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August 1%, 2016
Dear Dr. Hendricks Franssen,

Please find enclosed our revised manuscript “On the efficiency of the hybrid and the
exact second-order sampling formulations of the EnKF: A reality-inspired 3D test case
for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam.”
All reviewers’ comments were carefully considered in the revised manuscript. When we
did not agree with their comments, we gave a thorough explanation. The reviewers’
comments and suggestions improved the quality of the manuscript, which we gratefully
acknowledge. Enclosed please also find a detailed response to all individual points raised
by the reviewers.

Following your suggestion, we have carefully revised the introduction section motivating
better the assimilation problem and further identifying the key novel features. In essence,
we stress out the fact that the proposed hybrid scheme consists of a generalized adaptive
update allowing the weighting between the ensemble and the background covariances to
change not only between different assimilation times but also for different observations at
any update step. We also indicate that this is the first study addressing the application of
the EnKFgsos scheme for parameters estimation and thus we investigate whether
accounting for observation sampling errors can lead to a better tuning of the unknown
parameters or not.

Following the comments of reviewers 1 and 3 regarding the model and its hydraulic
parameters, we now include in section 3.2.2 a detailed description of the initialization
process and how we produce the maps for various grid-based parameters. In terms of the
complexity of the experiments, we follow the recommendations by the reviewers and run
a new set of experiments including varying uncertainties in the flow model. We truly
think that this is a useful addition to the manuscript, explaining how the proposed hybrid
scheme performs when the background statistics are subject to various uncertainties. We
include our findings in the abstract, conclusion and new section 4.3. Based on reviewer 2
suggestion, we also perform a new forward model simulation using the optimized
parameters set and show the usefulness of the assimilation process. However, we do not
include any new simulation with an ensemble smoother or an MDA scheme because this
study addresses the issues of the filtering problem only. Further details and explanations
can be found in our response to the reviewers’ comments.

We thank you for all the constructive suggestions you made, and for giving us a chance to
resubmit a revised version of our manuscript and to reply to the reviewers’ comments.
We are grateful for all your editorial efforts. We will be happy to revise the manuscript
again should the reviewers have any further concerns.

Please do not hesitate to contact me should you need anything else.

Sincerely yours,
M. E. Gharamti



Reply to Reviewer #1

We would like to thank the reviewer for his comments and suggestions. Below please
find our detailed response to the reviewer’s concerns.

In this case the title says it all, or almost... I was quite thrilled when I read the title and
introduction since I was expecting to see an application of the EnKF to a realistic case (port-
Rotterdam inspired), unfortunately the final outcome is a nicely written, quite interesting
analysis of the efficiency of the hybrid and the exact second-order sampling formulations of
the EnKF, but the application, although port-Rotterdam-inspired, is far from being realistic at
all. And the authors fail to recognize it.

The authors make no comment about the statement in line 345 "Modelling parameters
required for running the coupled FTR-Model, such as porosity, distribution coefficients and
others are defined, based on real data and laboratory assessment, as 3D heterogeneous fields"
(They forgot to mention explicitly hydraulic conductivity.)

This assumption means that all the uncertainty associated with the heterogeneous geological
parameters is discarded, and that all the analysis has been performed assuming that porosity,
conductivity, distribution coefficient, and other parameters are perfectly known. Once this is
realized, one has to continue reading under the understanding that what follows is a purely
academic exercise, poorly disguised as a realistic application.

The authors must be very clear from the very beginning on this "small" detail, and
acknowledge it. Apart from that, I think the paper is well written, hard to follow at times, and
provides an interesting discussion on how to deal with the specifics of the hybrid and the
exact second-order sampling formulations of the EnKF.

The reviewer raises a good point. Improving the estimates of the groundwater flow,
on top of the contaminant dynamics (transport & reactions), is rather important. This
is usually done, as the reviewer points out, by quantifying the uncertainties of the
hydraulic parameters such as conductivity and porosity. This has been extensively
studied in the Hydrology literature.

Our focus in this paper, however, is to address two major drawbacks of the EnKF;
namely the forecast under-sampling and observation sampling errors. We present this
while focusing on a slightly different, but related, application and that is quantifying
the uncertainties associated with subsurface biodegradation reactions. To the best of
our knowledge, this would be the first application in which biodegradation parameters
are estimated in a near-realistic modeling scenario using the EnKF. Addressing the
uncertainties of subsurface hydraulic parameters is possible but is beyond the scope of
the current study. Following the reviewer’s suggestion, we now clarify this detail in
the introduction section. The reviewer may refer to lines 99-101.

Concerning line 345, we now provide more details on the offline procedure we follow
to estimate the hydraulic properties of the subsurface such as porosity and
conductivity. In essence, the hydraulic conductivity is provided in the database
GeoTOP. The GeoTOP for the province of South-Holland is constructed using 46.000
borehole data. Using the borehole data, the most probable lithostratigraphy and
lithofacies have been estimated in each voxel of 100x100x0.5 m. The GeoTOP further
uses relations between the lithostratigraphical units and the lithofacies with
parameters such as hydraulic conductivity, porosity and organic carbon content in
order to provide these parameters on the voxel scale. Further details and essential
referencing are provided towards the end of Section 3.2.2.



Minor comments

Line 129: What do you mean by "...the EnKF computes an approximation of the joint pdf..."
Unless you mean the non-parametric joint pdf as implied by the raw set of ensemble values,
the statement is incorrect. The EnKF is based on means and covariances, but this does not
imply that by knowing them you know the joint pdf.

Given the limited ensemble size, we refer to the joint pdf suggested by the EnKF at
every forecast step as an approximation of the “true” pdf. We agree with the reviewer,
having the mean and the covariance does not necessarily give us access to the entire
true distribution of both state and parameters. This was made clearer in the revised
text.

Line 160. There is no Gaussian assumption in the derivation of the Kalman filter equations!!
Those equations are solely based on means and covariances and there is no requirement that
parameters or state variables are Gaussian to derive them. However, it is true that the EnKF is
optimal for multiGaussian-based variables.

By construction, the Kalman Filter accounts only for the first and second moments of
the estimated random variable (state or parameters). When the pdfs are not Gaussian,
it is only optimal along linear estimators and when both the model and observational
operators are linear. As the reviewer suggests, when the distribution of the unknowns
is multiGaussian (and the model is linear) the EnKF is optimal (for an infinite
ensemble size). This is however almost never the case when parameters are also part
of the state vector, as in the case of our study. The sentence was revised to remove
any confusion.

Line 483. ... the "famous" steady-state Kalman filter... Please, watch your wording and avoid
sensationalism.

The word famous has been removed. Thank you.



Reply to Reviewer #2

We thank the reviewer for commenting on the manuscript. Below please find our
detailed response to the reviewer’s concerns.

The paper presents an assimilation approach to subsurface contaminant transport problem
inspired by the port of Rotterdam in the Netherlands. A multi-dimensional and multi-species
reactive transport model is coupled to simulate the migration of contaminants within
subsurface flow model. The biodegradation chain of chemicals is modeled for five decades.
An artificial measurement data for the concentration is build using a synthetic setup and then
used for updating the concentration and degradation rates in presence of model and
observational errors. An adaptive hybrid ensemble Kalman filter is evaluated along side the
exact second-order sampling formulation introduced by one of the authors in an earlier
publication. The paper is well written and the presented numerical results are interesting.
However, the test setup assumed perfect knowledge of the distributed subsurface parameters
(permeability and porosity), which is generally unknown except at few locations.

We thank the reviewer for his positive feedback. Concerning the spatial distribution
of the permeability (hydraulic conductivity) and porosity, we agree that quantifying
their uncertainties is essential; however, it is beyond the scope of our work. In the
revised manuscript, we now provide details on the offline estimation procedure that
lead to a 3D parameterization of the flow parameters. Please refer to Section 3.2.2.

I find the results convincing but would recommend that the authors add the following to the
numerical study:

1- The utilized models and state parameter estimation techniques are limited to online
updating systems which in many cases are known to under-perform iterative schemes
(ensemble smoother where all the data is assimilated at once) specially within an annealing
framework in what is known as ensemble smoother with multiple data assimilation. Can the
author include that in their numerical study.

The objective of the current work is to test the usefulness of accounting for [1] EnKF
forecast under-sampling issues (forecast step) and [2] EnKF observation sampling
errors (analysis step). We then draw conclusions on how each of these two issues
affects the accuracy and reliability of the resulting state and parameters’ estimates.
We realize that iterative ensemble schemes are convenient to apply in subsurface
applications, but this is not the focus of our study. An ensemble smoother (ES) can
still suffer from under-sampling issues during the forecast step because of the limited
ensemble size. Adding the MDA scheme to the analysis step may help to improve the
fit to the data when all are assimilated at once. It is further computationally more
demanding and may suffer from convergence issues. In general, it can be subject to
the same problems related to under-sampling of the background and observational
error covariances as the EnKF. This study only considers the filtering problem. The
smoothing framework could be considered in future studies. Thank you.

2- Could the authors re-run the model with the estimated parameters from the initial time step
without data assimilation to assess the quality of the estimated parameters.

The reviewer is raising a good point here. Rerunning the simulation from the initial
time using the estimated parameters is useful in real experiments in which the true



parameters are not known. In our twin-experimental setup, the true parameters are
known (given by Suarez and Rifai, 1999) and thus the quality of the estimated
parameters is directly assessed by how far are those from the true ones. This has been
analyzed in figures 8, 12, 15 and 16. Nevertheless, we followed the reviewer’s
suggestion and we did a forward model run using the estimated parameter. We
compared, please see Fig. 1 below, the resulting MSE for concentration to that
obtained using the initial parameters (initial ensemble mean from the EnKF runs). As
can be seen, the estimates of the concentration improve when using the estimated
biodegradation parameters in the FTR-Model. Overall, the gain in concentration
accuracy is about 24%. We will be happy to add this figure in the revised manuscript
if the reviewer still thinks that it can be useful. Thank you.
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Figure 1: Free model run using the initial parameters and those estimated by the tuned
hybrid EnKF-OL.

3- Uncertainties in spatial parameters (permeability and porosity) is a very interesting topic.
Can the authors include some elements of that in their study even in a simplified way?

Following the reviewer’s suggestion, we added a Section (4.3) in which we analyze a
new set of results based on perturbed flow hydraulic parameters (conductivity and
porosity). An ensemble of these hydraulic parameters is created and used to run the
coupled FTR-model. We found that imposing large uncertainties on the hydraulic
parameters strongly degrades the performance of all filtering schemes. Given that the
performance of the hybrid EnKF-OI depends on the quality of the background
statistics, satisfactory results were obtained only when the uncertainty imposed on the
background information is relatively moderate. Further details can be found in the
revised manuscript. Thank you.



Reply to Reviewer #3

We would like to thank the reviewer for his thorough review. We appreciate his time
and effort and all his suggested comments, which improved the quality of our work.
We followed the reviewer’s suggestions and revised the manuscript accordingly.
Below please find our detailed response to the reviewer’s comments.

In the paper by Gharamti et al., the authors compare three data assimilation strategies for a
subsurface state-parameter estimation problem: the standard ensemble Kalman filter (EnKF),
a hybrid EnKF including optimal interpolation (EnKF-OI) and a second order sampling
formulation of EnKF (EnKF-ESOS). Synthetic data assimilation experiments are performed
with a reactive transport problem for migration, sorption and degradation of chlorinated
hydrocarbons. This set-up should mimic a contaminated aquifer in the port of Rotterdam.
Concentration data and first-order degradation rates are updated within the three assimilation
schemes.

The paper is well written and points out important limitations of the ensemble Kalman filter
in subsurface characterization (under-sampling of forecast covariances and observation
errors) and how they could be ameliorated with EnKF-10 and EnKF-ESOS. However, I have
two major concerns regarding the content of the paper:

1- It seems to me that there is a considerable overlap with earlier work from Gharamti et al.
(2014). Large parts of the paper related to the EnKF-OI contain very similar information as in
the earlier work and also the overall model set-up is quite similar in both studies (see below)
leading to almost the same conclusions regarding EnKF-OI. Therefore, the authors should
give a clear motivation why the comparison EnKF/EnKF-Ol is repeated in this paper and they
should point out what is the innovative aspect of this study compared to their previous work
(i.e., what did we learn from this study regarding EnKF/EnKF-OI that was not already
covered in Gharamti et al., 2014).

We thank the reviewer for pointing this out. The previous work only introduced the
hybrid EnKF-OI formulation to state-parameters estimation problems. We agree that
part of the methodology has some overlaps but the overall goal of the two studies is
quite different. The major differences between both studies are listed here:

a. The update step of the hybrid EnKF-OI algorithm is extended. We allow the
observations to be processed serially, and therefore the optimization presented
in Gharamti et al. (2014) to be performed for each single observation
separately. We believe that this is a more convenient approach given that
different observations carry varying degrees of information to the system. As
such the weighting between the ensemble and the background covariances
changes when assimilating the observations serially. The serial assimilation
makes the update scheme consistent with that of the EnKF-ESOS, which
requires the observations to be processed serially.

b. The application presented in this study is based on a large-scale and more
realistic problem. Although the reviewer seems to think that the model setup is
similar, there are many differences to the one used in Gharamti et al. (2014).
In particular:

i.  The model is three-dimensional (unlike the 2D problem in the previous
article) and the hydraulic parameters such as porosity and permeability



are based on real geologic facies. In the revised manuscript, we now
outline the procedure we follow to construct the parameters (using the
GeoTOP software package). The masking of the domain location (in
the port area) and the confidentiality of the contaminant data are two
conditions imposed by the municipality of Rotterdam (it is not in our
control). Further details on the flow model parameters are now
included in Section 3.2.2.

ii.  The vertical resolution of the model is fine and quite unique compared
to many other model setups found in the literature. Many studies
assume a single layer (maybe 2 or 3 at most) for each aquifer. We
however discretize the vertical model domain into 120 layers, covering
4 aquifer systems, each of length 0.5 m. This helps to understand the
interaction between the components and eventually provide more
insights on the correlations between the parameters and the associated
component concentrations.

c. Different optimization strategies for determining the weighting factors in the
hybrid algorithm are now examined. Gharamti et al. (2014) only considered
maximizing the information gain to weight between the flow-dependent and
the static covariances. In the current study, we test and analyze different
optimization scenarios (Section 4.1.2). For instance, maximizing the
information gain when hybridizing the state statistics (i.e., @) and minimizing
information gain when hybridizing the parameters statistics (i.e., ). We also
assess the performance when the information gain is minimized for both state
and parameters statistics (refer to lines 71-73 and 543-548).

d. The EnKF-ESOS algorithm is not yet tested for state-parameters estimation
problems. It was only presented for state estimation only (refer to lines 85-87).

e. One important message we emphasize in this manuscript is the efficiency of
each approach (OI and ESOS) within the EnKF. In other words, we quantify
the improvements that could be achieved when we tackle the under-sampling
issues that are related to the limited ensemble size or the observational
sampling errors. This is discussed in Section 4.2 (and lines 621-626).

2- The authors claim to use a ‘reality-inspired’ test case for the comparison of the different
data assimilation schemes. In fact, only a limited amount of information about the site
characterization is given in section 3.1, which makes it difficult for the reader to judge how
realistic the model set-up is. For example, how many measurements were available to derive
the parameter fields for hydraulic conductivity, porosity and distribution coefficients and how
uncertain are the derived parameter fields? Is the model discretization fine enough to account
for the spatial variability of subsurface parameters? Another question is whether the
assumption of steady state groundwater flow is valid for the chosen site. Usually, one would
expect transient groundwater flow due to temporally variable recharge, pumping activities or
density-driven flow in such environments. Transient groundwater flow could have important
implications for the data assimilation, e.g., for the determination of the background
covariance matrix in the EnKF-OI scheme (see below). Overall, the current set-up is very
similar to what has been used in Gharamti et al. (2014) except that groundwater flow is 3D in
this example (which should not be a major issue when a steady state flow field is used) and
the chemical reactions are different (but follow a very similar mathematical description).

So in fact, I think that there is not much more complexity in this ’reality inspired’ setup than
in the "purely’ synthetic set-up used in previous studies. Therefore, I suggest the authors to



add more complexity in their model set-up in order to test the different assimilation schemes
under more realistic conditions. This could be accomplished e.g., by considering more
sources of uncertainty (e.g. hydraulic parameters, forcing terms) and by using transient flow
conditions.

We thank the reviewer for bringing this discussion about the model. We now discuss
the initialization process for the parameters and further study the impact of model
uncertainty on the performance of the schemes. Our response for each point is
detailed below:

a.

The hydraulic conductivity is provided in the database GeoTOP. The GeoTOP
for the province of South-Holland is constructed using 46.000 borehole data.
Using the borehole data, the most probable lithostratigraphy and lithofacies
have been estimated in each voxel of 100x100x0.5 m. In the next step the
GeoTOP uses relations between the lithostratigraphical units and the
lithofacies with parameters such as hydraulic conductivity, porosity and
organic carbon content in order to provide these parameters on the voxel scale.
Further details and related references are now included in Section 3.2.2 of the
revised manuscript.

The horizontal model discretization (50 m) is finer than the resolution of the
parameters such as the hydraulic conductivity (100 m) and the vertical
dimensions are equal. The vertical discretization is 0.5 m (for each layer) and
this is a considerably fine resolution.

In our opinion, steady state groundwater flow is a valid assumption. We agree
that there are temporal variations on a small scale, such as tidal influences and
yearly fluctuations of precipitation and evapotranspiration. Effects of tidal
influences are expected to be minor (yearly averaged additional advection is
zero but it may increase spreading that is accounted for by a relatively high
effective dispersivity values). Effects of yearly fluctuations of precipitation
and evapotranspiration are also expected to be minor as the near surface
groundwater levels are controlled by the drainage levels of the drainage
systems in the port area (3 — 4 m above sea level) and the deeper groundwater
levels are predominantly influenced by the surface water levels in both the
polders area (managed levels around or below sea level) and the large surface
waters (approximately sea level). Temporal variations due to density driven
flow can be also neglected as we would expect only minor changes in the most
lower part of the model domain on the time scale of 50 years. Similar
discussion has been added to Section 3.2.2.

The reviewer is raising an interesting point regarding the background
covariance of the hybrid EnKF-OI and the connection to perfect flow
conditions. Following the reviewer’s suggestion, we have added a new section
(4.3) to the results in which we run a new set of experiments while perturbing
the hydraulic conductivity and the porosity. We test the performance when
strong and moderate uncertainties are imposed. We found that imposing large
uncertainties on the hydraulic parameters strongly degrades the performance
of all filtering schemes. Given that the performance of the hybrid EnKF-OI
depends on the quality of the background statistics, satisfactory results were
obtained only when the uncertainty imposed on the background information is
moderate and not very high. Further details can be found in the Abstract,



Section 4.3 and Figures 18 and 19 of the revised manuscript. Thank you.

Specific comments

Line 191-192: The same applies for the alpha and beta values in EnKF-OI.

Yes, if they are set manually. Our proposed adaptive scheme does not require any
tuning effort.

Line 195-196: What do you mean with ’...dynamically constants quantities....’?

We meant to say that they are static in time unlike the state (e.g., concentration) of
model, which evolves based on the dynamics of subsurface. We clarify this in the
revised manuscript.

Line 216-217: Incomplete sentence.

We modified the sentence, which reads now: “This decomposition is useful in
practice in order to reduce computational burden and memory storage.” Thank you.

Line 368-370 and Figure 5: Why does PCE appear in layer 40, when the contaminant source
is located in layer 60 and the pre-dominant flow direction is downward? Is the groundwater
flow rate so low compared to molecular diffusion?

Overall, the groundwater flow rate (in the downward direction) is stronger than
molecular diffusion. However, since we consider a constant source term for PCE in
layer 60 and given the long simulation time (i.e., 50 years) a small amount of this
component appear in layer 40 (under the effect of molecular diffusion). We checked
the other 3-contaminant components, and none of them reach layer 40 by the end of
the simulation period. Thank you.

Line 396-417: In this example, the background covariance matrix for EnKF-OI is derived on
the basis of a steady-state flow field with perfectly known hydraulic parameters.

Additionally, the background covariances are derived from the same time period, where the
assimilation experiments are performed. This means that the derived background covariance
matrix contains a very precise description of the relation between concentrations and
degradation rates in your system. However, under real-world conditions the uncertainties in
hydraulic parameters may have a considerable impact on the quality of the background
covariance matrix. Additionally, under transient flow conditions it might be much more
difficult to derive a good estimate of the background covariance matrix. Therefore, I suggest
the authors to discuss such practical issues in more detail and also to perform additional
simulation experiments where these influences on the derivation of the background
covariance matrix are assessed in more detail, e.g. by introducing uncertainty in the hydraulic
parameters and by using transient flow conditions. This would provide a more realistic
assessment of the EnKF-OI assimilation scheme.

The reviewer has a good point. As mentioned in our response to the reviewer’s second
major comment, we now include a set of experiments that are based on imperfect
hydraulic parameters. In Figure 17, we analyze the effect of perturbing the flow
model on the background cross-correlations. Essentially, we found that the dominant
correlation patterns are similar to those obtained using perfect flow conditions,
especially in the shallow aquifer layers. The magnitude of the new background
correlations, however, is considerably smaller. Generally, porosity and conductivity
affect the speed and the movement of groundwater in the aquifer and thus the



degradation process would be expected to either slow down or accelerate. A similar
discussion has been included in the revised manuscript (lines 602-613). Thank you.

Figure 11: It would be helpful in this plot to also show the evolution of concentration values
without data assimilation as a comparison. Additionally, why does the optimized EnKF-OI
simulation (grey lines) for PCE update in the wrong direction between year 5 and 10?

We have added the free run concentration evolution to Figure 11. The update of PCE
between year 5 and 10 does not entirely go in the wrong direction. Over all, the
concentration is close to the reference solution by year 10. The difference in the
behavior to that of the EnKF could be related to the rapid adjustment of the
biodegradation rates right after incorporating information about the background state-
parameters cross-correlations.
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Abstract. This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Nether-
lands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We
focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter (EnKF-OI) and the exact second-order sampling
formulation (EnKFggps) for mitigating the undersampling of the estimation and observation errors covariances, respectively.
A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within
a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons
starting from Tetrachloroethene and ending with Vinylchloride is modelled under anaerobic environmental conditions for five
decades. Yearly pseudo-concentration data is used to condition the forecast concentration and degradation rates in presence of
model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OlI, for accurately cali-
brating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts
the weights of the involved covariances for each individual measurement. The EnKFggpg is shown to maintain much better
the parameters ensemble spread leading to more robust estimates of the state and parameters. On average, a well tuned hybrid
EnKF-OI and the EnKFgspgs respectively suggest around 48% and 21% improved concentration estimates and around 70%
and 23% improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model
degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the
quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on the background

information is relatively moderate.

1 Introduction

Subsurface contamination has received significant attention in the last few decades. Consequent cleanup costs have increased
the awareness of environmental issues related to contaminated fields (Appelo and Postma, 1994; Drécourt et al., 2006). His-

torically, it was believed that subsurface contamination could be remediated to natural background contamination levels by
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digging in the soil and pumping out the contaminated groundwater. However, it was not too long before it was discovered
that there were simply too many contaminated areas to completely remediate. In addition, all available cleaning technologies,
including source removal, are economically not viable to fully resolve the problem (Cunningham and Berti, 1993; Starr and
Cherry, 1994; Todd and Mays, 2005).

Governmental authorities are now considering another approach to remediation based on management of industrial ground-
water contamination at regional scales. The idea is simply to prevent groundwater contamination from causing negative effects
on humans or ecology, and to control any undesired spreading beyond the boundary of the contaminated site. In the European
Water Framework Directive, an option was offered allowing groundwater aquifers to remain contaminated when remediation
is too costly and when an adequate monitoring system of the contaminated area is set up (Chave, 2001; Mostert, 2003; Hering
et al., 2010). This procedure relies mostly on natural attenuation of contaminant plumes without the need for a direct human
intervention. This is often possible given that the size and concentration of dissolved contaminants are frequently subjected to
considerable decline due to natural, and eventually human induced, biodegradation processes. The challenge is then to predict
in a cost effective way what type and when contaminants may cause a risk, so monitoring and, if needed, remediation may be
undertaken to prevent any unacceptable spreading beyond specific planes of compliance. One efficient way to implement such
monitoring system at a regional scale is to use prediction models with monitoring data and combine them using advanced data
assimilation techniques (McLaughlin, 2002; Reichle et al., 2002).

Various numerical groundwater contaminant models have been developed in the literature (e.g., Freeze and Cherry, 1979;
Pollock, 1994; Dawson et al., 2004; Sun and Wheeler, 2006; Bear and Cheng, 2010). The idea behind forming such models
is to simulate and predict the dynamic fluxes and energies, defined as state variables (e.g. groundwater pressure, contaminant
concentration), as accurately as possible based on some selected parameters (e.g., porosity, permeability, sorption) that describe
the subsurface geometry, fluid and rock properties, and surface-subsurface interactions (Moradkhani et al., 2005).

Groundwater contaminant models can be subject to several sources of uncertainties due to poorly known parameters, inputs,
and boundary conditions. For instance, we often know very little about the time at which contamination started, the amount
of contaminant mass present in a pure phase source zone, the location of the pure phase, and the rate at which biodegradation
is taking place (Franssen and Kinzelbach, 2009; Gharamti et al., 2013). Other uncertain aspects are the heterogeneity of the
parameters, such as the hydraulic conductivity, groundwater recharge and the redox state of the groundwater. Therefore, model
predictions of where and when a contaminant crosses a plane of compliance, with what concentration and how long it takes
before a pure phase source zone dries up, can be quite uncertain.

One way to reduce uncertainty in model predictions and parameters is to assimilate data into the model. Data assimilation
(DA) methods follow a Bayesian formulation by combining prior information of a dynamical system with available measure-
ments to obtain an analysis of the system state and parameters (Hoteit et al., 2012; Gharamti et al., 2014a). Sequential DA
techniques, such as the ensemble Kalman filter (EnKF), assimilate the data as it becomes available. The EnKF (Burgers et al.,
1998; Evensen, 2003) is a popular DA method in hydrology, operating in consequent forecast and an analysis steps. During
the forecast, an ensemble of state realisations is run forward in time using the dynamical model. At the time of the update, a

linear Kalman filter (KF) type analysis (Kalman, 1960; Gharamti et al., 2011) is applied to the ensemble members. The EnKF
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is relatively simple to implement, requiring only forward integrations of the dynamical and observational models. The EnKF
has been proven useful in various subsurface hydrology applications (e.g., Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008; Zhou et al., 2011; Li et al., 2012; Crestani et al., 2013; Panzeri et al., 2013; Gharamti and Hoteit, 2014).
The parameters most often calibrated are those characterising the flow and the general transport of the contaminants, such as
permeability and porosity. Very few applications have tackled the estimation problem of reactive modelling parameters us-
ing sequential DA techniques. Bailey et al. (2013) used the EnKF to estimate spatially variable selenium and nitrate reaction
rates in near-surface agricultural soil profiles. In another study, Bailey et al. (2012) used the ensemble smoother to infer the
denitrification rate constants from synthetic observations of nitrate concentrations.

It is now widely recognised that the performance of the EnKF strongly depends on the ensemble size; a large enough ensem-
ble is required to obtain good performances. Gharamti et al. (2014b) proposed an efficient hybrid EnKF assimilation scheme for
state and parameters estimation, in which the predicted EnKF statistics are complemented with predefined static background
covariance in order to mitigate for filter inbreeding and undersampling (Hamill and Snyder, 2000). The hybrid filter was applied
to a small-scale synthetic reactive transport model and was found computationally efficient, providing reliable estimates using
fairly small ensembles (50 members). In this study, we test the hybrid EnKF with a realistic large-scale contaminant model and
further extend its formulation to allow for serial processing of the observations during the analysis step. For this, the objective
function involved in the adaptive scheme is designed in such a way that the weighting between the background and the filter
flow-dependent statistics is adjusted for each assimilated observation. Such updating strategy could be more convenient given
that observations from different sources and locations carry varying degrees of information to the system. This generalises the
adaptive scheme of Gharamti et al. (2014b), allowing the weighting between the ensemble and the background covariances to
change not only between different assimilation times but also for different observations at any update step.

The stochastic EnKF assimilates perturbed observations during the analysis step in order to (asymptotically) match the
second moment of the KF (Burgers et al., 1998). This often introduces noise, which may become significant when the rank
of the observational error covariance is larger than the ensemble size (Nerger et al., 2005). Ensemble square root filters, such
as the Ensemble Transform Kalman Filter (ETKF, Bishop et al., 2001), the Singular Evolutive Interpolated Kalman filter
(SEIK, Pham, 2001; Hoteit et al., 2002), and the Deterministic Ensemble Kalman Filter (DEnKF, Sakov and Oke, 2008) do
not require observations perturbations. Yet, the stochastic EnKF tends to "re-Gaussianize" the ensemble distribution, which
improves the stability of the filter, unlike other deterministic schemes that follow the shape of the background distribution
(Lawson and Hansen, 2004). In a recent study, Hoteit et al. (2015) proposed a serial EnKF algorithm to mitigate the observation
sampling errors in the EnKF. The algorithm, referred to as EnKF with exact second-order observation perturbation sampling
(EnKFgs0s), is straightforward to implement in any existing serial EnKF code, requiring only removing a single rank from
the sample forecast covariance matrix to exactly match the first two moments of the KF. Compared to the EnKF and the
determinstic filters, the EnKFggos was shown to provide more accurate estimates of the state of a 40-variable Lorenz-96 model.
Here, we consider the EnKFggogs in a realistic large-scale system and further study the impact of mitigating the observation

undersampling errors in the EnKF’s analysis not only on the state but also on the parameters estimates. This is the first study
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addressing the application of the EnKFggos scheme for parameters estimation. The idea is to investigate whether accounting
for observation sampling errors can lead to a better tuning of the unknown parameters or not.

We focus on two aspects that are known to limit the efficiency of the EnKF; namely the undersampling of the forecast er-
rors in the forecast step and the observation errors in the analysis step. We consider an industrial groundwater contamination
problem at the port of Rotterdam in the Netherlands. Many areas at the port site are contaminated due to various industrial activ-
ities. Contamination with chlorinated hydrocarbons (CH) have been detected at the port area. Reductive dechlorination process
of four hazardous CH components; namely Tetrachloroethene (PCE), Trichloroethene (TCE), 1,2-Dichloroethene (DCE) and
Vinyl Chloride (VC), is believed to be one of the main reactive processes taking place at the port site. We simulate this process
using a coupled three-dimensional Flow-Transport-Reaction (3D-FTR) model for a single plume. The contaminant data col-
lected in 2012 by the municipality of Rotterdam, is used for initialising the contaminant migration, which propagates to surface
and deep aquifer layers (= 50 m below sea level). We use "synthetic" CH concentration data on a yearly basis, for a total of
50 years, to calibrate four biodegradation rates of the reaction chain. To the best of our knowledge, this is the first study in
which biodegradation parameters of a reductive dechlorination process are estimated in a real-world system using a sequential
DA procedure. Hydraulic parameters of the groundwater flow model are not incorporated in the assimilation system as part of
the unknown parameters. They are estimated in an offline procedure using borehole data and a probabilistic approach given
the associated geologic lithofacies. On top of the biodegradation, the concentrations of the components are also constrained
using the EnKF, the hybrid EnKF and the EnKFgsos schemes. Sensitivity analyses are performed to study the efficiency and
the accuracy of the assimilation schemes under different experimental settings. The filtering schemes are evaluated based on
the accuracy of the estimated solute concentrations, the handling of the posterior distributions of the biodegradation rates, and
computational complexity.

The rest of this paper is organised as follows. Section 2 presents the ensemble filtering schemes. Section 3 describes the
large-scale subsurface reactive transport model and its numerical implementation. Section 4 presents the assimilation setup and
the experimental scenarios. Results of the assimilation experiments are presented and analysed in Section 5. Conclusions and

further discussion are given in Section 6.

2 The Data Assimilation Framework

The aim of DA is to combine measured observations and a dynamical model in order to compute the best possible estimates
of the past, current and future states of the system, together with estimates of the associated uncertainties (Nichols, 2010). We

follow the standard discrete nonlinear dynamical system:

X1 = My (X5, Ok) + 1541, M

where x5, € RM= denotes a state vector of Ny variables at time ¢, ®; € RY® is the vector of model parameters, M: RNx=
— R¥x is the nonlinear operator that propagates the model state from #j, to ¢4 1. 17;, 11 € R~ is a model error accounting for

model uncertainties, commonly assumed to follow a Gaussian distribution N (0, Q. 1). The measurements obey the following
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observational system:

Vi1 = Hrp1 (Xpy1) +€xg1, ()

where yi11 € R is a vector of Ny observations at time tx11, Hxi1: R — RMx is an observational map including
grid interpolations, and could be nonlinear. The observation errors 1 € RY> are assumed Gaussian with zero mean and
covariance Ry1. We also assume independent model and observation errors.

Following the Bayesian filtering problem, the objective is to evaluate the joint probability density function (pdf), i.e.,
P (X%, Oklyo.x), of the system state xj, and the parameters @, given all available observations yy.j. The observations, y(., are
used to update the model forecast. The updated estimate is then used to compute a future prediction. Likewise, the estimation
problem can be also tackled using variational approaches that involve minimisation of a cost function (Dimet and Talagrand,
1986; Courtier et al., 1994; Hoteit et al., 2005; Altaf et al., 2013). Variational DA techniques, such as 3DVar and 4DVar, are
widely used in geoscience applications. These methods look for an optimal state trajectory that best fits observational data over
a time window, but do not offer an efficient framework for quantifying uncertainties in the solution. In this study, we will only

consider the sequential Bayesian filtering problem.
2.1 The Ensemble Kalman Filter for State-Parameters Estimation

The computation of p(xg,®|yo.x) is not feasible in real applications owing to the nonlinear character of the model and
observation operators in addition to the very large dimension of the subsurface flow and transport system. The ensemble
Kalman filter (EnKF) is an efficient Monte Carlo method that computes an approximation of the joint pdf, using the first two
moments, at reasonable computational requirements. The EnKF represents the distribution of the system using a collection
of state vectors, called ensemble. Generally, the true pdf of the system might not be accessible through this Monte Carlo
approximation given the finite ensemble size. We follow the state-parameters augmentation procedure (Annan et al., 2005)
and denote by 1 the jointly concatenated state and parameters vector. The parameters are time-invariant so that their time-
propagation function is simply the identity operator.

To illustrate, starting at time ¢;_; from an analysis ensemble, {1/) o1 xk O a 1} _,» which represents p(¥;,_1|yo:x—1),
the EnKF propagates the dynamical model (1) to compute the forecast ensemble at the time of the next available observation,

t. Incoming measurements are then used to update the joint ensemble. The EnKF algorithm is summarised below.

— Forecast Step: The analysis members are integrated forward in time to obtain the forecast ensemble from which we

estimate the first two moments as follows:
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The joint sample covariance f’£ consists, as shown in (4), of the sample state covariance f’gfm, the state-parameters
cross-correlation f’f;x and the sample parameters covariance f’ge matrices. The joint state-parameters forecast estimate
(mean) is denoted by 17;£ The complexity of the forecast step grows with the ensemble size. If one supposes that Cy,
is the cost for integrating the model to the next observation time, the computational requirement of the forecast step is

NN.Cpr, where N is the final simulation time (Gharamti et al., 2014a).

— Analysis Step: When the observation y; becomes available, the joint forecast members wk’i are updated using the

Kalman-update step; i.e.

“l=yl' K <Yk +€), — ﬁw#) , )

e e g -1
where K = P/HT (HkPin + Rk) is the Kalman gain and the analysis state is:

et ©)

[z

N,

~a 1 <= ai_~f ~ ~ ~f . ~ 1

¢k=Fz¢k’ Elﬁk‘i‘K(Yk-FGk—Hm/’k), with € = —
¢i=1 ¢i=1

The observation perturbations, denoted by €}, are sampled from a Gaussian distribution of zero mean and covariance
R,. The observational operator ﬁk = [Hk, O], acting on the augmented state-parameter vector, is assumed linear for
simplicity, and the matrix O is a zeros matrix. Computationally, the update step in hydrological applications is usually
less demanding than the forecast step, with a complexity of N N. Ny Ny + NNZ (Nx + Ng). The observations used in
the update equation of (5) are processed in one single batch. In our implementation, we will consider the serial EnKF
update formulation in which the observations are assimilated one at a time. The reason for this will become clear in

section 2.3.
2.1.1 EnKF Limitations

The performance of the EnKF strongly depends on the accuracy of the forecast error covariance matrix P’. The errors in
P/ are essentially due to: (1) model errors and the use of small ensemble sizes, and (2) propagation of errors in the sample
covariance matrix P® at the previous step. The Gaussian assumption of the system’s distribution is also a limiting factor but
this was proven to be less problematic (Hoteit et al., 2008). The Gaussianity of the estimates often breaks when the parameters
are also included as part of the state vector during assimilation (e.g., Liu et al., 2016).

The main advantage of the ensemble approximation (Eqs. 3 and 4) is that it does not involve any linearisation and allows
to represent the first two moments of the state and parameters by an ensemble of vectors (Evensen, 2003). The use of large
ensembles is practically not possible and thus the sample covariance 13{2 may not well approximate the KF forecast covariance,
P]kc. As such, the joint forecast pdf of the system’s state and parameters at any time ¢, is only partially sampled, which means
that there exists a null subspace in the error space that is not covered by the ensemble (Song et al., 2010; Mandel et al., 2011).
To mitigate this, we will a use hybrid formulation of the forecast state and parameters statistics before performing the EnKF

update (e.g., Wang et al., 2007). Further details are given in section 2.2.
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The limited ensemble size may also introduce noise in the update step of the EnKF when the rank of the observation
error covariance is large (Hoteit et al., 2015). This is because the number of observation perturbations may not be enough
to sample the observation error covariance matrix, R. In addition, spurious correlations between the observation and the
forecast perturbations may also introduce noise in the EnKF update (e.g., Bowler et al., 2013; Hoteit et al., 2015). To illustrate,

the EnKF analysis assumes zero cross-correlations between the observation perturbations and the forecast ensemble; i.e.:

Ne T

> e (vl =) =o0. ™
i=1
This can be easily seen by subtracting eq. (5) from eq. (6). After arranging the terms and using eq. (4), one obtains:
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ps — (I—KHk) P/ (I—KHk) +KRKT + A, )

where A is the sampling error term; not accounted for in the EnKF. Consequently, the ensemble analysis covariance matches
the optimal KF covariance, P¢, only when the observational sampling errors and the cross-correlation terms in A are indeed
zero. This can be numerically achieved by assimilating the observations serially using the so-called EnKF with exact second-

order perturbations sampling, EnKFggos, as will be discussed in more details in section 2.3.
2.2 The Hybrid EnKF

The hybrid EnKF and optimal interpolation (EnKF-OI) scheme was introduced as a way to mitigate for small ensemble sizes
and model deficiencies in the EnKF (Hamill and Snyder, 2000). Using small ensembles results in rank deficient forecast co-
variance matrices, which strongly limit the fit to the observations (Song et al., 2010). Neglecting model errors might further
produce small ensemble spread, and consequently unrealistic confidence in the forecast (Song et al., 2013). The standard so-
lution for rank deficiency or covariance underestimation is to apply inflation and localization. Inflation artificially inflates the
spread of the ensemble around the mean state (Hamill et al., 2001; Hoteit et al., 2002). It is also a simple way to account for
neglected model errors (Pham et al., 1998). Covariance localization eliminates spurious correlations by a Schur product multi-
plication of the under-sampled covariance matrix with a function of local support (Houtekamer and Mitchell, 2001; Sakov and
Bertino, 2011). Inflation and localization, although efficient and widely used (especially in atmosphere and ocean application),
are generally model dependent and require important tuning efforts. They further do not introduce any new directions to di-
versify the ensemble, limiting the filter update to a small-dimensional ensemble subspace (Song et al., 2010, 2013). Moreover,
global model parameters are not local quantities and therefore localization techniques might not be as straightforward (Deve-
gowda et al., 2007). In addition, the parameters are dynamically constant quantities (static in time), and thus large ensembles
are usually needed to well approximate the parameters distributions (Hendricks Franssen and Kinzelbach, 2008; Zhou et al.,
2012).

The hybrid approach estimates the EnKF’s forecast error covariance by a weighted sum of the ensemble covariance and

a stationary covariance matrix, typically used in a variational or an optimal interpolation (OI) assimilation system. More



215

220

225

230

235

240

specifically, the background state-state and state-parameters covariances are estimated as:

piybid - (PEKE L (1 _ )pb (10a)
P = AP (1-B)P},, (10b)

where lADEQKF and IA’E‘;KF are the sample covariance and cross-correlation matrices of the EnKF ensemble, respectively. The
background covariances are denoted by P%_ and ngc’ respectively. It was indeed shown by Hamill and Snyder (2000) that this
additional stationary background covariance may help representing part of the ensemble’s null space that is not described by
the limited ensemble. This procedure is based on physically reliable statistics, although flow-independent, unlike inflation and

localization (Wang et al., 2009). The scalar quantities « and [ are weighting factors, taking values between 0 and 1.

2.2.1 Practical Implementation

b

T’

The static background covariance, P _, is often built on the basis of a long inventory of forecast errors (Wang et al., 2009). It
is usually assumed to be of low-rank, r,, and can be factorised into spectral modes using Proper Orthogonal Decomposition

(POD) as follows;
1 \NT  ~a
Pt —sqsT = sqk (sm) —§ST7, (11)

where S is a matrix of spectral coefficients, €2 carries information about the associated spectral variances and Q2 isits Cholesky
decomposition of 2. The background perturbation matrix, S, has r, columns, with 7, much smaller than the number of state
variables. The background state and parameters cross-covariance, Pgw, can be also approximated by a low-rank, ry, matrix
using singular value decomposition (SVD) if the number of parameters is not equal to the number of state variables (and thus
the matrix Pgw is not square). This decomposition is useful in practice in order to reduce computational burden and memory

storage. Accordingly, the complexity of the analysis step (referred to as O%) in the hybrid EnKF-OI scheme becomes:

Ofxrot = NN.NyNy+ NNZ2(Nx+ Neg)+ NN, (Nxr, + Nery),
= Of g+ NN, (Nyr, + Nety). (12)

Given that 7, and 7y are usually small in subsurface flow and transport problems (Gharamti et al., 2014b), the complexity of
the analysis step of the hybrid EnKF-OlI is only marginally larger than that of the EnKF. The complexity of the forecast step of
the EnKF and the hybrid EnKF-OI is the same when both are implemented with the same ensemble size.

The weighting factors « and 5 need to be specified in eqs. (10a) and (10b). Careful tuning of « and S is very important
(Hamill and Snyder, 2000). The simplest way is to select them based on trial and error but this can be computationally very
intensive. A more efficient approach was introduced by Gharamti et al. (2014b) and consists of optimising a one-dimensional
(1D) objective function at every update step of the state and the parameters. Based on Kalman’s update formulation, assimi-
lating observations causes the uncertainties in the prior estimates to shrink. Thus, using the Kullback-Leibler (KL) divergence

(Kullback and Leibler, 1951), one can choose o and 3 that maximise the information gains at the analysis time . In this study,
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we opt to assimilate the observations serially and thus one can adaptively compute optimal weighting factors as follows:

argmax F(a) = argmax tr {f’ﬁy - 15‘;4 ,

~ ~ -1 ~
_ argmax {r {PLCHT (HkPg;CH{ + Rk) HkPﬁr} :
single observation 1 [m] 2
= argmax Z (cm ) ) (13)

where tr [-] denotes the trace of a matrix and d is a scalar quantity equivalent to observation variance (ka’g;x HT + Rk) when

.. . . m] . . . . ..
assimilating one observation. chC] is the m™ forecast variance-component corresponding to one observed variable. Similarly,

one can define the objective function for the parameters’ weighting factor as follows:

argmax g(B) = argmex tr [1359 - f’gg} ,
Ne
single observation 1 [m]) 2
= =S 14
argmﬁax pi 2 (c‘%C , (14)

where CLT;L] is the forecast cross-correlation component between the m'" parameter and one observed variable. Such KL criterion

describes the information gain from each individual observation as it reflects the difference between the prior and the posterior
distributions. The interesting point here is that for each observation, different weights would be assigned to the background and
the ensemble statistics. The maximisation problems in (13) and (14) are 1D and bounded, yielding minimal forecast variance
after the update. In terms of implementation, we perform the optimisation, over the interval [0,1], using a computationally

efficient scheme combining both golden-section search and repeated parabolic interpolation (Forsythe et al., 1977).
2.3 Exact Second-Order Observation Perturbations Sampling

The sampling error from neglecting the cross-correlation terms in eq. (9) in the EnKF analysis is generally not globally small.
It is often composed of a large number of elements that can add up after successive assimilation steps (Hoteit et al., 2015). This
may degrade the filter’s accuracy and increases the underestimation of the analysis error covariance (Whitaker and Hamill,
2002). Furthermore, such sampling errors can propagate to subsequent steps, eventually deteriorating the performance of the
filter.

In a mathematical sense, for the condition in eq. (7) to hold, the rank of the forecast perturbation matrix
~ f ~ f N, ot
V= [0~ P~ Pl (15)
plus the rank of Ry must not exceed [N, — 1, which is essentially the rank of \I/£ (Pham, 2001). Obviously, this is not possible
given that Ny + N, — 1 is always greater than N, — 1. Yet, if we suppose that \Il,i has a rank N, — 2, then when Ry is scalar,
it is possible to draw the observation perturbations €, such that the EnKF’s analysis first and second moments are exactly the

same as those computed using the KF. Accordingly, Hoteit et al. (2015) proposed to remove one rank from \Ili using an SVD

decomposition:

Il = (wlwe) wi, (16)
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where wy, is the normalised right singular vector of \I/£ associated with the smallest nonzero singular value. The i component
of wy, is denoted by w! and the symbol < means "replaced by." Then, assimilating the observations serially and simply
choosing €}, = \/(N. — 1) Ryw}, would guarantee zero cross-correlations between the modified forecast perturbations and the
observation perturbations. The algorithm, referred to as EnKFgggs, involves a recursive update for wy, after each update (Hoteit

et al., 2015). The serial analysis procedure of the EnKFggos is summarised in the algorithm below:
While ;< N, do

2 A — I

Ne Ne ..

3 KU = Z(wf’ ~%1) l P -z + (Ne—l)REj’j]]
i=1 z:l

4: For iin[1,2,...,N,]

w%%w$+mﬂ@-+m/ RYuf -4

5: EndFor
1 &
6 Y E;W

7: For iin[1,2,...,N.] do

-1

) — ) Ne o 2 .
oo DT - (1 5) 5 -5 s o)
i=1
8: EndFor
EndWhile

where s is an independent plus or minus sign. The superscript [j] denotes the j® element and row of the given vector and
matrix, respectively. The superscript [4, j] denotes the element in row and column j of the associated matrix. Note that unlike
the EnKF, the observation perturbations cannot be Gaussian because of the constraint they satisfy in eq. (7). In the experiments
of Hoteit et al. (2015), these were shown to be almost Gaussian. In term of complexity, the EnKFggos algorithm has almost
the same computational cost as that of the serial EnKF. Additional cost is required for iteratively updating the vector wy, and
performing an SVD on ¥, to reduce its rank by one. Both operations are computationally almost negligible compared to the

cost of integrating the subsurface model.

3 The Subsurface Model and Assimilation Experiments
3.1 The Rotterdam Port and Geology of the Area

The Port of Rotterdam is located in the Netherlands between the city of Rotterdam and the North Sea. It is the largest port

of Europe covering an area of 105 km? and stretching over a distance of 40 km. The original geology of the area consists

10
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of a top Holocene layer of approximately 20 m thick (Figure 1). It is composed of clay and peat with local sandy channel
deposits, but in the most western part, it becomes sandier. Under the Holocene layer, there is a Pleistocene aquifer of coarse
sand of approximately 10 m thick. Below lays a Pleistocene clay layer of approximately 30 m thick and a second aquifer of
approximately 140 m thick. The second aquifer is saline for most of the port areas whereas the first aquifer is partly saline in
the western part only. On top of the Holocene sediments, an anthropogenic layer of fine sand was added up to a level of 4 m
(eastern part) to 6 m (western part) above the mean sea level. Moreover, locally a dense network of sand filled vertical drains
was used in the upper part of the Holocene clay in order to speed up the settling of the clay. A large part of the industrial port
area is surrounded by surface water, some of which continue to the bottom of the Holocene layer.

At the port site, more than 600 companies perform various activities such as trans-shipment of containers (coal, oil, gas, etc),
storage of oils and chemicals, building/repairing ships and oil/gas rigs, distribution and transport inland, and disposal/treatment
of chemical wastes. As a result of the long-term presence of these industrial activities, the soil and groundwater have become
contaminated. This contamination is substantial, complex, and not limited to one particular site but affects the groundwater
systems at a regional scale (Marsman et al., 2006; Ter Meer et al., 2007). Part of the contaminants are non-mobile such as
heavy metals including arsene, cadmium, copper, mercury, lead and zinc. Other mobile contaminants are mineral oils, volatile

aromatics, chlorinated solvents and pesticides.
3.2 Coupled 3D Subsurface Model
3.2.1 Organic Contaminants

Wells monitoring and lab analysis have concluded that groundwater at the port area is contaminated, at different depth,
with varying levels of pollutants (Marsman et al., 2006). One of the major contaminants are chlorinated hydrocarbons that
had entered the subsurface as Dense Non-aqueous Phase Liquids (DNAPL) and often have source zones of stagnant pure
phases at considerable depth. Numerous industrial companies at the port manufacture or work with these organic molecules.
Here, we simulate the degradation chain of four CH components; namely Tetrachloroethene (PCE, a.k.a perchloroethene),
Trichloroethene (TCE), 1,2-Dichloroethene (DCE) and Vinyl Chloride (VC). We use plume data from a real site, but for confi-
dentiality reasons we do not show the exact location of the site. The horizontal area of the domain is equal to 1.5 km?, extending
1 km in the transverse direction and 1.5 km in the longitudinal direction (Figure 2). Degradation of the dissolved components
takes place as chlorine atoms are subsequently replaced by hydrogen atoms under anaerobic environmental conditions (Vogel
and McCARTY, 1985; Clement et al., 2000; Tobiszewski and Namie$nik, 2012). Chlorinated hydrocarbons can pose serious
threat to human and environmental health (Ojajarvi et al., 2001; Lee et al., 2002, 2003).

3.2.2 Flow-Transport-Reaction Model (FTR-Model)

The subsurface model consists of three major components; namely flow, transport and reactions. First, the groundwater flow
(assumed steady) is solved on a rectangular domain using MODFLOW (Harbaugh, 2005). The steady groundwater flow as-

sumption is valid at the current port location. Temporal variations, such as tidal influences and yearly fluctuations of precipi-
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tation and evapotranspiration are expected to happen, but on a small scale. Essentially, tidal influences and yearly fluctuations
of precipitation and evapotranspiration are expected to be minor as the near surface groundwater levels are controlled by the
drainage levels of the drainage systems in the port area (3-4 m above sea level). The deeper groundwater levels are predomi-
nantly influenced by surface water levels in the polders area (managed levels around or below sea level) and the large surface
waters (approximately sea level). Temporal variations due to density driven flow are also neglected as we would expect only
minor changes in the most lower part of the model domain on the time scale of 50 years. MT3DMS is used to solve the
advection-dispersion based transport of the components (Zheng and Wang, 1999), in which the degradation process of the
components is added based on the module within the 3D-multispecies reactive package; RT3D (Clement, 1997). The soft-
wares are integrated in a sophisticated fortran-based tool (with graphical interface) called iMOD (Vermeulen et al., 2013). In
differential form, the fate and transport of the components is modelled following:

(¢+ pok") aa—(;é +A¢Cf =V - (¢DVCH) — V- (vC¥) + ¢;CL +rc, (17)
where ¢ is porosity, p is the bulk density of the soil, £ is the distribution (sorption) coefficient, C is the solute concentration,
A is first-order reaction rate, D consists of hydrodynamic dispersion and molecular diffusion, v denotes the Darcy velocity,
s is the volumetric source/sink flow rate, C; is the source/sink flux concentration and r¢ refers to the rate of reactions.
The superscript £ corresponds to the component number taking values between 1 and 4 in this study. Along with the basic
groundwater flow and transport equations, and using the reaction operator-split strategy (Clement et al., 1998), the biological

reaction kinetics are assembled as a set of ordinary differential equations as follows:

8((3;;@5 ) 7KPTC;PCE’ (18a)
8(;05 - _RLT (Kr-Crce — Sr/p- Kp - Crck) , )
6(22@: B _RLD (K- Cpce — Sp/r - K1 Crce) 1
a(ajzc B _RLV(KV-CVC—SV/D'KD'CDCE)’ 1

where Cpcg, Crcg, Cpcg, and Cyc are the concentrations of the components, Kp, K1, Kp, and Ky are first-order anaerobic
degradation rate constants, St,p,Sp,r, and Sy, p are stoichiometric yield values, and Rp, Rr, Rp, and Ry are retardation
factors. Linear sorption conditions are assumed for all components.

The model domain as indicated by the blue region of Figure 2 is discretised horizontally into 20 x 30 grid cells of 50 x 50 m. In
the vertical direction, we consider 120 layers each of 0.5 m thickness. The discretisation is based on the geological voxel model
GeoTOP (Stafleu et al., 2011a). The top layer starts at 7.5 m above sea level, whereas the lowest layer is located at around 52.5
m below sea level. Based on different simulations conducted as part of this study, the migration of the contaminants was found
to be limited to a certain depth. We thus assume that only layers 21 — 100 are active. Figure 2 also shows the contaminant source
(in yellow) consisting of four CH components with uniform concentration values. The plume data was obtained in January 2012
from a depth of 22.5 m below mean sea level (model layer 60), in which Cpcg = 1083.0, Crcg = 238.0, Cpcg = 633.0, and

Cvc = 833.0 pg/l. This contaminant plume is considered as the initial condition of the transport simulations in this study.
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Furthermore, the PCE plume is used as a continuous contamination source and was included in the Source/Sink Mixing [SSM]
package of the MT3DMS simulator. Up to this date, other time-series and well contaminant data are not accessible due to
confidentiality imposed by local companies. Modelling parameters required for running the coupled FTR-Model, such as
porosity and hydraulic conductivity are estimated in an offline procedure. To illustrate, the hydraulic conductivity is provided
as a 3D field in the database GeoTOP. The GeoTOP for the province of South-Holland is constructed using 46000 borehole
data (Busschers et al., 2010). Using the borehole data, the most probable lithostratigraphy and lithofacies have been estimated
in each voxel of 100 x 100 x 0.5 m. The GeoTOP further uses relations between the lithostratigraphical units and the lithofacies
with parameters such as hydraulic conductivity, porosity and organic carbon content in order to provide these parameters on
the voxel scale. Further details about the GeoTOP methodology in addition to application to another provinces can be found
in Stafleu et al. (2011b). Table 1 outlines the mean value (averaged over all layers) for some of these parameters. We further
show in Figure 3 the spatial map of the distribution coefficient of TCE averaged over the top 10 layers. The map shows larger

sorption degrees in the northeast part of the domain. This gradually decreases towards the southern region.
3.3 Assimilation Experiments
3.3.1 Reference Run and Pseudo-Observations

In the scope of twin-experiments, we first conduct a reference model run using some "true" (reference) parameters and ini-
tial condition. Next, we impose different uncertainties on the model and the initial conditions, and we assimilate pseudo-
observations extracted from the reference run to recover the "true" trajectory of the model. The goal is to estimate the concen-

tration of chlorinated hydrocarbons (i.e., state variables) and their associated degradation rates (i.e., parameters):
T
x = [ Cice: Cice: Cher: Cuc } g (19a)
T
© = | Kp. Kr. Kp. Kv| . (19b)

Based on the model’s configuration, the dimension of the state is Ny = 288,000 and the parameters Ng = 4. The reference
values of the anaerobic degradation rates are obtained through field and laboratory testing (Suarez and Rifai, 1999) and are
given as Kp = 0.068, K7 = 0.086, Kp = 0.004, and Ky = 0.153 per day. We perform the reference run for a 50-years period
using these rates along with the parameters of Table 1 and the initial conditions, X, as defined above. We plot the resulting
hydraulic head field at four different layers (i.e., 30, 50, 70, and 90) in Figure 4. The maps clearly show the southward and
downward flow direction of the groundwater. The hydraulic head varies between 1.5 m in the center of the domain and drops
to around -1 m in the southern part. The top layers, on average, have larger hydraulic heads than the deeper ones. Overall, the
flow configuration indicates that the contaminant plume would follow the behaviour of the groundwater and predominantly
moves vertically downwards and laterally in the southwards direction.

Based on this steady flow, we then simulated the reference transport of PCE, TCE, DCE, and VC. The time step of the
transport-reaction simulator was about 11 days. To visualise the migration process, we plot in Figure 5 the contaminant evolu-

tion of PCE, TCE, DCE and VC in layers 40, 60, 80, and 100 after 50 years, respectively. As shown, the contaminant plume,
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which is originally present in layer 60, has moved into deeper Pleistocene layers. After 50 years, the maximum concentration
of DCE in layer 80 reaches 650 pg/l. Careful assessment of the transport process shows that the four plumes have reached the
last active layer in the second aquifer; i.e., layer 100. This is mostly due to the continuous PCE contamination source located
in layer 60. Contaminant concentrations in the top Holocene layers are much smaller. Laterally, the contaminant plume is seen
to expand from its initial location to a distance of 1.3 km southwards.

From the reference run, we collect pseudo-observations of the concentration to use them later for assimilation. Observations
are assumed available for all components from layers 30, 50, 70, and 90. From each of these four layers, 10 data points are
collected and thus a total of Ny, = 160. Note that NNy, is much smaller than the number of state variables, N. This is usually
the case in subsurface hydrology applications, given the significant and expensive cost incurred for preparing, drilling, and
completing wells. The observation points are uniformly distributed throughout the domain as denoted by green triangles in
Figure 2. We assume that these 160 measurements are available for assimilation on a yearly basis. We also place a control
well in layer 70 around the center of the domain, particularly at the local coordinates x =450 and y = 600 m, to monitor
the concentration evolution in time. We further assume that these observations are noisy, in order to mimic realistic settings.
We thus perturb them with a Gaussian noise of mean 0 and standard deviation equal to 15% of the total observation mean
(averaged over the entire 50 years). During assimilation, the updated concentration values are monitored to make sure that they
are non-negative. Cell values that fall out of this constraint are set to zero to obtain a physically meaningful solution (Li et al.,

2012; Gharamti et al., 2013).
3.4 Initial Ensemble and Background Statistics

To initialise the filters, we perform an unconditional 50-years simulation run (referred to as free run) starting from the mean
concentration of the reference model run. Thus, at time ¢ = 0 the concentration of the four CH components is not only present
in layer 60, but rather spread-out in all layers. In this free model run, we use around 30% larger degradation rates than the
reference values. The concentration of the components was saved each 6 months. Next, we randomly select a set of N,
concentration snapshots from the free run outputs to form the state ensemble. This prior (initial) ensemble is quite far from the
truth and further exhibits a relatively small spread. This is chosen in purpose to test the robustness of the assimilation schemes
to challenging initial uncertainties. The initial parameters ensemble is sampled assuming a Gaussian distribution with mean
equal to the reference rate values and variance 40%.

The background error statistics required for the hybrid EnKF-OI scheme are parameterised as follows. We form a set of
200 degradation realisations, as described above, and use these to perform 3-months forecasts starting from a series of initial
concentrations distributed at 3-months intervals over a 50-years period, as outlined in Figure 6. To illustrate, starting from the
mean concentration of the reference run, one realisation of the degradation rates @ is used to obtain a 3-months forecast
of the concentration x;. Then, using x; and ®;, the 3D-FTR model is integrated forward to obtain x» concentration after
6 months. We continue this process until the end of the 50 years period. Then, we collect the predicted contaminant states
for all components and augment them with the corresponding degradation rates in a joint matrix form. POD and SVD are

then performed on the augmented concentration-degradation forecast perturbations to summarise the correlations by a small
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number of orthogonal patterns (Hoteit et al., 2002; Skachko et al., 2009; Altaf et al., 2013). Consequently, the parameterisation

of the background covariance matrix, P?

xrx?°

is achieved using the leading 10 POD modes (i.e., r, = 10) of this ensemble, which
capture more than 98% of the total variance. Concerning the background cross-correlations, we use the first 10 singular vectors
(thus, 79 = 10) to parametrise sz matrix. To visualise these correlations, we plot in Figure 7, as an illustration, the spatial
correlation between the rate at which PCE is degrading and the concentration of the ending product of the chain, VC. Clearly,
VC concentration in layer 60 exhibits the largest correlation values because of the continuous source term. Furthermore,
since the groundwater flow is stronger in the downwards direction, and so is the contaminant migration, the cross-correlations
in deeper layers are larger than those of the shallow layers. The background P%_ seem to vanish in the upper parts of the
Holocene clay and peat layer. A consistent behaviour is observed for the remaining three degradation rates, in which the largest
correlations are those associated with Cpcg and smallest with Ccg. PCE has the highest correlation because of the continuous
source zone of PCE. Any removal of PCE due to biodegradation in the source zone is directly replenished the next time step,
and therefore K p determines the total load of chlorinated hydrocarbons in the system. On the other hand, TCE has the lowest
correlation because its value is high and that makes the parameter relatively insensitive to the amount of biodegradation taking
place as compared to the other degradation rate constants.

State and parameters estimates of the EnKF, hybrid EnKF-OI and EnKFggos schemes are evaluated using two metrics;

namely mean-squared-error (MSE) and average-ensemble-spread (AES):

N, N
NN S (x8, —x)?, (20a)

j=1i=1
Ne Nx

N.
N;lNglzZ

j=1i=1

MSE

€ S€
Xji —Xi

AES

) (20b)

where x! is the true value of the variable at location i, x§ ; 1s the forecast ensemble value and X7 is the corresponding ensemble
mean. MSE measures the distance from the estimate to the truth and AES measures the spread or the uncertainty of the

estimates (Hendricks Franssen and Kinzelbach, 2008).

4 Results and Discussion

In this section, we present and compare assimilation results with the Rotterdam port’s 3D-FTR model using the standard EnKF,
the hybrid EnKF-OI and the EnKFggos schemes. The observations are assimilated serially in all three schemes. Concentration
and degradation rate estimates of the filters are compared in terms of accuracy and spread. Concentration data are assimilated
every year for a total of 50 assimilation cycles. The ensemble size, V., is set to 48 in which batches of four members are run

in parallel using Fortran’s OpenMP library.
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4.1 The Hybrid EnKF-OI vs the EnKF
4.1.1 Adjusting Concentration Statistics

To initiate the assimilation experiments, we first run the EnKF and the hybrid EnKF-OI, implemented using only state back-
ground statistics, i.e., using eq. (10a) and 8 = 1. We carry out 10 different experiments by changing the weighting factor «,
for each individual run, between O to 1 with a step of 0.1. To visualise the resulting estimates, we plot the average MSE of the
contaminant concentrations, averaged over the 4 components and in time, in Figure 8. As shown in the left panel of Figure 8,
the most accurate concentration estimates are obtained using o = 0.7. This indicates that out of the total forecast error vari-
ance, the best reconstruction of the reference contaminant solution is obtained when 30% of this variance is traced from the
background statistics. Increasing or decreasing this background contribution (i.e., 30%) results in less accurate contaminant
estimates. We also note that the least accurate estimates are those obtained when 90% of the ensemble statistics are built based
on the static background error covariance. On average, we found that when « takes values between 0.4 and 0.9, the hybrid
EnKF-OI is 16% more accurate than the EnKF.

We also study the effect of changing « on the resulting parameters’ estimates. In the right panel of Figure 8, we plot
the average MSE of each individual degradation rate obtained using the EnKF and 9 different hybrid EnKF-OlIs using o =
0.1,0.2,...,0.9. We notice that the most influenced biodegradation rates are those associated with TCE and VC. In fact, K
and Ky are the least identifiable parameters and therefore a small difference in the estimation algorithm (i.e., hybrid EnKF-
OI and the EnKF) may lead to different estimates. In contrast, Kp and Kp are less sensitive to the weighting factor . In
accordance with the estimates of the contaminant concentrations, the best match for K7 is obtained using o = 0.7. This is
not the case for the other parameters; in which oz =0.3,1 and 0.8 resulted in the best fit to the reference degradation rates
of VC, PCE and DCE, respectively. On average, K7 and Ky estimates are 13% and 35% more accurate than those of the
EnKEF, respectively. The key point is that complementing the state statistics, using a weighted error covariance as in (10a), does
not only contribute to a better retrieval of the concentration but also helps adjusting the cross-correlations with the uncertain
parameters. This is essentially the case when biodegradation is taking place at a higher rate, as in K and Ky, and thus the
more information fed through observations, the better the state-parameters cross-correlations would be.

To better understand the performance of the hybrid EnKF-OI scheme, we further study how the uncertainties of these
degradation rates are maintained in time. For this, we plot in Figure 9 the overall ensemble spread of the four degradation rates
obtained using the EnKF and the hybrid EnKF-OI (all tested o’s). As shown, the EnKF’s spread around these 4 parameters is
quickly reduced after the first 2 or 3 years. This rapid reduction of the ensemble spread, which is due to the relatively small
ensemble size and large initial uncertainties, limits the ability of the filter to impose larger corrections in the future, eventually
degrading the accuracy of the estimated parameters. In contrast, the hybrid EnKF-OI maintains larger uncertainties in time for
different weighting factor values. As such, as a decreases from 1 to 0.1 the performance approaches that of the EnKF. For
instance, after the second year, the ensemble spread of the EnKF reaches 0.03 while it remains larger in the hybrid EnKF-OI
and equal to 0.09, 0.07 and 0.045, respectively. This allows the hybrid scheme to better exploit the concentration information

from observations. This can be confirmed by noticing that the spread of the hybrid filter continues to decrease after 25 years
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of assimilation, unlike the EnKF that does not show signs of more corrections. All in all, selecting o = 0.7 seems to maintain
enough spread for both components’ concentration and degradation rates and leads to the most accurate estimates, on average.

For the sake of comparison, we refer hereafter to this scenario as EnKF-Ol,— 7.
4.1.2 Adjusting Concentration and Parameters Statistics

In the following set of experiments, we fix o to 0.7 and focus on changing the weighting factor between the EnKF and
background state and parameters cross-correlations; i.e., 8. As in the previous section, we conduct 9 experiments in which we
change [ between 0.1 and 0.9. Note that the larger [ is, the closer the performance is to EnKF-OI,—g 7. To analyse the results,
we plot in Figure 10 the average MSE and AES of the chlorinated hydrocarbon concentrations. Compared to the previous
runs that hybridise the state only, including background cross-correlations information slightly increases the spread around
the ensemble mean of concentration, as observed for 0.1 < 5 < 0.3. In terms of accuracy, varying  between 0.1 and 0.6
yields more accurate concentration estimates for all components. To illustrate, when 5 = 0.1 the average improvements over
the EnKF and the EnKF-OI,,—( 7 are around 50% and 32%, respectively. This vigorous performance suggests that using only
10% of the "flow-dependent” parameters’ ensemble to characterise the pdf of the system is enough to outperform the EnKF.
In essence, the background state and parameters cross-correlations seem to carry sufficient description of how the degradation
rates and the concentration of each of the components are related. Consequently, only a small portion (i.e., 10%) of the online
parameters’ ensemble is required to obtain an accurate biodegradation picture, while the rest of the information could come
from the prescribed static background statistics. This could be due to the time-independent nature of the propagation step
describing the evolution of the degradation rates, thereby manifesting a minimal dependence on the flow-dependent ensemble.
This observation comes in accordance with the steady-state Kalman filter (El Serafy and Mynett, 2008) that assumes time-
invariant error covariance matrix as long as accurate spatial correlations are used within the so-called Kalman gain. Our
experimental results suggest that the best parameter’s hybrid covariance matrix is very close to a steady-state one. However,
this is only for the parameters and this was not the case for the state as discussed in section (4.1.1). Following the notation
introduced earlier, we refer to this scenario, hereafter, as EnKF-OIgzgé

To have a better insight at the suggested performance, we plot in Figure 11 the evolution of the concentration ensemble
members for all components in time. For a fair comparison, we also plot the associated reference solution, the EnKF’s and the
EnKF-OI,—¢.7’s ensemble members. As explained in section (3.4), the initial ensemble spread is clearly far from the truth.
When data is assimilated into the system, all schemes tend to move closer to the truth. By the end of the 50-years period, both
EnKF and EnKF-OI,,—( 7 underestimate the concentration of DCE and VC and end up with quite small ensemble spread. The
EnKF—OIf;g‘é, on the other hand, leads to the best performance, well matching the reference solution for all components.
Moreover, this hybrid scheme is shown to better preserve the ensemble spread around the true final concentrations. In terms
of the estimated degradation rates, we plot in Figure 12 the temporal change of MSE for each individual degradation rate

as they result from the EnKF-OI'gi(l)"?mo.g (top panels) and EnKF-OIiigé”'o'g (bottom panels). For all rates, the EnKF-

01§231$“°-9 performs much better during the first10 years, especially for Kp and K7. Averaging in time and over all cases,

EnKF—Olgzgié"'o'g s 33%, 17%, 33% and 15% more accurate for retrieving Kp, K7, Kp and Ky, respectively. From these
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results, one can see that the accuracy of the degradation rates tends to improve in time, except for K p that is shown to degrade
for small « and large 8 values. To interpret this behaviour, one should recall that K (and also Ky/) can only be estimated
correctly as long as the concentration of the source component (Cpcg in this case) is accurately recovered. Before reaching
this, the estimates of K p are compensated for errors in K p and K.

Next, and instead of manually changing the weighting factors « and S, we follow egs. (13) and (14) and conduct a 1D
optimisation problem prior to assimilating the observations serially. The idea is to get the maximum reduction in the prior
uncertainties for both the concentration and the degradation rates as a way to "optimally" exploit the information in the assimi-
lated observations. As such, different weights can be assigned to the background and the ensemble statistics. Based on this, we
plot in Figure 13 the resulting optimal « values at every assimilation cycle and for each observation. Recall that there is a total
of 160 observations, such that each contaminant component is observed at 40 different locations. To better interpret the plot,
we arrange these observation indices as follows: from top to bottom of the left y-axis; PCE: 1 — 40, TCE: 41 — 80, DCE:

81 — 120 and VC: 121 — 160. As can be seen from the plot, the adaptive hybrid EnKF-OI algorithm selects either 0, and thus
b

xx?°

or 1 so that only the ensemble covariance, 135‘;0‘(]:, is included. When assimilating PCE, TCE

eq. (10a) is purely based on P
and VC concentrations, the adaptive scheme tends to use the background covariance (i.e., « = 0) for almost the first 25 years.
Beyond this, the filter statistics are only based on the ensemble flow-dependent information (i.e., o = 1). This is not surpris-
ing given the large initial uncertainties imposed on the contaminant concentrations. Once the statistics are adjusted towards
the truth, the filter relies more on the correlations of the flow-dependent ensemble statistics. This performance changes when
assimilating DCE observations in the sense that the filter builds its forecast error covariance mostly using static background
statistics and less using the flow-dependent ensemble. This is in agreement with the results and conclusion drawn from Figure
12 in which the background information of DCE are more useful than the ensemble statistics. Averaging over the entire optimal
values of «, we obtain a global o* = 0.64, which is quite close to the 0.7 value that resulted in the best performance in section
(4.1.1). In terms of the adaptive S values, we found that maximising the difference between the prior and the posterior parame-
ters’ covariance, Pyg, may not always be helpful. This is because doing such maximisation can quickly diminish the ensemble
spread, eventually paralysing the filter’s analysis. In fact, minimising the difference' yielded more accurate degradation rates.
To analyse this, we plot on the same figure the time-evolution of MSE of concentration when (1) maximising the information
gain for both state and parameters, (2) minimising the information gain for both and (3) maximising the state’s and minimising
the parameters’ information gain, respectively. As seen from the three curves, the best performance is obtained when the in-
formation gain for concentration is maximised and the associated parameter’s one is minimised. Compared to maximising the

information gain of both state and parameters, this mixed scheme now yields 37% more accurate contaminant concentrations.

'Minimising the difference between the prior and the posterior covariances does not mean that the filter does not apply any correction. Since the Kalman
analysis equation always minimises the variance, the adaptive algorithm now acts in a way such that only the lowest minimisation possible is retrieved. Unlike

standard Kalman filtering, this procedure moves at a slower pace towards the truth.
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4.2 The EnKFggos vs the EnKF

In the previous section, all approaches and experimental results were intended to mitigate for the rank deficiency and the
under-sampling of the ensemble’s sample forecast error covariance. In the following experiment, we attempt to deal with the
undersampling of the observation errors by implementing the EnKFggos algorithm presented in section (2.3). We first note that
the distribution of the new observation perturbations show reasonable deviations from the prescribed Gaussian errors in the
original EnKF algorithm, as has been noticed by Hoteit et al. (2015). To assess the performance of the EnKFggos against the
EnKF, we study at a closer glance the contaminant maps after 50 years as estimated by the ensemble means from both schemes.
Thus, we plot in Figure 14 the normalised errors for the components TCE and DCE at layers 70 and 80, respectively. These
error maps are obtained by subtracting the ensemble mean concentration from the reference and then normalising the result by
the average of the reference solution. One common feature in these maps is the clear underestimation of TCE and DCE in the
north part of the domain. This is because the initial reference concentration is quite different from the one assigned to the initial
ensemble using the free run setup as outlined in section (3.4). In time, both filtering schemes try to push the contaminant plume,
which has already moved towards the southern region, upwards to match the truth. Moreover, as demonstrated in layer 70 and
unlike the EnKFgsos, the EnKF overestimates the TCE concentration in the center of the domain, which further continues
to move southwards. In layer 80 (i.e., 5 m deeper), the EnKF tends to underestimate the concentration of DCE especially in
the southern part of the domain. On the other hand, a slight overestimation of this DCE concentration towards the center is
suggested by the EnKFgsos. In general, and assessing similar patterns at other layers, the EnKFggog exhibits higher accuracy in
retrieving the contaminant concentration than the EnKF. This provides further evidence that ignoring the observation sampling
errors within the EnKF can indeed deteriorate the quality of the state estimates.

To study the impact of the EnKFggps on the estimates of the parameters, we examine the evolution of the approximate
distribution of TCE degradation rate in time. We compare the resulting pdfs with those obtained using the EnKF after 5, 15,
30 and 45 years. On top of the pdfs, we also monitor the temporal evolution of K AES in Figure 15. Starting from rather flat
and uncertain pdfs of K7, both EnKF and EnKFggog correct the members of TCE degradation rate towards the truth, which is
0.086 per day. Notice that within the first 15 years, the pdfs seem to move in the wrong direction, away from the truth. This
is due to the large concentrations at time 0, and thus the filter increases the degradation rates to fit the reference contaminant
concentration. Beyond that and once the concentration is adjusted, the parameters from both filtering schemes begin moving
closer toward the true degradation rate. However, the EnKF is seen to move faster towards the truth and further diminishes the
uncertainty around K quite rapidly. Consequently, the resulting pdf of K1 after 45 years looks like a Kronecker delta function.
This is, roughly speaking, not a very healthy assimilation system as the parameter updates become insignificant over the rest
of the assimilation window. In contrast, the degradation rate obtained using EnKFgsos moves at a slower pace towards the
true rate maintaining large enough spread to fit the incoming observations. Compared to the EnKF, the AES suggested by the
EnKFggos, as shown on the left y-axis, is almost 40% to 50% higher. As a matter of fact, this performance is more trustworthy

than that of the EnKF, indicating the essential need to account for observation sampling errors at the time of the analysis. Hoteit
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et al. (2015) found that the ensemble spread of the EnKFggps is larger than that of the EnKF for state estimation. In here, we
experienced a similar, yet more pronounced behaviour for the estimates of the parameters.

As a way to provide an overall assessment, we compare the best estimates obtained using all schemes considered earlier; i.e.,
the EnKF, the EnKF -Olgzg'_% and the EnKFggps. We plot the time series of MSE for contaminant concentration and degradation
rates, summed over all components, in Figure 16. Clearly the EnKF is the least accurate. Accounting for observation sampling
errors yield around 21% and 23% more accurate state and parameters estimates, respectively. Tackling the rank deficiency
of the EnKF results in 48% and 70% more accurate state and parameters estimates, respectively. Accordingly, addressing the
issues of observation sampling errors and rank deficient forecast ensemble matrices seem to be crucial and can highly improve
the accuracy of the estimates. From our experimental results and for this particular setting, resolving the rank deficiency issue

appear to have the largest impact on the final estimates of the filter.
4.3 Incorporating Uncertainties in the Hydraulic Parameters

In sections 4.1 and 4.2, the static background covariance matrices were derived on the basis of perfectly known hydraulic
parameters. In this section, we test the impact of incorporating uncertainties in the groundwater flow model on the performance
of both the hybrid EnKF-OI and the EnKFgsos schemes. Generally, such procedure is expected to alter the precise description
that the hybrid scheme utilizes to relate the biodegradation rates and the components’ concentrations. To this end, the GeoTOP
software package, described in section 3.2.2, is used to obtain 48 different realizations for hydraulic conductivity and porosity.
The realizations are built assuming a Gaussian distributed hydraulic parameters with mean equal to the 3D fields used in the
reference model run (section 3.2.2) and standard deviation paramertrized in two different scenarios. We use o,,, = 10% of the
mean in the first scenario (moderate uncertainty) and o, = 30% of the mean value in the second scenario (high uncertainty).
The reason for this choice is to provide a realistic assessment of the filters under varying modelling uncertainty.

Before testing the performance of the hybrid EnKF-OI and the EnKFggos, we first construct the background covariances;
ie., P’ and ng, using a similar procedure to the one presented in section 3.4 but based on perturbed conductivity and
porosity realizations (here, o,, is used). To interpret the influence of this modelling uncertainty, we plot in Figure 17 the
averaged cross-correlations of K p rate with all four components. We observe that the dominant correlation patterns are similar
to those obtained earlier using perfect flow conditions, especially in the shallow aquifer layers. In deeper layers, there are
noticeable differences in the correlations of K p and Crcg. In addition, the magnitude of the new background correlations is
considerably smaller. For instance, the estimated correlation value between K p and Cpcg after imposing uncertainty on the
hydraulic parameters has shrunk by 60%. The fact that the major spatial patterns of the background correlations were preserved
and their magnitude was influenced the most is related to the nature of the perturbed hydraulic parameters. Generally, porosity
and conductivity affect the speed and the movement of groundwater in the aquifer and thus the degradation process would be
expected to either slow down or accelerate. Compared to the previous parameterization, in this scenario 15 POD modes were
required to capture around 97% of the total variance.

With moderate uncertainty, both the hybrid EnKF-OI and the EnKFggog outperform the EnKF and recover decent estimates

of the degradation parameters. However, compared to the ones obtained under perfect flow conditions, these were slightly less
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accurate. Switching to the high uncertainty scenario (i.e., using oy,), all three assimilation schemes failed to retrieve reliable
estimates of the concentration and biodegradation. To illustrate, we show in Figure 18 (top panel) the temporal evolution of
MSE obtained using EnI(F—OI([E(l)"%.‘‘_’0.8 with perfect and perturbed hydraulic parameters. The performance as shown starts
degrading after 15 years, eventually leading to inaccurate concentration estimates and unreliable parameters. This suggests
that quantifying the large uncertainty of the flow model alongside the reaction parameters, using any of the three schemes,
might be necessary in such a challenging setup. On the other hand, under moderate uncertainty we compare the performance
of the assimilation schemes to the ones obtained assuming perfect flow. For this, we plot the average gain (MSE difference),
suggested by the adaptive hybrid scheme over EnKFggog estimates of the degradation rates. The adaptive hybrid EnKF-OI
remains more accurate even after perturbing the hydraulic parameters. However, the proposed accuracy is roughly halved for
all parameters. This is indeed related to the less reliable static background covariances, which are now subjected to uncertainties

in the groundwater flow dynamics.

5 Conclusions

In this study, we examined and investigated the hybrid ensemble Kalman filter (EnKF-OI) and the second-order observation
perturbations sampling (EnKFggps) schemes to estimate contaminant concentration and biodegradation rates of chlorinated
hydrocarbons at the port of Rotterdam. We simulated the migration problem of a single plume consisting of Tetrachloroethene
(PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (DCE) and Vinyl Chloride (VC). Concentration data was used for yearly
assimilation over a period of 50 years. The hybrid scheme complements the flow-dependent sample ensemble covariance of
the EnKF with a prescribed static background covariance from an OI system to mitigate the undersampling of the ensembles
and neglected model errors. The exact second-order sampling of the observation perturbations modifies the observation per-
turbations and assimilates the data one after the other, thus resolving the undersampling of the observation noise in the EnKF
analysis. Challenging assimilation scenarios using a relatively small ensemble (V. = 48) were presented, in which observations

were processed serially. The key findings of this study and future research directions are summarised below:

1. Both the hybrid EnKF-OI and the EnKFgsos successfully provide accurate concentration and degradation rate estimates.
On average, a tuned hybrid EnKF-OI (using o = 0.7 and 8 = 0.1) suggests 48% and 70% more accurate state and param-
eters estimates than those obtained using the EnKF. On the other hand, the EnKFggog’s state and parameters estimates
are 21% and 23% more accurate, respectively. In addition, the two schemes are easy to implement and computationally

efficient requiring only a minimal change to an existing EnKF code.

2. Both filtering schemes demonstrated a better handling of the ensemble spread, for both state and parameters, avoiding

collapse or false (unrealistic) confidence in the estimates, which enables better fit to the observations.

3. The hybrid scheme requires some effort to tune two weighting factors that adjust the background statistics for both state
and parameters. The serial adaptive version of this scheme, which relies on maximising the information gain between

the forecast and analysis for each individual observation point, seems promising. From the experiments, we found that
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maximising the information gain could however possibly deplete the uncertainty within the ensemble quite rapidly. Yet,
this observation may vary between systems depending on the degree and the rate of uncertainty growth. One possible
solution that we tested is to minimise the information gain, and thus decrease the update impact when fitting the obser-
vations. Further, one could also build the objective function in such a way that only a portion of the information gain
is maximised. For instance, an example would be to enforce the ratio between the trace of the analysis and the forecast

covariance matrices to be greater than 30% meaning that at least 60% of the ensemble uncertainty is preserved.

4. Failing to account for observation undersampling errors in the standard EnKF can impact not only the quality of the
state but more importantly the estimates of the parameters. In our experiments, the degradation rates obtained after

assimilating the observations using the EnKFggos scheme were more accurate, more reliable and more realistic.

5. Imposing large uncertainties on the hydraulic parameters of the flow model degrades the performance of all filtering
schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the static background statis-
tics, satisfactory results were obtained only when the uncertainty imposed on the background information is relatively

moderate. The EnKFggog further outperformed the standard EnKF with moderate flow uncertainty conditions.

6. Careful tuning of the hybrid EnKF-OI yields the best estimates of the concentration and the degradation rates as com-
pared to the EnKF and the EnKFggps. This manifests the importance of complementing the EnKF parameters cross-

correlations with static ones.

Building a unified EnKF scheme, which tackles both the undersampling of the forecast covariance and the observation sampling

errors simultaneously is an interesting line of research in the future that we will consider in our future work.
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Table/Figure Captions:

Table 1: Different modelling parameters for the coupled flow-transport-reaction model. The values given for 3D parametric

fields, such as bulk density and distribution coefficients, are the mean values from the entire 121 layers.

Figure 1: Schematic representation of the port of Rotterdam area with three main geologic layers: (i) Holocene clay and peat
layer with sandy deposits (= 20 m thick), (ii) Pleistocene layer with coarse sand (=~ 10 m thick), and (iii) Pleistocene

clay layer (= 30 m thick). POC1, POC2 and POC3 refer to different planes of compliance at the port site.

Figure 2: Initial configuration and geometry of the study area, located at the port of Rotterdam. The blue part is the domain
area (1.5 km?) of each layer and the yellow region is the plume of chlorinated hydrocarbon contaminants located in layer
60 at a depth of 22.5 m below the mean sea level. The green triangles indicate the measurement locations collected from

layers 30, 50, 70 and 90.

Figure 3: 2D spatial configuration of sorption (distribution coefficient) for trichloroethene (TCE) averaged over the first 10

layers of the domain.

Figure 4: Groundwater (GW) hydraulic head configuration from four different active layers in the domain. The largest water
head is located in the center of the domain and is equal to 1.5 m. The water head deceases in the southern part of the

domain. The flow is computed using MODFLOW and plotted using iMOD’s graphical interface utility.

Figure 5: Contaminant plume after 50 years for PCE, TCE, DCE and VC in layers 40, 60, 80 and 100, respectively. Vertically,
the contaminant plume tend to move downwards towards the Pleistocene clay layers and the second aquifer. In the lateral

direction, displacement of the plume happens southwards.

b

Figure 6: A sketch illustrating the procedure followed to construct the background statistics, P,

» and P} 3-months forecasts

are performed starting from different initial conditions, X 1,... v, and different degradations rate parameters, ®¢ 1,2..., N,
b

X’

where N = 200 steps summing up to 50 years. The background state covariance, P, and state-parameters cross-

correlations, ng, are then constructed using the first leading modes only.

Figure 7: Individual cross-correlation terms of the background matrix P} associated with PCE biodegradation rate and VC
concentration. The correlations are shown for all layers, assuming that the cells from each layer have been stretched
in one vertical line (y-coordinate). Largest correlation is present in layer 60 where the contaminant source is located.

Biodegradation in shallow layers is not as strong as in deep layers because of the downwards groundwater flow direction.

Figure 8: Left panel: Average mean square errors (MSE) of contaminant concentrations obtained using the EnKF and the
hybrid EnKF-OI using oo = 0.1,0.2,...,0.9. Right panel: Average MSE for PCE, TCE, DCE and VC biodegradation
rates obtained using the EnKF and the hybrid EnKF-OI for different weight factor («) values.
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Figure 9: Time series change of average ensemble spread (AES) resulting from the EnKF and hybrid EnKF-OI using 48

members in which a =0.1,0.2,...,0.9.

Figure 10: Bar-Plot (left y-axis): The AES of concentration ensemble obtained using the hybrid EnKF-OI by changing the
individual weighting factors (o and [3) between 0.1 and 0.9. Shown according to the right y-axis is the MSE obtained
using the hybrid EnKF-OIf;g‘_%""’0'9 (triangles), the hybrid EnKF-OI, ¢ 7 (cross) and the EnKF (plus).

Figure 11: Forecast ensemble members of PCE, TCE, DCE, and VC concentration. The evolution of these members (N, = 48)
is shown for the entire 50 years. Results are obtained using the standard EnKF, the EnKF-OI,—¢ 7 and the EnKF—Olgigﬁ

schemes. Solid dashed lines correspond to the reference concentration of each component.

Figure 12: Images showing the MSE of PCE, TCE, DCE and VC degradation rates in time. These are obtained using the
hybrid EnKF-OI scheme for (1) different « values (top panel) and (2) different 3 values keeping « fixed and equal to 0.7
(bottom panel).

Figure 13: The coloured image shows, according to the left y-axis, the adaptive change in « values for each individual ob-
servation. The observation index (1,...,160) is sorted such that the first 40 indices correspond to PCE measurements,
the second 40 correspond to TCE, third 40 correspond to DCE and finally VC takes the last 40 indices. The yellow
color indicates that no background covariance matrices have been used and the blue color suggests that only ensemble
"flow-dependent"” statistics are involved. The curves demonstrate the change in MSE, according to the right y-axis, in
time when maximising the information gain (cyan), minimising the information gain (red) and maximising the formation

for concentration and minimising it for degradation rates (green).

Figure 14: Top panel: TCE concentration and error maps in layer 70 obtained using the reference run (1% column), the EnKF

(2" column) and the EnKFgs0s (3). Bottom panel: Same as top panel but for the concentration of DCE.

Figure 15: Left y-axis: The time evolution of the prior probability density functions corresponding to TCE degradation rate
obtained using the EnKF (solid lines) and the EnKFggos (dashed lines). The reference "true" rate is given at 0.086 /day
in brown color. Right y-axis: The AES of K1 suggested using the EnKF and the EnKFgsos.

Figure 16: Left panel: Time-series of MSE for concentrations obtained using the EnKF, the EnKFggos and the hybrid EnKF-

Olgzg‘é. Right panel: Same as the left panel but for all degradation rates (y-axis is in log scale).

Figure 17: Cross-correlation terms of the background matrix PZI associated with PCE biodegradation rate and all compo-
nents’ concentartions. The spatial correlations are averaged for all layers. The correlations in black are based on perfect
groundwater flow model. The correlations in blue are constructed after perturbing the hydraulic conductivity and porosity

of the forecast model. Largest correlation is present in layer 60 where the contaminant source is located.
Figure 18: Top panel: Performance of the hybrid EnKF-OIﬁiz(l,'g’[)Av_”,0_8 before and after perturbing the hydraulic con-

ductivity and porosity. The performance is assessed based on the temporal evolution of the MSE (prediction) errors.
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The imposed Gaussian uncertainty is high and obtained using standard deviation oj. Bottom panel: Average gain
% 2?21 (MSEgnkr.o1 — MSEgnkr-Esos) suggested for all degradation parameters. The improvements suggested by the

adaptive EnKF-OI over EnKFggog are shown for both perfect and perturbed (using o,,,) flow scenarios.
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Symbol

Po
kpcr
krce
kpcr
kve
RL

RT/HL

kT/HL

Parameter Description

Porosity

Bulk density

Distribution coefficient of PCE
Distribution coefficient of TCE
Distribution coefficient of DCE
Distribution coefficient of VC
Longitudinal dispersivity

Ratio of horizontal transverse disper-
sivity to longitudinal dispersivity
Ratio of vertical transverse dispersivity
to longitudinal dispersivity

Molecular diffusion

Value (unit)
0.30
1167 (kg/m?)
0.0012 (m?/kg
0.0015 (m? /kg
0.0014 (m? /kg
0.0010 (m?/kg
0.5 (m)

N N N

0.1

0.1

10719 (m?/s)
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Background Cross-Correlations: Changing Flow Conditions
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