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Abstract 13 

Assessing the impacts of climate change on water resources of the Congo River Basin 14 

(CRB) has attracted widespread attention. Of particular interest to water resource 15 

planners is the spatiotemporal variability of runoff due to the projected changes in 16 

climate. Here, with the aid of a spatially explicit hydrological model forced with 17 

precipitation and temperature projections from 25 global climate models (GCMs) under 18 

two greenhouse gas emission scenarios, we elucidate the variability in runoff in the near 19 

(2016-2035) and mid (2046-2065) 21st century compared to present. Over the equatorial, 20 

northern and southwestern CRB, models project an overall increase in precipitation and, 21 

subsequently runoff. A decrease in precipitation in the headwater regions of southeastern 22 

Congo, leads to a decline in runoff.  Climate model selection plays an important role in 23 

precipitation projections, for both magnitude and direction of change. Consensus on the 24 

magnitude and the sign (increase or decrease) of change is strong in the equatorial and 25 

northern parts of the basin, but weak in the southern basin. The multi-model approach 26 

reveals that near-term projections are not impacted by the emission scenarios. However, 27 

the mid-term projections depend on the greenhouse gas emission scenario. The projected 28 

increase in accessible runoff (excluding flood runoff) in most parts of CRB presents new 29 

opportunities for augmenting human appropriation of water resources; at the same time, 30 

the increase in quick runoff poses new challenges. In the southeast, with the projected 31 

decrease in accessible runoff, the challenge will be on managing the increasing demands 32 

with limited water resources. Uncertainties in precipitation and subsequently in runoff 33 

projections vary widely, and therefore adaptation and robust planning strategies will vary 34 

within the river basin, and will depend on the risk attitudes of resource planners.  35 
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1. Introduction 36 

 Sustainable management of water resources (e.g. water for food production, 37 

reliable and safe drinking water and adequate sanitation) presents immense challenges in 38 

many countries in Central Africa where the Congo River Basin (CRB) is located [IPCC, 39 

2014; UNEP, 2011; World Food Program, 2014]. The economies of the nine countries 40 

that share the waters of the CRB are agriculture-based [World Bank Group, 2014] and, 41 

therefore, are vulnerable to the impacts of climate change. Despite the abundant water 42 

and land resources and favorable climates, the basin countries are net importers of staple 43 

food grains, and are far behind in achieving Millennium Development Goals [Bruinsma, 44 

2003; Molden, 2007; UNEP, 2011]. Appropriation of freshwater resources is expected to 45 

dominate in the future as the CRB countries develop and expand their economies. At the 46 

same time, climate change related risks associated with water resources will also increase 47 

significantly [IPCC, 2014].  48 

 Historical, present and near-future greenhouse gas emissions in the CRB countries 49 

constitute a small fraction of global emissions; however, the impacts of climate change 50 

on water resources are expected to be severe due to the region’s heavy reliance on natural 51 

resources (e.g. agriculture and forestry) [Collier et al., 2008; DeFries and Rosenzweig, 52 

2010; Niang et al., 2014]. The limited adaptation capacity in the CRB region is expected 53 

to cause severe water and food security challenges, which, in turn, can lead to ecosystem 54 

degradation and increased greenhouse gas emissions [Gibbs et al., 2010; IPCC, 2014; 55 

Malhi and Grace, 2000]. 56 

  57 
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Competing pressures on water resources in the CRB, including revival of rural 58 

economies (largely agriculture based), achieving millennium development goals and 59 

environmental conservation, would benefit from detailed information on the spatial and 60 

temporal variability of water balance components under different climate projection 61 

pathways. The effect of climate change on water resources can be investigated by 62 

incorporating climate change projections (e.g. precipitation and temperature) in 63 

simulation models that reliably represent the spatial and temporal variability of CRB’s 64 

hydrology. Such a framework could be applied to project changes in storage and runoff, 65 

and hence freshwater availability, under different socioeconomic pathways that affect 66 

climate trajectories.  67 

A predictive framework of CRB hydrology is hindered by insufficient data and 68 

too few evaluations of models against available data [Beighley et al., 2011; Wohl et al., 69 

2012]. Basin scale water budgets estimated from land-based and satellite-derived 70 

precipitation datasets reveal significantly different results, and model-computed stream 71 

flows show only qualitative agreement with corresponding observations [Beighley et al., 72 

2011; Lee et al., 2011; Schuol et al., 2008]. Tshimanga and Hughes [2012; 2014] recently 73 

developed a semi-distributed hydrologic model capable of simulating surface-water 74 

runoff in CRB.  This work crucially identified approaches suitable for approximating 75 

runoff generation at the basin scale, although the spatial resolution of the model 76 

predictions is rather coarse for supporting regional water management and regional-77 

planning efforts.  These regional planning efforts must take into account variablity and 78 

uncertainties stemming from climate-model selection and projected greenhouse gas 79 
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emissions, but with respect to hydrological modeling of the CRB these issues have been 80 

incompletely addressed.  81 

The goals of this study are to i) develop a spatially explicit hydrology model that 82 

uses downscaled output from general circulation models (GCMs) and is suitable for 83 

simulating the spatiotemporal variability of surface-water runoff throughout the CRB; ii) 84 

test the ability of the hydrological model to reproduce historical data on CRB river 85 

discharges using both observed and GCM-simulated climate fields; (iii) quantify the 86 

sensitivity of hydrologic-model runoff predictions to GCM selection; (iv) use the 87 

hydrologic model with individual GCMs and multi-GCM ensembles to forecast near-term 88 

(2016-2035) and mid-term (2046-2065) changes in surface-water flows for two 89 

greenhouse-gas emission scenarios. We focus on the runoff projections of the hydrologic 90 

model because streams and rivers will serve as the primary sources of freshwater targeted 91 

for human appropriation [Burney et al., 2013; Molden, 2007].     92 

We show that the hydrologic model that is forced with bias-corrected and 93 

downscaled outputs from an ensemble of 25 GCMs and two emission scenarios reveal a 94 

range of projected changes in precipitation and runoff, and that runoff yields and 95 

dynamics are highly sensitive to GCM-forcing. The multi-model mean (MM, unweighted 96 

average of all GCMs) and the select-model mean (SM, selected GCMs based on 97 

performance in the historical period and realistic representation of certain attributes in the 98 

climate system) reveal 1-3% and 4-9% increase in precipitation and runoff, respectively 99 

in the CRB in the near-term (2016-2035) relative to reference period (1985-2005). In the 100 

mid-term (2036-2065), on the other hand, projections are GCM and emission-scenario 101 

dependent, with the high emission RCP8.5 scenario showing the highest increases in 102 
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precipitation (2-5%) and runoff (7-14%). However, both MM and SM show decreasing 103 

precipitation and runoff patterns in the southeastern headwater regions of Congo. 104 

2. Materials and Methods 105 

2.1 The Congo River Basin 106 

 The Congo River Basin, with a drainage area of 3.7 million km2, is the second 107 

largest in the world by area and discharge (Figure 1, average discharge of ~41,000 m3s-1) 108 

[Runge, 2007]. The basin extends from 9oN in the northern hemisphere to 14oS in the 109 

southern hemisphere. The longitudinal extent is 11oE to 35oE. Nine countries share the 110 

water resources of the basin. Nearly a third of the basin area lies north of the equator. 111 

Due to its equatorial location, the basin experiences a range of climate regimes. The 112 

northern and southern parts have a strong dry and wet seasons, while the equatorial 113 

region has a bimodal rainy season [Bultot and Griffiths, 1972]. Much of the rain in the 114 

northern and southern CRB is received in Jun-Jul-Aug (JJA) and Dec-Jan-Feb (DJF), 115 

respectively. The primary and secondary rainy seasons in the equatorial region are Sep-116 

Oct-Nov (SON) and Mar-Apr-May (MAM, see [Bultot and Griffiths, 1972] and 117 

Supplemental Information (SI) Figure S1). The mean annual precipitation is about 1,500 118 

mm. Rainforests occupy nearly 45% of the basin and are minimally disturbed compared 119 

to the Amazon and Southeast Asian forests[Gibbs et al., 2010; Nilsson et al., 2005]. 120 

Grassland and savannah ecosystems, characterized by the presence of tall grasses, closed-121 

canopy woodlands, low-trees and shrubs, occupy another 45% [Adams et al., 1996; 122 

Bartholomé and Belward, 2005; Hansen et al., 2008; Laporte et al., 1998]. Water bodies 123 

(lakes and wetlands) occupy nearly 2% of the area, but they are concentrated mostly in 124 

the southeastern and western equatorial parts of CRB (Figure 1). Soil mapping reveals 125 
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that soils in the CRB vary from highly weathered and leached Ultisols to Alfisols, 126 

Inceptisols and Oxisols [FAO/IIASA, 2009; Matungulu, 1992]. Most types are deep and 127 

well-drained, but they are very acidic, deficient in nutrients, have low capacity to supply 128 

potassium and exhibit a low cation exchange capacity [Matungulu, 1992].  129 

 In order to compare regional patterns in precipitation and runoff, we divided the 130 

basin into four regions: i) Northern Congo (NC), ii) Equatorial Congo (EQ), iii) 131 

Southwestern Congo (SW), and iv) Southeastern Congo (SE). The EQ region covers most 132 

of the rainforest. The SE region consists of many mostly interconnected lakes and 133 

wetlands. Most of the CRB’s population is concentrated in the NC, SE and SW regions 134 

[Center for International Earth Science Information Network (CIESIN) Columbia 135 

University et al., 2005]. 136 

2.2 Hydrologic model for the Congo River Basin 137 

We used the Soil Water Assessment Tool (SWAT) [Arnold et al., 1998; Neitsch et 138 

al., 2011] to simulate the hydrology of the CRB for historical climate (1950-2008) and 139 

for two scenarios of future climate change. SWAT is a physically based, semi-distributed 140 

watershed-scale model that operates at a daily time step. The hydrological processes 141 

simulated include evapotranspiration (ET), infiltration, surface and subsurface flows, 142 

streamflow routing and groundwater recharge. The model has been successfully 143 

employed to simulate river basin hydrology under wide variety of conditions and to 144 

investigate climate change effects on water resources [Faramarzi et al., 2013; Krysanova 145 

and White, 2015; Schuol et al., 2008; Trambauer et al., 2013; van Griensven et al., 146 

2012]. 147 
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We delineated 1,575 watersheds within the CRB based on topography [Lehner et 148 

al., 2008]. Watershed elevations vary between 15m and 2,700m with a mean value of 149 

680m above mean sea level. Each watershed consists of one stream section, where near-150 

surface groundwater flow and overland flow accumulate before being transmitted through 151 

the stream channel to the watershed outlet.  Watersheds are further divided into 152 

Hydrologic Response Units (HRUs) based on land cover (16 classes) [Bartholomé and 153 

Belward, 2005], soils (150 types) [FAO/IIASA, 2009] and topography. The runoff 154 

generated within each watershed is routed through the stream network using the variable 155 

storage routing method. The average watershed size and the number of HRUs within each 156 

watershed are 2,300 km2 and 5, respectively. We also included wetlands and lakes as 157 

natural storage structures that regulate the hydrological fluxes at different locations 158 

within CRB (Figure 1). Detailed information is not available for the all the lakes; 159 

therefore, we incorporated the largest 16 lakes (SI Table S1).  160 

Runoff, estimated for each HRU and aggregated at the watershed level, is 161 

generated via three pathways: overland flow, lateral subsurface flow through the soil 162 

zone and release from shallow groundwater storage. The Curve Number and a kinematic 163 

storage routing methods are used to predict overland and lateral subsurface flows, and a 164 

nonlinear storage-discharge relationship is used to predict groundwater contribution (see 165 

Arnold et al. [1998]; Neitsch et al. [2011] and SI). A power law relationship is employed 166 

to simulate the lake area-volume-discharge (see SI and Neitsch et al. [2011]). The 167 

potential evapotranspiration is estimated using the temperature-based Hargreaves method 168 

[Neitsch et al., 2011]. The actual evapotranspiration is estimated based on available soil 169 
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moisture and the evaporative demand (i.e. potential evapotranspiration) for the day. 170 

Additional details on model development are provided in the Supplementary Information.  171 

2.3 Model simulation of historical hydrology with observed climate forcings 172 

We ran the hydrology model for the period 1950-2008. Estimates of observed 173 

daily precipitation, and minimum and maximum temperatures needed to calculate 174 

potential evapotranspiration were obtained from the Land Surface Hydrology Group at 175 

Princeton University [Sheffield et al., 2006]. In addition, measured monthly stream flows 176 

were obtained at 30 gage locations (Figure 1) that had at least 10 years of records [Global 177 

Runoff Data Center., 2011; Lempicka, 1971; Vorosmarty et al., 1998]. 178 

The model was calibrated using observed streamflows for the period 1950-1957 at 179 

20 locations. The number of model parameters estimated by calibration varied from 10 to 180 

13, depending on the location of flow gages (e.g. gages with lakes within their catchment 181 

area have more parameters). The calibration involved minimizing an objective function 182 

defined as the sum-of-squared errors between observed and simulated monthly average 183 

total discharge, baseflows (estimated by applying a baseflow separation method [Nathan 184 

and McMahon, 1990]) and water yield. A Gauss-Marquardt-Levenberg algorithm as 185 

implemented in a model independent parameter estimation tool [Doherty, 2004] was used 186 

to adjust the fitted parameters and minimize the objective function. Parameter estimation 187 

was done at two stages. First, parameters for the watersheds in the upstream gages were 188 

estimated. Then the parameters for the downstream gages were estimated. To test the 189 

calibrated model, simulated stream flows were compared to stream flows measured at the 190 

same 20 locations, but during a period outside of calibration (i.e., 1958-2008), as well as 191 

at 10 additional locations that were not used in the calibration.   192 
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2.4 Hydrologic Simulations with Simulated Climate Forcing 193 

 Historical climate simulations for the period 1950-2005 and climate projections 194 

to 2099 for two greenhouse gas emission scenarios, mid-range mitigation emission 195 

(RCP4.5) and high emission (RCP8.5), were used as a basis to drive the hydrologic 196 

model. The RCP4.5 scenario employs a range of technologies and policies that reduce 197 

greenhouse gas emissions and stabilize radiative forcing at 4.5 W m-2 by 2100, whereas 198 

the RCP8.5 is a business-as-usual scenario, where greenhouse gas emissions continue to 199 

increase and radiative forcing rises above 8.5 W m-2 [Moss et al., 2010; Taylor et al., 200 

2012]. We used monthly precipitation and temperature outputs provided by 25 GCMs (SI 201 

Table S2) for the Fifth Assessment (CMIP5) of the Intergovernmental Panel on Climate 202 

Change (IPCC). 203 

GCM outputs may exhibit biases in simulating regional climate. These biases, 204 

which are attributable to inadequate representation of physical processes by the models, 205 

prevent the direct use of GCM output in climate change studies [Randall et al., 2007; 206 

Salathé Jr et al., 2007; Wood et al., 2004]. Hydrological assessments that use GCM 207 

computations as input inherit the biases [Salathé Jr et al., 2007; Teutschbein and Seibert, 208 

2012]. To mitigate this problem, we implemented a statistical method [Li  et al., 2010] to 209 

correct the biases in the monthly historical precipitation and temperature fields. In brief, 210 

the method employs a quantile-based mapping of cumulative probability density 211 

functions for monthly GCM outputs onto those of gridded observations in the historical 212 

period. The bias correction is extended to future projections as well.  213 

In order to be used in the CRB’s hydrologic model, the simulated monthly 214 

precipitation and temperature values must be temporally downscaled to daily values. We 215 
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used the three-hourly and monthly observed historical data developed for the Global 216 

Land Data Assimilation System [Rodell et al., 2004; Sheffield et al., 2006] and the bias-217 

corrected monthly simulations to generate three-hourly precipitation and temperature 218 

fields, which were subsequently aggregated to obtain daily values (see SI Methods). The 219 

hydrological model was forced with the bias-corrected and downscaled daily climate 220 

fields for the period 1950-2099. A total of 50 projections (25 RCP4.5 and 25 RCP8.5 221 

projections) were compiled and analyzed. Results of individual and multi-model means 222 

(un-weighted average of all (MM) and selected (SM) GCM simulations) for the near-term 223 

(2016-2035) and mid-term (2046-2065) projections are presented. 224 

3. Results and Discussion 225 

3.1 Historical simulations 226 

The bias-corrected GCM-simulated mean annual precipitation (1950-2005) of 227 

1,450 mm in the CRB is in good agreement with observations. We compared the GCM-228 

simulated annual precipitation with observations within the catchment areas of 30 229 

streamflow gage locations in the historical period (Figure 2). The modeled inter-annual 230 

variability among the climate models (vertical bars in Figure 2) lies within the range of 231 

the observed variability (horizontal bars in Figure 2). The linear-regression slope of 1.16 232 

(p ˂ 0.001, Figure 2) between the annual observed and MM shows that bias-corrected 233 

precipitation is slightly over-estimated, but not significantly so. Similar conclusions are 234 

drawn for the seasonal precipitation (SI Figure S2) and within the four regions identified 235 

in Figure 1 (mean values within the regions are given in SI Table S3).  236 
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We compared the simulated streamflows at 30 locations with observations. The 237 

colored points (Figure 3A) compare observed mean annual runoff at the 30 gages with 238 

historical simulations (forced with observed climate), while the vertical bars show the 239 

modeled inter-annual variability. The shades of colors (from light-green to yellow and 240 

red) reveal the model’s skill in simulating the monthly flows in the historical period. The 241 

Nash-Sutcliff coefficient of efficiency (NSE), a measure of relative magnitude of residual 242 

variance compared to the monthly observed streamflow variance [Legates and McCabe, 243 

1999; Nash and Sutcliffe, 1970], varies between 0.01 and 0.86 (see color scale in Figure 244 

3A). The NSE ranges between negative infinity to 1, with values between 0.5 and 1 are 245 

considered satisfactory [Moriasi et al., 2007]. Seventeen of the 30 gages show NSE 246 

greater than or equal to 0.5, a subjective but commonly considered acceptable value for 247 

good model performance. Higher NSE values at locations on both sides of the equator, 248 

particularly at major tributaries (NSE ~0.60, gages 1 to 8 in Figure 1 and SI Figure S3) 249 

suggest that the model reliably predicts streamflows under different climatic conditions. 250 

High NSE values also indicate that the seasonal and annual runoff simulations, including 251 

the inter-annual variability in the historical period, are in good agreement with 252 

observations. The catchment areas of the 30 gages vary between 5,000 km2 and 900,000 253 

km2 (excluding the last two downstream gages) and encompass a range of land cover and 254 

climate regions on both sides of the equator, which indicate the hydrology model’s skill 255 

in simulating runoff satisfactorily over a wide range in watershed conditions.  256 

Comparison of modeled runoff forced with GCM-simulated and observed climate 257 

(Figure 3B) reveals generally acceptable runoff simulations in the CRB. The black dots 258 

and red (blue) vertical bars in Figure 3B show multi-model mean and maximum 259 
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(minimum) range of inter-annual variability in the 25 historical GCM simulations. The 260 

results suggest that model-data agreement in precipitation translates to similarly 261 

acceptable runoff simulations. The mean and the inter-annual variability of runoff within 262 

individual models generally lie within the variability of observed runoff.  263 

The asymmetric seasonality and magnitude in the rainfall regimes (see SI Figure 264 

S1) exhibit strong linkages with runoff. For example, the observed peak runoff at gages 2 265 

and 6 (Figure 1) located north and south of the equator occur near the end of the rainy 266 

seasons – during Sep-Oct and Mar-Apr, respectively (Figure 4).  Augmented by flows 267 

from northern and southern tributaries (e.g. gages 1, 2, 4 and 6) and by high precipitation 268 

in the tropical equatorial watersheds during the two wet seasons (MAM and SON), the 269 

main river flows (~ downstream of gage 3 in Figure 1) show low variability (Figure 4).  270 

For example, the coefficient of variation in observed (simulated) monthly flows at the 271 

basin outlet (gage 8), northern tributary (gage 2) and southern tributary (gage 4) are 0.23 272 

(0.24), 0.77 (0.80) and 0.40 (0.48), respectively.  273 

Regionally, runoff in the northern (NC) and southern (SW and SE) watersheds is 274 

strongly seasonal with long dry seasons, but this is not the case in the equatorial region 275 

(Figure 5). Average watershed runoff varies between 20-70 mm during dry seasons to 276 

100-140 mm during wet seasons in the NC, SW and SE. In the equatorial region, seasonal 277 

runoff varies between 100-150mm with the highest in SON. Overall, the precipitation-278 

runoff ratio is about 0.30 in the CRB. The accessible runoff (excluding runoff associated 279 

with flood events), which can be appropriated for human use, is about 70% of the total 280 

runoff.   281 
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3.2 Future projections in precipitation and runoff 282 

 The near-term (2016-2035) multi-model mean (MM) change in annual 283 

precipitation in the CRB is 1% relative to the reference period 1986-2005, irrespective of 284 

the emission scenario. The mid-term (2046-2065) MM projections of annual precipitation 285 

change are 1.7% and 2.1% for RCP4.5 and RCP8.5, respectively. The inter quartile range 286 

(IQR) between model and emission scenarios varies between 1.7-2.6% in the near-term 287 

and 2.6-5.8% in the mid-term, indicating considerable variability in rainfall projections 288 

across GCMs. The inter-model variability is larger in the mid-term, and even more so for 289 

RCP8.5 (SI Table S4). Although overall change in the CRB is positive, the multi-model 290 

ensembles reveal that the model agreement varies spatially (SI Figure S4 and ref. 291 

Aloysius et al. [2016]). Model agreement on increasing precipitation is greater in the 292 

equatorial, northern and southwestern CRB. 293 

In general, the GCMs predict decreasing precipitation in the driest parts of the 294 

southern CRB (mostly in SE, but portions of SW as well). Under the RCP8.5 scenario, 295 

the northeastern CRB also experiences reduction in precipitation in the near-term. The 296 

areas of decreased precipitation shrink in the SE and SW in the mid-term; however, 297 

drying expands in parts of northern CRB under the two emission scenarios (SI Figure 298 

S4). Most GCMs (>15) predict an increase in the NC, EQ and most of SW, whereas 299 

majority of them predict a decrease in the SE. 300 

We also examined the seasonal changes in the four regions (see SI Table S4). 301 

Except in the boreal summer (JJA), precipitation in the SE region is predicted to decrease 302 

under RCP4.5; the change is modest under RCP8.5. The actual increases in the north 303 

(south) during DJF (JJA) are modest (~1mm) as these are the dry seasons. The inter-304 
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model variability (SI Table S4) also exceeds the MM in all the seasonal predictions. 305 

Notably, the variability is larger in the dry seasons (e.g. DJF predictions in the NC and 306 

JJA predictions in the SE and SW). The temporal variation is further examined using 307 

monthly climatology in the reference and near- and mid-term projection periods in Figure 308 

7A-D, which also shows the seasonal variations in the major climate regions (e.g. the 309 

bimodal rainy season in the EQ and unimodal, but asymmetric wet-dry seasons in the 310 

NC, and SW and SE). The inter-model variability is larger in the rainy seasons under 311 

RCP8.5, compared to RCP4.5. Larger variability under RCP8.5 highlight that GCMs may 312 

have limited skills in simulating precipitation under high greenhouse gas emissions.  313 

The spatial pattern of runoff change in the near- and mid-terms is similar to the 314 

precipitation changes, except in the northeastern CRB (3N-9N and 24E-30E) under 315 

RCP4.5 (Figure 6). The MM runoff projections show an increase of 5% (IQR 5-7%) and 316 

7% (IQR 7-11%) in the near- and mid-terms under both RCPs. A reduction in runoff 317 

occurs in the SE and parts of the SW under both RCPs. The area of decreasing runoff 318 

expands in the NC under both emission scenarios in the mid-term. Although the northern 319 

and equatorial CRB show an overall increase in precipitation, the decrease in runoff in 320 

certain parts in the NC and EQ is caused by reduction in seasonal precipitation (i.e. 321 

limited moisture supply) rather than an increase in ET; changes in temperature associated 322 

with the two emission scenarios are relatively uniform within the GCMs (see  Aloysius et 323 

al. [2016],  and IPCC [2014]). Larger reduction – up to 15% – in the SE covering most of 324 

northern Zambia is due to an overall decrease in precipitation simulated by more the half 325 

of the GCMs (see SI Figure 4). The inter-model variability of runoff at monthly time 326 

scales in the four regions (Figure 7E-H) is similar to precipitation, but with a time lag. 327 
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The runoff variability is larger in NC and SE compared to EQ and SW during the rainy 328 

seasons. 329 

Runoff in the EQ region, which receives the highest precipitation is projected to 330 

increase between 4-7%; the increases are prominent in the secondary rainy season 331 

(MAM) than the primary (SON, Figure 7E-H, SI Table S5). However, runoff that can be 332 

appropriated for human use is generated mostly in the NC, SE and SW, which at present 333 

varies from 130mm/year in the SE to 250-400mm/year in the NC and SW (SI Table S3). 334 

Runoff in the SW is projected to increase by 6% and 10% in the near- and mid-terms. In 335 

the NC region, runoff is projected to increase by 2-4% in the near-term and decrease in 336 

the mid-term under RCP8.5, due to seasonal decreases (JJA and SON) in parts of NC (see 337 

Figure 6 and SI Tables S5 and S6).   338 

3.3 Role of multi-model ensembles 339 

 Extensive coordination provided by CMIP5 enabled all climate modeling groups 340 

to use a standard set of inputs, produce compatible historical and future model runs and 341 

provide their best outputs to the IPCC data archives; thus, the multi-model ensemble 342 

approach in climate change assessment presents an opportunity to examine outputs from 343 

a range of model structure biases, initial conditions, parameter uncertainties in climate 344 

model design, which vary within GCMs [Stocker, 2013; Taylor et al., 2012]. Skill in 345 

simulating historical precipitation and temperature increases when outputs from different 346 

GCMs are added (Pierce et al. [2009] and Pincus et al. [2008]). At the same time, the 347 

range of projections presented here for the two emission scenarios also highlight the 348 

uncertainties planners will encounter when making climate-related decisions. For 349 

example, broader agreement on increase in runoff in parts of the CRB (see Figure 6) 350 
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would help make robust decisions, whereas weaker agreement in the southern CRB calls 351 

for greater scrutiny of regional climate drivers and their representation in climate models 352 

(see Weaver et al. [2013] for further discussion). Along these lines, we argue that the 353 

MM approach help explore and reveal future projection uncertainties; however, we 354 

should be able to do better with a subset of models. How different are the projections if 355 

we use randomly selected subset of models or a subset that realistically simulates certain 356 

aspects in the region of interest? First, we examine the effect of MM projections based on 357 

outputs from randomly selected models out of the 25 simulations for each RCP (SI Figure 358 

S5). Projections under this random model selection method converge to MM projections 359 

as more models are added to the pool (compare values in SI Tables S4 and S5). However, 360 

with fewer models, projections vary widely and are highly dependent on the choice of 361 

GCMs.  362 

GCMs generally have large uncertainties in simulating precipitation in the CRB 363 

region [Aloysius et al., 2016; Washington et al., 2013]. We examined a subset of models 364 

(SM – M6, M7, M18, M23 and M24, see refs. Giorgetta et al. [2013]; Good et al. [2012]; 365 

Jungclaus et al. [2013]; Meehl et al. [2013]; Siam et al. [2013]; Voldoire et al. [2012]; 366 

Yukimoto et al. [2006] and Aloysius et al. [2016] for further comparison of GCM 367 

performance) that reliably simulate regional climate as well as large-scale mechanisms 368 

that modulate regional climate. Based on diagnostic analyses to identify processes related 369 

to biases in atmospheric moisture and soil water balance in the CRB region, Siam et al. 370 

[2013] identifies few models in SM as good candidates for climate change assessment.   371 

Focusing on the NC, SE and SW regions, where human appropriation of runoff is 372 

expected to increase, we find that the magnitude of annual projections (both precipitation 373 
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and runoff) in SM are twice that of MM in the northern region; and the extent of drying 374 

in the south is concentrated in the southern upstream watersheds. From the viewpoint of 375 

water resources for human appropriation, the changes by seasons are also important. In 376 

Figure 8, we highlight the projections in precipitation and runoff for these regions for 377 

annual and four seasons in the form of box-and-whicker plots. Both MM and SM means 378 

reveal that the projections under RCP4.5 are slightly higher than RCP8.5 in NC region, 379 

and not so in other regions. Projection uncertainties are the largest in the dry seasons 380 

(DJF in the NC and JJA in SW and SE). Figure 8 also shows moderate increase in the 381 

SW and decrease or no-change in the SE during the rainy season (DJF). Our estimates 382 

also reveal that the upstream watersheds in the SE and parts of SW are projected to get 383 

drier with decreasing runoff (SI Table S6). 384 

Only part of the runoff may be appropriated for human use. In the CRB, the 385 

accessible runoff, excluding runoff associated with flood events, is nearly 70%. Overall, 386 

the MM reveals a slightly higher increase in accessible runoff (5% and 7% for near- and 387 

mid-terms for both RCPs), compared to quick/flood runoff (3% in the near-term and 5-388 

7% in the mid-term); the increase in the SM are nearly twice that of MM. However, 389 

increase in flood runoff is nearly twice that of accessible runoff in the NC region. On the 390 

other hand, both SM and MM consistently project drying in the southeastern and 391 

northeastern headwater regions (see SI Table S6).  392 

The impacts on rural livelihoods due the changes in runoff are multifaceted. On 393 

the one hand, the increases in accessible runoff enhance access to water resources; on the 394 

other hand, the increases in quick/flood runoff present additional adaptation challenges. 395 

With reduced access to water resources, the impacts on rural livelihoods and the 396 
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environment in the SE and parts of NC will be severe. Further, we emphasize that GCM-397 

related variability in regional climate change predictions can be constrained by a subset 398 

of models based on attributes that modulate large-scale circulations which, in turn affect 399 

regional climate (see Knutti and Sedlacek [2013] and Masson and Knutti [2011]). This 400 

approach is particularly useful, since regions like the CRB lack complete coverage of 401 

observational data; however, the mechanisms that moderate the climate system, 402 

particularly precipitation are fairly well understood [Hastenrath, 1984; Nicholson and 403 

Grist, 2003; Washington et al., 2013]. 404 

3.4 Variability in accessible flows 405 

 Accessible flows (AF), which exclude flows associated with flood events (see SI 406 

Methods), are largely under-utilized in the CRB, but their appropriation is expected to 407 

increase in the future, mostly in the NC, SW and SE. We attempt to elucidate the 408 

uncertainty associated with climate model and scenario selection by quantifying seasonal 409 

and inter-model variability in AF. The seasonal variation of AF at eight major tributaries 410 

(identified in Figure 1) reveals substantial inter-model spread in the near-term (Figure 9); 411 

the model spread widens in the mid-term (SI Figure S6). The inter-model spread is large 412 

during the rainy seasons, in some cases the increase/decrease is over 50% compared to 413 

the reference period. The inter-model consensus is strong in most of the northern and 414 

southwestern tributaries (e.g. gages 1 and 6) where majority of the GCMs predict 415 

increasing precipitation. In contrast, the consensus is weak in the southeastern tributaries 416 

(e.g. gage 4). The AF in the main river (gages 3 and 8) is projected to increase in the two 417 

rainy seasons and as well as in the dry season (JJA). A close look at tributaries in the NC 418 

and SW reveals a weaker agreement on increased AF in the wet season, but a stronger 419 
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agreement in the dry season (compare gages 1, 2, 6 and 7 in Figure 8). Our results also 420 

show that the decrease in precipitation and AF in SE will have marginal effect on 421 

downstream flows in the main river. 422 

 The spatial and temporal variations in the projected AF will have consequences in 423 

water resources development and management. For example, uncertainty in predicting 424 

the AF near the proposed Grand Inga Hydropower project (near gage 8, Showers [2009]) 425 

is low compared the predictions near the proposed trans boundary water diversion in the 426 

southeast (near gage 5, Lund et al. [2007]). Reductions in high and low flows in streams 427 

in the SE region will have implications on aquatic life, channel maintenance and lake and 428 

wetland flooding.  429 

4. Conclusions 430 

From the point of view of climate change adaptation related to water resources, 431 

agriculture, land and ecosystem management, the challenge faced by CRB countries is 432 

recognizing the value of making timely decisions in the absence of complete knowledge. 433 

To be of use to planners, the spatial and temporal variability of hydro-climatic change in 434 

the CRB is presented with appropriate details. The results presented here show a range of 435 

runoff projections under two broad assumptions, that i) individual GCM biases will 436 

cancel and that MM mean projections are more likely correct and ii) selection of GCMs 437 

that simulate mechanisms reliably is a better option for climate change assessment.   438 

Our analyses highlight that precipitation and runoff changes under business-as-439 

usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are rather 440 

similar in the near-term, but deviate in the mid-term, which underscores the need for 441 

rapid action on climate change adaptation. Development and implementation of 442 
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adaptation strategies are often connected with large investments. Precipitation projections 443 

by GCMs, and subsequently runoff projections reveal considerable differences, which 444 

necessitate the need for multi-model evaluations of climate change impacts. With the 445 

focus on runoff – often the primary and easily accessible source of water, we show that 446 

accessible water resources increases in most parts of the CRB, with the exception in the 447 

southeast and parts of northeast.  448 

Comparing the MM and SM projections, the increase in runoff in the mid-term 449 

are higher under RCP8.5 (7-14%) than RCP4.5 (6-10%), however, both accessible and 450 

flood runoffs are increasing. The projected increases in accessible runoff present new 451 

opportunities to meet the increasing demands (e.g. drinking water, food production and 452 

sanitation), while the enhanced flood runoff poses new challenges (e.g. flood protection 453 

and erosion control). On the other hand, water managers will face different challenges in 454 

the southeast where precipitation and runoff are projected to decrease. Projection 455 

uncertainties vary widely by region within the CRB, and therefore adaptation and robust 456 

planning strategies will vary within the river basin, and will depend on the risk attitudes 457 

of resource planners. 458 
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