

The sampling error from neglecting the cross-correlation terms in eq. (9) in the EnKF analysis is generally not globally small.

It is often composed of a large number of elements that can add up after successive assimilation steps (Hoteit et al., 2015). This260

may degrade the filter’s accuracy and increases the underestimation of the analysis error covariance (Whitaker and Hamill,

2002). Furthermore, such sampling errors can propagate to subsequent steps, eventually deteriorating the performance of the

filter.

In a mathematical sense, for the condition in eq. (7) to hold, the rank of the forecast perturbation matrix

Ψf
k =

[
ψf,1k − ψ̂

f

k ,ψ
f,2
k − ψ̂

f

k , . . . ,ψ
f,Ne

k − ψ̂
f

k

]
(15)265

plus the rank of Rk must not exceed Ne− 1, which is essentially the rank of Ψf
k (Pham, 2001). Obviously, this is not possible

given that Ny +Ne− 1 is always greater than Ne− 1. Yet, if we suppose that Ψf
k has a rank Ne− 2, then when Rk is scalar,

it is possible to draw the observation perturbations εik such that the EnKF’s analysis first and second moments are exactly the

same as those computed using the KF. Accordingly, Hoteit et al. (2015) proposed to remove one rank from Ψf
k using an SVD

decomposition:270

ψf,ik ←ψf,ik −
(

Ψf
kwk

)
wik, (16)
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where wk is the normalised right singular vector of Ψf
k associated with the smallest nonzero singular value. The ith component

of wk is denoted by wik and the symbol ← means "replaced by." Then, assimilating the observations serially and simply

choosing εik =
√

(Ne− 1)Rkw
i
k would guarantee zero cross-correlations between the modified forecast perturbations and the

observation perturbations. The algorithm, referred to as EnKFESOS, involves a recursive update for wk after each update (Hoteit275

et al., 2015). The serial analysis procedure of the EnKFESOS is summarised in the algorithm below:

While j ≤Ny do

1: ẑk = H
[j]
k ψ̂k

2: z[j],ik = H
[j]
k ψ̂

a,i

k

3: K[j] =

Ne∑
i=1

(
ψf,ik − ψ̂

f

k

)(
z
[j],i
k − ẑk

)[ Ne∑
i=1

(
z
[j],i
k − ẑk

)
+ (Ne− 1)R

[j,j]
k

]−1

280

4: For i in [1,2, . . . ,Ne] do

ψa,ik ← ψa,ik + K[j]

(
y
[j]
k + s

√
(Ne− 1)R

[j,j]
k wik − z

[j],i
k

)
5: EndFor

6: ψ̂ak ←
1

Ne

Ne∑
i=1

ψa,ik

7: For i in [1,2, . . . ,Ne] do285

wik← s

√
(Ne− 1)R

[j,j]
k wik −

(
z
[j],i
k − ẑk

)[ Ne∑
i=1

(
z
[j],i
k − ẑk

)2
+ (Ne− 1)R

[j,j]
k

]− 1
2

8: EndFor

EndWhile

where s is an independent plus or minus sign. The superscript [j] denotes the jth element and row of the given vector and

matrix, respectively. The superscript [j,j] denotes the element in row and column j of the associated matrix. Note that unlike290

the EnKF, the observation perturbations cannot be Gaussian because of the constraint they satisfy in eq. (7). In the experiments

of Hoteit et al. (2015), these were shown to be almost Gaussian. In term of complexity, the EnKFESOS algorithm has almost

the same computational cost as that of the serial EnKF. Additional cost is required for iteratively updating the vector wk and

performing an SVD on Ψk to reduce its rank by one. Both operations are computationally almost negligible compared to the

cost of integrating the subsurface model.295

3 The Subsurface Model and Assimilation Experiments

3.1 The Rotterdam Port and Geology of the Area

The Port of Rotterdam is located in the Netherlands between the city of Rotterdam and the North Sea. It is the largest port

of Europe covering an area of 105 km2 and stretching over a distance of 40 km. The original geology of the area consists
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of a top Holocene layer of approximately 20 m thick (Figure 1). It is composed of clay and peat with local sandy channel300

deposits, but in the most western part, it becomes sandier. Under the Holocene layer, there is a Pleistocene aquifer of coarse

sand of approximately 10 m thick. Below lays a Pleistocene clay layer of approximately 30 m thick and a second aquifer of

approximately 140 m thick. The second aquifer is saline for most of the port areas whereas the first aquifer is partly saline in

the western part only. On top of the Holocene sediments, an anthropogenic layer of fine sand was added up to a level of 4 m

(eastern part) to 6 m (western part) above the mean sea level. Moreover, locally a dense network of sand filled vertical drains305

was used in the upper part of the Holocene clay in order to speed up the settling of the clay. A large part of the industrial port

area is surrounded by surface water, some of which continue to the bottom of the Holocene layer.

At the port site, more than 600 companies perform various activities such as trans-shipment of containers (coal, oil, gas, etc),

storage of oils and chemicals, building/repairing ships and oil/gas rigs, distribution and transport inland, and disposal/treatment

of chemical wastes. As a result of the long-term presence of these industrial activities, the soil and groundwater have become310

contaminated. This contamination is substantial, complex, and not limited to one particular site but affects the groundwater

systems at a regional scale (Marsman et al., 2006; Ter Meer et al., 2007). Part of the contaminants are non-mobile such as

heavy metals including arsene, cadmium, copper, mercury, lead and zinc. Other mobile contaminants are mineral oils, volatile

aromatics, chlorinated solvents and pesticides.

3.2 Coupled 3D Subsurface Model315

3.2.1 Organic Contaminants

Wells monitoring and lab analysis have concluded that groundwater at the port area is contaminated, at different depth,

with varying levels of pollutants (Marsman et al., 2006). One of the major contaminants are chlorinated hydrocarbons that

had entered the subsurface as Dense Non-aqueous Phase Liquids (DNAPL) and often have source zones of stagnant pure

phases at considerable depth. Numerous industrial companies at the port manufacture or work with these organic molecules.320

Here, we simulate the degradation chain of four CH components; namely Tetrachloroethene (PCE, a.k.a perchloroethene),

Trichloroethene (TCE), 1,2-Dichloroethene (DCE) and Vinyl Chloride (VC). We use plume data from a real site, but for confi-

dentiality reasons we do not show the exact location of the site. The horizontal area of the domain is equal to 1.5 km2, extending

1 km in the transverse direction and 1.5 km in the longitudinal direction (Figure 2). Degradation of the dissolved components

takes place as chlorine atoms are subsequently replaced by hydrogen atoms under anaerobic environmental conditions (Vogel325

and McCARTY, 1985; Clement et al., 2000; Tobiszewski and Namieśnik, 2012). Chlorinated hydrocarbons can pose serious

threat to human and environmental health (Ojajärvi et al., 2001; Lee et al., 2002, 2003).

3.2.2 Flow-Transport-Reaction Model (FTR-Model)

The subsurface model consists of three major components; namely flow, transport and reactions. First, the groundwater flow

(assumed steady) is solved on a rectangular domain using MODFLOW (Harbaugh, 2005). The steady groundwater flow as-330

sumption is valid at the current port location. Temporal variations, such as tidal influences and yearly fluctuations of precipi-
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tation and evapotranspiration are expected to happen, but on a small scale. Essentially, tidal influences and yearly fluctuations

of precipitation and evapotranspiration are expected to be minor as the near surface groundwater levels are controlled by the

drainage levels of the drainage systems in the port area (3-4 m above sea level). The deeper groundwater levels are predomi-

nantly influenced by surface water levels in the polders area (managed levels around or below sea level) and the large surface335

waters (approximately sea level). Temporal variations due to density driven flow are also neglected as we would expect only

minor changes in the most lower part of the model domain on the time scale of 50 years. MT3DMS is used to solve the

advection-dispersion based transport of the components (Zheng and Wang, 1999), in which the degradation process of the

components is added based on the module within the 3D-multispecies reactive package; RT3D (Clement, 1997). The soft-

wares are integrated in a sophisticated fortran-based tool (with graphical interface) called iMOD (Vermeulen et al., 2013). In340

differential form, the fate and transport of the components is modelled following:(
φ+ ρbk

`
) ∂C`

∂t
+λφC` =∇ ·

(
φD∇C`

)
−∇ ·

(
νC`

)
+ qsC

`
s + rC, (17)

where φ is porosity, ρb is the bulk density of the soil, k is the distribution (sorption) coefficient, C is the solute concentration,

λ is first-order reaction rate, D consists of hydrodynamic dispersion and molecular diffusion, ν denotes the Darcy velocity,

qs is the volumetric source/sink flow rate, Cs is the source/sink flux concentration and rC refers to the rate of reactions.345

The superscript ` corresponds to the component number taking values between 1 and 4 in this study. Along with the basic

groundwater flow and transport equations, and using the reaction operator-split strategy (Clement et al., 1998), the biological

reaction kinetics are assembled as a set of ordinary differential equations as follows:

∂CPCE

∂t
= −KPCPCE

RP
, (18a)

∂CTCE

∂t
= − 1

RT

(
KT ·CTCE−ST/P ·KP ·CPCE

)
, (18b)350

∂CDCE

∂t
= − 1

RD

(
KD ·CDCE−SD/T ·KT ·CTCE

)
, (18c)

∂CVC

∂t
= − 1

RV

(
KV ·CVC−SV/D ·KD ·CDCE

)
, (18d)

where CPCE,CTCE,CDCE, and CVC are the concentrations of the components, KP ,KT ,KD, and KV are first-order anaerobic

degradation rate constants, ST/P ,SD/T , and SV/D are stoichiometric yield values, and RP ,RT ,RD, and RV are retardation

factors. Linear sorption conditions are assumed for all components.355

The model domain as indicated by the blue region of Figure 2 is discretised horizontally into 20×30 grid cells of 50×50 m. In

the vertical direction, we consider 120 layers each of 0.5 m thickness. The discretisation is based on the geological voxel model

GeoTOP (Stafleu et al., 2011a). The top layer starts at 7.5 m above sea level, whereas the lowest layer is located at around 52.5

m below sea level. Based on different simulations conducted as part of this study, the migration of the contaminants was found

to be limited to a certain depth. We thus assume that only layers 21−100 are active. Figure 2 also shows the contaminant source360

(in yellow) consisting of four CH components with uniform concentration values. The plume data was obtained in January 2012

from a depth of 22.5 m below mean sea level (model layer 60), in which CPCE = 1083.0,CTCE = 238.0,CDCE = 633.0, and

CVC = 833.0 µg/l. This contaminant plume is considered as the initial condition of the transport simulations in this study.
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Furthermore, the PCE plume is used as a continuous contamination source and was included in the Source/Sink Mixing [SSM]

package of the MT3DMS simulator. Up to this date, other time-series and well contaminant data are not accessible due to365

confidentiality imposed by local companies. Modelling parameters required for running the coupled FTR-Model, such as

porosity and hydraulic conductivity are estimated in an offline procedure. To illustrate, the hydraulic conductivity is provided

as a 3D field in the database GeoTOP. The GeoTOP for the province of South-Holland is constructed using 46000 borehole

data (Busschers et al., 2010). Using the borehole data, the most probable lithostratigraphy and lithofacies have been estimated

in each voxel of 100×100×0.5 m. The GeoTOP further uses relations between the lithostratigraphical units and the lithofacies370

with parameters such as hydraulic conductivity, porosity and organic carbon content in order to provide these parameters on

the voxel scale. Further details about the GeoTOP methodology in addition to application to another provinces can be found

in Stafleu et al. (2011b). Table 1 outlines the mean value (averaged over all layers) for some of these parameters. We further

show in Figure 3 the spatial map of the distribution coefficient of TCE averaged over the top 10 layers. The map shows larger

sorption degrees in the northeast part of the domain. This gradually decreases towards the southern region.375

3.3 Assimilation Experiments

3.3.1 Reference Run and Pseudo-Observations

In the scope of twin-experiments, we first conduct a reference model run using some "true" (reference) parameters and ini-

tial condition. Next, we impose different uncertainties on the model and the initial conditions, and we assimilate pseudo-

observations extracted from the reference run to recover the "true" trajectory of the model. The goal is to estimate the concen-380

tration of chlorinated hydrocarbons (i.e., state variables) and their associated degradation rates (i.e., parameters):

x =
[

CT
PCE, CT

TCE, CT
DCE, CT

VC

]T
, (19a)

Θ =
[
KP , KT , KD, KV

]T
. (19b)

Based on the model’s configuration, the dimension of the state is Nx = 288,000 and the parameters NΘ = 4. The reference

values of the anaerobic degradation rates are obtained through field and laboratory testing (Suarez and Rifai, 1999) and are385

given asKP = 0.068,KT = 0.086,KD = 0.004, andKV = 0.153 per day. We perform the reference run for a 50-years period

using these rates along with the parameters of Table 1 and the initial conditions, x0, as defined above. We plot the resulting

hydraulic head field at four different layers (i.e., 30, 50, 70, and 90) in Figure 4. The maps clearly show the southward and

downward flow direction of the groundwater. The hydraulic head varies between 1.5 m in the center of the domain and drops

to around -1 m in the southern part. The top layers, on average, have larger hydraulic heads than the deeper ones. Overall, the390

flow configuration indicates that the contaminant plume would follow the behaviour of the groundwater and predominantly

moves vertically downwards and laterally in the southwards direction.

Based on this steady flow, we then simulated the reference transport of PCE, TCE, DCE, and VC. The time step of the

transport-reaction simulator was about 11 days. To visualise the migration process, we plot in Figure 5 the contaminant evolu-

tion of PCE, TCE, DCE and VC in layers 40, 60, 80, and 100 after 50 years, respectively. As shown, the contaminant plume,395
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which is originally present in layer 60, has moved into deeper Pleistocene layers. After 50 years, the maximum concentration

of DCE in layer 80 reaches 650 µg/l. Careful assessment of the transport process shows that the four plumes have reached the

last active layer in the second aquifer; i.e., layer 100. This is mostly due to the continuous PCE contamination source located

in layer 60. Contaminant concentrations in the top Holocene layers are much smaller. Laterally, the contaminant plume is seen

to expand from its initial location to a distance of 1.3 km southwards.400

From the reference run, we collect pseudo-observations of the concentration to use them later for assimilation. Observations

are assumed available for all components from layers 30, 50, 70, and 90. From each of these four layers, 10 data points are

collected and thus a total of Ny = 160. Note that Ny is much smaller than the number of state variables, Nx. This is usually

the case in subsurface hydrology applications, given the significant and expensive cost incurred for preparing, drilling, and

completing wells. The observation points are uniformly distributed throughout the domain as denoted by green triangles in405

Figure 2. We assume that these 160 measurements are available for assimilation on a yearly basis. We also place a control

well in layer 70 around the center of the domain, particularly at the local coordinates x= 450 and y = 600 m, to monitor

the concentration evolution in time. We further assume that these observations are noisy, in order to mimic realistic settings.

We thus perturb them with a Gaussian noise of mean 0 and standard deviation equal to 15% of the total observation mean

(averaged over the entire 50 years). During assimilation, the updated concentration values are monitored to make sure that they410

are non-negative. Cell values that fall out of this constraint are set to zero to obtain a physically meaningful solution (Li et al.,

2012; Gharamti et al., 2013).

3.4 Initial Ensemble and Background Statistics

To initialise the filters, we perform an unconditional 50-years simulation run (referred to as free run) starting from the mean

concentration of the reference model run. Thus, at time t= 0 the concentration of the four CH components is not only present415

in layer 60, but rather spread-out in all layers. In this free model run, we use around 30% larger degradation rates than the

reference values. The concentration of the components was saved each 6 months. Next, we randomly select a set of Ne

concentration snapshots from the free run outputs to form the state ensemble. This prior (initial) ensemble is quite far from the

truth and further exhibits a relatively small spread. This is chosen in purpose to test the robustness of the assimilation schemes

to challenging initial uncertainties. The initial parameters ensemble is sampled assuming a Gaussian distribution with mean420

equal to the reference rate values and variance 40%.

The background error statistics required for the hybrid EnKF-OI scheme are parameterised as follows. We form a set of

200 degradation realisations, as described above, and use these to perform 3-months forecasts starting from a series of initial

concentrations distributed at 3-months intervals over a 50-years period, as outlined in Figure 6. To illustrate, starting from the

mean concentration of the reference run, one realisation of the degradation rates Θ0 is used to obtain a 3-months forecast425

of the concentration x1. Then, using x1 and Θ1, the 3D-FTR model is integrated forward to obtain x2 concentration after

6 months. We continue this process until the end of the 50 years period. Then, we collect the predicted contaminant states

for all components and augment them with the corresponding degradation rates in a joint matrix form. POD and SVD are

then performed on the augmented concentration-degradation forecast perturbations to summarise the correlations by a small

14



number of orthogonal patterns (Hoteit et al., 2002; Skachko et al., 2009; Altaf et al., 2013). Consequently, the parameterisation430

of the background covariance matrix, Pb
xx, is achieved using the leading 10 POD modes (i.e., rx = 10) of this ensemble, which

capture more than 98% of the total variance. Concerning the background cross-correlations, we use the first 10 singular vectors

(thus, rθ = 10) to parametrise Pb
θx matrix. To visualise these correlations, we plot in Figure 7, as an illustration, the spatial

correlation between the rate at which PCE is degrading and the concentration of the ending product of the chain, VC. Clearly,

VC concentration in layer 60 exhibits the largest correlation values because of the continuous source term. Furthermore,435

since the groundwater flow is stronger in the downwards direction, and so is the contaminant migration, the cross-correlations

in deeper layers are larger than those of the shallow layers. The background Pb
θx seem to vanish in the upper parts of the

Holocene clay and peat layer. A consistent behaviour is observed for the remaining three degradation rates, in which the largest

correlations are those associated with CPCE and smallest with CTCE. PCE has the highest correlation because of the continuous

source zone of PCE. Any removal of PCE due to biodegradation in the source zone is directly replenished the next time step,440

and therefore KP determines the total load of chlorinated hydrocarbons in the system. On the other hand, TCE has the lowest

correlation because its value is high and that makes the parameter relatively insensitive to the amount of biodegradation taking

place as compared to the other degradation rate constants.

State and parameters estimates of the EnKF, hybrid EnKF-OI and EnKFESOS schemes are evaluated using two metrics;

namely mean-squared-error (MSE) and average-ensemble-spread (AES):445

MSE = N−1
x N−1

e

Ne∑
j=1

Nx∑
i=1

(
xej,i−xti

)2
, (20a)

AES = N−1
x N−1

e

Ne∑
j=1

Nx∑
i=1

∣∣∣∣xej,i− x̂ei

∣∣∣∣, (20b)

where xti is the true value of the variable at location i, xej,i is the forecast ensemble value and x̂ei is the corresponding ensemble

mean. MSE measures the distance from the estimate to the truth and AES measures the spread or the uncertainty of the

estimates (Hendricks Franssen and Kinzelbach, 2008).450

4 Results and Discussion

In this section, we present and compare assimilation results with the Rotterdam port’s 3D-FTR model using the standard EnKF,

the hybrid EnKF-OI and the EnKFESOS schemes. The observations are assimilated serially in all three schemes. Concentration

and degradation rate estimates of the filters are compared in terms of accuracy and spread. Concentration data are assimilated

every year for a total of 50 assimilation cycles. The ensemble size, Ne, is set to 48 in which batches of four members are run455

in parallel using Fortran’s OpenMP library.
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4.1 The Hybrid EnKF-OI vs the EnKF

4.1.1 Adjusting Concentration Statistics

To initiate the assimilation experiments, we first run the EnKF and the hybrid EnKF-OI, implemented using only state back-

ground statistics, i.e., using eq. (10a) and β = 1. We carry out 10 different experiments by changing the weighting factor α,460

for each individual run, between 0 to 1 with a step of 0.1. To visualise the resulting estimates, we plot the average MSE of the

contaminant concentrations, averaged over the 4 components and in time, in Figure 8. As shown in the left panel of Figure 8,

the most accurate concentration estimates are obtained using α= 0.7. This indicates that out of the total forecast error vari-

ance, the best reconstruction of the reference contaminant solution is obtained when 30% of this variance is traced from the

background statistics. Increasing or decreasing this background contribution (i.e., 30%) results in less accurate contaminant465

estimates. We also note that the least accurate estimates are those obtained when 90% of the ensemble statistics are built based

on the static background error covariance. On average, we found that when α takes values between 0.4 and 0.9, the hybrid

EnKF-OI is 16% more accurate than the EnKF.

We also study the effect of changing α on the resulting parameters’ estimates. In the right panel of Figure 8, we plot

the average MSE of each individual degradation rate obtained using the EnKF and 9 different hybrid EnKF-OIs using α=470

0.1,0.2, . . . ,0.9. We notice that the most influenced biodegradation rates are those associated with TCE and VC. In fact, KT

and KV are the least identifiable parameters and therefore a small difference in the estimation algorithm (i.e., hybrid EnKF-

OI and the EnKF) may lead to different estimates. In contrast, KP and KD are less sensitive to the weighting factor α. In

accordance with the estimates of the contaminant concentrations, the best match for KT is obtained using α= 0.7. This is

not the case for the other parameters; in which α= 0.3,1 and 0.8 resulted in the best fit to the reference degradation rates475

of VC, PCE and DCE, respectively. On average, KT and KV estimates are 13% and 35% more accurate than those of the

EnKF, respectively. The key point is that complementing the state statistics, using a weighted error covariance as in (10a), does

not only contribute to a better retrieval of the concentration but also helps adjusting the cross-correlations with the uncertain

parameters. This is essentially the case when biodegradation is taking place at a higher rate, as in KT and KV , and thus the

more information fed through observations, the better the state-parameters cross-correlations would be.480

To better understand the performance of the hybrid EnKF-OI scheme, we further study how the uncertainties of these

degradation rates are maintained in time. For this, we plot in Figure 9 the overall ensemble spread of the four degradation rates

obtained using the EnKF and the hybrid EnKF-OI (all tested α’s). As shown, the EnKF’s spread around these 4 parameters is

quickly reduced after the first 2 or 3 years. This rapid reduction of the ensemble spread, which is due to the relatively small

ensemble size and large initial uncertainties, limits the ability of the filter to impose larger corrections in the future, eventually485

degrading the accuracy of the estimated parameters. In contrast, the hybrid EnKF-OI maintains larger uncertainties in time for

different weighting factor values. As such, as α decreases from 1 to 0.1 the performance approaches that of the EnKF. For

instance, after the second year, the ensemble spread of the EnKF reaches 0.03 while it remains larger in the hybrid EnKF-OI

and equal to 0.09, 0.07 and 0.045, respectively. This allows the hybrid scheme to better exploit the concentration information

from observations. This can be confirmed by noticing that the spread of the hybrid filter continues to decrease after 25 years490
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of assimilation, unlike the EnKF that does not show signs of more corrections. All in all, selecting α= 0.7 seems to maintain

enough spread for both components’ concentration and degradation rates and leads to the most accurate estimates, on average.

For the sake of comparison, we refer hereafter to this scenario as EnKF-OIα=0.7.

4.1.2 Adjusting Concentration and Parameters Statistics

In the following set of experiments, we fix α to 0.7 and focus on changing the weighting factor between the EnKF and495

background state and parameters cross-correlations; i.e., β. As in the previous section, we conduct 9 experiments in which we

change β between 0.1 and 0.9. Note that the larger β is, the closer the performance is to EnKF-OIα=0.7. To analyse the results,

we plot in Figure 10 the average MSE and AES of the chlorinated hydrocarbon concentrations. Compared to the previous

runs that hybridise the state only, including background cross-correlations information slightly increases the spread around

the ensemble mean of concentration, as observed for 0.1< β < 0.3. In terms of accuracy, varying β between 0.1 and 0.6500

yields more accurate concentration estimates for all components. To illustrate, when β = 0.1 the average improvements over

the EnKF and the EnKF-OIα=0.7 are around 50% and 32%, respectively. This vigorous performance suggests that using only

10% of the "flow-dependent" parameters’ ensemble to characterise the pdf of the system is enough to outperform the EnKF.

In essence, the background state and parameters cross-correlations seem to carry sufficient description of how the degradation

rates and the concentration of each of the components are related. Consequently, only a small portion (i.e., 10%) of the online505

parameters’ ensemble is required to obtain an accurate biodegradation picture, while the rest of the information could come

from the prescribed static background statistics. This could be due to the time-independent nature of the propagation step

describing the evolution of the degradation rates, thereby manifesting a minimal dependence on the flow-dependent ensemble.

This observation comes in accordance with the steady-state Kalman filter (El Serafy and Mynett, 2008) that assumes time-

invariant error covariance matrix as long as accurate spatial correlations are used within the so-called Kalman gain. Our510

experimental results suggest that the best parameter’s hybrid covariance matrix is very close to a steady-state one. However,

this is only for the parameters and this was not the case for the state as discussed in section (4.1.1). Following the notation

introduced earlier, we refer to this scenario, hereafter, as EnKF-OIβ=0.1
α=0.7

To have a better insight at the suggested performance, we plot in Figure 11 the evolution of the concentration ensemble

members for all components in time. For a fair comparison, we also plot the associated reference solution, the EnKF’s and the515

EnKF-OIα=0.7’s ensemble members. As explained in section (3.4), the initial ensemble spread is clearly far from the truth.

When data is assimilated into the system, all schemes tend to move closer to the truth. By the end of the 50-years period, both

EnKF and EnKF-OIα=0.7 underestimate the concentration of DCE and VC and end up with quite small ensemble spread. The

EnKF-OIβ=0.1
α=0.7, on the other hand, leads to the best performance, well matching the reference solution for all components.

Moreover, this hybrid scheme is shown to better preserve the ensemble spread around the true final concentrations. In terms520

of the estimated degradation rates, we plot in Figure 12 the temporal change of MSE for each individual degradation rate

as they result from the EnKF-OIβ=1.0
α=0.1...0.9 (top panels) and EnKF-OIβ=0.1...0.9

α=0.7 (bottom panels). For all rates, the EnKF-

OIβ=0.1...0.9
α=0.7 performs much better during the first10 years, especially for KP and KT . Averaging in time and over all cases,

EnKF-OIβ=0.1...0.9
α=0.7 is 33%, 17%, 33% and 15% more accurate for retrieving KP , KT , KD and KV , respectively. From these
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results, one can see that the accuracy of the degradation rates tends to improve in time, except for KD that is shown to degrade525

for small α and large β values. To interpret this behaviour, one should recall that KD (and also KV ) can only be estimated

correctly as long as the concentration of the source component (CDCE in this case) is accurately recovered. Before reaching

this, the estimates of KD are compensated for errors in KP and KT .

Next, and instead of manually changing the weighting factors α and β, we follow eqs. (13) and (14) and conduct a 1D

optimisation problem prior to assimilating the observations serially. The idea is to get the maximum reduction in the prior530

uncertainties for both the concentration and the degradation rates as a way to "optimally" exploit the information in the assimi-

lated observations. As such, different weights can be assigned to the background and the ensemble statistics. Based on this, we

plot in Figure 13 the resulting optimal α values at every assimilation cycle and for each observation. Recall that there is a total

of 160 observations, such that each contaminant component is observed at 40 different locations. To better interpret the plot,

we arrange these observation indices as follows: from top to bottom of the left y-axis; PCE: 1→ 40, TCE: 41→ 80, DCE:535

81→ 120 and VC: 121→ 160. As can be seen from the plot, the adaptive hybrid EnKF-OI algorithm selects either 0, and thus

eq. (10a) is purely based on Pb
xx, or 1 so that only the ensemble covariance, P̂EnKF

xx , is included. When assimilating PCE, TCE

and VC concentrations, the adaptive scheme tends to use the background covariance (i.e., α= 0) for almost the first 25 years.

Beyond this, the filter statistics are only based on the ensemble flow-dependent information (i.e., α= 1). This is not surpris-

ing given the large initial uncertainties imposed on the contaminant concentrations. Once the statistics are adjusted towards540

the truth, the filter relies more on the correlations of the flow-dependent ensemble statistics. This performance changes when

assimilating DCE observations in the sense that the filter builds its forecast error covariance mostly using static background

statistics and less using the flow-dependent ensemble. This is in agreement with the results and conclusion drawn from Figure

12 in which the background information of DCE are more useful than the ensemble statistics. Averaging over the entire optimal

values of α, we obtain a global α∗ = 0.64, which is quite close to the 0.7 value that resulted in the best performance in section545

(4.1.1). In terms of the adaptive β values, we found that maximising the difference between the prior and the posterior parame-

ters’ covariance, P̃θθ, may not always be helpful. This is because doing such maximisation can quickly diminish the ensemble

spread, eventually paralysing the filter’s analysis. In fact, minimising the difference1 yielded more accurate degradation rates.

To analyse this, we plot on the same figure the time-evolution of MSE of concentration when (1) maximising the information

gain for both state and parameters, (2) minimising the information gain for both and (3) maximising the state’s and minimising550

the parameters’ information gain, respectively. As seen from the three curves, the best performance is obtained when the in-

formation gain for concentration is maximised and the associated parameter’s one is minimised. Compared to maximising the

information gain of both state and parameters, this mixed scheme now yields 37% more accurate contaminant concentrations.

1Minimising the difference between the prior and the posterior covariances does not mean that the filter does not apply any correction. Since the Kalman

analysis equation always minimises the variance, the adaptive algorithm now acts in a way such that only the lowest minimisation possible is retrieved. Unlike

standard Kalman filtering, this procedure moves at a slower pace towards the truth.
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4.2 The EnKFESOS vs the EnKF

In the previous section, all approaches and experimental results were intended to mitigate for the rank deficiency and the555

under-sampling of the ensemble’s sample forecast error covariance. In the following experiment, we attempt to deal with the

undersampling of the observation errors by implementing the EnKFESOS algorithm presented in section (2.3). We first note that

the distribution of the new observation perturbations show reasonable deviations from the prescribed Gaussian errors in the

original EnKF algorithm, as has been noticed by Hoteit et al. (2015). To assess the performance of the EnKFESOS against the

EnKF, we study at a closer glance the contaminant maps after 50 years as estimated by the ensemble means from both schemes.560

Thus, we plot in Figure 14 the normalised errors for the components TCE and DCE at layers 70 and 80, respectively. These

error maps are obtained by subtracting the ensemble mean concentration from the reference and then normalising the result by

the average of the reference solution. One common feature in these maps is the clear underestimation of TCE and DCE in the

north part of the domain. This is because the initial reference concentration is quite different from the one assigned to the initial

ensemble using the free run setup as outlined in section (3.4). In time, both filtering schemes try to push the contaminant plume,565

which has already moved towards the southern region, upwards to match the truth. Moreover, as demonstrated in layer 70 and

unlike the EnKFESOS, the EnKF overestimates the TCE concentration in the center of the domain, which further continues

to move southwards. In layer 80 (i.e., 5 m deeper), the EnKF tends to underestimate the concentration of DCE especially in

the southern part of the domain. On the other hand, a slight overestimation of this DCE concentration towards the center is

suggested by the EnKFESOS. In general, and assessing similar patterns at other layers, the EnKFESOS exhibits higher accuracy in570

retrieving the contaminant concentration than the EnKF. This provides further evidence that ignoring the observation sampling

errors within the EnKF can indeed deteriorate the quality of the state estimates.

To study the impact of the EnKFESOS on the estimates of the parameters, we examine the evolution of the approximate

distribution of TCE degradation rate in time. We compare the resulting pdfs with those obtained using the EnKF after 5, 15,

30 and 45 years. On top of the pdfs, we also monitor the temporal evolution of KT AES in Figure 15. Starting from rather flat575

and uncertain pdfs of KT , both EnKF and EnKFESOS correct the members of TCE degradation rate towards the truth, which is

0.086 per day. Notice that within the first 15 years, the pdfs seem to move in the wrong direction, away from the truth. This

is due to the large concentrations at time 0, and thus the filter increases the degradation rates to fit the reference contaminant

concentration. Beyond that and once the concentration is adjusted, the parameters from both filtering schemes begin moving

closer toward the true degradation rate. However, the EnKF is seen to move faster towards the truth and further diminishes the580

uncertainty aroundKT quite rapidly. Consequently, the resulting pdf ofKT after 45 years looks like a Kronecker delta function.

This is, roughly speaking, not a very healthy assimilation system as the parameter updates become insignificant over the rest

of the assimilation window. In contrast, the degradation rate obtained using EnKFESOS moves at a slower pace towards the

true rate maintaining large enough spread to fit the incoming observations. Compared to the EnKF, the AES suggested by the

EnKFESOS, as shown on the left y-axis, is almost 40% to 50% higher. As a matter of fact, this performance is more trustworthy585

than that of the EnKF, indicating the essential need to account for observation sampling errors at the time of the analysis. Hoteit
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et al. (2015) found that the ensemble spread of the EnKFESOS is larger than that of the EnKF for state estimation. In here, we

experienced a similar, yet more pronounced behaviour for the estimates of the parameters.

As a way to provide an overall assessment, we compare the best estimates obtained using all schemes considered earlier; i.e.,

the EnKF, the EnKF-OIβ=0.1
α=0.7 and the EnKFESOS. We plot the time series of MSE for contaminant concentration and degradation590

rates, summed over all components, in Figure 16. Clearly the EnKF is the least accurate. Accounting for observation sampling

errors yield around 21% and 23% more accurate state and parameters estimates, respectively. Tackling the rank deficiency

of the EnKF results in 48% and 70% more accurate state and parameters estimates, respectively. Accordingly, addressing the

issues of observation sampling errors and rank deficient forecast ensemble matrices seem to be crucial and can highly improve

the accuracy of the estimates. From our experimental results and for this particular setting, resolving the rank deficiency issue595

appear to have the largest impact on the final estimates of the filter.

4.3 Incorporating Uncertainties in the Hydraulic Parameters

In sections 4.1 and 4.2, the static background covariance matrices were derived on the basis of perfectly known hydraulic

parameters. In this section, we test the impact of incorporating uncertainties in the groundwater flow model on the performance

of both the hybrid EnKF-OI and the EnKFESOS schemes. Generally, such procedure is expected to alter the precise description600

that the hybrid scheme utilizes to relate the biodegradation rates and the components’ concentrations. To this end, the GeoTOP

software package, described in section 3.2.2, is used to obtain 48 different realizations for hydraulic conductivity and porosity.

The realizations are built assuming a Gaussian distributed hydraulic parameters with mean equal to the 3D fields used in the

reference model run (section 3.2.2) and standard deviation paramertrized in two different scenarios. We use σm = 10% of the

mean in the first scenario (moderate uncertainty) and σh = 30% of the mean value in the second scenario (high uncertainty).605

The reason for this choice is to provide a realistic assessment of the filters under varying modelling uncertainty.

Before testing the performance of the hybrid EnKF-OI and the EnKFESOS, we first construct the background covariances;

i.e.,Pb
xx and Pb

θx, using a similar procedure to the one presented in section 3.4 but based on perturbed conductivity and

porosity realizations (here, σm is used). To interpret the influence of this modelling uncertainty, we plot in Figure 17 the

averaged cross-correlations of KP rate with all four components. We observe that the dominant correlation patterns are similar610

to those obtained earlier using perfect flow conditions, especially in the shallow aquifer layers. In deeper layers, there are

noticeable differences in the correlations of KP and CTCE. In addition, the magnitude of the new background correlations is

considerably smaller. For instance, the estimated correlation value between KP and CDCE after imposing uncertainty on the

hydraulic parameters has shrunk by 60%. The fact that the major spatial patterns of the background correlations were preserved

and their magnitude was influenced the most is related to the nature of the perturbed hydraulic parameters. Generally, porosity615

and conductivity affect the speed and the movement of groundwater in the aquifer and thus the degradation process would be

expected to either slow down or accelerate. Compared to the previous parameterization, in this scenario 15 POD modes were

required to capture around 97% of the total variance.

With moderate uncertainty, both the hybrid EnKF-OI and the EnKFESOS outperform the EnKF and recover decent estimates

of the degradation parameters. However, compared to the ones obtained under perfect flow conditions, these were slightly less620
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accurate. Switching to the high uncertainty scenario (i.e., using σh), all three assimilation schemes failed to retrieve reliable

estimates of the concentration and biodegradation. To illustrate, we show in Figure 18 (top panel) the temporal evolution of

MSE obtained using EnKF-OIβ=1.0
α=0.3,...,0.8 with perfect and perturbed hydraulic parameters. The performance as shown starts

degrading after 15 years, eventually leading to inaccurate concentration estimates and unreliable parameters. This suggests

that quantifying the large uncertainty of the flow model alongside the reaction parameters, using any of the three schemes,625

might be necessary in such a challenging setup. On the other hand, under moderate uncertainty we compare the performance

of the assimilation schemes to the ones obtained assuming perfect flow. For this, we plot the average gain (MSE difference),

suggested by the adaptive hybrid scheme over EnKFESOS estimates of the degradation rates. The adaptive hybrid EnKF-OI

remains more accurate even after perturbing the hydraulic parameters. However, the proposed accuracy is roughly halved for

all parameters. This is indeed related to the less reliable static background covariances, which are now subjected to uncertainties630

in the groundwater flow dynamics.

5 Conclusions

In this study, we examined and investigated the hybrid ensemble Kalman filter (EnKF-OI) and the second-order observation

perturbations sampling (EnKFESOS) schemes to estimate contaminant concentration and biodegradation rates of chlorinated

hydrocarbons at the port of Rotterdam. We simulated the migration problem of a single plume consisting of Tetrachloroethene635

(PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (DCE) and Vinyl Chloride (VC). Concentration data was used for yearly

assimilation over a period of 50 years. The hybrid scheme complements the flow-dependent sample ensemble covariance of

the EnKF with a prescribed static background covariance from an OI system to mitigate the undersampling of the ensembles

and neglected model errors. The exact second-order sampling of the observation perturbations modifies the observation per-

turbations and assimilates the data one after the other, thus resolving the undersampling of the observation noise in the EnKF640

analysis. Challenging assimilation scenarios using a relatively small ensemble (Ne = 48) were presented, in which observations

were processed serially. The key findings of this study and future research directions are summarised below:

1. Both the hybrid EnKF-OI and the EnKFESOS successfully provide accurate concentration and degradation rate estimates.

On average, a tuned hybrid EnKF-OI (using α= 0.7 and β = 0.1) suggests 48% and 70% more accurate state and param-

eters estimates than those obtained using the EnKF. On the other hand, the EnKFESOS’s state and parameters estimates645

are 21% and 23% more accurate, respectively. In addition, the two schemes are easy to implement and computationally

efficient requiring only a minimal change to an existing EnKF code.

2. Both filtering schemes demonstrated a better handling of the ensemble spread, for both state and parameters, avoiding

collapse or false (unrealistic) confidence in the estimates, which enables better fit to the observations.

3. The hybrid scheme requires some effort to tune two weighting factors that adjust the background statistics for both state650

and parameters. The serial adaptive version of this scheme, which relies on maximising the information gain between

the forecast and analysis for each individual observation point, seems promising. From the experiments, we found that
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maximising the information gain could however possibly deplete the uncertainty within the ensemble quite rapidly. Yet,

this observation may vary between systems depending on the degree and the rate of uncertainty growth. One possible

solution that we tested is to minimise the information gain, and thus decrease the update impact when fitting the obser-655

vations. Further, one could also build the objective function in such a way that only a portion of the information gain

is maximised. For instance, an example would be to enforce the ratio between the trace of the analysis and the forecast

covariance matrices to be greater than 30% meaning that at least 60% of the ensemble uncertainty is preserved.

4. Failing to account for observation undersampling errors in the standard EnKF can impact not only the quality of the

state but more importantly the estimates of the parameters. In our experiments, the degradation rates obtained after660

assimilating the observations using the EnKFESOS scheme were more accurate, more reliable and more realistic.

5. Imposing large uncertainties on the hydraulic parameters of the flow model degrades the performance of all filtering

schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the static background statis-

tics, satisfactory results were obtained only when the uncertainty imposed on the background information is relatively

moderate. The EnKFESOS further outperformed the standard EnKF with moderate flow uncertainty conditions.665

6. Careful tuning of the hybrid EnKF-OI yields the best estimates of the concentration and the degradation rates as com-

pared to the EnKF and the EnKFESOS. This manifests the importance of complementing the EnKF parameters cross-

correlations with static ones.

Building a unified EnKF scheme, which tackles both the undersampling of the forecast covariance and the observation sampling

errors simultaneously is an interesting line of research in the future that we will consider in our future work.670
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Table/Figure Captions:

Table 1: Different modelling parameters for the coupled flow-transport-reaction model. The values given for 3D parametric

fields, such as bulk density and distribution coefficients, are the mean values from the entire 121 layers.

Figure 1: Schematic representation of the port of Rotterdam area with three main geologic layers: (i) Holocene clay and peat850

layer with sandy deposits (≈ 20 m thick), (ii) Pleistocene layer with coarse sand (≈ 10 m thick), and (iii) Pleistocene

clay layer (≈ 30 m thick). POC1, POC2 and POC3 refer to different planes of compliance at the port site.

Figure 2: Initial configuration and geometry of the study area, located at the port of Rotterdam. The blue part is the domain

area (1.5 km2) of each layer and the yellow region is the plume of chlorinated hydrocarbon contaminants located in layer

60 at a depth of 22.5 m below the mean sea level. The green triangles indicate the measurement locations collected from855

layers 30, 50, 70 and 90.

Figure 3: 2D spatial configuration of sorption (distribution coefficient) for trichloroethene (TCE) averaged over the first 10

layers of the domain.

Figure 4: Groundwater (GW) hydraulic head configuration from four different active layers in the domain. The largest water

head is located in the center of the domain and is equal to 1.5 m. The water head deceases in the southern part of the860

domain. The flow is computed using MODFLOW and plotted using iMOD’s graphical interface utility.

Figure 5: Contaminant plume after 50 years for PCE, TCE, DCE and VC in layers 40, 60, 80 and 100, respectively. Vertically,

the contaminant plume tend to move downwards towards the Pleistocene clay layers and the second aquifer. In the lateral

direction, displacement of the plume happens southwards.

Figure 6: A sketch illustrating the procedure followed to construct the background statistics, Pb
xx and Pb

θx. 3-months forecasts865

are performed starting from different initial conditions, x0,1,...,N , and different degradations rate parameters, Θ0,1,2...,N ,

where N = 200 steps summing up to 50 years. The background state covariance, Pb
xx, and state-parameters cross-

correlations, Pb
θx, are then constructed using the first leading modes only.

Figure 7: Individual cross-correlation terms of the background matrix Pb
θx associated with PCE biodegradation rate and VC

concentration. The correlations are shown for all layers, assuming that the cells from each layer have been stretched870

in one vertical line (y-coordinate). Largest correlation is present in layer 60 where the contaminant source is located.

Biodegradation in shallow layers is not as strong as in deep layers because of the downwards groundwater flow direction.

Figure 8: Left panel: Average mean square errors (MSE) of contaminant concentrations obtained using the EnKF and the

hybrid EnKF-OI using α= 0.1,0.2, . . . ,0.9. Right panel: Average MSE for PCE, TCE, DCE and VC biodegradation

rates obtained using the EnKF and the hybrid EnKF-OI for different weight factor (α) values.875
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Figure 9: Time series change of average ensemble spread (AES) resulting from the EnKF and hybrid EnKF-OI using 48

members in which α= 0.1,0.2, . . . ,0.9.

Figure 10: Bar-Plot (left y-axis): The AES of concentration ensemble obtained using the hybrid EnKF-OI by changing the

individual weighting factors (α and β) between 0.1 and 0.9. Shown according to the right y-axis is the MSE obtained

using the hybrid EnKF-OIβ=0.1,...,0.9
α=0.7 (triangles), the hybrid EnKF-OIα=0.7 (cross) and the EnKF (plus).880

Figure 11: Forecast ensemble members of PCE, TCE, DCE, and VC concentration. The evolution of these members (Ne = 48)

is shown for the entire 50 years. Results are obtained using the standard EnKF, the EnKF-OIα=0.7 and the EnKF-OIβ=0.1
α=0.7

schemes. Solid dashed lines correspond to the reference concentration of each component.

Figure 12: Images showing the MSE of PCE, TCE, DCE and VC degradation rates in time. These are obtained using the

hybrid EnKF-OI scheme for (1) different α values (top panel) and (2) different β values keeping α fixed and equal to 0.7885

(bottom panel).

Figure 13: The coloured image shows, according to the left y-axis, the adaptive change in α values for each individual ob-

servation. The observation index (1, . . . ,160) is sorted such that the first 40 indices correspond to PCE measurements,

the second 40 correspond to TCE, third 40 correspond to DCE and finally VC takes the last 40 indices. The yellow

color indicates that no background covariance matrices have been used and the blue color suggests that only ensemble890

"flow-dependent" statistics are involved. The curves demonstrate the change in MSE, according to the right y-axis, in

time when maximising the information gain (cyan), minimising the information gain (red) and maximising the formation

for concentration and minimising it for degradation rates (green).

Figure 14: Top panel: TCE concentration and error maps in layer 70 obtained using the reference run (1st column), the EnKF

(2nd column) and the EnKFESOS (3rd). Bottom panel: Same as top panel but for the concentration of DCE.895

Figure 15: Left y-axis: The time evolution of the prior probability density functions corresponding to TCE degradation rate

obtained using the EnKF (solid lines) and the EnKFESOS (dashed lines). The reference "true" rate is given at 0.086 /day

in brown color. Right y-axis: The AES of KT suggested using the EnKF and the EnKFESOS.

Figure 16: Left panel: Time-series of MSE for concentrations obtained using the EnKF, the EnKFESOS and the hybrid EnKF-

OIβ=0.1
α=0.7. Right panel: Same as the left panel but for all degradation rates (y-axis is in log scale).900

Figure 17: Cross-correlation terms of the background matrix Pb
θx associated with PCE biodegradation rate and all compo-

nents’ concentartions. The spatial correlations are averaged for all layers. The correlations in black are based on perfect

groundwater flow model. The correlations in blue are constructed after perturbing the hydraulic conductivity and porosity

of the forecast model. Largest correlation is present in layer 60 where the contaminant source is located.

Figure 18: Top panel: Performance of the hybrid EnKF-OIβ=1.0
α=0.3,0.4,...,0.8 before and after perturbing the hydraulic con-905

ductivity and porosity. The performance is assessed based on the temporal evolution of the MSE (prediction) errors.
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The imposed Gaussian uncertainty is high and obtained using standard deviation σh. Bottom panel: Average gain
1
50

∑50
i=1 (MSEEnKF-OI−MSEEnKF-ESOS) suggested for all degradation parameters. The improvements suggested by the

adaptive EnKF-OI over EnKFESOS are shown for both perfect and perturbed (using σm) flow scenarios.
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Symbol Parameter Description Value (unit)

φ Porosity 0.30

ρb Bulk density 1167 (kg/m3)

kPCE Distribution coefficient of PCE 0.0012 (m3/kg)

kTCE Distribution coefficient of TCE 0.0015 (m3/kg)

kDCE Distribution coefficient of DCE 0.0014 (m3/kg)

kV C Distribution coefficient of VC 0.0010 (m3/kg)

κL Longitudinal dispersivity 0.5 (m)

κ̇T/κL
Ratio of horizontal transverse disper-
sivity to longitudinal dispersivity

0.1

κ̈T/κL
Ratio of vertical transverse dispersivity
to longitudinal dispersivity

0.1

δm Molecular diffusion 10−10 (m2/s)
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