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Abstract 10 

The scale-specific and localized bivariate relationships in geosciences can be 11 

revealed using bivariate wavelet coherence. The objective of this study was to develop 12 

a multiple wavelet coherence method for examining scale-specific and localized 13 

multivariate relationships. Stationary and non-stationary artificial datasets, generated 14 

with the response variable as the summation of five predictor variables (cosine waves) 15 

with different scales, were used to test the new method. Comparisons were also 16 

conducted using existing multivariate methods, including multiple spectral coherence 17 

and multivariate empirical mode decomposition (MEMD). Results show that multiple 18 

spectral coherence is unable to identify localized multivariate relationships, and 19 

underestimates the scale-specific multivariate relationships for non-stationary 20 

processes. The MEMD method was able to separate all variables into components at 21 
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the same set of scales, revealing scale-specific relationships when combined with 22 

multiple correlation coefficients, but has the same weakness as multiple spectral 23 

coherence. However, multiple wavelet coherences are able to identify scale-specific 24 

and localized multivariate relationships, as they are close to 1 at multiple scales and 25 

locations corresponding to those of predictor variables. Therefore, multiple wavelet 26 

coherence outperforms other common multivariate methods. Multiple wavelet 27 

coherence was applied to a real dataset and revealed the optimal combination of 28 

factors for explaining temporal variation of free water evaporation at Changwu site in 29 

China at multiple scale-location domains. Matlab codes for multiple wavelet 30 

coherence were developed and are provided in the supplement. 31 

1. Introduction 32 

Geoscience data such as topography, climate, and ocean waves usually present 33 

cyclic patterns, with high-frequency (small-scale) processes being superimposed on 34 

low-frequency (large-scale) processes (Si, 2008). More often than not, geoscience 35 

data are transient, consisting of a variety of frequency regimes that may be localized 36 

in space or time (Torrence and Compo, 1998; Si and Zeleke, 2005; Graf et al., 2014). 37 

The transient characteristics exist widely in non-stationary processes, but also 38 

sometimes occur in stationary processes (Feldstein, 2000). The wavelet method is a 39 

common tool for detecting multi-scale and localized features of transient processes in 40 

geosciences. Bivariate wavelet coherency has been widely used for untangling 41 

scale-specific and localized relationships for transient processes in areas including 42 
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geophysics (Lakshmi et al., 2004; Müller et al., 2008), hydrology (Labat et al., 2005; 43 

Das and Mohanty, 2008; Tang and Piechota, 2009; Carey et al., 2013; Graf et al., 44 

2014), soil science (Si and Zeleke, 2005; Biswas and Si, 2011), meteorology 45 

(Torrence and Compo, 1998), and ecology (Polansky et al., 2010). This method, 46 

however, is limited to two variables. Processes in geosciences are usually complex 47 

and may be affected by more than two environmental factors. A method is needed for 48 

analyzing multivariate (>2 variables) and localized relationships at multiple scales. 49 

Several methods have been used for characterizing multivariate relationships. For 50 

example, multiple spectral coherence (MSC) has been used to explore the 51 

scale-specific relationships between soil saturated hydraulic conductivity (Ks) and 52 

multiple soil physical properties (Koopmans, 1974; Si, 2008), but requires a stationary 53 

data series, which is rare in geosciences. Multivariate empirical mode decomposition 54 

(MEMD), a data-driven method, decomposes each variable into different components 55 

(intrinsic mode functions (IMFs)) with each IMF corresponding to a “common scale” 56 

inherent in multiple variables (Rehman and Mandic, 2010). The MEMD method is 57 

meritorious due to its ability to deal with both transient and nonlinear systems. The 58 

combination of the squared multiple correlation coefficient and MEMD (MCCmemd) 59 

has been used to explore the multivariate control of soil water content and Ks at 60 

multiple scales (Hu and Si, 2013; She et al., 2013, 2015; Hu et al., 2014). However, 61 

the sum of variances from different components did not typically equal the total 62 

variance of the original series, which may produce misleading MCCmemd results. In 63 

addition, multivariate relationships in geosciences are most likely to change with time 64 
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or space due to the transient nature of the processes involved. However, localized 65 

multivariate relationships are not available using any of the existing multivariate 66 

methods. Therefore, extending the wavelet coherence from two variables to multiple 67 

variables is required .  68 

An attempt to extend wavelet coherence from two to three variables has been made 69 

by Mihanović et al. (2009). Their method was also applied later in the marine sciences 70 

(Ng and Chan, 2012a, b). Limitations arise when using the trivariate wavelet 71 

coherence: first, only two predictor variables are considered; second, the two 72 

predictor variables must be orthogonal. Otherwise, extremely high or low (spurious) 73 

coherence (>>1 or <0) may be produced. This spuriousness is inconsistent with the 74 

definition of coherence, which may limit the application of this method in geosciences 75 

where environmental variables are usually cross-correlated. Therefore, a robust 76 

method for calculating MWC, which produces coherence in the closed interval of [0, 77 

1], is needed. 78 

The objective of this paper is to develop an MWC that applies to cases where there 79 

are multiple environmental variables, of which may be cross-correlated. This method 80 

is first tested with artificial datasets to demonstrate its advantages over existing 81 

multivariate methods. The superiority of the new method over others can be assessed 82 

by determining whether the known major features of the artificial data are 83 

demonstrated by these methods. The new method is then applied to a temporal series 84 

of evaporation (E) from free water surface and meteorological factors at Changwu site 85 

in Shaanxi, China. 86 
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2. Theory 87 

Bivariate wavelet coherence can be understood as the traditional correlation 88 

coefficient localized in the scale-location domain (Grinsted et al., 2004). Just as  89 

correlation coefficients can be extended from two variables to multiple (>2) variables, 90 

wavelet coherence between two variables may also be extended to multiple variables. 91 

Similar to bivariate wavelet coherence, MWC is based on a series of auto- and 92 

cross-wavelet power spectra, at different scales and spatial (or temporal) locations, for 93 

the response variable and all predictor variables.  94 

Following Koopman (1974), a matrix representation of the smoothed auto- and 95 

cross-wavelet power spectra for multiple predictor variables X ( { }1 2, , , qX X X X= 
) 96 

can be written as 97 
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 is the smoothed auto-wavelet power spectra (when i=j) or 99 

cross-wavelet power spectra (when i≠j) at scale s and spatial (or temporal) location 100 

τ , respectively. For the detailed calculation of smoothed auto- and cross-wavelet 101 

power spectra, see Supplement, Sect. S1. 102 

The matrix of smoothed cross wavelet power spectra between response variable Y 103 

and predictor variables Xi
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where 
,

 ( , )iY X
W s τ


 is the smoothed cross-wavelet power spectra between Y and Xi

τ

 at 106 

scale s and spatial (or temporal) location .   107 

The smoothed wavelet power spectrum of response variable Y is ( ),
,

Y Y
W s τ


. 108 

  Following Koopmans (1974), the MWC at scale s and location τ , ( )2

,m sρ τ , can 109 

be written as 110 
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.                   (3) 111 

When only one predictor variable (e.g., X1

),(2 τρ sb

) is included in X, Eq. (3) is the equation 112 

for bivariate wavelet coherence, , which can be expressed as (Torrence and 113 

Webster, 1999; Grinsted et al., 2004): 114 
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.                             (4) 115 

  Therefore, bivariate wavelet coherence is consistent with multiple wavelet 116 

coherence if only one predictor variable is included. In addition, the wavelet phase 117 

between a response variable (Y) and a predictor variable (X1

( ) ( )( ) ( )( )( )1 1, ,1, tan Im , / Re ,Y X Y Xs W s W sφ τ τ τ−=

) is 118 

,                      (5) 119 

where Im and Re denote the imaginary and real part of ( )1, ,Y XW s τ , respectively. 120 

Note that the phase information between a response variable Y and multiple predictor 121 

variables X cannot be obtained.  122 

Multiple wavelet coherence at the 95% confidence level is calculated using the 123 

Monte Carlo method (Grinsted et al., 2004). Surrogate spatial series (i.e., red noise) of 124 

all variables are generated with a Monte Carlo simulation based on their first-order 125 

autocorrelation coefficient (AR1). The MWC at each scale and location is calculated 126 
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using the simulated spatial series. This is repeated an adequate number of times (e.g., 127 

1000) (Grinsted et al., 2004). At each scale, MWCs at all locations outside the cones 128 

of influence, from all simulations are ranked in ascending order. The value at the 95th 129 

percentile represents the 95% confidence level for the MWC at that scale. The Matlab 130 

codes and user manual document for calculating MWC and significance level are 131 

provided in the Supplement (Sect. S2–S4). 132 

3. Data and analysis 133 

3.1 Artificial data for method test  134 

The method is tested using a stationary and non-stationary artificial dataset, 135 

generated following Yan and Gao (2007). The response variable (y for the stationary 136 

case and z for the non-stationary case) encompasses five cosine waves (y1 to y5 for the 137 

stationary case and z1 to z5 for the non-stationary case), with different dimensionless 138 

scales (Fig. 1). For the stationary case, y1=cos(2πx/4), y2=cos(2πx/8), y3=cos(2πx/16), 139 

y4=cos(2πx/32), and y5=cos(2πx/64), where x=0, 1, 2, …, 255. There is one regular 140 

cycle every 4, 8, 16, 32, and 64 locations, representing dimensionless scales of 4, 8, 141 

16, 32, and 64 for y1, y2, y3, y4, and y5, respectively (Fig. 1a). The regular cycles 142 

make each predictor and response series stationary. For the non-stationary case, 143 

z1=cos(500π(x/1000)0.5), z2=cos(250π(x/1000)0.5), z3=cos(125π(x/1000)0.5), 144 

z4=cos(62.5π(x/1000)0.5), and z5=cos(31.25π(x/1000)0.5), where x=0, 1, 2, …, 255. 145 

The equation containing the square root of the location term results in the gradual 146 

change in frequency (scale), with the greatest dimensionless scales of 4, 8, 16, 32, and 147 
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64 at the right hand side for z1, z2, z3, z4, and z5

For both the stationary and non-stationary series, the variance of the response 151 

variable is 2.5. The predictor variables, each with a variance of 0.5, are orthogonal to 152 

each other, and contribute equally to the total variance of the response variable. The 153 

cosine-like artificial datasets mimic many time series such as seismic signals, 154 

turbulence, air temperature, precipitation, hydrologic fluxes, and the El 155 

Niño-Southern Oscillation. They also mimic geoscientific spatial series such as ocean 156 

waves, seafloor bathymetry, land surface topography, and soil water content along a 157 

hummocky landscape. Therefore, they are representative of a geoscience data series 158 

and are suitable for testing the new method. 159 

, respectively (Fig. 1b). The average 148 

scales for these predictor variables are 3, 5, 9, 17, and 32, respectively. The 149 

location-varying scales make each predictor and response variable non-stationary.  150 

Multiple wavelet coherence between the response variable y (or z) and two (y2 and 160 

y4, or z2 and z4) or three (y2, y3, and y4, or z2, z3, and z4

To demonstrate the advantages of MWC in dealing with abrupt changes (a type of 166 

transient and localized feature), the second half of the original series of y

) predictor variables were 161 

calculated. The advantage of the artificial data is that the known scale- and localized 162 

features for all variables, and the known relationships between the response and each 163 

predictor variable, are exact. By definition, the coherence is 1 at scales corresponding 164 

to those of the included predictor variables, and 0 at other scales. 165 

2 (or z2) or y4 167 

(or z4) are replaced by 0, and MWC between the response variable and new set of 168 

predictor variables is calculated. We anticipate that the coherence changes from 1 to 0 169 
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at the location where the new predictor variable becomes 0. 170 

Predictor variables may not be as regular as that shown in Fig. 1, and may also be 171 

cross-correlated to one another. For these reasons, zero-mean white noises with  172 

standard deviations of 0.3, 1, and 4 are added to the predictor variables of y2 (or z2) 173 

and y4 (or z4

The MWC is compared to the MSC (Koopmans, 1974; Si, 2008) and MCC

). The resulting noised series have correlation coefficients of 0.9, 0.5, and 174 

0.1, respectively, with their original predictor variable. Therefore, we will refer to 175 

them as weakly, moderately, and highly noised series, respectively. Multiple wavelet 176 

coherences between the response variable and different predictor variables (original 177 

and noised series) are calculated to demonstrate the performance of MWC when 178 

noised or correlated predictor variables are involved. Only the non-stationary case 179 

will be demonstrated, because the performances of MWC for stationary and 180 

non-stationary cases are similar. 181 

memd 182 

(Hu and Si, 2013), which are widely used for spatial or temporal series analysis in 183 

different disciplines. The advantages of the new method over these two methods will 184 

be demonstrated mainly in terms of relationships between response and predictor 185 

variables at various scales of the response variable. The MSC is calculated based on 186 

the calculated auto- and cross- power spectra, using an equation similar to Eq. (3). 187 

The detailed introduction of this method can be found in Si (2008). For the calculation 188 

of MCCmemd, a set of response and predictor variables form a multivariate data series 189 

for MEMD. The MEMD is a data driven method and has the ability to align “common 190 

scales” present within multivariate data. Please refer to Rehman and Mandic (2010) 191 
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and Hu and Si (2013) for the MEMD analysis, and the website 192 

(http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm) for the related Matlab 193 

codes. The original series of response and predictor variables can be decomposed by 194 

the MEMD, into different components (IMFs) with varying scales. For IMFs at the 195 

same scale, multiple stepwise regressions are conducted between response and 196 

predictor variables, and the multiple correlation coefficients for each scale-specific 197 

IMF are calculated. 198 

3.2 Real data for application   199 

  Daily evaporation (E) from free water surfaces in an E601 evaporation pan (pan 200 

diameter of 61.8 cm), and other meteorological factors (i.e., relative humidity, mean 201 

temperature, sun hours, and wind speed) were collected from January 1, 1979 to 202 

December 31, 2013, at Changwu site in Shaanxi, China. The Changwu site is a 203 

transition area between semi-arid and subhumid climates, where agricultural 204 

productivity is mainly limited by water. Monthly averages of all variables were used 205 

in this study, because we are mainly interested in seasonal and inter-annual variability.   206 

4. Results and discussion 207 

4.1 MWC with orthogonal predictor variables 208 

For the stationary data, there are two narrow, horizontal bands (red color) 209 

representing an MWC value of around 1, at the respective scales of 8 and 32 for all 210 

locations (Fig. 2a). These two bands also correspond to the scales of 8 and 32, 211 
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respectively, for the two predictor variables. When an additional predictor variable 212 

with the scale of 16 is introduced, a wide band appears from 6 to 40, signifying that 213 

the MWC equals approximately 1 at all locations, at the scales of 8, 16, and 32. As 214 

anticipated, when all five predictor variables with scales ranging from 4 to 64 are 215 

included, coherence values of close to 1 are found in the whole scale-location domain 216 

(data not shown).  217 

The application of MWC to the non-stationary datasets shows that the scales with 218 

significant MWC values gradually increase as distance increases. This increase in the 219 

scales is due to the non-stationarity of the variables (Fig. 2b). For example, when 220 

predictor variables of z2 and z4

When the point values in the second half of the data series of a predictor variable 231 

are replaced by 0, the MWC values in that half of the data series are almost 0 at scales 232 

corresponding to that predictor variable (Fig. 3). For the stationary case, when the 233 
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 are included, scales of the two bands corresponding to 221 

MWC around 1 increase from 4 to 8 and from 8 to 32, respectively. Furthermore, as 222 

expected, for only one predictor variable (stationary and non-stationary), MWC 223 

reduces to bivariate wavelet coherence; there is only one band of coherence around 1, 224 

which corresponds to the scale of that predictor variable (data not shown). Note that 225 

the significant MWC values for both stationary and non-stationary cases are not 226 

exactly 1 at all scales or locations, due to the smoothing effect along both scales and 227 

locations. However, the mean MWC values of the significant bands are very high (i.e., 228 

0.94–1.00), and the MWC values at the centre of the significant band are 1, which 229 

corresponds to the exact scale of a predictor variable.  230 



12 
 

point values in the second half of the data series of predictor variable y2 (or y4

4.2 MWC with noised and correlated predictor variables 241 

) are 234 

replaced by 0, the MWC values are around 1 at the scale of 8 (or 32) in the first half 235 

of the transect, and 0 in the second half (Fig. 3a). Similar results are also found for the 236 

non-stationary case (Fig. 3b). This is expected because the constant series of 0 is not 237 

correlated to the response variables at any scale. Much like bivariate wavelet 238 

coherence, the MWC method is able to detect abrupt changes in the data series, and 239 

has the advantages of dealing with localized multivariate relationships. 240 

When z2 and a noised series derived from z2 are included as predictor variables, 242 

there is only one band of coherence close to 1 at scales corresponding to z2, 243 

irrespective of the correlation between z2 and a noised series of z2 (Fig. 4a). When z2 244 

and a noised series of z4 are included as predictor variables, the coherence depends on 245 

the degree of the noise (Fig. 4b). For weakly noised series, there are two bands of 246 

coherence of around 1, corresponding to the scales of z2 and z4, respectively. The 247 

percentage area of significant coherence (PASC) is 23%, which equals that of when z2 248 

and z4 are included. With the increasing magnitude of noise, the coherence and 249 

corresponding PASC at the scales corresponding to z4 decrease. When z2 and a 250 

strongly noised series of z4 are considered, the band of coherence around 1, at scales 251 

corresponding to z4

The inclusion of a third noised z

, disappears.  252 

4 variable substantially increases the area with high 253 

coherence (in red) as compared to the case when only z2 and z4 are included (Fig. 4c). 254 
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This indicates that MWC will increase as the number of predictor variables increases, 255 

with the highest coherence less or equal to 1, irrespective of the number of predictor 256 

variables. However, the area of significant coherence may not necessarily increase 257 

because of the simultaneously increased statistical significance threshold  (Ng and 258 

Chan, 2012a). In fact, the PASC values for three predictor variables (19–20%) are 259 

lower than those of the two predictor variables (23%). This indicates that, in this case, 260 

two predictor variables are better than three in terms of explaining the variations of 261 

the response variable. This occurs because the variance of the response variable that is 262 

explained by the noised variable is already accounted for by other variables. Therefore, 263 

only an additional variable that can independently explain a fair amount of variance 264 

could contribute significantly to explaining variations of a response variable (Fig. 4b). 265 

This may also explain why there is only one band of coherence around 1 at scales 266 

corresponding to z2, when z2 and a noised series of z2

4.3 Comparison with other multivariate methods 270 

 are included (Fig. 4a). This 267 

information is helpful in choosing predictor variables for developing scale-specific 268 

predictions, especially when predictor variables are correlated.  269 

4.3.1 MSC 271 

The MSC as a function of scale is shown in Fig. 5a. For the stationary case, when 272 

y2 and y4 are included as predictor variables, there are two plateaus centered at the 273 

scales of 8 and 28, representing a coherence of 1. As expected, when an additional 274 

predictor variable y3 is added, the corresponding scale of 16 also shows coherence of 275 
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1. The MSC produces similar scale-specific relationships, as MWC does for a 276 

stationary dataset, with exception given to the centered scale (i.e., 28) with a 277 

coherence of 1. Here, the scale with a unity MSC deviates from the expected value 278 

(i.e., 32) for predictor variable y4. For the non-stationary case, however, the MSC is 279 

much lower than 1 for the predictor variables of z2 and z4; an MSC of 1 is present 280 

only at the scale of 8 when an additional predictor variable z3

The MSC decreases at scales when the second half of the included predictor 287 

variable series are replaced by 0 for both the stationary and non-stationary series (Fig. 288 

5b). For example, when the second half of the y

 is added. Obviously, the 281 

MSC underestimates the multivariate relationships, and is not suitable for 282 

non-stationary processes (Si, 2008) due to its inability to deal with localized features. 283 

The MSC at a specific scale provides the average of multivariate relationships, across 284 

all locations. Due to the change in scale of a predictor variable with location for the 285 

non-stationary case, the MSC deviates greatly from 1.  286 

4 series in the stationary case are 289 

replaced by 0, the MSC at scales of around 32 decreases from 1 to 0.52. Although the 290 

MSC, throughout the second half of the series, can detect the decrease of coherence at 291 

the scales corresponding to the 0 values, the exact locations for the decrease cannot be 292 

identified. In fact, the coherence decreases only in the second half of the series, and 293 

does not change in the first half of the series. The location for the decrease can be 294 

easily identified by the MWC, but not by MSC. This further demonstrates the 295 

inability of the MSC to deal with localized features. 296 
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4.3.2 MCC

  Five intrinsic mode functions (IMFs) with non-negligible variance, are obtained for 298 

multivariate data series. While the obtained scales for the response variable y are in 299 

agreement with the true scales for the stationary case, the obtained scales (i.e., 3, 6, 11, 300 

21, and 43) for the response variable z deviate slightly from the average scales for the 301 

non-stationary case. For the response variable, the contribution of IMFs to the total 302 

variance generally decreases (20% to 13% for stationary, and 27% to 11% for 303 

non-stationary) from IMF1 to IMF5. This disagrees with the fact that each scale 304 

contributes equally (i.e., 20%) to the total variance. In addition, the sum of variances 305 

over all IMFs for each variable is less than 100% (ranging from 84% to 93%), 306 

indicating that MEMD cannot capture all the variances. For the detailed results of 307 

MEMD, see Supplement, Sect. S5.  308 

memd 297 

The MCCmemd as a function of scale, is shown in Fig. 6a. For the stationary case, 309 

when predictor variables of y2 and y4 are included, the MCCmemd values are 0.98 and 310 

0.93, respectively, at scales corresponding to those of y2 and y4. When a predictor 311 

variable of y3 is included, the MCCmemd values are 1.00, 1.00, and 0.96, respectively, 312 

at scales corresponding to those of y2, y3, and y4. For the non-stationary, two predictor 313 

variable case, the corresponding MCCmemd values are 0.80 and 0.85. For the 314 

non-stationary, three predictor variable case, the corresponding MCCmemd values are 315 

0.95, 0.99, and 0.91, respectively. Therefore, the MCCmemd can be used to determine 316 

the scale-specific multivariate relationships. Similar to MSC, however, the MCCmemd 317 

underestimates the multivariate relationships, especially for the non-stationary case 318 
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with less predictor variables. On the contrary, the MCCmemd also overestimates the 319 

multivariate relationships. For example, when considering only predictor variables 320 

corresponding to scales of 8, 16, and 32, the MCCmemd value for the stationary case is 321 

0.47 at the scale of 64. This deviates much from the expected MCCmemd value of 0 322 

(Fig. 6a). The possible underestimation and overestimation by the MCCmemd

Similar to MSC, the localized multivariate relationships cannot be obtained from 326 

MCC

 may 323 

come from the decomposition errors inherent in the MEMD algorithm (Rehman and 324 

Mandic, 2010).  325 

memd. This can be better explained by the decrease of MCCmemd when half of the 327 

series of the predictor variables are replaced by 0 (Fig. 6b). Take the stationary case 328 

for example, the MCCmemd values at the scales corresponding to y2 and y4 decrease 329 

from 0.98 to 0.49, and from 0.93 to 0.62, respectively, when the second half of the y2 330 

and y4

As explained above, the MWC has advantages in untangling localized multivariate 332 

relationships as compared to the common multivariate methods. It is important to 333 

reveal the multivariate relationships which vary with time or space, that are associated 334 

with different processes. For example, discharge usually occurs on knolls, while 335 

recharge usually occurs in neighboring depressions (Gates et al., 2011). Therefore, the 336 

controlling factors of soil water storage may vary with the land element characteristics 337 

of a location. Local controls may be more important on knolls, while non-local 338 

controls may be more important in depressions (Grayson et al., 1997). In a temporal 339 

domain, vegetation transpiration contributes more to the evapotranspiration in the 340 
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growing seasons, which may result in the changes of environmental factors explaining 341 

temporal variations of evapotranspiration in different seasons.  342 

4.4 Application of the MWC 343 

Each meteorological factor was significantly correlated to E, but the dominant 344 

factors explaining variations in E differed with scale. For example, the relative 345 

humidity was the dominating factor at small (2–8 months) and large (>32 months) 346 

scales, while temperature was the dominating factor at the medium (8–32 months) 347 

scales. Overall, the relative humidity corresponded to the greatest mean MWC (0.62) 348 

and PASC value (40%) at multiple scale-location domains. For the detailed 349 

relationships between E and each factor, see Supplement, Sect. S6. 350 

The MWC analysis shows that the combination of relative humidity and mean 351 

temperature produced the greatest mean MWC (0.82) and PASC (49%) among all 352 

two-factor cases. This suggested that relative humidity and mean temperature were 353 

the most appropriate factors for explaining variations in E at multiple scale-location 354 

domains (Fig. 7a). However, adding an additional factor such as sun hours, which was 355 

the best among all three-factor cases, increased the average coherence (0.91), but 356 

slightly decreased the PASC to 48% (Fig. 7b). This indicated that sun hours was not 357 

significantly different from red noise in explaining additional variation in E. Similar 358 

results were found when the wind speed was added. This occurs because most areas 359 

with significant coherence between E and sun hours or wind speed were a subset of 360 

areas with significant coherence between E and relative humidity or mean 361 
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temperature (see Supplement, Sect. S3). Therefore, relative humidity and mean 362 

temperature were adequate for explaining the temporal variation of E at various scales 363 

at this site. This was consistent with Li et al. (2012), who indicated that relative 364 

humidity and mean temperature were the two main contributors to the temporal 365 

change of potential evapotranspiration on the Chinese Loess Plateau. 366 

5. Conclusions 367 

Multiple wavelet coherence was developed to determine scale-specific and 368 

localized multivariate relationships in geosciences. The new method was tested and 369 

compared with existing multivariate methods, using an artificial dataset. The new 370 

method can be used to determine the proportion of the variance of a response variable 371 

that is explained by predictor variables, at a specific scale and location (spatially or 372 

temporally). As compared with bivariate wavelet coherence, more variation may be 373 

explained at multiple scale-location domains by the MWC. Including more variables 374 

is only beneficial if the variables are not strongly cross-correlated, and can 375 

independently explain a fair amount of variability in a response variable. Therefore, 376 

the best combinations of variables that explain multivariate, spatial or temporal 377 

variability at multiple scales can be determined. This is important for optimizing 378 

variables to develop scale-specific prediction.  379 

The MSC and MCCmemd can determine multivariate relationships at multiple scales, 380 

but localized multivariate relationships are not available. Furthermore, both MSC and 381 

MCCmemd are likely to underestimate the degree of multivariate relationships for 382 



19 
 

non-stationary processes. In addition, the performance of MCCmemd

Limitations of the new method also exist. Theoretically, any number of predictor 388 

variables can be included in the multiple wavelet analysis. However, the statistical 389 

significance threshold usually increases with the number of predictor variables 390 

(Grinsted et al., 2004; Ng and Chan, 2012a). In addition, the inclusion of too many 391 

predictor variables may result in the statistical significancesignificance threshold at 392 

particular wavelet scales (e.g., the lowest and largest scales) to approach unity. This 393 

would restrict the availability of statistical information. Furthermore, similar to 394 

bivariate wavelet analysis, the new method also suffers from the multiple-testing 395 

problem (Maraun and Kurths, 2004; Maraun et al., 2007; Schaefli et al., 2007; Schulte 396 

et al., 2015; Schulte, 2016). Therefore, a more robust statistical significance testing 397 

method may be beneficial to the new method. 398 

 relies on the 383 

performance of MEMD, which needs further development. Application of the MWC 384 

into the real dataset indicates that the combination of relative humidity and mean 385 

temperature are the optimal factors that can be used to explain temporal variations of 386 

E at the Changwu site in China. 387 

In summary, multiple wavelet coherence has advantages over existing multivariate 399 

methods, and provides an effective vehicle for untangling complex spatial or temporal 400 

variability for multiple controlling factors at multiple scales and locations. It may also 401 

be used as a data-driven tool for modeling and predicting various processes in the area 402 

of geosciences, such as precipitation, drought, soil water dynamics, stream flow, and 403 

atmospheric circulation. 404 
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Figure captions 516 

Figure 1. (a) Stationary and (b) non-stationary series of response variables (y for 517 

stationary and z for non-stationary case) encompassing five cosine waves (y1 to y5 for 518 

stationary and z1 to z5

Figure 2. Multiple wavelet coherence (a) between response variable y and predictor 523 

variables y

 for non-stationary case) with different dimensionless scales.(a) 519 

Stationary and (b) non-stationary series of response variables (y for stationary and z 520 

for non-stationary case) encompassing five cosine waves (y1 to y5 for stationary and 521 

z1 to z5 for non-stationary case) with different dimensionless scales. 522 

2 and y4; (b) between response y and predictors y2, y3, and y4; (c) between 524 

response z and predictors z2 and z4; and (d) between response z and predictors z2, z3, 525 

and z4. The artificial data series (y) encompasses five cosine waves (y1, y2, y3, y4, and 526 

y5) with different scales for the stationary case, and the artificial data series (z) 527 

encompasses five cosine waves (z1, z2, z3, z4, and z5) with different scales for the 528 

non-stationary case. The predictor variables, connected by a hyphen, are shown in the 529 

top right corner of each subplot. Thin solid lines demarcate the cones of influence, 530 

and thick solid lines show the 95% confidence levels.Multiple wavelet coherence (a) 531 

between response variable y and predictor variables y2 and y4; (b) between response y 532 

and predictors y2, y3, and y4; (c) between response z and predictors z2 and z4; and (d) 533 

between response z and predictors z2, z3, and z4. The artificial data series (y) 534 

encompasses five cosine waves (y1, y2, y3, y4, and y5) with different scales for the 535 

stationary case, and the artificial data series (z) encompasses five cosine waves (z1, z2, 536 

z3, z4, and z5) with different scales for the non-stationary case. The predictor 537 
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variables, connected by a hyphen, are shown in the top right corner of each subplot. 538 

Thin solid lines demarcate the cones of influence, and thick solid lines show the 95% 539 

confidence levels.  540 

Figure 3. Multiple wavelet coherence (a) between y and y2h0 and y4; (b) between y 541 

and y2 and y4h0; (c) between z and z2h0 and z4; and (d) between z and z2 and z4h0.  542 

The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) and 543 

y4 (or z4

Figure 4. Multiple wavelet coherence of an artificial data series (z) encompassing five 554 

cosine waves (z

), in which the second half are replaced by 0. Multiple wavelet coherence (a) 544 

between y and y2h0 and y4; (b) between y and y2 and y4h0; (c) between z and z2h0 545 

and z4; and (d) between z and z2 and z4h0.  The artificial data series (y) 546 

encompasses five cosine waves (y1, y2, y3, y4, and y5) with different scales for the 547 

stationary case and the artificial data series (z) encompasses five cosine waves (z1, z2, 548 

z3, z4, and z5) with different scales for the non-stationary case. The variables y2h0 (or 549 

z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) and y4 (or z4), in which 550 

the second half are replaced by 0. The predictor variables, connected by a hyphen, are 551 

shown in the top right corner of each subplot. Thin solid lines demarcate the cones of 552 

influence and thick solid lines show the 95% confidence levels. 553 

1, z2, z3, z4, and z5) with different scales and (a) z2 and noised z2, (b) 555 

z2 and noised z4, and (c) z2, z4, and noised z4 for the non-stationary case. z2wn (z4wn), 556 

z2mn (z4mn), and z2sn (z4sn) indicate weakly, moderately, and strongly noised z2 (z4) 557 

series, respectively. Weakly, moderately, and strongly noised series are correlated with 558 

original series, having with correlation coefficients of 0.9, 0.5, and 0.1, 559 
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respectively.Multiple wavelet coherence of an artificial data series (z) encompassing 560 

five cosine waves (z1, z2, z3, z4, and z5) with different scales and (a) z2 and noised z2, 561 

(b) z2 and noised z4, and (c) z2, z4, and noised z4 for the non-stationary case. The 562 

predictor variables are connected by a hyphen and shown in the top right corner of 563 

each subplot. z2wn (z4wn), z2mn (z4mn), and z2sn (z4sn) indicate weakly, moderately, 564 

and strongly noised z2 (z4) series, respectively. Weakly, moderately, and strongly 565 

noised series are correlated with original series, having correlation coefficients of 0.9, 566 

0.5, and 0.1, respectively. Thin solid lines demarcate the cones of influence and thick 567 

solid lines show the 95% confidence levels. 568 

Figure 5. Multiple spectral coherence (MSC) of an artificial data series (y or z) 569 

encompassing five cosine waves (y1 to y5; or z1 to z5) with different scales and (a) 570 

two (y2 and y4; or z2 and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and 571 

(b) two (y2 and y4; or z2 and z4) data series when the second half of one data series are 572 

replaced by 0. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series 573 

of y2 (or z2) and y4 (or z4

Figure 6. Multiple correlation coefficient between multivariate empirical mode 581 

Formatted ...

Formatted ...

) in which the second half are replaced by 0.Multiple spectral 574 

coherence (MSC) of an artificial data series (y or z) encompassing five cosine waves 575 

(y1 to y5; or z1 to z5) with different scales and (a) two (y2 and y4; or z2 and z4) or 576 

three (y2, y3, and y4; or z2, z3, and z4) data series, and (b) two (y2 and y4; or z2 and 577 

z4) data series when the second half of one data series are replaced by 0. The variables 578 

y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) and y4 (or z4) 579 

in which the second half are replaced by 0.  580 
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decomposition (MCCmemd) of an artificial series (y or z) and (a) two (y2 and y4; or z2 582 

and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and (b) two (y2 and y4; or 583 

z2 and z4) data series when the second half of one data series are replaced by 0.The 584 

variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) and y4 585 

(or z4) in which the second half are replaced by 0Multiple correlation coefficient 586 

between multivariate empirical mode decomposition (MCCmemd

Figure 7. Multiple wavelet coherence between evaporation (E) from water surfaces 593 

and meteorological factors ((a) relative humidity and mean temperature and (b) 594 

relative humidity, mean temperature, and sun hours) at Changwu site in Shaanxi, 595 

China. Thin solid lines demarcate the cones of influence, and thick solid lines show 596 

the 95% confidence level.597 
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Figure 1. (a) Stationary and (b) non-stationary series of response variables (y for 
stationary and z for non-stationary case) encompassing five cosine waves (y1 to y5 for 
stationary and z1 to z5 for non-stationary case) with different dimensionless scales.  
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Figure 2. Multiple wavelet coherence (a) between response variable y and predictor 
variables y2 and y4; (b) between response y and predictors y2, y3, and y4; (c) between 
response z and predictors z2 and z4; and (d) between response z and predictors z2, z3, 
and z4. The artificial data series (y) encompasses five cosine waves (y1, y2, y3, y4, and 
y5) with different scales for the stationary case, and the artificial data series (z) 
encompasses five cosine waves (z1, z2, z3, z4, and z5) with different scales for the 
non-stationary case. The predictor variables, connected by a hyphen, are shown in the 
top right corner of each subplot. Thin solid lines demarcate the cones of influence, 
and thick solid lines show the 95% confidence levels. 
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Formatted ...Figure 3. Multiple wavelet coherence (a) between y and y2h0 and y4; (b) between y 
and y2 and y4h0; (c) between z and z2h0 and z4; and (d) between z and z2 and z4h0.  
The artificial data series (y) encompasses five cosine waves (y1, y2, y3, y4, and y5) 
with different scales for the stationary case and the artificial data series (z) 
encompasses five cosine waves (z1, z2, z3, z4, and z5) with different scales for the 
non-stationary case. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new 
series of y2 (or z2) and y4 (or z4), in which the second half are replaced by 0. The 
predictor variables, connected by a hyphen, are shown in the top right corner of each 
subplot. Thin solid lines demarcate the cones of influence and thick solid lines show 
the 95% confidence levels.
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Figure 4. Multiple wavelet coherence of an artificial data series (z) encompassing five 
cosine waves (z1, z2, z3, z4, and z5) with different scales and (a) z2 and noised z2, (b) 
z2 and noised z4, and (c) z2, z4, and noised z4 for the non-stationary case. The 
predictor variables are connected by a hyphen and shown in the top right corner of 
each subplot. z2wn (z4wn), z2mn (z4mn), and z2sn (z4sn) indicate weakly, moderately, 
and strongly noised z2 (z4) series, respectively. Weakly, moderately, and strongly 
noised series are correlated with original series, having with correlation coefficients of 
0.9, 0.5, and 0.1, respectively. Thin solid lines demarcate the cones of influence and 
thick solid lines show the 95% confidence levels.
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Figure 5. Multiple spectral coherence (MSC) of an artificial data series (y or z) 
encompassing five cosine waves (y1 to y5; or z1 to z5) with different scales and (a) 
two (y2 and y4; or z2 and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and 
(b) two (y2 and y4; or z2 and z4) data series when the second half of one data series are 
replaced by 0. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series 
of y2 (or z2) and y4 (or z4) in which the second half are replaced by 0.
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Figure 6. Multiple correlation coefficient between multivariate empirical mode 
decomposition (MCCmemd) of an artificial series (y or z) and (a) two (y2 and y4; or z2 
and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and (b) two (y2 and y4; or 
z2 and z4) data series when the second half of one data series are replaced by 0. The 
variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) and y4 
(or z4) in which the second half are replaced by 0.
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Figure 7. Multiple wavelet coherence between evaporation (E) from water surfaces and 
meteorological factors ((a) relative humidity and mean temperature and, (b) relative 
humidity, mean temperature, and sun hours) at Changwu site in Shaanxi, China. Thin 
solid lines demarcate the cones of influence, and thick solid lines show the 95% 
confidence level. 
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