
Response to Reviewer Comments (Aloysius and Saiers) 

Our manuscript has benefitted from the comments and suggestions of the two reviewers. We have revised 

and rewritten sections of the manuscript. The comments of the reviewers are provided below in italicized 

font; our responses are in normal text. The track changes enabled version of the manuscript highlights 

revisions made to the manuscript. 

 

Reviewer #1: 

1) Details are missing from the SWAT model development: version and revision of SWAT used and a 

table of parameters that were changed in calibration of the model (can be in SI). 

We have updated the Methods section and Supplemental Information as per the reviewer’s suggestions. A 

table with adjusted parameters during calibration is also included in the SI (SI Table S5). We used version 

488 of the model source code. We have also revised the Supplemental Figure S3 to show simulated v. 

observed hydrographs of all 30 gages used in calibration and validation.  

2) Was the CO2 level changed in SWAT? If so, what was it changed to; if not, why was it not changed? 

Due to the lack of information on the effect of CO2 on the 16 land cover classes simulated, the ambient 

CO2 concentration was maintained at 330 ppm throughout the simulation period. A recent study also 

suggest that hydrologic partitioning in tropical rainforest catchments is largely unaffected by elevated 

CO2 (line 230-235).  

The methods section (section 2.4) is updated accordingly. 

3) In general the figure captions need to be more detailed so that they can be stand-alone. For example, 

Figure 3B you should clarify if the GCM-simulated climate is the statistically downscaled and bias 

corrected data (similar comment for Figure S2). 

Captions of Figure 3B (lines 25-35 in “02_Aloysius_2016_figures.docx”) and SI Figure S2 (SI lines 104-

109) have been updated as per the reviewer’s suggestion.  

4) In lines 195 and 221 you refer to the climate projection simulations going to 2099, but it does not 

appear this was the case so this number should be changed. 

The model simulation period is 1950-2065 (lines 198 and 230). We have updated the text accordingly. 

 

  



Reviewer #2: 

1) As in the previous round of reviews, I would like to highlight that I welcome the contribution of this 

substantial scientific effort to investigate climate change in the Congo Basin, since it is such an 

important and understudied region. However, I do not believe that the authors have sufficiently 

addressed my previous comments, and therefore would suggest further major revisions. I think the 

analysis could be useful, but that the paper requires a substantial re-write to ensure that the results 

and their implications are represented accurately. Perhaps I can explain my points more clearly to 

help them to be addressed more systematically. They still center around (1) model uncertainty, and 

(2) observational uncertainty. 

Inadequately addressing model and observational uncertainty was a significant weakness of the 

manuscript. To address this issue, we have revised the methods section (lines 216-222) and added a new 

section “3.4 Sources of Uncertainty”. This section covers both model and observational uncertainties as 

suggested by the reviewer. The observational uncertainties include declining gage-based precipitation 

observations, particularly in the equatorial region (lines 414-427) and observed runoff data (lines 428-

435). We agree with the reviewer that gage-based precipitation coverage is very limited after 1990s. We 

have quantified the number of gage-based precipitation data that contributed to the development of 

historical climate observations used in the hydrological model and for statistical bias-correction. Number 

of gages remained at about 160 during 1950-1980 and had substantially reduced since then (Supplemental 

Figure S5 and S6). However, satellite-based precipitation data has been used since the 80s. We believe 

these multiple sources (gage and satellite-based and reanalysis) adequately capture spatial and temporal 

variability of precipitation in the Congo region. Additional references supporting our claim are mentioned 

in the main text (line 423-427). 

For runoff, we used all the available gages (n = 30) during the study period. The locations of these gages 

adequately capture climatic, land cover and topographic variability (lines 428-435 and supplemental 

Figure S3).  

For future projections, the largest source of uncertainty is the GCM outputs. We have discussed the 

potential sources in section 3.4 (lines 436-496). Suggested literature by the reviewer has been 

incorporated. Figures 6-8 have been revised to highlight model uncertainties. The variability in modelled 

runoff are presented in Table 3, which show the multi-model mean, standard deviations and fraction of 

model projections with increasing runoff, by region and by season.   

We have revised the abstract to highlight the need to evaluate uncertainties in climate change assessment 

(lines 32-35) 



 

Specific comments: 

1) First sentence in the abstract: A side point, but is this really true? Compared to other regions there is 

relatively little research for the Congo Basin. 

We have re-characterized the effects of climate change on CRB water resources as understudied (line 14). 

2) I do not think you can say “elucidate” since we cannot know what the variability in runoff will be I 

the near and mid 21s century yet. 

Changed to “explore” 

3) All models? Some models? Most models? The mean of the models? Are there any that show 

decrease? 

The abstract has been revised to include the mean and the range of projections (lines 20-23). 

4) Here I think it would be more useful to embed the information about uncertainty into the information 

about projections. It is not easy to infer this from what is written, but it might be something like: 

We revised the abstract according to this suggestion (lines 32-35). 

5) Unclear why this has been changed from “model consensus” to “consensus”. Arguably it’s important 

that it is just a model based consensus 

We have removed this phrase in the revised abstract. 

6) I think might and would are important here to tone down so that it is not implying that we know what 

will happen 

Abstract has been revised as suggested.  

7) This is a bit of a strange statement. Of course the risk attitudes of planners will influence their 

approach, but perhaps the scientific results can be used to imply the extent to which there is credible 

information for planning. Personally I think it would be OK to recommend using an approach which 

takes into account a range of futures, since there are so many uncertainties associated with climate 

information in the Congo Basin. 

The phrase “risk attitude” no longer appears in the abstract. 

8) Can you instead comment on the challenge of finding a solution that is robust to the range of 

projected changes? 

Addressed in section 4 (lines 501-524). 



9) Why? This is unsubstantiated and doesn’t really make sense. What does it mean to say that the 

analyses increase the degree of confidence in using the results (since the results are based on the 

analysis). Suggest removing. 

Removed as suggested. 

10) In general I think it would be important to revise the text of the paper in line with these kind of edits. 

i.e. if referring to model results, it is important to say that they are model results, and if making 

inferences, to use “might” or “could” rather than “will”. The use of “predict” has been changed in 

several cases to “project”, as advised, but this has not been done consistently. I would suggest 

removing all references to “predict” and “forecast” when referring to long term climate projections. 

These suggestions have been adopted in the revised text. 

11)  “The results presented here show a range of runoff projections under two broad assumptions, that i) 

individual GCM biases will cancel and that MM mean projections are more likely correct and ii) 

selection of GCMs that simulate mechanisms reliably is a better option for climate change 

assessment.” However, I do not think these assumptions can be used unless they are justified. I think 

that both (i) and (ii) are highly questionable. There is quite a bit of work (cited in my previous round 

of comments) which critiques the idea of using the mean for future projections. And, on point (ii) I do 

agree that selecting GCMs which simulate mechanisms would be helpful, but what is meant by 

“mechanisms”? My understanding is that the subselection here is based on the author’s previous 

JGR-A publication, in which models are selected based on observations of key variables like 

temperature and precipitation, rather than the modelled “mechanisms”. Sub-selecting models using 

observational constraints is an approach which is often adopted, but is also questioned, particularly 

for regions with such high observational uncertainty. Therefore, I think that if these assumptions are 

to be stated they must be justified and discussed in a balanced manner which acknowledges for the 

readers of HESS that many climate scientists would dispute with these assumptions. Alternatively, a 

better approach would be to re-write the results to focus more on the range of modelled outcomes. 

These assumptions have been revised and rewritten. Section 3.4 and 4 addresses the projection 

uncertainties. We have provided reasoning for selection of the subset of models (lines 461-472).  

12) It would be interesting to quantify the amount of data available and comment on what is meant by 

“sufficient”. I agree that there is more data available during the early part of the period (when I 

believe CRU is the only one of the datasets used to modify NCEP reanalysis – based on Sheffield et 

al. 2006, Table 1), however, based on Washington et al. 2013 Figure 1, there are still max 60 gauges 



contributing to CRU during this time for the whole Congo Basin, which is very few stations compared 

to the density of stations over e.g. UK or USA. 

We have added two figures in the Supplemental Information (Figures S5 and S6) and discussed the 

observational data availability in section 3.4 (lines 406-427). 

13) I cannot see where this discussion has been added? I think it should be discussed in the methods 

section. Also in results – p. 11, line 219 there is a statement about bias corrected precip from model 

being in agreement with observations. Wouldn’t this be expected if the observations have been used 

to correct the model output? 

The observational uncertainties are discussed in section 2.4 (lines 216-220) and section 4 (lines 408-427). 

Results comparing bias-corrected and observed precipitation have been revised (lines 249-251).  
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Abstract 13 

Despite their global significance, the impacts of climate change on water resources and 14 

associated ecosystem services in the Congo River Basin (CRB) have been understudied. 15 

Of particular need for decision makers is the availability of spatial and temporal 16 

variability of runoff projections. Here, with the aid of a spatially explicit hydrological 17 

model forced with precipitation and temperature projections from 25 global climate 18 

models (GCMs) under two greenhouse gas emission scenarios, we explore the variability 19 

in modeled runoff in the near (2016-2035) and mid (2046-2065) century. We find that 20 

total runoff from the CRB is projected to increase by 5% [-9%; 20%] (mean [min and 21 

max] across model ensembles) over the next two decades and by 7% [-12%; 24%] by 22 

midcentury. Projected changes in runoff from sub-watersheds distributed within the CRB 23 

vary in magnitude and sign.  Over the equatorial region and in parts of northern and 24 

southwestern CRB, most models project an overall increase in precipitation and, 25 

subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff 26 

from head-water regions located in the northeastern and southeastern CRB. Climate 27 

model selection plays an important role in future projections, for both magnitude and 28 

direction of change. The multi-model ensemble approach reveals that precipitation and 29 

runoff changes under business-as-usual and avoided greenhouse gas emission scenarios 30 

(RCP8.5 vs. RCP4.5) are relatively similar in the near-term, but deviate in the mid-term, 31 

which underscores the need for rapid action on climate change adaptation. Our 32 

assessment demonstrate the need to include uncertainties in climate model and emission 33 

scenario selection during decision making processes related to climate change mitigation 34 

and adaptation.  35 



3 
 

1. Introduction 36 

 Sustainable management of water resources for food production, supply of safe 37 

drinking water, and provision of adequate sanitation, presents immense challenges in 38 

many countries of Central Africa where the Congo River Basin (CRB) is located [IPCC, 39 

2014; UNEP, 2011; World Food Program, 2014]. The economies of the nine countries 40 

that share the waters of the CRB are agriculture-based [World Bank Group, 2014] and, 41 

therefore, are vulnerable to the impacts of climate change. Despite the abundant water 42 

and land resources and favorable climates, the basin countries are net importers of staple 43 

food grains and are far behind in achieving Millennium Development Goals [Bruinsma, 44 

2003; Molden, 2007; UNEP, 2011]. Appropriation of freshwater resources is expected to 45 

grow in the future as the CRB countries develop and expand their economies. At the 46 

same time, climate change related risks associated with water resources will also increase 47 

significantly [IPCC, 2014].  48 

 Historical, present and near-future greenhouse gas emissions in the CRB countries 49 

constitute a small fraction of global emissions; however, the impacts of climate change 50 

on water resources are expected to be severe due to the region’s heavy reliance on natural 51 

resources (e.g. agriculture and forestry) [Collier et al., 2008; DeFries and Rosenzweig, 52 

2010; Niang et al., 2014]. The limited adaptation capacity in the CRB region is expected 53 

to cause severe water and food security challenges, which, in turn, can lead to ecosystem 54 

degradation and increased greenhouse gas emissions [Gibbs et al., 2010; IPCC, 2014; 55 

Malhi and Grace, 2000]. 56 

  57 
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Strategies for addressing stresses on CRB water resources, including revival of 58 

rural economies (largely agriculture based), achieving millennium development goals and 59 

environmental conservation, would benefit from detailed information on the spatial and 60 

temporal variability of water balance components under different climate projection 61 

pathways. The effect of climate change on water resources can be investigated by 62 

incorporating climate change projections (e.g. precipitation and temperature) in 63 

simulation models that reliably represent the spatial and temporal variability of CRB’s 64 

hydrology. Such a framework could be applied to project changes in storage and runoff, 65 

and hence freshwater availability, under different socioeconomic pathways that affect 66 

climate trajectories.  67 

A predictive framework of the CRB’s hydrology is hindered by insufficient data 68 

and too few evaluations of models against available data [Beighley et al., 2011; Wohl et 69 

al., 2012]. Basin scale water budgets estimated from land-based and satellite-derived 70 

precipitation datasets reveal significantly different results, and modeled runoff shows 71 

only qualitative agreement with corresponding observations [Alsdorf et al., 2016; 72 

Beighley et al., 2011; Lee et al., 2011; Schuol et al., 2008]. Tshimanga and Hughes 73 

[2012; 2014] recently developed a semi-distributed hydrologic model capable of 74 

simulating runoff in CRB.  This work crucially identified approaches suitable for 75 

approximating runoff generation at the basin scale, although the spatial resolution of the 76 

model predictions is rather coarse for supporting regional water management and 77 

regional-planning efforts.  These regional planning efforts must take into account 78 

variablity and uncertainties stemming from climate-model selection and projected 79 
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greenhouse gas emissions, but, with respect to freshwater runoff projections for the CRB, 80 

these issues have been inadequately addressed.  81 

The goals of this study are to i) develop a spatially explicit hydrology model that 82 

uses downscaled output from general circulation models (GCMs) and is suitable for 83 

simulating the spatiotemporal variability of runoff in the CRB; ii) test the ability of the 84 

hydrological model to reproduce historical data on CRB river discharges using both 85 

observed and GCM-simulated climate fields; (iii) quantify the sensitivity and uncertainty 86 

of modeled runoff projections to GCM selection; (iv) use the hydrologic model with 87 

individual GCMs and multi-GCM ensembles to project near-term (2016-2035) and mid-88 

term (2046-2065) changes in runoff for two greenhouse-gas emission scenarios. We 89 

focus on the runoff projections because streams and rivers will serve as the primary 90 

sources of freshwater targeted for human appropriation [Burney et al., 2013; Molden, 91 

2007].     92 

We find that a hydrologic model that is forced with bias-corrected and 93 

downscaled outputs from an ensemble of 25 GCMs and two emission projects a 94 

considerable range in precipitation and runoff, and that runoff projections are highly 95 

sensitive to GCM forcing. The multi-model mean (MM, un-weighted average of all 96 

GCMs) and the select-model mean (SM, selected GCMs based on performance in the 97 

historical period and representation of certain attributes in the climate system) project a 98 

1-3% increase in precipitation (20mm – 45mm) and a 4-9% increase in total runoff 99 

(15mm-34mm) within the CRB in the near-term (2016-2035) relative to reference period 100 

(1985-2005) for MM and SM, respectively. In the mid-term (2036-2065), on the other 101 

hand, projections are GCM and emission-scenario dependent, with the high emission 102 
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RCP8.5 scenario showing the highest increases in precipitation (2-5%, 30mm – 70mm) 103 

and runoff (7-14%, 25mm – 50mm) for MM and SM, respectively. Modeled projections 104 

also exhibit substantial    inter-model variability with projected changes varying between 105 

-3% and 9% for precipitation and -12% and 24% for total runoff from the CRB between 106 

the mitigation and business-as-usual greenhouse gas emission scenarios. Regionally, both 107 

MM and SM project decreasing precipitation and runoff in parts of southern and northern 108 

headwater regions of the CRB.  109 

2. Materials and Methods 110 

2.1 The Congo River Basin 111 

 The Congo River Basin, with a drainage area of 3.7 million km2, is the second 112 

largest in the world by area and discharge (Figure 1, average discharge of ~41,000 m3s-1) 113 

[Runge, 2007]. The basin extends from 9oN to 14oS, while the longitudinal extent is 11oE 114 

to 35oE. Nine countries share the water resources of the basin. Nearly a third of the basin 115 

area lies north of the equator. Due to its equatorial location, the basin experiences a range 116 

of climate regimes. The northern and southern parts have strong dry and wet seasons, 117 

while the equatorial region has a bimodal rainy season [Bultot and Griffiths, 1972]. Much 118 

of the rain in the northern and southern CRB occurs in Jun-Jul-Aug (JJA) and Dec-Jan-119 

Feb (DJF), respectively. The primary and secondary rainy seasons in the equatorial 120 

region are Sep-Oct-Nov (SON) and Mar-Apr-May (MAM, see Bultot and Griffiths 121 

[1972] and Supplemental Information (SI) Figure S1). The mean annual precipitation is 122 

about 1,500 mm. Rainforests occupy nearly 45% of the basin and are minimally disturbed 123 

compared to the Amazon and Southeast Asian forests [Gibbs et al., 2010; Nilsson et al., 124 

2005]. Grassland and savannah ecosystems, characterized by the presence of tall grasses, 125 



7 
 

closed-canopy woodlands, low-trees and shrubs, occupy another 45% [Adams et al., 126 

1996; Bartholomé and Belward, 2005; Hansen et al., 2008; Laporte et al., 1998]. Water 127 

bodies (lakes and wetlands) occupy nearly 2% of the area and are concentrated mostly in 128 

the southeastern and western equatorial parts of the CRB (Figure 1). Soils of the CRB 129 

vary from highly weathered and leached Ultisols to Alfisols, Inceptisols and Oxisols 130 

[FAO/IIASA, 2009; Matungulu, 1992]. Most soils are deep and well-drained, but they are 131 

very acidic, deficient in nutrients, have low capacity to supply potassium and exhibit a 132 

low cation exchange capacity [Matungulu, 1992].  133 

 In order to compare regional patterns in precipitation and runoff, we divided the 134 

basin into four regions: i) Northern Congo (NC), ii) Equatorial Congo (EQ), iii) 135 

Southwestern Congo (SW), and iv) Southeastern Congo (SE). The EQ region covers most 136 

of the rainforest. The SE region consists of numerous interconnected lakes and wetlands. 137 

Most of the CRB’s population is concentrated in the NC, SE and SW regions [Center for 138 

International Earth Science Information Network (CIESIN) Columbia University et al., 139 

2005]. 140 

2.2 Hydrologic model for the Congo River Basin 141 

We used a physically based, semi-distributed watershed-scale model that operates 142 

at a daily time step [Arnold et al., 1998; Neitsch et al., 2011]. The hydrological processes 143 

simulated include evapotranspiration, infiltration, surface and subsurface flows, 144 

streamflow routing and groundwater recharge. The model has been successfully 145 

employed to simulate river basin hydrology under wide variety of conditions and to 146 

investigate climate change effects on water resources [Faramarzi et al., 2013; Krysanova 147 
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and White, 2015; Schuol et al., 2008; Trambauer et al., 2013; van Griensven et al., 148 

2012]. 149 

We delineated 1,575 watersheds within the CRB based on topography [Lehner et 150 

al., 2008]. Watershed elevations vary between 15 m and 2,700 m with a mean value of 151 

680 m above mean sea level. Each watershed consists of one stream section, where near-152 

surface groundwater flow and overland flow accumulate before being transmitted through 153 

the stream channel to the watershed outlet.  Watersheds are further divided into 154 

Hydrologic Response Units (HRUs) based on land cover (16 classes, Bartholomé and 155 

Belward [2005]), soils (150 types, FAO/IIASA [2009]) and topography. The runoff 156 

generated within each watershed is routed through the stream network using the variable 157 

storage routing method. The average watershed size and the number of HRUs within each 158 

watershed are 2,300 km2 and 5, respectively. We also included wetlands and lakes as 159 

natural storage structures that regulate the hydrological fluxes at different locations 160 

within CRB (Figure 1). Detailed information is not available for the all the lakes; 161 

therefore, we incorporated the largest 16 lakes (SI Table S1).  162 

Runoff, estimated for each HRU and aggregated at the watershed level, is 163 

generated via three pathways: overland flow, lateral subsurface flow through the soil 164 

zone and release from shallow groundwater storage. The Curve Number and a kinematic 165 

storage routing methods are used to simulate overland and lateral subsurface flows, and a 166 

nonlinear storage-discharge relationship is used to simulate groundwater contribution 167 

(see Arnold et al. [1998]; Neitsch et al. [2011] and SI). A power law relationship is 168 

employed to simulate the lake area-volume-discharge (see SI and Neitsch et al. [2011]). 169 

The potential evapotranspiration is estimated using the temperature-based Hargreaves 170 
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method [Neitsch et al., 2011]. The actual evapotranspiration is estimated based on 171 

available soil moisture and the evaporative demand (i.e. potential evapotranspiration) for 172 

the day. Additional details on model development and calibration are provided in the 173 

Supplementary Information.  174 

2.3 Model simulation of historical hydrology with observed climate forcings 175 

We ran the hydrology model for the period 1950-2008. Estimates of observed 176 

daily precipitation, and minimum and maximum temperatures needed to calculate 177 

potential evapotranspiration were obtained from the Land Surface Hydrology Group at 178 

Princeton University [Sheffield et al., 2006]. In addition, measured monthly stream flows 179 

were obtained at 30 gage locations (Figure 1) that had at least 10 years of records [Global 180 

Runoff Data Center., 2011; Lempicka, 1971; Vorosmarty et al., 1998]. 181 

The model was calibrated using observed streamflows for the period 1950-1957 at 182 

20 locations. The number of model parameters estimated by calibration varied from 10 to 183 

13, depending on the location of flow gages (e.g. gages with lakes within their catchment 184 

area have more parameters). The calibration involved minimizing an objective function 185 

defined as the sum-of-squared errors between observed and simulated monthly average 186 

total discharge, baseflows (estimated by applying a baseflow separation method Nathan 187 

and McMahon [1990]) and water yield. The Gauss-Marquardt-Levenberg algorithm as 188 

implemented in a model independent parameter estimation tool [Doherty, 2004] was used 189 

to adjust the fitted parameters and minimize the objective function. Parameter estimation 190 

was done in two stages. First, parameters for the watersheds in the upstream gages were 191 

estimated. Then the parameters for the downstream gages were estimated. To test the 192 

calibrated model, simulated stream flows were compared to stream flows measured at the 193 
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same 20 locations, but during a period outside of calibration (i.e., 1958-2008), as well as 194 

at 10 additional locations that were not used in the calibration.   195 

2.4 Hydrologic Simulations with Simulated Climate Forcing 196 

 Historical climate simulations for the period 1950-2005 and climate projections 197 

to 2065 for two greenhouse gas emission scenarios (Representative Concentration 198 

Pathway – RCP), mid-range mitigation emission (RCP4.5) and high emission (RCP8.5), 199 

were used to drive the hydrologic model. The RCP4.5 scenario employs a range of 200 

technologies and policies that reduce greenhouse gas emissions and stabilize radiative 201 

forcing at 4.5 W m-2 by 2100, whereas the RCP8.5 is a business-as-usual scenario, where 202 

greenhouse gas emissions continue to increase and radiative forcing rises above 8.5 Wm-2 203 

[Moss et al., 2010; Taylor et al., 2012]. We used monthly precipitation and temperature 204 

outputs provided by 25 GCMs (Table 1) for the Fifth Assessment (CMIP5) of the 205 

Intergovernmental Panel on Climate Change (IPCC). 206 

GCM outputs may exhibit biases in simulating regional climate. These biases, 207 

which are attributable to inadequate representation of physical processes by the models, 208 

prevent the direct use of GCM output in climate change studies [Randall et al., 2007; 209 

Salathé Jr et al., 2007; Wood et al., 2004]. Hydrological assessments that use GCM 210 

computations as input inherit the biases [Salathé Jr et al., 2007; Teutschbein and Seibert, 211 

2012]. To mitigate this problem, we implemented a statistical method [Li  et al., 2010] to 212 

bias-correct the monthly historical precipitation and temperature fields. In brief, the 213 

method employs a quantile-based mapping of cumulative probability density functions 214 

for monthly GCM outputs onto those of gridded observations in the historical period. The 215 

bias correction is extended to future projections as well. The observed data used in the 216 
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modeling and bias-correction has some limitations. That is, the number of precipitation 217 

gages decreased over the period from 1950 to 1990, and the density of the gages is sparse 218 

compared to the size of the river basin (see Section 3.4 and SI). However, we assumed 219 

that the available ground-based observations combined with satellite-based and reanalysis 220 

data adequately captured the spatiotemporal variability in precipitation. Studies by 221 

Munzimi et al. [2014] and Nicholson [2000] draw similar conclusions.  222 

The simulated monthly precipitation and temperature values were temporally 223 

downscaled to daily values for use in the CRB hydrology model. We used the three-224 

hourly and monthly observed historical data developed for the Global Land Data 225 

Assimilation System [Rodell et al., 2004; Sheffield et al., 2006] and the bias-corrected 226 

monthly simulations to generate three-hourly precipitation and temperature fields, which 227 

were subsequently aggregated to obtain daily values (see SI Methods). The hydrological 228 

model was forced with the bias-corrected and downscaled daily climate fields for the 229 

period 1950-2065. Due to the lack of information on the effect of CO2 on the 16 land 230 

cover classes simulated, the ambient CO2 concentration was maintained at 330 ppm 231 

throughout the simulation period. A recent study suggests that, in tropical rainforest 232 

catchments, elevated CO2 has little impact on evapotranspiration, but results in increased 233 

plant assimilation and light use efficiency [Yang et al., 2016]. A total of 50 projections 234 

(25 RCP4.5 and 25 RCP8.5 projections) were compiled and analyzed. Results of 235 

individual and multi-model means (un-weighted average of all (MM) and selected (SM) 236 

GCM simulations) for the near-term (2016-2035) and mid-term (2046-2065) projections 237 

are presented. 238 
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3. Results and Discussion 239 

3.1 Historical simulations 240 

Historical observations of average annual precipitation vary from 1,100 mm in the 241 

southeastern portion of the CRB to 1,600 mm in the CRB’s equatorial region. We 242 

compared the GCM-simulated  annual precipitation and its inter-annual variability during 243 

the historical period with observations from 30 locations within the CRB (Figure 2). The 244 

simulated inter-annual variability among the climate models (vertical bars in Figure 2) 245 

lies within the range of the observed variability (horizontal bars in Figure 2). The linear-246 

regression slope of 1.16 (p ˂ 0.001, Figure 2) between the annual observed and the multi-247 

model mean shows that bias-corrected precipitation is slightly over-estimated, but not 248 

significantly so.  Observations of seasonal precipitation are reproduced similarly well by 249 

the GCM models (SI Figure S2 and Table S2). The good agreement between GCM-250 

simulated and observed rainfall is expected given our bias correction of the GCM output. 251 

We compared the simulated monthly runoff at 30 locations with observations 252 

(Figure 3A). The colored points compare observed mean annual runoff at the 30 gage 253 

locations with historical simulations (hydrological model forced with observed climate), 254 

while the vertical and horizontal bars show the modeled and observed inter-annual 255 

variability, respectively. The shades of colors (from light-green to yellow and red) reveal 256 

the model’s skill in simulating the monthly flows in the historical period. The Nash-257 

Sutcliff coefficient of efficiency (NSE), a measure of relative magnitude of residual 258 

variance compared to the monthly observed streamflow variance [Legates and McCabe, 259 

1999; Nash and Sutcliffe, 1970], varies between 0.01 and 0.86 (color scale in Figure 3A). 260 

(The NSE ranges between negative infinity to 1, with values between 0.5 and 1 261 
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considered satisfactory [Moriasi et al., 2007].)  Seventeen of the 30 gages show NSE 262 

greater than or equal to 0.5. Higher NSE values at locations on both sides of the equator, 263 

particularly at major tributaries (NSE ~ 0.60, gages 1 to 8 in Figure 1 and SI Figure S3) 264 

suggest that the model reliably simulates stream flows under different climatic 265 

conditions. High NSE values also indicate that the seasonal and annual runoff 266 

simulations, including the inter-annual variability in the historical period, are in good 267 

agreement with observations. The catchment areas of the 30 gages vary between 5,000 268 

km2 and 900,000 km2 (excluding the last two downstream gages) and encompass a range 269 

of land cover and climatic regions on both sides of the equator; thus the hydrology model 270 

exhibits reasonable skill in simulating runoff over a wide range of watershed conditions.  271 

Comparison of modeled runoff forced with GCM-simulated and observed climate 272 

(Figure 3B) reveals generally acceptable runoff simulations in the CRB. The black dots 273 

and red (blue) vertical bars in Figure 3B show multi-model mean and maximum 274 

(minimum) range of inter-annual variability in the 25 historical GCM simulations. The 275 

results suggest that model-data agreement in precipitation translates to similarly 276 

acceptable runoff simulations.  277 

Runoff patterns reflect seasonal rainfall that varies asymmetrically on either side 278 

of the equator  (see SI Figure S1). For example, the observed peak runoff at streamflow 279 

gages 2 and 6 (see Figure 1) located north and south of the equator occur near the end of 280 

the rainy seasons – during Sep-Oct and Mar-Apr, respectively (Figure 4).  Augmented by 281 

flows from northern and southern tributaries (e.g. gages 1, 2, 4 and 6) and by high 282 

precipitation in the tropical equatorial watersheds during the two wet seasons (MAM and 283 

SON), the main river flows (downstream of gage 3 in Figure 1) show low variability 284 
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(Figure 4).  For example, the coefficient of variation in observed (simulated) monthly 285 

flows at the basin outlet (gage 8), northern tributary (gage 2) and southern tributary (gage 286 

4) are 0.23 (0.24), 0.77 (0.80) and 0.40 (0.48), respectively.  287 

Regionally, runoff in the northern (NC) and southern (SW and SE) watersheds is 288 

strongly seasonal with long dry seasons, but this is not the case in the equatorial region 289 

(Figure 5). Average watershed runoff varies between 20-70 mm during dry seasons to 290 

100-140 mm during wet seasons in the NC, SW and SE. In the equatorial region, seasonal 291 

runoff varies between 100-150mm with the highest in SON. Overall, the precipitation-292 

runoff ratio is about 0.30 in the CRB. The accessible runoff (excluding runoff associated 293 

with flood events), which can be appropriated for human use, is about 70% of the total 294 

runoff.   295 

3.2 Future projections in precipitation and runoff 296 

3.2.1 Precipitation 297 

 A previous study [Aloysius et al., 2016] showed that GCM projections of 298 

temperature generally increase under both emission scenarios in line with historical 299 

upward trend for Africa [Hulme, 2001]; however, precipitation projections contain large 300 

uncertainties. The modeled near-term (2016-2035) precipitation projections in the CRB 301 

vary between -4% and 6% with a multi-model mean (MM) change of 1% under the two 302 

emission scenarios relative to the reference period (1986-2015). Regionally, the northern 303 

CRB shows the largest annual increase in precipitation followed by southwestern and 304 

equatorial regions. However, the inter- model variability is larger than the MM in all 305 

regions, indicating greater projection uncertainties in both emission scenarios (Table 2). 306 
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The mid-term (2046-2065) projections of annual precipitation vary between -5% and 9%, 307 

with the MM of 1.7% and 2.1% for RCP4.5 and RCP8.5, respectively. More than 70% of 308 

the ensembles in both RCPs project an increase in annual precipitation in the CRB over 309 

the mid-term. The multi-model mean of all ensembles that project an increase (decrease) 310 

in precipitation is 2.7% (-2.4%) for RCP4.5 and 4.0% (-2.9%) for RCP8.5.   311 

The GCMs project considerable spatial and seasonal variations in precipitation 312 

(Table 2 and Figure 6). However, the standard deviation of annual and seasonal 313 

projections within the four regions exceed or equal to the MM, indicating little agreement 314 

on the direction of change. The spatial patterns (Figure 6), on the other hand, show 315 

regions where modeled projections strongly agree on increasing or decreasing 316 

precipitation. For example, decreasing precipitation is projected in most of the headwater 317 

catchments in the southern and parts of northern CRB.  318 

In general, the GCMs project decreasing precipitation in the driest parts of the 319 

southern CRB (mostly in Southeastern CRB, but portions of Southwestern as well). 320 

Under the RCP8.5 scenario, the northeastern CRB also experiences reduction in 321 

precipitation in the near-term. The areas of decreased precipitation shrink in the southeast 322 

and southwest in the mid-term; however, drying expands in parts of northern CRB under 323 

the two emission scenarios. Most GCMs (14-20) project an increase in all but the 324 

southeastern CRB. 325 

Inter-model variability in precipitation projections are sensitive to seasons and 326 

climate region (Figure 7A-D). At monthly scale, the northern and southern regions 327 

receive less than 50mm of precipitation for at least three months, which persist in the 328 

future under both emission scenarios. The dry season is more prolonged in the southeast 329 
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compared to the rest of the CRB. The inter-model variability is larger in the rainy seasons 330 

under RCP8.5, compared to RCP4.5. Larger variability under RCP8.5 highlights that 331 

GCMs may have limited skill in simulating precipitation under high greenhouse gas 332 

emissions.  333 

3.2.2 Runoff 334 

In general, modeled runoff increases, and its inter-annual variability within GCMs 335 

is larger during high flow periods compared to low flow periods, except in the equatorial 336 

region. (Figure 7E-H, see Figure 1 for regions).  The model projection uncertainty 337 

increases towards the middle of century, particularly under the RCP8.5 emission 338 

scenario. The temporal patterns of runoff in the near- and mid-terms are similar to the 339 

precipitation patterns, but with a time lag. As with precipitation, the monthly runoff 340 

shows prolonged periods low values in the northern and southern CRB in both projection 341 

periods.  Spatially, parts of northern, southeastern, and southwestern CRB also show 342 

reduced runoff projections relative to the reference period under both RCPs; these 343 

reductions are predominantly in the areas where fewer GCMs agree on the increase in 344 

modeled precipitation (see Figure 6 and SI Tables S3 and S4). The area of decreasing 345 

runoff expands in the northern CRB under both emission scenarios in the mid-term (see 346 

Figure 6, which shows that more models agree on decreasing precipitation in parts of 347 

northern CRB that subsequently results in decreasing runoff). Although the northern and 348 

equatorial CRB show an overall increase in precipitation, the decrease in runoff in certain 349 

parts in the northern and equatorial CRB is caused by reduction in seasonal precipitation. 350 

A larger reduction – up to 15% – in the southeastern CRB covering most of northern 351 
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Zambia is due to an overall decrease in precipitation simulated by more the half of the 352 

GCMs (see Figure 6). 353 

The multi-model mean of total runoff from the CRB shows an increase of 5% 354 

(±6%, one standard deviation, n = 25) and 7% (±8%) in the near- and mid-terms under 355 

both RCPs relative to the reference period (1986-2005). Annual Runoff in the equatorial 356 

region, which receives the highest precipitation, is projected to increase by up to 5% 357 

(±7%) in the near-term to 6% (±8%) and 7% (±9%) in the mid-term for RCP4.5 and 358 

RCP8.5, respectively. The increases are greater in the secondary rainy season (MAM) 359 

than the primary (SON, Figure 7 B and F). Monthly runoff projections show that the 360 

majority of the ensembles project an increase in the equatorial CRB, with the RCP8.5 361 

ensembles exhibiting larger variability (Figure 7F).  362 

Runoff that can be appropriated for human use is generated mostly in the 363 

northern, southeastern and southwestern CRB, which at present varies from 130mm/year 364 

in the southeastern CRB to 250-400mm/year in the northeastern and southwestern CRB. 365 

Runoff is projected to increase in all three of these regions. However, the inter-model 366 

variability is greater than twice the MM in nearly all the regions and during all four 367 

seasons (Figure 8 and Table 3). In most cases, the largest uncertainties are in non-rainy 368 

seasons and under high emission RCP8.5 scenario (e.g. DJF in the northern CRB, Figure 369 

8B, and JJA in the southeastern CRB, Figure 8H).  370 

3.3 Variability in accessible flows 371 

 Only part of the runoff may be appropriated for human use. In the CRB, the 372 

accessible runoff (AF), excluding runoff associated with flood events, is about 70%. The 373 
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AF is largely under-utilized, but its appropriation is expected to increase in the future, 374 

mostly in the populated areas of northern, southwestern and southeastern CRB. We 375 

present the uncertainty associated with GCM and scenario selection by quantifying 376 

seasonal and inter-model variability in AF at eight major tributaries (identified in Figure 377 

1) that drain watersheds across a range of climatic regions on both sides of the equator 378 

(Figure 9). Modeled AF exhibits substantial inter-model spread in the near-term and 379 

widens in the mid-term (SI Figure S5). The inter-model variability is larger during high 380 

flow periods compared to low flow periods.  381 

Following the general pattern of increasing precipitation and runoff in the 382 

northern and southwestern watersheds, we find that AF increases with greater model 383 

agreement in tributaries that drain these watersheds (e.g. gages 1, 2 and 6 in Figure 9). A 384 

closer look at tributaries in the northern and southwestern CRB reveals better agreement 385 

of increased AF during low flow periods compared to high flow periods (compare gages 386 

1, 2, 6 and 7 in Figure 9). In contrast, tributaries that drain southeastern watersheds 387 

exhibit greater variability in modeled AF with majority of the ensembles projecting a 388 

reduction (e.g. gages 4 and 5 in Figure 7). Overall, the AF in the main tributary (gages 3 389 

and 8) is projected to increase, partly due to the contributions from the northern and 390 

southwestern tributaries. The decrease in modeled precipitation and AF in the 391 

southeastern CRB appears to have marginal effect on downstream flows in the main 392 

river. 393 

 The spatial and temporal variations in the projected AF have consequences for 394 

water resources development and management. For example, the uncertainty in 395 

projections of the AF near the proposed Grand Inga Hydropower project (near gage 8, 396 
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Showers [2009]) is low compared the projections near the proposed trans boundary water 397 

diversion in the southeast (near gage 5, Lund et al. [2007]). Reductions in high and low 398 

flows in streams in the southeastern region will have implications to aquatic life, channel 399 

maintenance and lake and wetland flooding. 400 

3.4 Sources of uncertainty 401 

 Climate model outputs under the two emission scenarios used in this study 402 

provide an opportunity to assess a range of future projections that could potentially 403 

resolve wide variations in results and, hence, uncertainties in modelled projections for the 404 

CRB. The uncertainties can be broadly categorized into i) observational uncertainty, 405 

particularly the sparse and declining network of precipitation and stream flow gages and 406 

ii) model uncertainty, which, in GCMs, include model structure, model initialization, 407 

parameterization and climate sensitivity – the response of global temperature to a 408 

doubling of CO2 in the atmosphere relative to pre-industrial levels. We used only one 409 

hydrological model, which is also a source of uncertainty. However, variation in climate 410 

signals between GCMs and emissions scenarios, particularly precipitation projections, 411 

may be a larger source of uncertainty than the choice of hydrology model [Thompson et 412 

al., 2014; Vetter et al., 2016].  413 

 The climate data used for bias-correction and for historical hydrologic simulations 414 

has its own uncertainties. Gage-based, satellite derived data and reanalysis outputs are 415 

used to develop the historical observations [Sheffield et al., 2006]. Precipitation gages 416 

were more numerous at the beginning of the simulation period and declined in number 417 

toward the end of the 20th century [Mitchell and Jones, 2005; Washington et al., 2013]. 418 

Available gage data varied both spatially and temporally (SI Figure S6 and S7). For 419 
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example, the equatorial region – nearly a third of CRB – had about 70 rain gages through 420 

early 1990s, but only 10% of these were functioning by 2005 (SI Figure S5). The 421 

southeastern and parts of northern CRB also had good rainfall-gage coverage, which has 422 

similarly decreased since the 1990s [Mitchell and Jones, 2005]. However, satellite-based 423 

and sparsely distributed gage data has been used to demonstrate that spatiotemporal 424 

distribution of precipitation can be sufficiently described in the CRB region [Munzimi et 425 

al., 2014; Nicholson, 2000; Samba et al., 2008]. We assume that, even with these 426 

limitations, the available historical data are adequate to model the hydrology of the CRB. 427 

 In addition to climate data, observed runoff data are another limitation that could 428 

restrict proper validation of hydrological models. However, we utilized a time period 429 

(1950-1959) when the CRB had maximum coverage of both precipitation and runoff data 430 

to calibrate and validate the hydrology model (for example see evidence in L'vovich 431 

[1979]). Where available, we used additional runoff data to further validate model 432 

outputs in the historical period. The runoff gage locations are distributed within the CRB 433 

(see Figure 1) such that they adequately capture climatic, land cover and topographic 434 

variability. 435 

 For future projections, the largest sources of uncertainty arise from the GCMs and 436 

emission scenarios. GCMs do not consistently capture observed rainfall seasonality and 437 

heavy rainfall in regions of the central CRB, and in most cases do not show key features 438 

such as seasonality and heavy rainfall regions of central CRB [Aloysius et al., 2016; 439 

Washington et al., 2013]. The biases in the GCM-simulated precipitation, particularly in 440 

the tropical regions, have been attributed to multiple factors including poorly resolved 441 

physical processes such as the mesoscale convection systems, inadequately resolved 442 
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topography due to the coarse horizontal resolution and inadequate observations to 443 

constrain parameterization schemes. These limitations are unavoidable in the current set 444 

CMIP5 projections. We assume that the number of GCM outputs used in our work, and 445 

the bias-correction method, which maintains key statistical properties in the original 446 

GCM outputs (see Aloysius et al. [2016] and Li  et al. [2010]), adequately captures the 447 

uncertainties in GCM and emission scenarios. Based on monthly precipitation 448 

climatology, Aloysius et al. [2016] found no significant shift in seasonality in modeled 449 

future precipitation projections. 450 

The range of projections presented here for the two emission scenarios also 451 

highlight the uncertainties planners would encounter when making climate-related 452 

decisions. For example, broader agreement on increase in runoff in parts of the CRB 453 

would help make robust decisions, whereas weaker agreement in the southern CRB calls 454 

for greater scrutiny of regional climate. Generally, the MM approach reduces the 455 

uncertainty because averaging tend to offset errors across models. However, one could 456 

also ask whether this approach work with fewer models.  457 

Washington et al. [2013] and Siam et al. [2013] presented evidence that 458 

evaluating atmospheric moisture flux which are modulated by wind patterns and 459 

humidity, and soil water balance are better ways to diagnose GCM performance in data 460 

scarce regions like the CRB. Balas et al. [2007], Hirst and Hastenrath [1983] and 461 

Nicholson and Dezfuli [2013] have shown that sea surface temperature (SST) anomalies 462 

in the Atlantic and Indian ocean sectors could partly explain precipitation in the CRB 463 

region. Along the same lines, Aloysius et al. [2016] identified five models as suitable 464 

candidates. We examined this subset of GCM projections  (M6, M7, M18, M23 and 465 
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M24), which we refer to as the select model average, or SM (see refs. Giorgetta et al. 466 

[2013]; Good et al. [2012]; Jungclaus et al. [2013]; Meehl et al. [2013]; Siam et al. 467 

[2013]; Voldoire et al. [2012]; Yukimoto et al. [2006] and Aloysius et al. [2016] for 468 

further comparison of GCM performance).  By evaluating seasonal atmospheric moisture 469 

and soil water balance in 11 CMIP5 GCMs in the CRB and Nile River basin regions, 470 

Siam et al. [2013] identified M7, M18 and M24 as good candidates for climate change 471 

assessment.   472 

Focusing on the northern, southeastern and southwestern CRB, where human 473 

appropriation of runoff is expected to increase, we find that the magnitude of annual 474 

projections (both precipitation and runoff) in SM are more than twice that of MM in the 475 

northern region. The extent of drying in the south is concentrated in the southeastern 476 

upstream watersheds in both MM and SM, although the magnitude of decrease is smaller 477 

in SM (SI Table S3 and S4).  478 

From the viewpoint of water resources for human appropriation, the changes by 479 

seasons are also important. Future changes and uncertainties in modeled seasonal runoff 480 

averaged over the four regions are presented Figure 8. In comparison with the CRB 481 

projections, the uncertainties in sub-regions are larger. Nearly all the MM and SM 482 

projections show an increase in runoff in all the four seasons; however, there is 483 

substantial inter-model variability. The uncertainties increase under the high emission 484 

RCP8.5 scenario during the mid-century. Considering the southeastern region as an 485 

example, under RCP8.5 emission scenario, uncertainties reported as one inter-model 486 

standard deviation in the mid-term are ±20%, ±27%, ±26% and ±13%, respectively for 487 

DJF, MAM, JJA and SON seasons, and are greater than the MM and SM. Further, the 488 
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deviation of uncertainty within the sub-regions of CRB increases under high emission 489 

RCP8.5 scenario. For example, the inter-model projection ranges are larger in the 490 

northern and southeastern CRB (Figure 8 B and H) compared to the equatorial and 491 

southwestern CRB (Figure 8 D and F). Finally, the uncertainty assessment presented here 492 

represents climate model uncertainty arising from emission scenarios, different response 493 

to the same external forcing, different model structures and parameterization schemes. 494 

While these uncertainties in projections pose challenges for robust decision making, they 495 

also provide insights into where further research might be most valuable.  496 

4. Conclusions 497 

From the point of view of climate change adaptation related to water resources, 498 

agriculture, and ecosystem management, the challenge faced by CRB countries is 499 

recognizing the value of making timely decisions in the absence of complete knowledge. 500 

In some settings, climate change presents opportunities as well as threats in the CRB. The 501 

projected increases in accessible runoff imply new opportunities to meet increasing 502 

demands (e.g. drinking water, food production and sanitation), while the enhanced flood 503 

runoff would pose new challenges (e.g. flood protection and erosion control). On the 504 

other hand, water managers could face different challenges in the southeast where 505 

precipitation and runoff are projected to decrease.  506 

GCM-related variability in regional climate projections could be constrained by a 507 

subset of models based on attributes that modulate large-scale circulations (see Knutti 508 

and Sedlacek [2013] and Masson and Knutti [2011]). This approach is particularly useful 509 

because regions like the CRB lack complete coverage of observational data but the 510 

mechanisms that moderate the climate system, particularly precipitation, are fairly well 511 
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understood [Hastenrath, 1984; Nicholson and Grist, 2003; Washington et al., 2013]. Yet, 512 

the span in rainfall predictions among the MM, SM, and individual GCMs suggest that, 513 

despite the advances in climate modeling, significant uncertainties in precipitation 514 

projections for CRB persist.  515 

Rather than providing a narrow pathway for decision-making, our results, for the 516 

first time for CRB, provide a framework to i) assess implications under various climate 517 

model assumptions and uncertainties, ii) characterize and expose vulnerabilities and iii) 518 

provide ways to guide the search for impact-oriented and actionable policy alternatives, 519 

as emphasized by Weaver et al. [2013]. Projections and associated uncertainties vary 520 

widely by region within the CRB, and therefore diverse but robust planning strategies 521 

might be advisable within the river basin. We emphasize that projections provided here 522 

could be considered as part of the process of incorporating multiple stressors into climate 523 

change adaptation and engaging stakeholders in the decision making process.  524 
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Figures in the main text 10 

 11 

 12 

Figure 1 Congo River Basin: the river basin boundary, the extent of the rainforest, locations of lakes and wetlands, and the 13 

locations of streamflow gages are shown. 14 



 15 

Figure 2 Comparison of observed and bias-corrected GCM-simulated average annual precipitation for 30 catchments with 16 

stream-flow gages (shown in Figure 1) in the historical period (1950-2005). Y-axis values are statistically downscales 17 

GCM-simulated precipitation. Black dots compare multi-model means with observed precipitation, black horizontal bars 18 

show observed inter-annual variability (± one standard deviation), and red (blue) vertical bars show maximum (minimum) 19 

range of modeled inter-annual variability (± one standard deviation) within the 25 climate model outputs. The black line is 20 

linear regression fit between observed and multi-model mean of simulated precipitation ( 𝑦𝑦 = 1.16 ± 0.204𝑥𝑥 −21 

283.4,𝑝𝑝 < 0.001,𝑅𝑅2 = 0.825); parameter bounds are 95% confidence interval. 22 

 23 



 24 

Figure 3. Comparison of observed and simulated annual runoff at the 30 streamflow gage locations (shown in Figure 1). 25 

(A) Historical simulations with observed climate: the positions of the colored dots compare annual values of observed and 26 

simulated historical runoff; the dots’ colors (see legend) show the Nash-Sutcliff coefficient of efficiency (NSE) of 27 

observed vs. simulated monthly stream flows; and the  black horizontal and vertical bars show observed and modeled 28 

inter-annual variability (± one standard deviation), respectively. The black line is linear regression fit between annual 29 

simulated and observed runoff (𝑦𝑦 = 0.865 ± 0.158𝑥𝑥 + 36.63,𝑝𝑝 < 0.001,𝑅𝑅2 = 0.82), parameter bounds are the 95% 30 

confidence interval. (B) Simulations in the historical period with GCM-simulated climate: black dots show the multi-31 

model mean; red (blue) vertical bars show modeled (forced with GCM-simulated historical climate) maximum 32 

(minimum) inter-annual variability (± one standard deviation) within the 25 simulations; and gray circles show multi-year 33 

mean of individual GCM simulations. The gray dotted lines in A and B are 1:1 line. The GCM-simulated forcings are 34 

statistically downscaled and bias-corrected. 35 

 36 



 37 

Figure 4 Mean monthly flows at selected tributaries in the CRB. Flows are in m3/s and gage numbers are identified in 38 

Figure 1. Monthly values are based on simulated flows (forced with observed precipitation) for the period 1950-2005. 39 

 40 



 41 

Figure 5 Seasonal variation in runoff in (A) Northern, (B) Equatorial, (C) Southwestern and (D) Southeastern Congo 42 

River Basin. Black dots and vertical bars show the modeled inter-annual variability forced with observed climate, red dots 43 

show the multi-model mean forced with GCM-simulated climate, red vertical bars show the maximum range of inter-44 

annual variability within the 25 models and the grey open circles show the mean of individual models in the historical 45 

period, 1950-2005. Y-axis scale is different for each plot. 46 

 47 



 48 

Figure 6 Number of climate model outputs that projects an increase in precipitation in the (A) near-term, 2016-2035, 49 

RCP4.5, (B) near-term RCP8.5, (C) mid-term, 2046-2065, RCP4.5 and (D) mid-term RCP8.5. Number of modeled 50 

precipitation outputs used is 25. Main rivers and lakes are also shown. 51 

 52 



 53 



Figure 7 Monthly variation of precipitation (A-D) and runoff (E-H) in the four regions shown in Figure 1. Box-and-54 

whiskers for each month shows the inter-model variability for the historical period (black), near-term RCP4.5 (light 55 

green), near-term RCP85 (dark green), mid-term RCP4.5 (red) and mid-term RCP8.5 (brown). The upper and lower end 56 

of the boxes show the 75th and 25th quartiles, the mid bar in each box shows the median, and the outer lines cover 57 

approximately 90% of the values. The multi-model mean value for the reference period is shown as triangles for clarity. 58 

All values are in mm/month. NC – northern, EQ – equatorial, SE – southeast and SW – southwest, see Figure 1 for 59 

locations. 60 

 61 



 62 

Figure 8 Seasonal runoff projections (as percent relative to the reference period 1986-2005) for the near-term (2016-2035) 63 

and mid-term (2046-2065) projection period for northern (A-B), equatorial (C-D), southwestern (E-F) and southeastern 64 



(G-H) regions. Boxes show the 25th and 75th percentiles, the horizontal line within the boxes show median value and the 65 

whiskers mark the 5th and 95th percentiles. The multi-model mean (asterisks) and the select-model mean (green dots) are 66 

also shown. The y-axis range is limited to show the smaller boxes. Y-axis values are in percentages. 67 

 68 

 69 

 70 

 71 

Figure 9 Accessible streamflow hydrographs in the near-term at selected locations shown in Figure 1A. Blue (red) bars 72 

show the inter-model variability. Dotted black line shows the hydrograph in the reference period (1986-2005). Figure 73 

numbers 1-8 coincide with the gage numbers in Figure 1. 74 

 75 
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Tables in the main text 77 

 78 

Table 1 Global Climate Models whose outputs are used in this study. Further details about comparison of model outputs 79 

and key references for GCMs are given in Aloysius et al., 2016. 80 

Model Number Model Name 

M1 ACCESS1-3 

M2 bcc-csm1-1 

M3 BNU-ESM 

M4 CanESM2 

M5 CCSM4 

M6 CESM1-CAM5 

M7 CNRM-CM5 

M8 CSIRO-Mk3-6-0 

M9 EC-EARTH 

M10 FIO-ESM 

M[11-13]* GISS-E2-H* 

M[14-16]* GISS-E2-R* 

M17 HadGEM2-CC 

M18 HadGEM2-ES 

M19 INM-CM4 

M20 IPSL-CM5A-LR 

M21 MIROC5 

M22 MIROC-ESM 



M23 MPI-ESM-LR 

M24 MRI-CGCM3 

M25 NorESM1-M 

* These climate models provide outputs from three different physics ensembles. We treat each a separate model. 81 
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 83 

Table 2 Multi-model mean of projected changes in precipitation (%) in the four regions within the Congo River Basin (see 84 

Figure 1) for the near-term (2016-2035) and the mid-term (2046-2065) relative to the reference period of 1986-2005. The 85 

regions are identified in Figure 1. The standard deviation values across the 25 GCM-simulations are provided in 86 

parenthesis. DJF: Dec-Jan-Feb, MAM: Mar-Apr-May, JJA: Jun-Jul-Aug and SON: Sep-Oct-Nov. 87 

 Northern (NC) Equatorial (EQ) Southwestern (SW) Southeastern (SE) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Near future (2016-2035)        

Annual 1.6 (3.0) 1.3 (2.9) 1.3 (2.9) 1.1 (2.7) 1.3 (2.3) 1.5 (2.6) -0.4 (3.7) 0.1 (4.2) 

DJF 3.3 (13.3) 5.4 (21) 2.0 (4.9) 1.4 (4.7) 1.6 (3.2) 1.8 (4.0) -0.3 (3.7) 0 .04 (4.8) 

MAM 1.4 (4.5) 1.1 (3.7) 0.5 (2.9) 0.8 (2.8) 1.5 (4.2) 2.5 (5.2) -0.5 (7.8) 0.9 (8.3) 

JJA 1.3 (3.3) 0.4 (4.2) 1.3 (4.2) 1.3 (4.7) -0.7 (14.6) -0.3 (15.7) 19.6 (32.0) 18.7 (31.6) 

SON 2.3 (4.6) 2.3 (4.7) 1.7 (4.1) 1.1 (4.0) 0.9 (3.6) 0.2 (3.8) -0.6 (5.4) -1 (4.8) 

Mid-term (2046-2065)        

Annual 1.6 (3.8) 1.2 (4.9) 1.7 (3.4) 2.4 (3.9) 2.9 (2.9) 3.3 (4.0) 0.2 (5.4) 0.3 (7.4) 

DJF 1.1 (15.2) 3.9 (18.8) 3.5 (6.3) 5.3 (9.4) 4.8 (5.1) 5.4 (7.4) 1.5 (6.4) 1.4 (9.6) 

MAM 0.9 (4.4) 0.6 (5.4) 1.5 (3.5) 2.4 (3.5) 4.1 (5.1) 6.9 (5.8) 0.4 (9.6) 2 (11.0) 

JJA 0.6 (4.3) 0.1 (5.5) 0.7 (5.8) 2.2 (7.3) -6.1 (14.8) -5.9 (19) 6.7 (30.6) 9.7 (32.0) 

SON 3.4 (6.2) 2.9 (7.3) 1.3 (4.0) 0.6 (4.1) -0.3 (4.2) -2.5 (4.6) -3.2 (5.2) -4.6 (5.8) 
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Table 3 Multi-model mean of projected changes in runoff (%) in the four regions within the Congo River Basin for the 90 

near-term (2016-2035) and the mid-term (2046-2065) relative to the reference period of 1986-2005. The regions are 91 

identified in Figure 1. The standard deviation values across the 25 GCM-simulations are provided in parenthesis. The 92 

asterisks (*) show the degree of agreement that projected runoff > 0 in more than 50% of the ensembles. DJF: Dec-Jan-93 

Feb, MAM: Mar-Apr-May, JJA: Jun-Jul-Aug and SON: Sep-Oct-Nov. 94 

 Northern (NC) Equatorial (EQ) Southwestern (SW) Southeastern (SE) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Near future (2016-2035)        

Annual 3.6 (12.1) 2.5 (11.2) 5.0 (7.0)* 4.3 (6.7)* 5.6 (4.8)* 6.0 (5.4)* 1.4 (12.8) 4.2 (12.1) 

DJF 5.7 (13.3) 6.0 (14.1) 6.2 (9.8)* 5.1 (9.5)* 4.2 (6.1)* 3.9 (6.4)* 1.3 (9.3) 2.8 (9.8) 

MAM 9.4 (15.0)* 9.1 (11.1)* 5.5 (6.3)* 5.7 (4.9)* 6.3 (5.1)* 7.7 (6.3)* 0.4 (18.4) 4.4 (17.3) 

JJA 2.6 (12.1) 1.9 (10.2) 3.4 (6.3)* 3.8 (6.9)* 6.7 (5.5)* 7.7 (7.1)* 2.8 (20.7) 8.3 (19.6) 

SON 2.8 (13.5) 1.1 (13.3) 4.6 (9.1)* 3.1 (9.4) 6.0 (6.4)* 5.0 (6.4)* 4.3 (10.7) 5.0 (12.6) 

Mid-term (2046-2065)        

Annual 1.2 (15.4) -2.0 (17.1) 6.3 (8.1)* 7.2 (8.5)* 9.9 (5.9)* 10.4 (8.2) 6.1 (18.8) 8.3 (20.6) 

DJF 4.0 (18.0) 1.7 (21.9) 8.9 (11.2)* 10.7 (14.7)* 9.6 (7.9)* 9.0 (12.4) 4.7 (14.9) 6.2 (20.3) 

MAM 10.1 (13.4)* 9.5 (17.1) 8.9 (7.1)* 10.3 (6.2)* 11.7 (6.1)* 13.7 (8.0)* 6.5 (26.2) 9.9 (26.6) 

JJA -0.02 (14.5) -2.5 (15.8) 5.2 (9.8)* 7.5 (11)* 11.8 (7.1)* 13.7 (8.6)* 9.5 (25.9) 14.9 (25.7) 

SON 0.04 (17.7) -4.1 (19.4) 2.5 (9.3)* 1.1 (8.5) 5.7 (7.2)* 3.3 (7.7) 5.6 (11.2)* 3.1 (12.6) 
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