
Reply to  "Editor comment" by Prof. Bettina Schaefli 

The reviewers had only minor comments, to which the authors have responded in this 
public discussion. I look forward to the revised version, which will be a very interesting 
technical note for the readership of HESS 

Response: 

Prof. Schaefli, thank you very much for handling our manuscript and giving us a chance 
to improve this manuscript. 

We have replied to the comments by two reviewers as follows. Meanwhile, we made 
some revisions in the manuscript. 

Reply to  "Interactive comment on “Technical Note: Multiple wavelet coherence for 
untangling scale-specific and localized multivariate relationships in geosciences” by 
W. Hu and B. C. Si " by Referee #1 

The manuscript of Multiple wavelet coherence by Hu and Si presented an important topic. 
In characterizing scale specific variations, wavelet coherence has been used in many field 
but was restricted to only two variables. Presentation of wavelet coherence produces a 
step forward on the methodological development aspect. The method will support a lot of 
different fields including soil science and hydrology. The scientific content is suitable for 
the journal and the readers of this journal will be interested in this topic. Therefore, my 
suggestion is for acceptance of the manuscript with some minor corrections such as 
English, which could be improved. Another thing, authors used the artificial series to 
compare with other multi-variate analysis. Just wondering, how will you confirm about 
you claimed superior information of the new method compare to other methods. I mean 
to say, how will you say that this variations, what is shown by other methods are also 
showing the right information. The variations showing here could be spurious as 
identified by different methods. 

Response: 

Thank you for the positive comments. 

In terms of language, we have tried our best to correct it, and we have asked an English 
editing company double check the language. 

We are not very sure we understood your second comment, but we will try to explain a 
bit here. The two existing methods (i.e., multiple spectral coherence and multivariate 
empirical mode decomposition) are widely used for spatial or temporal series analysis in 
different disciplines. Actually we have known that these two methods cannot deal with 
localized relationships between variables. Therefore, the advantages of the new method 



over these two methods is demonstrated mainly in terms of relationships between 
response and predictor variables at various scales of the response variable. The reason for 
using the artificial data is that the major features (e.g., scale) are known. Then, the 
superiority of the new method over these two methods can be assessed by whether the 
known major features of the artificial data are demonstrated by these methods. Our 
results clearly show that localized multivariate relationships are not available by the two 
existing methods and both methods are likely to underestimate the degree of multivariate 
relationships for non-stationary processes. Because the cosine-like artificial datasets 
mimic many time series and spatial series in geosciences. Therefore, we conclude that the 
new method is superior.  

All above mentioned information can be found in the revised copy. Please refer to them 
at Lines  82-84, 154-160, 183-187, and 381-384. 

Reply to  "Interactive comment on “Technical Note: Multiple wavelet coherence for 
untangling scale-specific and localized multivariate relationships in geosciences” by 
W. Hu and B. C. Si " by Referee #2 

General Comments  

The multiple wavelet coherence methodology presented in the manuscript by Hu and Si 
represents an important contribution to wavelet analysis. In particular, Hu and Si build 
upon the previous work of Ng and Chan (2012) to extend multiple wavelet coherence to 
case of more than two predictor variables. The authors further demonstrate that the new 
multiple wavelet coherence methodology is better suited for situations where the 
predictor variables are cross-correlated. The problems with the traditional formulation are 
clearly stated and consistent with the objective of the paper proposed in the introduction 
section. Theoretical examples were also presented to highlight the advantages of the new 
methodology relative to existing ones. I their recommend that the manuscript be accepted 
after the substantial correction of grammatical errors and the consideration of more 
specific comments presented below.  

Response: 

Thank you for the positive comments. 

Specific comments  

The conclusion section simply summarizes the results of the paper. The authors could 
consider expanding the conclusion section into a discussion section to comment on 
limitations of the method. After all, wavelet analysis, while useful, is not a scientific 
panacea. More specifically, the inclusion of more predictor variables may result in the 
statistical significance threshold at a particular wavelet scale and time to approach unity, 



which would impose a limit on how much statistical information can be gained. This 
phenomenon occurs with the traditional multiple wavelet coherence formulation, where 
the threshold for 5% significance, for example, is higher than that for bivariate wavelet 
coherence at a given wavelet scale.  

Response: 

We agree with you that one of the limitation is that the critical values increase with the 
number of predictor variables. This is also why the percentage area of significant 
coherence (PASC) for three predictor variables (z2, z4, and noised z4) are even lower 
than for only two predictor variables (z2 and z4) when the third predictor variable (noised 
z4) is not statistically significant to explain the variation of the response variable. Please 
see Lines 260-261. 

We put this limitation in the conclusion part as " Theoretically, any number of predictor 
variables can be included in the multiple wavelet analysis. However, the statistical 
significance threshold usually increases with the number of predictor variables (Grinsted 
et al., 2004; Ng and Chan, 2012a).In addition, the inclusion of too many predictor 
variables may result in the statistical significance threshold at particular wavelet scales 
(e.g., the lowest and largest scales) to approach unity. This would restrict the availability 
of statistical information." (Lines389-395). 

The author may also consider discussing at least briefly the problem of simultaneously 
testing multiple statistical hypothesis, as discussed in Maraun and Kurths (2004), Maraun 
et al. (2007), Schulte et al. (2015), and Schulte (2016). Multiple-testing problem is a 
major problem in wavelet analysis and therefore merits consideration in a discussion 
section. Presenting clearly the methodological limitations will better guide the likely 
interdisciplinary readership in making decisions regarding what analysis tools to 
implement.  

Response: 

The multiple-testing problem has been briefly discussed in the conclusion part. 
"Furthermore, similar to bivariate wavelet analysis, the new method also suffers from the 
multiple-testing problem (Maraun and Kurths, 2004; Maraun et al., 2007; Schulte et al., 
2015; Schulte, 2016). Therefore, a more robust statistical significance testing method 
may be beneficial to the new method." (Lines395-399). 

Throughout the manuscript, the authors mention how geoscience data are often 
nonstationary. Perhaps the term is used too loosely in some instances and is sometimes 
inconsistent with the strict time series analysis definition. Even white and red-noise 
processes contain time and scale-localized features in wavelet space, even though 
theirrespectivestatisticsarestationaryatallorders. Time-andscale-localizedfeatures are 



evident in the wavelet power spectrum of say, the North Atlantic Oscillation (NAO), 
even though the statistics of the NAO are consistent with a first-order Markov process 
(Feldstein,2000). Therefore,insomeinstances,Irecommendchangingtheword“nonstationary” 
to “transient” or “transitory”.  

Response: 

We agree. In the introduction, we made this more clear as " More often than not, 
geoscience data are transient, consisting of a variety of frequency regimes that may be 
localized in space or time (Torrence and Compo, 1998; Si and Zeleke, 2005; Graf et al., 
2014). The transient characteristics exist widely in non-stationary processes, but also 
sometimes occur in stationary processes (Feldstein, 2000)." (Lines35-39). 

At many instances, we changed the "non-stationary" to "transient" when suitable, such as 
Line 42, 58, 65 in the attached revision. 

Some Technical Corrections  

Page 2 Line 3536. Change “geoscience data is” to “geoscience data are”.  

Response: 

Yes, done at L36.  

Page 2 Line 39. Is it better to say bivariate wavelet coherency rather than “simple wavelet 
coherency”  

Response: 

Yes, we changed all throughout the paper.  

Page 5, Line 97. Add comma before “respectively”.  

Response: 

Yes, we did throughout the paper.  

Page9,Line169-171. The sentence can be slightly simplified by changing“ white noise 
with a mean of 0” to “zero-mean white noise”. Perhaps it is redundant to write that the 
white noise processes were generated. Authors could consider just saying that white noise 
was added to the predictor variables.  

Response: 

We agree. Now, it changed to" zero-mean white noises with  standard deviations of 0.3, 1, 
and 4 are added to the predictor variables of y2 (or z2) and y4 (or z4)". 



Page 9, Lines 171-173. The sentence “The resulting noised series are termed weakly, 
moderately, 172 and highly noised series respectively, and have a correlation coefficient 
of 0.9, 0.5, 173 and 0.1 respectively, with their original predictor variable” needs to be 
rewritten and simplified. Consider breaking the sentence into two separate sentences.  

Response: 

We changed it to two sentences. Now, it is like  "The resulting noised series have 
correlation coefficients of 0.9, 0.5, and 0.1, respectively, with their original predictor 
variable. Therefore, we will refer to them as weakly, moderately, and highly noised series, 
respectively." (Lines 175-177). 

 

The authors should carefully check for grammatical errors and make similar changes 
throughout the manuscript.  

Response: 

Yes, done. 

We have asked an English editing company double check the language.  
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Response: 

Appreciate for the good references. We cited them when we made relevant discussion. 
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Abstract 10 

The scale-specific and localized bivariate relationships in geosciences can be 11 

revealed using bivariatesimple wavelet coherence. The objective of this study is was 12 

to develop a multiple wavelet coherence method for examining scale-specific and 13 

localized multivariate relationships. Stationary and non-stationary artificial datasets, 14 

generated with the response variable as the summation of five predictor variables 15 

(cosine waves) with different scales, were used to test the new method. Comparisons 16 

were also conducted using existing multivariate methods, including multiple spectral 17 

coherence and multivariate empirical mode decomposition (MEMD). Results show 18 

that multiple spectral coherence is unable to identify localized multivariate 19 

relationships, and underestimates the scale-specific multivariate relationships for 20 

non-stationary processes. The MEMD method was able to separate all variables into 21 



components at the same set of scales, revealing scale-specific relationships when 22 

combined with multiple correlation coefficients, but has the same weakness as 23 

multiple spectral coherence. However, multiple wavelet coherences are able to 24 

identify scale-specific and localized multivariate relationships, as they are close to 1 25 

at multiple scales and locations corresponding to those of predictor variables. 26 

Therefore, multiple wavelet coherence outperforms other common multivariate 27 

methods. Multiple wavelet coherence was applied to a real dataset and revealed the 28 

optimal combination of factors for explaining temporal variation of free water 29 

evaporation at Changwu site in China at multiple scale-location domains. Matlab 30 

codes for multiple wavelet coherence weare developed and are provided in the 31 

supplement. 32 

1. Introduction 33 

Geoscience data such as topography, climate, and ocean waves usually present 34 

cyclic patterns, with high-frequency (small-scale) processes being superimposed on 35 

low-frequency (large-scale) processes (Si, 2008). More often than not, geoscience 36 

data is are non-stationarytransient, consisting of a variety of frequency regimes that 37 

may be localized in space or time (Torrence and Compo, 1998; Si and Zeleke, 2005; 38 

Graf et al., 2014). The transient characteristics exists widely in non-stationary 39 

processes, but also sometimes occur in stationary processes (Feldstein, 2000). The 40 

wavelet method is a common tool for detecting multi-scale and localized features of 41 

non-stationarytransient processes in geosciences. Simple Bivariate wavelet coherency 42 



has been widely used for untangling scale-specific and localized relationships for 43 

non-stationarytransient processes in areas including geophysics (Lakshmi et al., 2004; 44 

Müller et al., 2008), hydrology (Labat et al., 2005; Das and Mohanty, 2008; Tang and 45 

Piechota, 2009; Carey et al., 2013; Graf et al., 2014), soil science (Si and Zeleke, 46 

2005; Biswas and Si, 2011), meteorology (Torrence and Compo, 1998), and ecology 47 

(Polansky et al., 2010). This method, however, is limited to two variables. Processes 48 

in geosciences are usually complex and may be affected by more than two 49 

environmental factors. A method is needed for analyzing multivariate (>2 variables) 50 

and localized relationships at multiple scales. 51 

Several methods have been used for characterizing multivariate relationships. For 52 

example, multiple spectral coherence (MSC) has been used to explore the 53 

scale-specific relationships between soil saturated hydraulic conductivity (Ks) and 54 

multiple soil physical properties (Koopmans, 1974; Si, 2008), but requires a stationary 55 

data series, which is rare in geosciences. Multivariate empirical mode decomposition 56 

(MEMD), a data-driven method,  decomposes each variable into different 57 

components (intrinsic mode functions (IMFs)) with each IMF corresponding to a 58 

“common scale” inherent in multiple variables (Rehman and Mandic, 2010). The 59 

MEMD method is meritorious due to its ability to deal with both 60 

non-stationarytransient and nonlinear systems. The combination of the squared 61 

multiple correlation coefficient and MEMD (MCCmemd) has been used to explore the 62 

multivariate control of soil water content or and Kssaturated hydraulic conductivity at 63 

multiple scales (Hu and Si, 2013; She et al., 2013, 2015; Hu et al., 2014). However, 64 



the sum of variances from different components typically does did not typically equal 65 

the total variance of the original series, which may result inproduce misleading 66 

MCCmemd 

An attempt to extend wavelet coherence from two to three variables has been made 74 

by Mihanović et al. (2009). Their method was also applied later in the marine sciences 75 

(Ng and Chan, 2012a, b). Limitations arise when using the trivariatethree variable 76 

wavelet coherence: first, only two predictor variables are considered; second, the two 77 

predictor variables must be orthogonal. Otherwise, extremely high or low (spurious) 78 

coherence (>>1 or <0) may be produced. This spuriousness is inconsistent with the 79 

definition of coherence, and which may limit the application of this method in 80 

geosciences, where environmental variables are usually cross-correlated. Therefore, a 81 

robust method for calculating MWC, which produces coherence in the closed interval 82 

of [0, 1], is needed. 83 

results. In addition,  in geosciences, multivariate relationships in 67 

geosciences are most likely to change with time or space due to the 68 

non-stationaritytransient nature of the processes involved. However, localized 69 

multivariate relationships are not available using any of the existing multivariate 70 

methods. Therefore, extending the wavelet coherence from two variables to multiple 71 

variables it is required to extend the wavelet coherence from two variables to multiple 72 

variables.  73 

The objective of this paper is to develop an MWC that applies to cases where there 84 

are multiple environmental variables, of which may be cross-correlated. This method 85 

is first tested with artificial datasets to demonstrate its advantages over existing 86 



multivariate methods. The superiority of the new method over others can be assessed 87 

by determining whether the known major features of the artificial data are 88 

demonstrated by these methods. It The new method is then applied to a temporal 89 

series of evaporation (E) from free water surface and meteorological factors at 90 

Changwu site in Shaanxi, China. 91 

2. Theory 92 

BivariateSimple wavelet coherence can be understood as the traditional correlation 93 

coefficient localized in the scale-location domain (Grinsted et al., 2004). Just as  94 

correlation coefficients can be extensions extended from two variables to multiple (>2) 95 

variables, wavelet coherence between two variables may also be extended to multiple 96 

variables. Similar to bivariatesimple wavelet coherence, MWC is based on a series of 97 

auto- and cross-wavelet power spectra, at different scales and spatial (or temporal) 98 

locations, for the response variable and all predictor variables.  99 

Following Koopman (1974), a matrix representation of the smoothed auto- and 100 

cross-wavelet power spectra for multiple predictor variables X ( { }1, 2, ,X X X Xq=  ) 101 

can be written as 102 
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where  ),( 
,

τsW
XjXi

 is the smoothed auto-wavelet power spectra (when i=j) or 104 

cross-wavelet power spectra (when i≠j) at scale s and spatial (or temporal) location 105 
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τ , respectively. For the detailed calculation of smoothed auto- and cross-wavelet 106 

power spectra, see Supplement, Sect. S1. 107 

The matrix of smoothed cross wavelet power spectra between response variable Y 108 

and predictor variables Xi can be defined as  109 

  ),(     ),(   ),( ),( 
,2,1,,





= ττττ sWsWsWsW

XqYXYXYXY
 ,            (2) 110 

where ),( 
,

τsW
XiY

 is the smoothed cross-wavelet power spectra between Y and Xi at 111 

scale s and spatial (or temporal) location τ .   112 

The smoothed wavelet power spectrum of response variable Y is ( ),
,

Y Y
W s τ


. 113 

  Following Koopmans (1974), the MWC at scale s and location τ , ( )2

,m sρ τ , can 114 

be written as 115 
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 .                   (3) 116 

When only one predictor variable (e.g., X1) is included in X, Eq. (3) is the equation 117 

for bivariatesimple wavelet coherence, ),(2 τρ sb ( )2

,s sρ τ , between two 118 

variableswhich can be expressed as (Torrence and Webster, 1999; Grinsted et al., 119 

2004): 120 

),(),(

),( ),( ),( ,1,1

1,1,
2

ττ

τττρ
sWsW

sWsWs YYXX

XYXY

b = .                             (4) 121 

  Therefore, bivariatesimple wavelet coherence is consistent with multiple wavelet 122 

coherence if only one predictor variable is included. In addition, the wavelet phase 123 

between a response variable (Y) and a predictor variable (X1) is 124 
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( ) ( )( ) ( )( )( )1 , 1 , 1, tan Im , / Re ,Y X Y Xs W s W sφ τ τ τ−= ,                      (5) 125 

where Im and Re denote the imaginary and real part of ( ), 1 ,Y XW s τ , respectively. 126 

Note that the phase information between a response variable Y and multiple predictor 127 

variables X cannot be obtained.  128 

Multiple wavelet coherence at the 95% confidence level is calculated using the 129 

Monte Carlo method (Grinsted et al., 2004). Surrogate spatial series (i.e., red noise) of 130 

all variables are generated with a Monte Carlo simulation based on their first-order 131 

autocorrelation coefficient (AR1). The MWC at each scale and location is calculated 132 

using the simulated spatial series. This is repeated an adequate number of times (e.g., 133 

1000) (Grinsted et al., 2004). At each scale, MWCs at all locations outside the cones 134 

of influence, from all simulations are ranked in ascending order. The value at the 95th 135 

percentile represents the 95% confidence level for the MWC at that scale. The Matlab 136 

codes and user manual document for calculating MWC and significance level are 137 

provided in the Supplement (Sect. S2–S4). 138 

3. Data and analysis 139 

3.1 Artificial data for method test  140 

The method is tested using a stationary and non-stationary artificial dataset, 141 

generated following Yan and Gao (2007). The response variable (y for the stationary 142 

case and z for the non-stationary case) encompasses five cosine waves (y1 to y5 for 143 

the stationary case and z1 to z5 for the non-stationary case), with different 144 

dimensionless scales (Fig. 1). For the stationary case, y1=cos(2πx/4), y2=cos(2πx/8), 145 



y3=cos(2πx/16), y4=cos(2πx/32), and y5=cos(2πx/64), where x=0, 1, 2, …, 255. 146 

There is one regular cycle every 4, 8, 16, 32, and 64 locations, representing 147 

dimensionless scales of 4, 8, 16, 32, and 64 for y1, y2, y3, y4, and y5, respectively 148 

(Fig. 1a). The regular cycles make each predictor and response series stationary. For 149 

the non-stationary case, z1=cos(500π(x/1000)0.5), z2=cos(250π(x/1000)0.5), 150 

z3=cos(125π(x/1000)0.5), z4=cos(62.5π(x/1000)0.5), and z5=cos(31.25π(x/1000)0.5

For both the stationary and non-stationary series, the variance of the response 158 

variable is 2.5. The predictor variables, each with a variance of 0.5, are orthogonal to 159 

each other, and contribute equally to the total variance of the response variable. The 160 

cosine-like artificial datasets mimic many time series such as seismic signals, 161 

turbulence, air temperature, precipitation, hydrologic fluxes, and the El 162 

Niño-Southern Oscillation. They also mimic geoscientific spatial series such as ocean 163 

waves, seafloor bathymetry, land surface topography, and soil water content along a 164 

hummocky landscape in geosciences. Therefore, they are representative of a 165 

geoscience data series and are suitable for testing the new method. 166 

), 151 

where x=0, 1, 2, …, 255. The equation with containing the square root of the location 152 

term results in the gradual change in frequency (scale), with the greatest 153 

dimensionless scales of 4, 8, 16, 32, and 64 at the right hand side for z1, z2, z3, z4, 154 

and z5, respectively (Fig. 1b). The average scales for these predictor variables are 3, 5, 155 

9, 17, and 32, respectively. The location-varying scales make each predictor and 156 

response variable non-stationary.  157 

Multiple wavelet coherence between the response variable y (or z) and two (y2 and 167 



y4, or z2 and z4) or three (y2, y3, and y4, or z2, z3, and z4) predictor variables were 168 

calculated. The advantage of the artificial data is that the known scale- and localized 169 

features for all variables, and the known relationships between the response and each 170 

predictor variable, are exact. By definition, the coherence is 1 at scales corresponding 171 

to that those of the included predictor variables, and 0 at other scales. 172 

To demonstrate the advantages of MWC in dealing with abrupt changes (a type of 173 

transient and localized feature), the second half of the original series of y2 (or z2) or 174 

y4 (or z4) is are replaced by 0, and MWC between the response variable and new set 175 

of predictor variables is calculated. We anticipate that the coherence changes from 1 176 

to 0 at the location where the new predictor variable becomes 0. 177 

Predictor variables may not be as regular as that shown in Fig. 1, and may also be 178 

cross-correlated to one another. For these reasons, zero-mean white noises with a 179 

mean of 0 and a standard deviations of 0.3, 1, and 4 are generated and added to the 180 

predictor variables of y2 (or z2) and y4 (or z4). The resulting noised series have 181 

correlation coefficients of 0.9, 0.5, and 0.1, respectively, with their original predictor 182 

variable. Therefore, we will refer to them toas are termed weakly, moderately, and 183 

highly noised series, respectively,. and have a correlation coefficient of 0.9, 0.5, and 184 

0.1 respectively, with their original predictor variable. Multiple wavelet coherences 185 

between the response variable and different predictor variables (original and noised 186 

series) are calculated to demonstrate the performance of MWC when noised or 187 

correlated predictor variables are involved. Only the non-stationary case will be 188 

demonstrated, because the performances of MWC for stationary and non-stationary 189 



cases are similar. 190 

The MWC is compared to the MSC (Koopmans, 1974; Si, 2008) and MCCmemd 191 

(Hu and Si, 2013), which are widely used for spatial or temporal series analysis in 192 

different disciplines. The advantages of the new method over these two methods will 193 

be demonstrated mainly in terms of relationships between response and predictor 194 

variables at various scales of the response variable. The MSC is calculated based on 195 

the calculated auto- and cross- power spectra, using an equation similar to Eq. (3). 196 

The detailed introduction of this method can be found in Si (2008). For the calculation 197 

of MCCmemd

3.2 Real data for application   208 

, a set of response and predictor variables form a multivariate data series 198 

for MEMD. The MEMD is a data driven method and has the ability to align “common 199 

scales” present within multivariate data. Please refer to Rehman and Mandic (2010) 200 

and Hu and Si (2013) for the MEMD analysis, and the website 201 

(http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm) for the related Matlab 202 

codes. The original series of response and predictor variables can be decomposed by 203 

the MEMD, into different components (IMFs) with different varying scales by the 204 

MEMD. For IMFs at the same scale, multiple stepwise regressions are conducted 205 

between response and predictor variables, and the multiple correlation coefficients for 206 

each scale-specific IMF are calculated. 207 

  Daily evaporation (E) from free water surfaces of in an E601 evaporation pan (pan 209 

diameter of 61.8 cm), and other meteorological factors (i.e., relative humidity, mean 210 



temperature, sun hours, and wind speed) were collected from January 1, 1979 to 211 

December 31, 2013, at Changwu site in Shaanxi, China. The Changwu site is a 212 

transition area between semi-arid and subhumid climates, where agricultural 213 

productivity is mainly limited by water limits agricultural productivity. Monthly 214 

averages of all variables were used in this study, because we are mainly interested in 215 

seasonal and inter-annual variability.   216 

4. Results and discussion 217 

4.1 MWC with orthogonally predictor variables 218 

For the stationary data, there are two narrow, horizontal bands (red color) 219 

representing an MWC value of around 1, at the respective scales of 8 and 32 for all 220 

locations (Fig. 2a). These two bands also correspond to the scales of 8 and 32, 221 

respectively, for the two predictor variables. When an additional predictor variable 222 

with the scale of 16 is introduced, a wide band appears from 6 to 40 appears, 223 

signifying that the MWC equals approximately 1 at all locations, at the scales of 8, 16, 224 

and 32. As anticipated, when all five predictor variables with scales ranging from 4 to 225 

64 are included, coherence values of close to 1 are found in the whole scale-location 226 

domain (data not shown).  227 

The application of MWC to the non-stationary datasets shows that the scales with 228 

significant MWC values gradually increase with the increase inas distance increases. 229 

This increase in the scales is due to the non-stationarity of the variables (Fig. 2b). For 230 

example, when predictor variables of z2 and z4 are included, scales of the two bands 231 



corresponding to MWC around 1 increase from 4 to 8 and from 8 to 32, respectively. 232 

Furthermore, as expected, for only one predictor variable (stationary and 233 

non-stationary), MWC reduces to bivariatesimple wavelet coherence; there is only 234 

one band of coherence around 1, which corresponds to the scale of that predictor 235 

variable (data not shown). Note that the significant MWC values for both stationary 236 

and non-stationary cases are not exactly 1 at all scales or locations, due to the 237 

smoothing effect along both scales and locations. However, the mean MWC values of 238 

the significant bands are very high (i.e., 0.94 – 1.00), and the MWC values at the 239 

centre of the significant band are 1, which corresponds to the exact scale of a 240 

predictor variable.  241 

When the point values in the second half of the data series of a predictor variable 242 

areis replaced by 0, the MWC values in that half of the data series is are almost 0 at 243 

scales corresponding to that predictor variable (Fig. 3). For the stationary case, when 244 

the point values in the second half of the data series of predictor variable y2 (or y4) is 245 

are replaced by 0, the MWC values is are around 1 at the scale of 8 (or 32) in the first 246 

half of the transect, and 0 in the second half (Fig. 3a). Similar results were are also 247 

found for the non-stationary case (Fig. 3b). This is expected because the constant 248 

series of 0 is not correlated to the response variables at any scale. Much like 249 

bivariatesimple wavelet coherence, the MWC method is able to detect abrupt changes 250 

in the data series, and has the advantages of dealing with localized multivariate 251 

relationships. 252 



4.2 MWC with noised and correlated predictor variables 253 

When z2 and a noised series derived from z2 are included as predictor variables, 254 

there is only one band of coherence close to 1 at scales corresponding to z2, 255 

irrespective of the correlation between z2 and a noised series of z2 (Fig. 4a). When z2 256 

and a noised series of z4 are included as predictor variables, the coherence depends on 257 

the degree of the noise (Fig. 4b). For weakly noised series, there are two bands of 258 

coherence of around 1, corresponding to the scales of z2 and z4, respectively. The 259 

percentage area of significant coherence (PASC) is 23%, which equals that of when 260 

z2 and z4 are included. With the increasing magnitudee of noise, the coherence and 261 

corresponding PASC at the scales corresponding to z4 decrease. When z2 and a 262 

strongly noised series of z4 are considered, the band of coherence around 1, at scales 263 

corresponding to z4, disappears.  264 

The inclusion of a third noised z4 variable substantially increases the area with high 265 

coherence (in red) as compared to the case when only z2 and z4 are included (Fig. 4c). 266 

This indicates that MWC will increase with theas increase in the number of predictor 267 

variables increases, with the highest coherence less or equal to 1, irrespective of the 268 

number of predictor variables. However, the area of significant coherence may not 269 

necessarily increase because of the simultaneously increased statistical significance 270 

threshold (Ng and Chan, 2012a). In fact, the PASC values for three predictor variables 271 

(19–-20%) are lower than for only those of the two predictor variables (23%). This 272 

indicates that, in this case, two predictor variables are better than three in terms of 273 

explaining the variations of the response variable. This is occurs because the variance 274 



of the response variable that is explained by the noised variable is already accounted 275 

for by other variables. Therefore, only an additional variable that can independently 276 

explain a fair amount of variance could contribute significantly to explaining 277 

variations of a response variable (Fig. 4b). This maycan also explain why there is only 278 

one band of coherence around 1 at scales corresponding to z2, when z2 and a noised 279 

series of z2 are included (Fig. 4a). This information is helpful in choosing predictor 280 

variables for developing scale-specific predictions, especially when predictor 281 

variables are correlated.  282 

4.3 Comparison with other multivariate methods 283 

4.3.1 MSC 284 

The MSC as a function of scale is shown in Fig. 5a. For the stationary case, when 285 

y2 and y4 are included as predictor variables, there are two plateaus centered at the 286 

scales of 8 and 28, representing a coherence of 1. As expected, when an additional 287 

predictor variable y3 is added, the corresponding scale of 16 also shows coherence of 288 

1. The MSC produces similar scale-specific relationships, as MWC does for a 289 

stationary dataset, with exception given to that the centered scale (i.e., 28) with a 290 

coherence of 1. Here, the scale with a unity MSC deviates from the expected value 291 

(i.e., 32) for predictor variable y4. For the non-stationary case,, however, the MSC is 292 

much lower than 1 for the predictor variables of z2 and z4; an MSC of 1 is present 293 

only at the scale of 8 when an additional predictor variable z3 is added. Obviously, the 294 

MSC underestimates the multivariate relationships, and is not suitable to for 295 



non-stationary processes (Si, 2008) due to its inability to deal with localized features. 296 

The MSC at a specific scale provides the average of multivariate relationships, across 297 

all locations. Because Due to the change in scale of a predictor variable changes with 298 

location for the non-stationary case, the MSC deviates greatly from 1.  299 

The inability of the MSC to deal with localized features is demonstrated further by 300 

the decrease of The MSC decreases at scales when the second half of the included 301 

predictor variable series are replaced by 0 for both the stationary and non-stationary 302 

series (Fig. 5b). For example, when the second half of the y4 series in the stationary 303 

case is are replaced by 0, for the stationary case, the MSC at scales of around 32 304 

decreases from 1 to 0.52. Although the MSC, throughout the second half of the series, 305 

can detect the decrease of coherence at the scales corresponding to the 0 values 306 

throughout the second half of the series, the exact locations for the decrease cannot be 307 

identified. In fact, the coherence decreases only in the second half of the series, and 308 

does not change in the first half of the series. The location for the decrease can be 309 

easily identified by the MWC, but not by MSC. This further demonstrates the 310 

inability of the MSC to deal with localized features. 311 

4.3.2 MCC

  Five intrinsic mode functions (IMFs) with non-negligible variance, are obtained for 313 

multivariate data series. While the obtained scales for the response variable y are in 314 

agreement with the true scales for the stationary case, the obtained scales (i.e., 3, 6, 11, 315 

21, and 43) for the response variable z deviate slightly from the average scales for the 316 

memd 312 



non-stationary case. For the response variable, the contribution of IMFs to the total 317 

variance generally decreases (20% to 13% for stationary, and 27% to 11% for 318 

non-stationary) from IMF1 to IMF5., which This disagrees with the fact that each 319 

scale contributes equally (i.e., 20%) to the total variance. In addition, the sum of 320 

variances over all IMFs for each variable is less than 100% (ranging from 84% to 321 

93%), indicating that MEMD cannot capture all the variances. For the detailed results 322 

of MEMD, see Supplement, Sect. S5.  323 

The MCCmemd as a function of scale, is shown in Fig. 6a. For the stationary case, 324 

when predictor variables of y2 and y4 are included, the MCCmemd values are 0.98 and 325 

0.93, respectively, at scales corresponding to that those of y2 and y4. When a 326 

predictor variable of y3 is included, the MCCmemd values are 1.00, 1.00, and 0.96, 327 

respectively, at scales corresponding to that those of y2, y3, and y4. For the 328 

non-stationary, two predictor variable case, the corresponding MCCmemd values are 329 

0.80 and 0.85.  for the two predictor variable case, andFor the non-stationary, three 330 

predictor variable case, the corresponding MCCmemd values are 0.95, 0.99, and 0.91, 331 

respectively, for the case of three predictor variables. Therefore, the MCCmemd can be 332 

used to determine the scale-specific multivariate relationships. Similar to MSC, 333 

however, the MCCmemd underestimates the multivariate relationships, especially for 334 

the non-stationary case with less predictor variables. On the contrary, the MCCmemd 335 

can also overestimates the multivariate relationships. For example, when considering 336 

only  predictor variables corresponding to scales of 8, 16, and 32, are considered, the 337 

MCCmemd value for the stationary case is 0.47 at the scale of 64., which This deviates 338 



much from the expected MCCmemd value of 0 (Fig. 6a). The possible underestimation 339 

and overestimation by the MCCmemd

Similar to MSC, the localized multivariate relationships cannot be obtained from 342 

MCC

 may come from the decomposition errors 340 

inherent in the MEMD algorithm (Rehman and Mandic, 2010).  341 

memd. This can be better explained by the decrease of MCCmemd when half of the 343 

series of the predictor variables are replaced by 0 (Fig. 6b). Take For the stationary 344 

case for example, the MCCmemd

As explained above, the MWC has advantages in untangling localized multivariate 349 

relationships as compared to the common multivariate methods. It is important to 350 

reveal the multivariate relationships, which vary with time or space, that are 351 

associated with different processes. For example, discharge usually happens occurs on 352 

knolls, while recharge usually happens occurs in neighboring depressions (Gates et al., 353 

2011). Therefore, the controlling factors of soil water storage may vary with the land 354 

element characteristics of a location. For example, lLocal controls may be more 355 

important on knolls, while non-local controls may be more important in depressions 356 

(Grayson et al., 1997). In a temporal domain, vegetation transpiration contributes 357 

more to the evapotranspiration in the growing seasons, which may result in the 358 

changes of environmental factors explaining temporal variations of evapotranspiration 359 

in different seasons.  360 

 values at the scales corresponding to y2 (or and y4) 345 

decrease from 0.98 to 0.49 and from 0.93 to 0.62 when the second half of the y2 (or 346 

y4) series are replaced by 0. , and from 0.93 to 0.62, respectively, when the second 347 

half of the y2 and y4 series are replaced by 0. 348 



4.4 Application of the MWC 361 

Each meteorological factor was significantly correlated to the E, but the dominant 362 

factors explaining variations in E differed with scale. For example, the relative 363 

humidity was the dominating factor at small (2–8 months) and large (>32 months) 364 

scales, while temperature was the dominating factor at the medium (8–32 months) 365 

scales. Overall, the relative humidity corresponded to the greatest mean MWC (0.62) 366 

and PASC value (40%) at multiple scale-location domains. For the detailed 367 

relationships between E and each factor, see Supplement, Sect. S6. 368 

The MWC analysis shows that the combination of relative humidity and mean 369 

temperature produced the greatest mean MWC (0.82) and PASC (49%) among all 370 

two-factor cases., This indicatsuggesteding that relative humidity and mean 371 

temperature they arewere the best most appropriate factors to for explaining variations 372 

in E at multiple scale-location domains (Fig. 7a). However, adding an additional 373 

factor such as sun hours, which was the best among all three-factor cases, increased 374 

the average coherence (0.91), but slightly decreased the PASC to 48% (Fig. 7b). This 375 

indicated that sun hours was not significantly different from red noise in explaining 376 

additional variation in E. Similar results were found when the wind speed was added. 377 

The This occurs because reason for this was being that most areas with significant 378 

coherence between E and sun hours or wind speed, were a subset of areas with 379 

significant coherence between E and relative humidity or mean temperature (see 380 

Supplement, Sect. S3). Therefore, relative humidity and mean temperature were 381 

adequate to for explaining the temporal variation of E at various scales at this site. 382 



This is was consistent with Li et al. (2012), who indicated that relative humidity and 383 

mean temperature are were the two main contributors to the temporal change of 384 

potential evapotranspiration on the Chinese Loess Plateau. 385 

5. Conclusions 386 

Multiple wavelet coherence is was developed to determine scale-specific and 387 

localized multivariate relationships in geosciences. The new method is was tested and 388 

compared with existing multivariate methods, using an artificial dataset. The new 389 

method can be used to determine the proportion of the variance of a response variable 390 

that is explained by predictor variables, at a specific scale and location (spatially or 391 

temporally). As compared with bivariatesimple wavelet coherence, more variation 392 

may be explained at multiple scale-location domains by the MWC. Including more 393 

variables is only beneficial if the variables are not strongly cross-correlated, and can 394 

independently explain a fair amount of variability in a response variable. Therefore, 395 

the best combinations of variables that explain multivariate, spatial or temporal 396 

variability at multiple scales can be determined. This is important for optimizing 397 

variables for to developing scale-specific prediction.  398 

The MSC and MCCmemd can determine multivariate relationships at multiple scales, 399 

but localized multivariate relationships are not available. Furthermore, and both MSC 400 

and MCCmemd are likely to underestimate the degree of multivariate relationships for 401 

non-stationary processes. In addition, the performance of MCCmemd relies on the 402 

performance of MEMD, which needs further development. Application of the MWC 403 



into the real dataset indicates that the combination of relative humidity and mean 404 

temperature are the optimal factors that can be used to explain temporal variations of 405 

E at the Changwu site in China. 406 

Limitations of the new method also exist. Theoretically, any number of predictor 407 

variables can be included in the multiple wavelet analysis. However, the statistical 408 

significance threshold usually increases with the number of the predictor variables 409 

(Grinsted et al., 2004; Ng and Chan, 2012a). , and iIn addition, the inclusion of too 410 

many predictor variables may result in the statistical significance threshold at 411 

particular wavelet scales (e.g., the lowest and largest scales) to approach unity. This 412 

would restrict the availability of statistical information. In additionFurthermore, 413 

similar to bivariate wavelet analysis, the new method also suffers from the 414 

multiple-testing problem (Maraun and Kurths, 2004; Maraun et al., 2007; Schulte et 415 

al., 2015; Schulte, 2016). Therefore, a more robust statistical significance testing 416 

method may be beneficial to the new method. 417 

In summary, multiple wavelet coherence has advantages over existing multivariate 418 

methods, and provides an effective vehicle for untangling complex spatial or temporal 419 

variability for multiple controlling factors at multiple scales and locations. It may also 420 

be used as a data-driven tool for modeling and predicting various processes in the area 421 

of geosciences, such as precipitation, drought, soil water dynamics, stream flow, and 422 

atmospheric circulation. 423 
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Figure captions 529 

Figure 1. (a) Stationary and (b) non-stationary series of response variables (y for 530 

stationary and z for non-stationary case) encompassing five cosine waves (y1 to y5 531 

for stationary and z1 to z5 for non-stationary case) with different dimensionless 532 

scales. 533 

Figure 2. Multiple wavelet coherence (a) between response variable y and predictor 534 

variables y2 and y4; (b) between response y and predictors y2, y3, and y4; (c) 535 

between response z and predictors z2 and z4; and (d) between response z and 536 

predictors z2, z3, and z4. The artificial data series (y) encompasses five cosine waves 537 

(y1, y2, y3, y4, and y5) with different scales for the stationary case, and the artificial 538 

data series (z) encompasses five cosine waves (z1, z2, z3, z4, and z5) with different 539 

scales for the non-stationary case. The predictor variables, connected by a hyphen, are 540 

shown in the top right corner of each subplot. Thin solid lines demarcate the cones of 541 

influence, and thick solid lines show the 95% confidence levels. 542 

Figure 3. Multiple wavelet coherence (a) between y and y2h0 and y4; (b) between y 543 

and y2 and y4h0; (c) between z and z2h0 and z4; and (d) between z and z2 and z4h0.  544 

The artificial data series (y) encompasses five cosine waves (y1, y2, y3, y4, and y5) 545 

with different scales for the stationary case and the artificial data series (z) 546 

encompasses five cosine waves (z1, z2, z3, z4, and z5) with different scales for the 547 

non-stationary case. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new 548 

series of y2 (or z2) and y4 (or z4), in which the second half is are replaced by 0. The 549 
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predictor variables, connected by a hyphen, are shown in the top right corner of each 550 

subplot. Thin solid lines demarcate the cones of influence and thick solid lines show 551 

the 95% confidence levels. 552 

Figure 4. Multiple wavelet coherence of an artificial data series (z) encompassing five 553 

cosine waves (z1, z2, z3, z4, and z5) with different scales and (a) z2 and noised z2, (b) 554 

z2 and noised z4, and (c) z2, z4, and noised z4 for the non-stationary case. The 555 

predictor variables are connected by a hyphen and shown in the top right corner of 556 

each subplot. z2wn (z4wn), z2mn (z4mn), and z2sn (z4sn) indicate weakly, 557 

moderately, and strongly noised z2 (z4) series, respectively. Weakly, moderately, and 558 

strongly noised series are correlated with original series, having correlation 559 

coefficients of 0.9, 0.5, and 0.1, respectively. Thin solid lines demarcate the cones of 560 

influence and thick solid lines show the 95% confidence levels. 561 

Figure 5. Multiple spectral coherence (MSC) of an artificial data series (y or z) 562 

encompassing five cosine waves (y1 to y5; or z1 to z5) with different scales and (a) 563 

two (y2 and y4; or z2 and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, 564 

and (b) two (y2 and y4; or z2 and z4) data series when the second half of one data 565 

series is are replaced by 0. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to 566 

the new series of y2 (or z2) and y4 (or z4) in which the second half is are replaced by 567 

0. Figure 6. Multiple correlation coefficient between multivariate empirical mode 568 

decomposition (MCCmemd) of an artificial series (y or z) and (a) two (y2 and y4; or z2 569 

and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and (b) two (y2 and y4; 570 

or z2 and z4) data series when the second half of one data series is are replaced by 0. 571 
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The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) 572 

and y4 (or z4) in which the second half is are replaced by 0. 573 

Figure 7. Multiple wavelet coherence between evaporation (E) from water surfaces 574 

and meteorological factors ((a) relative humidity and mean temperature and (b) 575 

relative humidity, mean temperature, and sun hours) at Changwu site in Shaanxi, 576 

China. Thin solid lines demarcate the cones of influence, and thick solid lines show 577 

the 95% confidence level.578 
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Figure 1. (a) Stationary and (b) non-stationary series of response variables (y for 
stationary and z for non-stationary case) encompassing five cosine waves (y1 to y5 
for stationary and z1 to z5 for non-stationary case) with different dimensionless 
scales.  
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Figure 2. Multiple wavelet coherence (a) between response variable y and predictor 
variables y2 and y4; (b) between response y and predictors y2, y3, and y4; (c) 
between response z and predictors z2 and z4; and (d) between response z and 
predictors z2, z3, and z4. The artificial data series (y) encompasses five cosine waves 
(y1, y2, y3, y4, and y5) with different scales for the stationary case, and the artificial 
data series (z) encompasses five cosine waves (z1, z2, z3, z4, and z5) with different 
scales for the non-stationary case. The predictor variables, connected by a hyphen, are 
shown in the top right corner of each subplot. Thin solid lines demarcate the cones of 
influence, and thick solid lines show the 95% confidence levels.
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Figure 3. Multiple wavelet coherence (a) between y and y2h0 and y4; (b) between y 
and y2 and y4h0; (c) between z and z2h0 and z4; and (d) between z and z2 and z4h0.  
The artificial data series (y) encompasses five cosine waves (y1, y2, y3, y4, and y5) 
with different scales for the stationary case and the artificial data series (z) 
encompasses five cosine waves (z1, z2, z3, z4, and z5) with different scales for the 
non-stationary case. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new 
series of y2 (or z2) and y4 (or z4), in which the second half is are replaced by 0. The 
predictor variables, connected by a hyphen, are shown in the top right corner of each 
subplot. Thin solid lines demarcate the cones of influence and thick solid lines show 
the 95% confidence levels.
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Figure 4. Multiple wavelet coherence of an artificial data series (z) encompassing five 
cosine waves (z1, z2, z3, z4, and z5) with different scales and (a) z2 and noised z2, (b) 
z2 and noised z4, and (c) z2, z4, and noised z4 for the non-stationary case. The 
predictor variables are connected by a hyphen and shown in the top right corner of 
each subplot. z2wn (z4wn), z2mn (z4mn), and z2sn (z4sn) indicate weakly, 
moderately, and strongly noised z2 (z4) series, respectively. Weakly, moderately, and 
strongly noised series are correlated with original series, having with correlation 
coefficients of 0.9, 0.5, and 0.1, respectively. Thin solid lines demarcate the cones of 
influence and thick solid lines show the 95% confidence levels.
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Figure 5. Multiple spectral coherence (MSC) of an artificial data series (y or z) 
encompassing five cosine waves (y1 to y5; or z1 to z5) with different scales and (a) 
two (y2 and y4; or z2 and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, 
and (b) two (y2 and y4; or z2 and z4) data series when the second half of one data 
series is are replaced by 0. The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to 
the new series of y2 (or z2) and y4 (or z4) in which the second half is are replaced by 
0.
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Figure 6. Multiple correlation coefficient between multivariate empirical mode 
decomposition (MCCmemd) of an artificial series (y or z) and (a) two (y2 and y4; or z2 
and z4) or three (y2, y3, and y4; or z2, z3, and z4) data series, and (b) two (y2 and y4; 
or z2 and z4) data series when the second half of one data series is are replaced by 0. 
The variables y2h0 (or z2h0) and y4h0 (or z4h0) refer to the new series of y2 (or z2) 
and y4 (or z4) in which the second half is are replaced by 0.
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Figure 7. Multiple wavelet coherence between evaporation (E) from water surfaces and 
meteorological factors ((a) relative humidity and mean temperature and, (b) relative 
humidity, mean temperature, and sun hours) at Changwu site in Shaanxi, China. Thin 
solid lines demarcate the cones of influence, and thick solid lines show the 95% 
confidence level. 
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S1  Calculation of smoothed auto- and cross-wavelet power spectra 16 
 17 

In this section, we will only introduce the basics related to the calculation of smoothed 18 

auto- and cross-wavelet power spectra. Detailed information on the calculations of 19 

wavelet coefficients, cross-wavelet power spectra, and bivariatesimple wavelet coherence 20 

can be found elsewhere (Kumar and Foufoula-Georgiou, 1997; Torrence and Compo, 21 

1998; Torrence and Webster, 1999; Grinsted et al., 2004; Das and Mohanty, 2008; Si, 22 

2008).  Here, we will only introduce the basics related to the  calculation of  smoothed 23 

auto- and cross-wavelet power spectra. These smoothed auto- and cross-wavelet power 24 

spectra require the calculation of wavelet coefficients, at different scales and spatial (or 25 

temporal) locations, for the response variable and all predictor variables. For 26 

convenience, only spatial variables will be referred to, as temporal variables can be 27 

similarly analyzed. 28 

The continuous wavelet transform (CWT) of a spatial variable X1 of length N (X1h

xδ

, 29 

h=1, 2, …, N) with equal incremental distance , can be calculated as the convolution 30 

of X1h

   

 with the scaled and normalized wavelet (Torrence and Compo, 1998) 31 

( ) ( )1

1
, 1

N
X

h
x xW s X h

s sτ

δ δτ ψ τ
=

 = −  
∑ ,                                              (1) 32 

where ( )1 ,XW s τ  is the wavelet coefficient of spatial variable X1 at scale s and location 33 

τ , and [ ]ψ  is the mother wavelet function. The Morlet wavelet is used in the CWT 34 

because it allows us tofor the identificationy of both location-specific amplitude and 35 

phase information at different scales in a spatial series (Torrence and Compo, 1998). The 36 

Morlet wavelet can be expressed as (Grinsted et al., 2004) 37 



 
 

 
 

( ) 21/ 4 0.5ie ωη ηψ η π − −= ,                                                                    (2) 38 

where ω  and η  are the dimensionless frequency and space ( /s xη = ), respectively.  39 

  The auto-wavelet power spectrum of spatial variable X1 can be expressed as 40 

  ( ) ( ) ( )1, 1 1 1, , ,X X X XW s W s W sτ τ τ= ,                                       (3) 41 

where ( )1 ,XW s τ  is a complex conjugate of ( )1 ,XW s τ . Therefore, Eq. (3) can also be 42 

expressed as the squared amplitude of ( )1 ,XW s τ , which is  43 

( ) ( ) 21, 1 1, ,X X XW s W sτ τ= .                                              (4) 44 

  The cross-wavelet spectrum between spatial variables of Y and X1 can be defined as 45 

         ( ) ( ) ( ), 1 1, , ,Y X Y XW s W s W sτ τ τ= ,                                           (5) 46 

where ( ),YW s τ  is the wavelet coefficient of spatial variable Y. 47 

Both the auto- and cross-wavelet spectra can be smoothed using the method suggested 48 

by Torrence and Compo (1998),  49 

                   ( ) ( )( ), SM SM ,scale spaceW s W sτ τ =  


,                                                 (6) 50 

where ( )⋅


 is a smoothing operator. SMscale  and SMspace  indicate the smoothing along the 51 

wavelet scale axis and spatial distance, respectively (Si, 2008). The W


 is the normalized 52 

real Morlet wavelet and has a similar footprint as the Morlet wavelet 53 

( )( )2 2/ 21
2

s
e

s
τ

π
−

.                                                                        (7) 54 

Therefore, the smoothing along spatial distance can be calculated as 55 
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∑ ,                             (8) 56 

where s  means atrepresents a fixed s value. The Fourier transform of Eq. (7) is ( )2 22se ω−
. 57 

Therefore, Eq. (8) can be implemented using Fast Fourier Transform (FFT) and Inverse 58 

Fast Fourier Transform (IFFT) based on the convolution theorem, and is written as 59 

( )( ) ( )( ) ( )2 22SM , IFFT FFT , s
scale W s x W s x e ω−  =     

.                               (9) 60 

The smoothing along scales is then written as [Torrence and Compo, 1998] 61 

( )( ) ( )( ) ( )( )1SM , SM , 0.6
2 1

k m

scale k space l l x
l k m

W s x W s x s
m

+

= −

= Π
+ ∑ ,                              (10) 62 

where Π  is the rectangle function, x  indicates at a fixed x value, and l is the index for 63 

the scales. The coefficient of 0.6 is the empirically determined scale decorrelation length 64 

for the Morlet wavelet (Torrence and Compo, 1998). 65 



 
 

 
 

S2  Matlab code for MWC (mwc.m) 66 
 67 
% This is a Matlab code (mwc.m) for calculating multiple wavelet coherence.  68 
% Please copy the following content into a txt file and rename it to “mwc.m” prior to running.  69 
 70 
function varargout=mwc(X,varargin) 71 
%  Multiple Wavelet coherence 72 
% Creates a figure of multiple wavelet coherence 73 
% USAGE: [Rsq,period,scale,coi,sig95]=mwc(X,[,settings]) 74 
% 75 
% Input: X: a matrix of multiple variables equally distributed in space  76 
%             or time. The first column corresponds to the dependent variable,  77 
%         and the second and consequent columns are independent variables. 78 
%  79 
% Settings: Pad: pad the time series with zeros?  80 
% .         Dj: Octaves per scale (default: '1/12') 81 
% .         S0: Minimum scale 82 
% .         J1: Total number of scales 83 
% .         Mother: Mother wavelet (default 'morlet') 84 
% .         MaxScale: An easier way of specifying J1 85 
% .         MakeFigure: Make a figure or simply return the output. 86 
% .         BlackandWhite: Create black and white figures 87 
% .         AR1: the ar1 coefficients of the series  88 
% .              (default='auto' using a naive ar1 estimator. See ar1nv.m) 89 
% .         MonteCarloCount: Number of surrogate data sets in the significance calculation. (default=1000) 90 
  91 
% Settings can also be specified using abbreviations. e.g. ms=MaxScale. 92 
% For detailed help on some parameters type help wavelet. 93 
% Example: 94 
%    t=1:200; 95 
%    mwc([sin(t),sin(t.*cos(t*.01)),cos(t.*sin(t*.01))]) 96 
 97 
% Please acknowledge the use of this software package in any publications, 98 
% by including text such as: 99 
  100 
%   "The software for the multiple wavelet coherence was  provided by W. Hu 101 
%   and B. Si, and is available in the Supplement of Hu and Si (2016) 102 
% (http://to be determined).(http://???)." 103 
%   and cite the paper: 104 
% "Hu, W., and B. Si (2016), Technical Note: Multiple wavelet coherence for untangling scale-specific and localized  105 
%  multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., to be determined.??? (under review)" 106 
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%   107 
%  (C) W. Hu and B. Si 2016 108 
% 109 
% ----------------------------------------------------------- 110 
% 111 
%   Copyright (C) 2016, W. Hu and B. Si 2016 112 
%   This software may be used, copied, or redistributed as long as it is not 113 
%   sold and this copyright notice is reproduced on each copy made.  This 114 
%   routine is provided as is without any express or implied warranties 115 
%   whatsoever. 116 
% 117 
%    Wavelet software was provided by C. Torrence and G. Compo, 118 
%       and is available at URL: http://paos.colorado.edu/research/wavelets/. 119 
% 120 
%    Crosswavelet and wavelet coherence software were provided by 121 
%      A. Grinsted and is available at URL: 122 
%    http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence 123 
% 124 
%   We acknowledge Aslak Grinsted for his wavelet coherency code (wtc.m) on 125 
% which this code builds.  126 
%  127 
%----------------parse function arguments----------------------------------------------------- 128 
 129 
[row,col]=size(X) 130 
[y,dt]=formatts(X(:,1)) 131 
mm=y(1,1) 132 
nn=y(end,1) 133 
 134 
for i=2:col 135 
[x,dtx]=formatts(X(:,i)) 136 
 137 
if (dt~=dtx) 138 
    error('timestep must be equal between time series') 139 
end 140 
 141 
mm1=x(1,1) 142 
nn1=x(end,1) 143 
 144 
if mm1>mm 145 
mm=mm1 146 
end 147 
 148 



 
 

 
 

if nn1<nn 149 
nn=nn1 150 
end 151 
 152 
x1(:,(i-1))=x(:,1) 153 
x2(:,(i-1))=x(:,2) 154 
 155 
end 156 
 157 
t=(mm:dt:nn)' 158 
 159 
 160 
%common time period 161 
if length(t)<4 162 
    error('The three time series must overlap.') 163 
end  164 
   165 
n=length(t); 166 
  167 
%----------default arguments for the wavelet transform----------- 168 
Args=struct('Pad',1,...      % pad the time series with zeroes (recommended) 169 
            'Dj',1/12, ...    % this will do 12 sub-octaves per octave 170 
            'S0',2*dt,...    % this says start at a scale of 2 years 171 
            'J1',[],... 172 
            'Mother','Morlet', ... 173 
            'MaxScale',[],...   %a more simple way to specify J1 174 
            'MakeFigure',(nargout==0),... 175 
            'MonteCarloCount',1000,... 176 
            'BlackandWhite',0,... 177 
            'AR1','auto',... 178 
            'ArrowDensity',[30 30],... 179 
            'ArrowSize',1,... 180 
            'ArrowHeadSize',1); 181 
 182 
Args=parseArgs(varargin,Args,{'BlackandWhite'}); 183 
 184 
if isempty(Args.J1) 185 
    if isempty(Args.MaxScale) 186 
        Args.MaxScale=(n*.17)*2*dt; %auto maxscale 187 
    end 188 
    Args.J1=round(log2(Args.MaxScale/Args.S0)/Args.Dj); 189 
end 190 



 
 

 
 

  191 
ad=mean(Args.ArrowDensity); 192 
Args.ArrowSize=Args.ArrowSize*30*.03/ad; 193 
%Args.ArrowHeadSize=Args.ArrowHeadSize*Args.ArrowSize*220; 194 
Args.ArrowHeadSize=Args.ArrowHeadSize*120/ad; 195 
  196 
if ~strcmpi(Args.Mother,'morlet') 197 
    warning('MWC:InappropriateSmoothingOperator','Smoothing operator is designed for morlet wavelet.') 198 
end 199 
  200 
if strcmpi(Args.AR1,'auto') 201 
      for i=1:col 202 
arc(i)= ar1nv(X(:,i)) 203 
       end 204 
Args.AR1=arc 205 
    if any(isnan(Args.AR1)) 206 
        error('Automatic AR1 estimation failed. Specify it manually (use arcov or arburg).') 207 
    end 208 
end 209 
  210 
%-----------:::::::::::::--------- ANALYZE ----------::::::::::::------------ 211 
  212 
%Calculate and smooth wavelet spectrum Y and X 213 
 214 
 215 
[Y,period,scale,coiy] = wavelet(y(:,2),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother); 216 
sinv=1./(scale'); 217 
smY=smoothwavelet(sinv(:,ones(1,n)).*(abs(Y).^2),dt,period,Args.Dj,scale); 218 
 219 
 220 
dte=dt*.01;  221 
idx=find((y(:,1)>=(t(1)-dte))&(y(:,1)<=(t(end)+dte))); 222 
Y=Y(:,idx); 223 
smY=smY(:,idx) 224 
coiy=coiy(idx); 225 
 226 
coi=coiy 227 
 228 
for  i=2:col 229 
 [XS,period,scale,coix] = wavelet(x2(:,(i-1)),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother); 230 
 231 
idx=find((x1(:,(i-1))>=(t(1))-dte)&(x1(:,(i-1))<=(t(end)+dte))); 232 



 
 

 
 

XS=XS(:,idx); 233 
coix=coix(idx); 234 
 235 
XS1(:,:,(i-1))=XS 236 
coi=min(coi,coix) 237 
 238 
end 239 
  240 
% -------- Calculate Cross Wavelet Spectra---------------------------- 241 
 242 
% ---- between dependent variable and independent variables------ 243 
 244 
for i=1:(col-1) 245 
Wyx=Y.*conj(XS1(:,:,i)) 246 
sWyx=smoothwavelet(sinv(:,ones(1,n)).*Wyx,dt,period,Args.Dj,scale) 247 
sWyx1(:,:,i)=sWyx 248 
end 249 
 250 
% ----between independent variables and independent variables------ 251 
for i=1:(col-1); 252 
for j=1:(col-1); 253 
Wxx=XS1(:,:,i).*conj(XS1(:,:,j)) 254 
sWxx=smoothwavelet(sinv(:,ones(1,n)).*Wxx,dt,period,Args.Dj,scale) 255 
sWxx1(:,:,i,j)=sWxx 256 
end 257 
end 258 
 259 
% --------------- Mutiple wavelet coherence --------------------------------- 260 
% calculate the multiple wavelet coherence  261 
for i=1:length(scale) 262 
  parfor j=1:n 263 
a=transpose(squeeze(sWyx1(i,j,:))) 264 
b=inv(squeeze(sWxx1(i,j,:,:))) 265 
c=conj(squeeze(sWyx1(i,j,:))) 266 
d=smY(i,j) 267 
Rsq(i,j)=real(a*b*c/d) 268 
  end 269 
end 270 
 271 
% --------------- make figure-------------------------------------------- 272 
if (nargout>0)||(Args.MakeFigure) 273 



 
 

 
 

    274 
mwcsig=mwcsignif(Args.MonteCarloCount,Args.AR1,dt,length(t)*2,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother,.275 
6); 276 
    mwcsig=(mwcsig(:,2))*(ones(1,n)); 277 
    mwcsig=Rsq./mwcsig; 278 
end 279 
  280 
if Args.MakeFigure 281 
    282 
    Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period)))); 283 
     284 
    if Args.BlackandWhite 285 
        levels = [0 0.5 0.7 0.8 0.9 1]; 286 
        [cout,H]=safecontourf(t,log2(period),Rsq,levels); 287 
  288 
        colorbarf(cout,H) 289 
        cmap=[0 1;.5 .9;.8 .8;.9 .6;1 .5]; 290 
        cmap=interp1(cmap(:,1),cmap(:,2),(0:.1:1)'); 291 
        cmap=cmap(:,[1 1 1]); 292 
        colormap(cmap) 293 
        set(gca,'YLim',log2([min(period),max(period)]), ... 294 
            'YDir','reverse', 'layer','top', ... 295 
            'YTick',log2(Yticks(:)), ... 296 
            'YTickLabel',num2str(Yticks'), ... 297 
            'layer','top') 298 
        ylabel('Period') 299 
        hold on 300 
  301 
        if ~all(isnan(mwcsig)) 302 
            [c,h] = contour(t,log2(period),mwcsig,[1 1],'k');%#ok 303 
            set(h,'linewidth',2) 304 
        end 305 
        %suptitle([sTitle ' coherence']); 306 
        %plot(t,log2(coi),'k','linewidth',2) 307 
                tt=[t([1 1])-dt*.5;t;t([end end])+dt*.5]; 308 
        %hcoi=fill(tt,log2([period([end 1]) coi period([1 end])])); 309 
        %hatching- modified by Ng and Kwok 310 
        hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]),'w'); 311 
   312 
        hatch(hcoi,45,[0 0 0]); 313 
        hatch(hcoi,135,[0 0 0]); 314 
        set(hcoi,'alphadatamapping','direct','facealpha',.5) 315 



 
 

 
 

        plot(t,log2(coi),'color','black','linewidth',1.5) 316 
        hold off 317 
    else 318 
        H=imagesc(t,log2(period),Rsq);%#ok 319 
        %[c,H]=safecontourf(t,log2(period),Rsq,[0:.05:1]); 320 
        %set(H,'linestyle','none') 321 
         322 
        set(gca,'clim',[0 1]) 323 
         324 
        HCB=safecolorbar;%#ok 325 
         326 
        set(gca,'YLim',log2([min(period),max(period)]), ... 327 
            'YDir','reverse', 'layer','top', ... 328 
            'YTick',log2(Yticks(:)), ... 329 
            'YTickLabel',num2str(Yticks'), ... 330 
            'layer','top') 331 
        ylabel('Period') 332 
        hold on 333 
  334 
        if ~all(isnan(mwcsig)) 335 
            [c,h] = contour(t,log2(period),mwcsig,[1 1],'k');%#ok 336 
            set(h,'linewidth',2) 337 
        end 338 
        %suptitle([sTitle ' coherence']); 339 
        tt=[t([1 1])-dt*.5;t;t([end end])+dt*.5]; 340 
        hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]),'w'); 341 
        set(hcoi,'alphadatamapping','direct','facealpha',.5) 342 
        hold off 343 
    end 344 
end 345 
%---------------------------------------------------------------% 346 
 347 
varargout={Rsq,period,scale,coi,mwcsig}; 348 
varargout=varargout(1:nargout); 349 
  350 
function [cout,H]=safecontourf(varargin) 351 
vv=sscanf(version,'%i.'); 352 
if (version('-release')<14)|(vv(1)<7) 353 
    [cout,H]=contourf(varargin{:}); 354 
else 355 
    [cout,H]=contourf('v6',varargin{:}); 356 
end 357 



 
 

 
 

  358 
function hcb=safecolorbar(varargin) 359 
vv=sscanf(version,'%i.'); 360 
  361 
if (version('-release')<14)|(vv(1)<7) 362 
    hcb=colorbar(varargin{:}); 363 
else 364 
    hcb=colorbar('v6',varargin{:}); 365 
end366 



 
 

 
 

S3  Matlab code for significance test on multiple wavelet coherence 367 
% This is a Matlab file (mwcsignif.m) for calculating significance tests on multiple wavelet coherence.  368 
%Please copy the following content into a txt file and rename this file to “mwcsignif.m” prior to running.  369 
 370 
function mwcsig=mwcsignif(mccount,ar1,dt,n,pad,dj,s0,j1,mother,cutoff) 371 
% Multiple Wavelet Coherence Significance Calculation (Monte Carlo) 372 
% 373 
% mwcsig=mwcsignif(mccount,ar1,dt,n,pad,dj,s0,j1,mother,cutoff) 374 
% 375 
% mccount: number of time series generations in the monte carlo run  376 
%(the greater the better) 377 
% ar1: a vector containing two (in case of calculating wavelet  378 
% coherence between two variables) or  379 
% multiple (≥3) (in case of calculating multiple wavelet coherence 380 
% with three or more variables) 381 
% AR1 coefficients.  382 
% dt,pad,dj,s0,j1,mother: see wavelet help...  383 
% n: length of each generated timeseries. (obsolete)  384 
% 385 
% cutoff: (obsolete) 386 
% 387 
% RETURNED 388 
% mwcsig: the 95% significance level as a function of scale... (scale,sig95level) 389 
% ----------------------------------------------------------- 390 
% Please acknowledge the use of this software package in any publications, 391 
% by including text such as: 392 
% 393 
%   "The software for the multiple wavelet coherence was  provided by W. Hu 394 
%   and B. Si, and is available in the supplement of Hu and Si (2016) 395 
% (http://to be determinedhttp://???)." 396 
%   and cite the paper: 397 
% "Hu, W., and B. Si (2016), Technical Note: Multiple wavelet coherence for untangling scale-specific and localized  398 
%  multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., to be determined.??? (under review)" 399 
%  400 
%  (C) W. Hu and B. C. Si 2016 401 
% 402 
% ----------------------------------------------------------- 403 
% 404 
%  Copyright (C) 2016, W. Hu and B. C. Si 2016 405 
%   This software may be used, copied, or redistributed as long as it is not 406 
%   sold and this copyright notice is reproduced on each copy made.  This 407 
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%   routine is provided as is without any express or implied warranties 408 
%  whatsoever. 409 
%  410 
%  Wavelet software was provided by C. Torrence and G. Compo, 411 
%   and is available at URL: http://paos.colorado.edu/research/wavelets/. 412 
% 413 
%  Crosswavelet and wavelet coherence software were provided by 414 
%    A. Grinsted and is available at URL: 415 
%    http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence 416 
% 417 
% 418 
% We acknowledge Aslak Grinsted for his code (wtcsignif.m) on 419 
% which this code builds.  420 
%  421 
%--------------------------------------------------------------------- 422 
persistent mypath 423 
if isempty(mypath) 424 
    mypath=strrep(which('mwcsignif'),'mwcsignif.m',''); 425 
end 426 
 427 
%we don't need to do the monte carlo if we have a cached 428 
%siglevel for ar1s that are almost the same. (see fig4 in Grinsted et al., 2004) 429 
aa=round(atanh(ar1(:)')*4); %this function increases the sensitivity near 1 & -1 430 
aa=abs(aa)+.5*(aa<0); %only positive numbers are allowed in the checkvalues (because of log) 431 
 432 
% do a check that it is not the same as last time... (for optimization purposes) 433 
checkvalues=[aa dj s0/dt j1 double(mother)]; %n & pad are not important. 434 
%also the resolution is not important. 435 
 436 
checkhash=['' mod(sum(log(checkvalues+1)*127),25)+'a' mod(sum(log(checkvalues+1)*54321),25)+'a']; 437 
 438 
cachefilename=[mypath 'mwcsignif-cached-' checkhash '.bnm']; 439 
 440 
%the hash is used to distinguish cache files. 441 
try 442 
    [lastmccount,lastcheckvalues,lastmwcsig]=loadbnm(cachefilename); 443 
    if (lastmccount>=mccount)&(isequal(single(checkvalues),lastcheckvalues))  444 
%single is important because bnm is single precision. 445 
       mwcsig=lastmwcsig; 446 
        return 447 
    end 448 
catch 449 



 
 

 
 

end 450 
 451 
%choose a n so that largest scale have atleast some part outside the coi 452 
ms=s0*(2^(j1*dj))/dt; %maxscale in units of samples 453 
n=ceil(ms*6); 454 
 455 
warned=0; 456 
%precalculate stuff that's constant outside the loop 457 
%d1=ar1noise(n,1,ar1(1),1); 458 
d1=rednoise(n,ar1(1),1); 459 
[W1,period,scale,coi] = wavelet(d1,dt,pad,dj,s0,j1,mother); 460 
outsidecoi=zeros(size(W1)); 461 
for s=1:length(scale) 462 
    outsidecoi(s,:)=(period(s)<=coi); 463 
end 464 
sinv=1./(scale'); 465 
sinv=sinv(:,ones(1,size(W1,2))); 466 
 467 
if mccount<1 468 
    mwcsig=scale'; 469 
    mwcsig(:,2)=.71; %pretty good  470 
    return 471 
end 472 
 473 
sig95=zeros(size(scale)); 474 
 475 
maxscale=1; 476 
for s=1:length(scale) 477 
    if any(outsidecoi(s,:)>0) 478 
        maxscale=s; 479 
    else 480 
        sig95(s)=NaN; 481 
        if ~warned 482 
warning('Long wavelengths completely influenced by COI. (suggestion: set n higher, or j1 lower)');  483 
         warned=1; 484 
        end 485 
    end 486 
end 487 
 488 
%PAR1=1./ar1spectrum(ar1(1),period'); 489 
%PAR1=PAR1(:,ones(1,size(W1,2))); 490 
%PAR2=1./ar1spectrum(ar1(2),period'); 491 



 
 

 
 

%PAR2=PAR2(:,ones(1,size(W1,2))); 492 
 493 
nbins=1000; 494 
wlc=zeros(length(scale),nbins); 495 
 496 
wbh = waitbar(0,['Running Monte Carlo (significance)... (H=' checkhash ')'],'Name','Monte Carlo (MWC)'); 497 
 498 
for ii=1:mccount 499 
    waitbar(ii/mccount,wbh); 500 
 501 
dy=rednoise(n,ar1(1),1) 502 
[Wdy,period,scale,coiy] = wavelet(dy,dt,pad,dj,s0,j1,mother); 503 
sinv=1./(scale'); 504 
smdY=smoothwavelet(sinv(:,ones(1,n)).*(abs(Wdy).^2),dt,period,dj,scale); 505 
 506 
col=size(ar1,2) 507 
 508 
for  i=2:col 509 
dx=rednoise(n,ar1(i),1) 510 
 [Wdx,period,scale,coix] = wavelet(dx,dt,pad,dj,s0,j1,mother); 511 
Wdx1(:,:,(i-1))=Wdx 512 
end 513 
 514 
% -------- Calculate Cross Wavelet Spectra---------------------------- 515 
 516 
% ----between dependent variable and independent variables------ 517 
 518 
parfor i=1:(col-1) 519 
Wdyx=Wdy.*conj(Wdx1(:,:,i)) 520 
sWdyx=smoothwavelet(sinv(:,ones(1,n)).*Wdyx,dt,period, dj,scale) 521 
sWdyx1(:,:,i)=sWdyx 522 
end 523 
 524 
% ----between independent variables and independent variables------ 525 
for i=1:(col-1); 526 
parfor j=1:(col-1); 527 
Wdxx=Wdx1(:,:,i).*conj(Wdx1(:,:,j)) 528 
sWdxx=smoothwavelet(sinv(:,ones(1,n)).*Wdxx,dt,period,dj,scale) 529 
sWdxx1(:,:,i,j)=sWdxx 530 
end 531 
end 532 
 533 



 
 

 
 

% calculate the multiple wavelet coherence  534 
for i=1:length(scale) 535 
  parfor j=1:n 536 
a=transpose(squeeze(sWdyx1(i,j,:))) 537 
b=inv(squeeze(sWdxx1(i,j,:,:))) 538 
c=conj(squeeze(sWdyx1(i,j,:))) 539 
d=smdY(i,j) 540 
Rsq(i,j)=real(a*b*c/d) 541 
  end 542 
end 543 
 544 
 for s=1:maxscale 545 
        cd=Rsq(s,find(outsidecoi(s,:))); 546 
        cd=max(min(cd,1),0); 547 
        cd=floor(cd*(nbins-1))+1; 548 
        for jj=1:length(cd) 549 
            wlc(s,cd(jj))=wlc(s,cd(jj))+1; 550 
        end 551 
    end 552 
end 553 
close(wbh); 554 
 555 
for s=1:maxscale 556 
    rsqy=((1:nbins)-.5)/nbins; 557 
    ptile=wlc(s,:); 558 
    idx=find(ptile~=0); 559 
    ptile=ptile(idx); 560 
    rsqy=rsqy(idx); 561 
    ptile=cumsum(ptile); 562 
    ptile=(ptile-.5)/ptile(end); 563 
    sig95(s)=interp1(ptile,rsqy,.95); 564 
end 565 
mwcsig=[scale' sig95']; 566 
 567 
if any(isnan(sig95))&(~warned) 568 
    warning(sprintf('Sig95 calculation failed. (Some NaNs)')) 569 
else 570 
    savebnm(cachefilename,mccount,checkvalues,mwcsig); %save to a cache.... 571 
end 572 
 573 



 
 

 
 

S4  User manual for S2 (mwc.m) and S3 (mwcsignif.m) 574 
 575 

Multiple wavelet  coherence package   576 

by Wei Hu and Bingcheng Si  577 

 578 

Release date: xx 27 April 2016 579 

--------------------------------------------------------------------------------------- 580 

 581 

This software package is written for performing multiple wavelet coherence. 582 

This software package includes mwc.m and mwcsignif.m, which 583 

are written in the Matlab program based on wtc.m and wtcsignif.m provided by A.  584 

Grinsted 585 

(http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence).  586 

 587 

Users are, therefore, required to download his software package and  588 

combine these two packages into one to run the multiple wavelet coherence analysis.                                      589 

------------------------------------------------------------------------------------ 590 

Please acknowledge the use of of this software package in any publications by including 591 

text such as:  592 

 593 
************************************************************************594 
The software for the multiple wavelet coherence was  provided by W. Hu and B. C. Si, 595 
and is available in the supplement of Hu and Si (2016) (http://???to be determined).       596 
*********************************************************************** 597 
and cite the paper: 598 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 599 

Hu, W., and B.C. Si (2016), Technical Note: Multiple wavelet coherence for untangling   600 
scale-specific and localized multivariate relationships in geosciences, Hydrol. Earth Syst. 601 
Sci., to be determined??? (under review)." 602 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 603 
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S5  Results of MEMD 622 

Six or seven intrinsic mode functions (IMFs) corresponding to different scales are 623 

obtained for multivariate data series (i.e., a combination of the response variable with two 624 

(y2 and y4, or z2 and z4) or three (y2, y3, and y4, or z2, z3, and z4) predictor variables) 625 

by MEMD. Because Due tothe IMFs, with a number of 6 or greater, contributinged 626 

negligible variance to the total, only the first five IMFs are presented (Fig. S1). For each 627 

IMF, the scale is calculated as the total number of points (i.e., 256) divided by the 628 

number of cycles cycles for each IMF. The obtained scales and percentage (%) of 629 

variance explained by each IMF are shown in Table S1. While the obtained scales for the 630 

response variable y are in agreement with the true scales for the stationary case, the 631 

obtained scales (i.e., 3, 6, 11, 21, and 43) for the response variable z deviate slightly from 632 

the average scales for the non-stationary case. For the response variable, the contribution 633 

of IMFs to the total variance generally decreases (20% to 13% for stationary and 27% to 634 

11% for non-stationary) from IMF1 to IMF5, which disagrees with the fact that each 635 

scale contributes equally (i.e., 20%) to the total variance. The scale of the dominant 636 

variance from each predictor variable can be obtained (Table S1). However, the sum of 637 

variances over all IMFs for each variable is less than 100% (ranging from 84% to 93%), 638 

indicating that MEMD cannot capture all the variances, as was also previously observed 639 

(Hu et al., 2013; She et al., 2014). 640 

 641 

 642 



 
 

 
 

  643 
Figure S1. The first five intrinsic mode functions (IMFs) of response variable y (or z) 644 
and predictor variables (y2 and y4; y2 y3, and y4; z2 and z4; or z2, z3, and z4) obtained 645 
by multivariate empirical mode decomposition. 646 
  647 



 
 

 
 

Table S1. Scales and percentage (%) of variance explained by each intrinsic mode 648 
function (IMF) of response variable y (or z) and predictor variables (y2 and y4; y2, y3 649 
and y4; z2 and z4; or z2, z3, and z4) using the multivariate empirical mode 650 
decomposition method. 651 
 652 

 653 
 654 
 655 
 656 

  Scale (-) y (%) y2 (%) y3 (%) y4 (%) 

y2-y4 (Stationary) IMF1 4 20  0   0  

 IMF2 8 18  90   0  

 IMF3 16 15  0   1  

 IMF4 32 18  0   88  

 IMF5 64 13  0   0  

y2-y3-y4 (Stationary) IMF1 4 20  1  0  0  

 IMF2 8 17  85  1  0  

 IMF3 16 16  0  82  2  

 IMF4 32 16  0  0  82  

 IMF5 64 15  0  0  0  

z2-z4 (Non-stationary) IMF1 3 27  22   2  

 IMF2 6 17  68   4  

 IMF3 11 17  0   11  

 IMF4 21 17  0   75  

 IMF5 43 11  0   0  

z2-z3-z4 (Non-stationary) IMF1 3 27  22  7  3  

 IMF2 6 18  69  17  4  

 IMF3 11 17  0  61  14  

 IMF4 21 16  0  1  68  

 IMF5 43 11  0  0  0  



 
 

 
 

S6  Results of bivariatesimple wavelet coherency for E 657 
 658 
 659 

The evaporation from free water surface was significantly correlated to each 660 

meteorological factor at scales of around 1 year, at all times, with exception of to a 661 

certain period for relative humidity and sun hours (Fig. S2). Each of mean temperature, 662 

sun hours, and wind speed was positively correlated to E at different scales. For relative 663 

humidity, however, its influences on E changed with scale. For example, at scales of 664 

around 1 year, relative humidity was positively correlated to E during the period of 1979 665 

to 1997. This is because due to high relative humidity is usually being associated with 666 

high summer temperatures in summer, when high evaporation occurs. At other scales 667 

(e.g., 2–6 months or 5–10 years), the relative humidity was negatively correlated to the E, 668 

which was expected. The dominant factors explaining variation in E differed with scale. 669 

For example, the relative humidity was the dominating factor at small (2–8 months) and 670 

large (>32 months) scales, while temperature was the dominating factor at the medium 671 

(8–32 months) scales (Fig. S2). The relative humidity corresponded to the greatest mean 672 

MWC (0.62) and PASC value (40%) at multiple scale-location domains.  673 

 674 



 
 

 
 

 675 
Figure S2. SimpleBivariate wavelet coherency between evaporation (E) from water 676 
surfaces and each of the meteorological factors (relative humidity, mean temperature, sun 677 
hours, and wind speed) at Changwu site in Shaanxi, China. Arrows show the correlation 678 
type with the right handpointing arrows being positive and left hand pointing arrows 679 
being negative. Thin solid lines demarcate the cones of influence and thick solid lines 680 
show the 95% confidence levels. 681 
 682 
 683 
 684 
 685 
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