
C
6  

 
Hydrol. Earth Syst. Sci. Discuss., 
doi:10.5194/hess-2016-152-RC1, 2016 
© Author(s) 2016. CC-BY 3.0 License. 

 
 
 
 

Interactive comment on “Simulated Hydrologic 
Response to Projected Changes in Precipitation 
and Temperature in the Congo River Basin” by N. 
Aloysius and J. Saiers 
Anonymous Referee #1 

Received and published: 4 May 2016 
 
 

This manuscript aims to elucidate the spatiotemporal variability of runoff under the 
cli- mate changes the climate changes in the Congo River Basin, where long-term 
data are currently unavailable.  Output of 25 global climate models (GCMs) for 
two rep- resentative concentration pathways (RCPs), combined with downscaling 
method, are used as input of Soil Water Assessment Tool (SWAT) model. This 
paper is a valuable contribution to existing literature and also suitable for the HESS 
scope. However, the resolutions of the topography, precipitation, temperature, land 
use and soil data used for the modelling with SWAT are not clear in current 
manuscript. A detailed description of the basin in its current stage (land use, 
climatic conditions, soli, topography etc.) is needed. The bias-corrected 
precipitation is slightly over-estimated by the statisticalmethod proposed by Li et al. 
(2010), what about the bias- temperature? Why have these two RCP scenarios 
(RCP 8.5 and RCP 4.5) been selected? Why not including the other two RCP 
scenarios as well (RCP 2.6 and RCP 6.0)? The language could be polished in various 
places in order to facilitate understanding. 
 
The main and supplemental text are revised to include information about the river 
basin’s physiographic information. 
 
We used the outputs from the Coupled Model Inter-comparison Project phase 5 
(CMIP5). The CMIP5 experimental design guidelines [Taylor et al., 2012] recommend 
the use of RCP4.5 and RCP8.5 simulations as they provide high-interest information 
about future climate change. We followed these guidelines and decided to present only 
these two future scenarios. 
 
Overall temperature bias is 0.15 oC. An assessment of how climate models simulate 
precipitation and temperature in the Central African region is presented in a separate 
paper [Aloysius et al., 2016]. Figure 5 e-h in that manuscript (see below) compares the 
overall biases in temperature. I have also attached the full manuscript for easy reference.  
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Figure 1 Comparison of observed and bias-corrected annual (e,f) and monthly (g-h) 
climatology of temperature in the historical period. The units are oC. 
 
 
Specific comments 
Page2 Line 25: “with the projected decrease” should be “with the projected decrease 
in accessible runoff”?? 
Revised as suggested 
Page3 Line41: “due the region’s heavy. . .” should be “due to the region’s heavy. . .”  
Revised as suggested 

Page6 Line92: “∼41,000km3/s” should be “∼41,000m3/s” - corrected 

Page6 Line96:  “a strong dry and wat seasons” or “a strong dry and wet season”? 
Please check it. - corrected 
Page8 Line 135: “The Curve Number and . . . to predict the first two”. This is not 
clear. 
Revised the text and clarified 
Page8 Line136-137:  “A power law relationship is employed to simulate to the 
lake area-volume-discharge”.  Reference? 
Reference included 
Page9 Line164: “W m-2”; “m3/s” should be used by negative exponents. Units should 
be displayed using exponential formatting. 
All units have been revised as suggested 
Page11 Line190: “1,450 mm/year” should be “1,450 mm” 
Revised as suggested 
Page11 Line194: The linear-regression slope (1.16) should be illustrated in Figure 2.  
Regression details added to Figure 2. 
Page11 Line195: “show that” should be “shows that” – revised as suggested 
Page11 Line197: “and within the four regions identified in Figure 1 (SI Table S3)”. 
I could not draw the conclusion from SI Table S3. 
SI Figure S2 shows the seasonal precipitation. SI Table S3 provides the mean values 
within the regions identified in Figure S1. The text has been modified. 
Page11 Line204-205: “Seventeen of the 30 gages show NSE greater than or equal to 
0.5” This sentence is not clear. 
Literature suggests that model simulations can be considered satisfactory if Nash-
Sutcliff values are ≥ 0.5. This is clarified in the text and a reference is added to support 
[Moriasi et al., 2007]. 
Page12 Line212: “indicating the hydrology model’s skill in simulating runoff 
satisfacto- rily over a wide range in watershed areas”. ?? This sentence is not clear. 
Catchment areas of all gages considered vary between 5,000 to 900,000 km2and 
encompass a range climatic regions on both sides of the equator. In this context, our 
hydrology model performance is satisfactory. The text has been modified to clarify.  
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Page13 Line239: “vary” should be “varies” – text revised 
Page13 Line243: delete “, with indications of spatial patterns” – sentence revised 
Page14 Line249-250: “Most GCMs (>15) predict . . . in the SE”. I could not draw 
the conclusion from all figures in the manuscript and the supplemental material. A 
figure showing the percentage agreement in the increase runoff at each unit would be 
helpful. The percentage of ensemble members that agree on the sign of change for 
projected change in runoff could be calculated. 
A figure is added to reflect the author’s comments. 
Page14 Line267: “Although northern and equatorial CRB” should be “Although 
the northern and equatorial CRB” – sentence revised 
Page15 Line274: “The variability is larger NC and SE . . . during the rainy 
seasons.” This sentence is not clear. 
The sentence is revised to clarify. 
Page15 Line278: “in SE” should be “in the SE” – sentence revised 
Page15 Line282: “most part of EQ” should be “most part of the EQ” – sentence 
revised 
Page15 Line287: “produce compatible . . . and provide their . . .” should be 
“produces compatible . . . and provides their . . .” – revisions are incorporated in the 
revised version 
Page17 Line316-317: “Figure 8 also shows moderate increase in the SW to decrease 
or no-change in the SE during the rainy season (DJF).” should be “Figure 8 also shows 
moderate increase in the SW and decrease or no-change in the SE during the rainy 
season (DJF).” - revised 
Page18 Line349: “reveal” should be “reveals” Page21 Line393: “;” should be “,” - 
revised 
Page21 Line394-395:  “. . . of Historical and Future Simulations of Precipitation 
and Temperature in Central Africa from CMIP5 Climate Models”. The initial 
letters should be lowercase. - revised 
Page21 Line400: “GLC2000: a” should be “GLC2000: A” - revised 
Page21 Line405: “World agriculture: towards 2015/2030: an FAO perspective” 
should be “World agriculture: Towards 2015/2030: An FAO perspective” - revised 
Page22 Line430: “Giorgetta, M. A., et al.” Please add all authors. – This reference has 
39 co-authors, therefore, we decided to include only the first author.  
Page22 Line441: “cycle: mechanisms . . .” should be “cycle: Mechanisms . . .” - 
revised 
Page22 Line452: “Nature Clim. Change” Please do not use the abbreviation of the 
journal. - revised 
Page23 Line461-464: The initial letters of the paper title should be lowercase. And 
please do not use the abbreviation of the journal. 
revised 
Page23 Line469; Page24 Line501; Page25 Line549 and Line 558: Please do not use 
the abbreviation of the journal. –  
revised 
Page23 Line477-478: “Climate Change Projections in CESM1(CAM5) 
Compared to CCSM4” should be “Climate change projections in CESM1(CAM5) 
compared to CCSM4” - revised 
Page23 Line479: “life: a” should be “life: A” - revised 
Page23 Line482; Page24 Line503 and Line508; Page25 Line550 and Line558: “et 
al.” Please add all authors. – These references have more than 10 co-authors 
Page24 Line496: “The Seasonal Evolution of the Atmospheric Circulation over 
West Africa and Equatorial Africa” should be “The seasonal evolution of the 
atmospheric circulation over west Africa and equatorial Africa” - revised 
Page24 Line508: “The Global Land Data Assimilation System” should be “The 
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global land data assimilation system” - revised 
Page24 Line519: “scheme: linking” should be “scheme: Linking” - revised 
Page24 Line521: “Hydrological Cycles over the Congo and Upper Blue Nile 
Basins: Evaluation of General Circulation Model Simulations and Reanalysis 
Products” should be “Hydrological cycles over the Congo and Upper Blue Nile 
Basins: Evaluation of general circulation model simulations and reanalysis products” 
- revised 
Page25 Line550: “model: description” should be “model: Description” - revised 
Page25 Line556: “climatology: can” should be “climatology: Can” - revised 
Page25 Line 559-560: The initial letters of the paper title should be lowercase except 
the first word. - Revised 
Page30 Line582: “water yield” is the same as “runoff”?? –revised the figure caption 
Page30 Line585: “show” should be “shows” - revised 
Page37 Line606 and Page40 Line624: “Figure 1A” don’t exist. Please check it. 
Page38: What the unit of Figure 8 is?? 
Revised 
Some specific comments in the supplemental material Page1 Line11: “H Lehner et 
al.” should be “Lehner” 
Revised  
Page1 Line17; Page9 Line77; Page10 Line84; Page14 Line100; Page15 Line104; 
Page17 Line109; Page19 Line119 and 121: “Figure 1A” don’t exist. Please check 
it. 
Revised 
Page9 Line76; Page10 Line83; Page11 Line89: “projected” should be “Projected”  
Revised 
Page13: What the unit of Figure S1 is?? 
The units are in mm month-1. The figure caption is revised. 
Page16 Line104: “(D) Sep-Oct-Nov).” should be “(D) Sep-Oct-Nov.” Page18: The 
legend in each sub-figure could be deleted. 
Revised. The square dots show projections of a subset of models outputs. 
Page19 Line119: “accessible” should be “Accessible” - Revised 
Page21 Line128: “GLC2000: a new” should be “GLC2000: A new” – revised  
Page21 Line 141: The initial letters of the paper title should be lowercase except the 
first word. – revised a suggested 
Page21 Line149: “et al.” Please add all authors. 
This reference has 15 co-authors 
Page21 Line153-154: The initial letters of the paper title should be lowercase.  
And please do not use the abbreviation of the journal. 
All references have been revised as suggested 
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Abstract Global and regional climate change assessments rely heavily on the general circulation model
(GCM) outputs such as provided by the Coupled Model Intercomparison Project phase 5 (CMIP5). Here we
evaluate the ability of 25 CMIP5 GCMs to simulate historical precipitation and temperature over central Africa
and assess their future projections in the context of historical performance and intermodel and future emission
scenario uncertainties. We then apply a statistical bias correction technique to the monthly climate fields
and develop monthly downscaled fields for the period of 1948–2099. The bias-corrected and downscaled data
set is constructed by combining a suite of global observation and reanalysis-based data sets, with the monthly
GCM outputs for the 20th century, and 21st century projections for the medium mitigation (representative
concentration pathway (RCP)45) and high emission (RCP85) scenarios. Overall, the CMIP5 models simulate
temperature better than precipitation, but substantial spatial heterogeneity exists. Many models show limited
skill in simulating the seasonality, spatial patterns, and magnitude of precipitation. Temperature projections by
the end of the 21st century (2070–2099) show a robust warming between 2 and 4°C across models, whereas
precipitation projections vary across models in the sign and magnitude of change (�9% to 27%). Projected
increase in precipitation for a subset of models (single model ensemble (SME)) identified based on performance
metrics and causal mechanisms are slightly higher compared to the full multimodel ensemble (MME) mean;
however, temperature projections are similar between the two ensemblemeans. For the near-term (2021–2050),
neither the historical performance nor choice of models is related to the precipitation projections, indicating that
natural variability dominated any signal. With fewer models, the “blind” MME approach will have larger
uncertainties in future precipitation projections compared to projections by the SME models. We propose
the latter a better approach in regions that lack quality climate observations. Our analyses also show that the
choice of model and emission scenario dominate the uncertainty in precipitation projections, whereas the
emission scenario dominates the temperature projections. Although our analyses are done for central Africa, the
final Bias-Corrected Spatially Downscaled data set is available for global land areas. The framework for climate
change assessment and the data will be useful for a variety of climate assessment, impact, and adaptation studies.

1. Introduction

Adapting to variability and change in climate is one of the challenges that countries in sub-Saharan Africa face
in the 21st century [Boko et al., 2007; Collier et al., 2008]. This challenge arises, in part, from the need to respond
to the potentially detrimental effects of climate change on freshwater availability, food production, and other
ecosystem services [Bruinsma, 2003; Lobell et al., 2008; Nkem et al., 2010;Wilkie et al., 1999]. The continent is also
important because of the tropical rainforests in central Africa (CA) that are a large carbon sink and play a role in
mediating the impact of greenhouse gas emissions [Baccini et al., 2008; Fisher et al., 2013].

The climate of CA is complex. Processes that modulate precipitation over the region include isolated convec-
tion cells to mesoscale convective systems (MCSs) that span a range of spatial and temporal scales and inter-
act with regional and global circulatory patterns [Houze, 2004; Jackson et al., 2009; Laing and Fritsch, 1993;
Pearson et al., 2014]. Another phenomena that characterize the region is the Intertropical Convergence
Zone (ITCZ) where the warm and moist trade winds converge to form a zone of increased convection and
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cloudiness [Schneider et al., 2014]. As such, the north-south movement of the ITCZ, its strength, and position
strongly influence processes that generate rainfall in the CA, including the MCS [Dezfuli and Nicholson, 2013;
Farnsworth et al., 2011]. Further, topographic features (e.g., Cameroon and Rift Valley highlands in the
northern and eastern CA, respectively) also trigger convection, which then propagates downstream and
develops into larger MCS and contributes to the observed pattern of maximum mid-CA precipitation
[Janiga and Thorncroft, 2014]. Other factors that influence CA’s precipitation include departures in sea surface
temperatures (SSTs) in the equatorial and south Atlantic, the African Easterly Jets and the Tropical Easterly
Jets [Farnsworth et al., 2011; Hastenrath, 1991; Nicholson and Dezfuli, 2013]. Moisture sourced from the
southern Atlantic and Indian Oceans facilitated by the easterlies also brings precipitation to land, although
their effects diminish farther onto the continent [Giannini et al., 2008; Nicholson and Grist, 2003; Suzuki, 2011].

Few studies have assessed the impacts of climate variability and change on CA [Intergovernmental Panel on
Climate Change (IPCC), 2007; Washington et al., 2013]. Analysis of the interactions between the region’s hydro-
logical cycle and the functioning of its ecosystems are particularly lacking, owing to the dearth of reliable, long-
term observations and projections of climate. As African countries strive to expand agriculture, increase
hydropower generation, and improve freshwater supply and sanitation, it is essential that reliable climate
change scenarios are made available for systematic evaluation of all plausible options [Bruinsma, 2003;
DeFries et al., 2010; IPCC, 2007; United Nations Environment Programme, 2006]. To this end, our goal is to provide
an evaluation of howGCMs simulate themain drivers of the hydrological cycle in CA: precipitation and tempera-
ture. We also evaluate approaches for climate model selection and provide a set of climate change scenarios for
the 21st century that can be used in climate change impact analyses related to water and natural resources.

We analyze monthly precipitation and temperature fields simulated by 25 GCMs that were submitted to the
fifth phase of the Climate Model Intercomparison Project (CMIP5) in support of the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment. We compare GCM simulations with observed climate fields
[Mitchell and Jones, 2005; Sheffield et al., 2006] to document model performance in reproducing the historical
climate, including interannual variability. We evaluate the relationship between precipitation and SST fields
to elucidate the physical mechanisms that control precipitation. We then correct the biases by applying a sta-
tistical bias correction method [Li et al., 2010] to monthly climate fields. The future projections are assessed in
terms of multimodel mean changes and their uncertainties, as a function of the emission scenario, time per-
iod, and performance of models for the region.

2. Data Sets and Methods
2.1. Study Area and Historical/Observed Data Set

The historical surface climate fields are based on a combination of the National Centers for Environmental
Prediction-National Center for Atmospheric Research (National Centers for Environmental Prediction
(NCEP)–National Center for Atmospheric Research (NCAR)) reanalysis and a suite of remotely sensed and
ground-based data sets. The development of this data set is described in Sheffield et al. [2006]. In brief, the
data set is developed by using submonthly variability in the NCEP-NCAR reanalysis with corrections for biases
applied at monthly time scale. We used precipitation, temperature, and diurnal temperature range (DTR),
which are available at three hourly, daily, and monthly time steps from 1948 to present at a horizontal
resolution of 1° latitude/longitude. The data set has been similarly used by others in studies of regional cli-
mate outside of CA (e.g., Bohn et al. [2007], Demaria et al. [2012], Sheffield et al. [2010], and Wang et al.
[2011]). In addition, we use the University of East Anglia Climate Research Unit gridded monthly time series
(1901–2008) of precipitation and temperature fields [Mitchell and Jones, 2005], and Hadley Center sea surface
temperature (SST) data set (1870–2012) [Hurrell et al., 2008], in order to compare the model simulations dur-
ing the historical period in the CA.

We focus our analysis on the CA region that covers the Congo River basin (CB, 15°S to 15°N and 10°E to 36°E;
Figure 1). The CB boundary extends to 10°N, but we expanded the latitude range to 15°N to account for the
full extent of the movement of ITCZ in the northern hemisphere. Several ecosystems lie within the region,
including evergreen tropical forests that comprise nearly 45% of the CB, vast freshwater wetlands in the cen-
tral and southeastern parts of the basin, and grasslands in the peripheries of the basin [Laporte et al., 2007;
Revenga et al., 1998]. The study area is divided into four subregions: Northern (NC, 5°N–1°5N and 10°E–36°E),
equatorial west (EQW, 5°S–5°N and 10°E–27°E), equatorial east (EQE, 5°S–5°N and 27°E–36°E), southwestern
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(SW, 5°S–15°S and 10°E–25°E), and southeastern (SE, 5°S–15°S and 25°E–36°E). A unimodal rainy season domi-
nates the NC (June-July-August (JJA)), and SW, and SE (December-January-February (DJF)); the equatorial
regions are characterized by bimodal rainy seasons: March-April-May (MAM) and September-October-
November (SON). Most of the rainforest is concentrated in the EQW (Figure 1). Parts of EQE lie along the
East African Rift system and the elevation here is around 1000m above sea level. The southern region (below
5°S) is divided into two (SW and SE) in order to distinguish the presence of extensive lakes and wetlands in
the SE.

2.2. Twentieth and 21st Century GCM Simulations

We selected outputs from 25 GCMs archived at the Program on Climate Model Diagnosis and Intercomparison
(PCMDI) website for monthly values of total precipitation and monthly values of mean, minimum, and maxi-
mum surface air temperature (Table 1). We also obtained monthly SST data for all but one model (M10).
These data archives and the CMIP5 experimental design are documented in Taylor et al. [2012]. In general,
the CMIP5 models have higher horizontal resolution than models from the previous CMIP phases and include
more comprehensive treatments of physical processes, such as interactive vegetation, and external forcings,
such as aerosols and land cover. All the historical simulations are for the period of 1850 to 2005. The monthly
minimum and maximum temperatures are monthly means of the daily values. Precipitation includes liquid
and solid phases from all types of precipitation simulated in the models. The historical simulations are forced

Figure 1. Study area (15°S–15°N, 10°E–35°E). The Congo River Basin boundary, extent of rainforest, and locations of large
lakes within the Congo River Basin are also shown.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 132



Table 1. List of Climate Models, Experiments, Ensemble Members, and Variables Whose 20th and 21st Century Simulations Are Analyzed in This Study

No Model Name Institute
Horizontal Resolution
(latitude × longitude)

No. of
Ensembles

Key
Reference

M1 ACCESS1–3 Commonwealth Scientific and
Industrial Research Organisation
and Bureau of Meteorology,

Australia

1.25 × 1.875 r1i1p1 Bi [2012]
ESa = 3.50°C and

TSb = 1.60°C

M2 BCC-CSM1-1 Beijing Climate Center 2.8 × 2.8 r1i1p1 Wu et al. [2013];
Xin et al. [2013]

ES = 2.8°C and TS = 1.85°C
M3 BNU-ESM GCESS, BNU, Beijing, China 2.8 × 2.8 r1i1p1 ES = 4.1°C and TS = 2.6°C
M4 CanESM2 Canadian Center for Climate

Modeling and Analysis
2.8 × 2.8 hist.and RCP45 – r[1–5]i1p1,

RCP85 – r[1–3]i1p1
Arora et al. [2011]

ES = 3.7°C and TS = 2.3°C
M5 CCSM4 National Center for

Atmospheric Research
0.9 × 1.25 r[1–5]i1p1 Gent et al. [2011]

ES = 3.2°C and TS = 1.73°C
M6 CESM1-CAM5 National Center for Atmospheric

Research, (NCAR) Boulder,
CO, USA

0.9 × 1.25 r[1–3]i1p1 Meehl et al. [2013]
ES = 4.1°C and TS = 2.33°C

M7 CNRM-CM5 Centre National de
Recherches Meteorologiques

1.4 × 1.4 hist. and RCP45 – r1i1p1,
RCP85 – r[1,2,4,6,10]i1p1

Voldoire et al. [2012]
ES = 3.3°C and TS = °C

M8 CSIRO-Mk3-6-0 CSIRO Marine and
Atmospheric Research

1.8 × 1.8 hist and RPC85 – r[1–5]i1p1,
RCP45 – r[1,3,5]i1p1

Rotstayn et al. [2010]
ES = 4.1°C and TS = °C

M9 EC-EARTH European Earth System Model 1.1 × 1.125 r[2,8,9]i1p1 Hazeleger et al. [2012];
Hazeleger et al. [2010]

ES = 2.56°C
M10 FIO-ESM The First Institution of Oceanography,

SOA, Qingdao, China
2.76 × 2.80 r[1–3]i1p1 Bao et al. [2012]

M11, M12,
M13

GISS-E2-H Goddard Institute for Space Studies,
New York, NY

2.0 × 2.5 hist and RCP45 –
r[1–3]i1p[1–3],

RCP85 – r1i1p[1–3]

Schmidt et al. [2006]
ES = 2.3°C and TS = 1.7°C

M14, M15,
M16

GISS-E2-R Goddard Institute for Space Studies 2.0 × 2.5 hist and RCP45 –
r[1–3]i1p[1–3],

RCP85 – r1i1p[1–3]

Schmidt et al. [2006]
ES = 2.1°C and TS = 1.5°C

M17 HadGEM2-CC Met Office Hadley Centre, Fitzroy Road,
Exeter, Devon, EX1 3PB, UK,

1.25 × 1.875 r1i1p1 Collins et al. [2011]

M18 HadGEM2-ES Met Office Hadley Centre 1.875 × 1.25 r[2–4]i1p1 Collins et al. [2011]
ES = 4.6°C and TS = 2.5°C

M19 INM-CM4 Institute for Numerical Mathematics,
Moscow, Russia

2.5 × 2.0 r1i1p1 Volodin et al. [2010]
ES = 2.1°C and TS = °C

M20 IPSL-CM5A-LR Institut Pierre Simon Laplace,
Paris, France

1.9 × 3.75 r[1–3]i1p1 Dufresne et al. [2013]
ES = 3.6°C and TS = 2.1°C

M21 MIROC5 Japan Agency for Marine-Earth
Science and Technology (JAMSTEC),
Atmosphere and Ocean Research
Institute, The University of Tokyo,

and National Institute for
Environmental Studies, Japan

1.4 × 1.4 r[1–3]i1p1 Watanabe et al. [2010]
ES = 2.7°C and TS = °C

M22 MIROC-ESM Japan Agency for Marine-Earth Science
and Technology (JAMSTEC),

Atmosphere and Ocean Research
Institute, The University of Tokyo,

and National Institute for
Environmental Studies, Japan

2.8 × 2.8 r1i1p1 Watanabe et al. [2011]
ES = 4.7°C and TS = °C

M23 MPI-ESM-LR Max Planck Institute for Meteorology 1.80 × 1.80 r[1–3]i1p1 Giorgetta et al. [2013];
Notz et al. [2013]

ES = 3.6°C and TS = 2.0°C
M24 MRI-CGCM3 Meteorological Research Institute 1.10 × 1.10 r1i1p1 Yukimoto et al. [2006]

ES = 2.6°C and TS = °C
M25 NorESM1-M Norwegian Climate Centre 1.875 × 2.50 r1i1p1 Bentsen et al. [2013];

Iversen et al. [2012]
ES = 2.8°C and TS = 1.4°C

aEquilibrium climate sensitivity.
bTransient climate response.
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by anthropogenic changes (CO2 and non-CO2 greenhouse gases, aerosols, and land cover), and in most cases,
each GCM provides multiple ensembles to represent model internal variability.

We use model output for two emission scenarios (the representative concentration pathways, RCPs), RCP45 and
RCP85, for the period of 2006–2100. The RCP45 is a stabilization scenario in which the total radiative forcing is sta-
bilized before 2100 by employing a range of technologies and policies to reduce greenhouse gas (GHG) and aerosol
emissions. The RCP85, on the other hand, is characterized by increasing GHG and aerosol emissions leading to high
concentrations beyond 2100. The approximate concentrations of radiatively active gases and aerosols for RCP45
and RCP85 by 2100 are 650 and 1370ppm CO2 equivalent, respectively [International Institute for Applied Systems
Analysis, 2009;Moss et al., 2010]. In terms of land use change, the RCP45 assumes landmanagement strategies that
result in expansion of forests and reduction in crop and pastureland for carbon storage, whereas the RCP85 assumes
considerable loss of forest area and concomitant increases in crop and pastureland [Lawrence et al., 2012].

One to five ensembles of each GCM were evaluated as available, with multiple ensembles available for 17 of
the 25 models (Table 1). We use the data reference syntax of Taylor et al. [2009a, 2009b] to refer to the ensem-
ble members: r<N> i<M> p< L>, where r is the initial condition (time), i is the initialization method, and p
is the perturbed physics ensemble, while N, M, and L represent integer values that identify the different
ensemble members from the same GCM (Table 1). Historical runs in the CMIP5 models are initialized (differ-
ent i) from different times in the preindustrial control run; these control runs usually span a 500 year simula-
tion and are characterized by the prescription of nonevolving, well-mixed atmospheric gases (including CO2)
and unperturbed land use [Taylor et al., 2009a, 2009b]. Multiple ensembles of a single GCM were computed
for a single initialization method but different initial conditions (different r but the same i). We treat the three
physics ensembles of GISS-E2-H and GISS-E2-R as six different models (p1, p2, and p3).

The horizontal resolution varies between GCMs, and we assigned the models into two groups: (a) high-
resolution models less than 2° latitude/longitude (MMEhires, n= 11) and (b) low-resolution models greater
than 2° (MMElores, n=14). We used bilinear interpolation to regrid all the GCM climate fields to match the
horizontal resolution of the observations (1°). These preprocessed outputs for the period of 1901–2100 are
used in the analysis presented here.

2.3. Bias Correction and Downscaling

We applied the equidistant quantile-based mapping method (EDCDF) developed by Li et al. [2010] to bias
correct themonthly precipitation and temperature fields. For each grid point, the probability density function
(pdf) for the monthly model-simulated climate field was mapped to the observed pdf for the historical period
(1951–2000), thus matching all statistical moments between the GCM simulations and observations.
Standard quantile-based mapping methods (CDF) then apply the mapping to the projections assuming that
the biases in the historical period persist in the future as well [Ines and Hansen, 2006; Wood et al., 2004]. The
EDCDF method extends the CDF method by taking into account changes in the model pdf between the his-
toric and the future periods. Li et al. [2010] compared the performance of both methods and showed that the
EDCDF is more efficient in reducing the model biases, which may be particularly important if changes in the
extreme values (at monthly scale) occur in the future. Further comparison with several CDF-type methods,
including Li et al. [2010], are provided in Watanabe et al. [2012].

To avoid interpolation between values of the empirical CDFs, parametric distributions were fitted to the pre-
cipitation and temperature data at each grid point, following Li et al. [2010]. A four-parameter beta function
was fitted to the temperature data. The distribution range parameters were taken as the extreme values from
the data extended by half of one standard deviation at each grid point. The distribution shape parameters
were then determined by the method of maximum likelihood estimation. A two-parameter mixed gamma
distribution was fitted to the precipitation fields to allow for periods of no rain. We applied this method—first
to correct the biases in the historical period (1901–2000) and then to the future period (2001–2100)—to all
the ensemble members of each GCM.

2.4. Evaluation of Model Performance and Future Projections

We used the mean square error (MSE) and spatial correlation to evaluate the model performance. The MSE
and spatial skill score (SS) between a model-simulated and observed patterns of a field (precipitation or tem-
perature) are defined as
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MSE ¼ 1
N

XN
i¼1

mi � oið Þ2 (1)

and

SS ¼ 1�MSE m; oð Þ
MSE o; oð Þ (2)

where m, o, and ō are the simulated, observed, and mean of the observed fields, respectively, and N is the
number of spatial points [Murphy, 1988; Pierce et al., 2009]. Further, the MSE can be decomposed as follows:

MSE m; oð Þ ¼ m� oð Þ2 þ σ2m þ σ2o � 2σm;o (3)

whereσ2m and σ2o are the variances of simulated and observed fields, respectively, and σm,o is the covariance of
simulated and observed fields. Because σm,o= σmσoRm,o, the MSE can be rewritten as

MSE m; oð Þ ¼ m� oð Þ2 þ σ2m þ σ2o � 2σmσoRm;o (4)

where Rm,o is the spatial pattern correlation coefficient—the potential skill of a model in replicating patterns
of departure from a climatological mean [Wilks, 2006]. The spatial pattern correlation is defined as

Rm;o ¼
1
N

XN

i¼1
mi �mð Þ oi � oð Þ
σmσo

(5)

Subsequently, the SS can be expressed as a function of Rm,o, such that

SS ¼ R2m;o � Rm;o � σm
σo

� �� �2
� m� oð Þ

σo

� �2
(6)

The three terms of SS in equation (6) quantify the influences of spatial pattern correlation, systematic biases,
and nonsystematic biases in the model simulations compared to an observed climate field [Murphy, 1988;
Wilks, 2006]. A model that exactly reproduces the observation will have a skill score of 1; a model that predicts
the regional average well, but without any spatial features will have a skill score of 0. We used the root-mean-
square difference (RMSD–square root of MSE) and the standard deviation (sd) of monthly, seasonal, and
annual fields to compare biases and interannual variability with observations in the historical period.

The performance in the historical period and projections are evaluated for individual models and for combi-
nation of multimodel ensembles (MME: n=25 and SME: n= 5, M6, M7, M18, M23, and M24). The selection of
SME is described in the results section.

3. Results
3.1. Precipitation
3.1.1. Historical Patterns
Themean annual precipitation fields for the historical period (1971–2000) simulated by the 25models exhibit
the largest absolute differences in the equatorial region (Figures 2a–2d and Figure S1 in the supporting infor-
mation). The RMSD between simulated and observed (Figure 2d) annual precipitation varies from 250mm to
800mm over the study area. The equatorial region (5°S–5°N) exhibits the largest (300 to 1000mm) absolute
biases among the models; however, the relative biases—measured as the coefficient of variation of RMSD
(CVRMSD)–are about the same (~0.4) over the study area. The relative biases are large during nonrainy seasons
on all sub regions shown in Figure 1 (Figure S2 in the supporting information). The RMSD and the spatial pat-
terns values do not vary much among models of the same family (M11–M16 and M17–M18; Table 1 and
Figure S1 in the supporting information). The pattern correlation between the observed and simulated
annual precipitation varies from 0.60 to 0.94, while the SS varies from �2.00 to 0.70. Thirteen model simula-
tions result in negative SS, largely as a result of nonsystematic biases. Among the individual models, M17
shows the highest SS. The highest skill scores are obtained for the MMEhires average followed by the all-
model average (Figures 2a and 2b). The SS for the five models in the SME (M6, M7, M18, M23, and M24) varies
between 0.5 and 0.7. The performance in the historical period and other characteristics in the SME will be dis-
cussed in section 4. The seasonal analysis of the 1971–2000 climatology reveals that most of themodels over-
estimate precipitation to a greater degree during DJF and SON (average RMSD 180mm) than MAM and JJA
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(average RMSD= 150mm). Notably, the overprediction of seasonal wetness is more pronounced in south-
eastern CA in DJF and in eastern equatorial CA in SON, which are also the dominant rainy seasons in these
areas (Figures S3–S6 in the supporting information). The seasonal SS values are comparable with the annual
values. Notably, the SS for the MME (0.7–0.85) and MMEhires (0.5–0.9) are within the range of the five models
in the SME.

A prominent feature in the central African rain belt is the strong bimodal cycle near the equator (MAM and
SON seasons) coinciding with the northward and southward movements of the ITCZ (Figure 3b). Many mod-
els, notably M6, M7, M18, M23, and M24, represent the bimodality and the intensity of precipitation satisfac-
torily (Figure S7 in the supporting information). Over the land surface, the northward movement of the heavy
precipitation region starts in January near 10°S and reaches the peak near 10°N in August. The southward

Figure 2. Average annual precipitation (mm/yr), temperature (°C), and DTR (°C) over the study area for the historical period of 1971–2000. For precipitation (a) all-,
(b) high-resolution, and (c) low-resolution GCM averages and (d) selected (M6, M7, M18, M23, and M24) and (f) observed values. (g–r) Show the same for temperature
and DTR, respectively.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 136



movement starts immediately and continues until December and brings heavier precipitation than the north-
ward phase as shown in the observations (Figure 3b). The averagemonthly precipitation along the northward
phase (January to June) of the ITCZ (black solid line in Figure 3b) is 170mm, which is significantly different
from the monthly precipitation of 190mm during the wetter southward phase (p< 0.05). Models M1, M4,
M9–10, M17–18, M21, M23–24 (see Table 1), and MMEhires capture the observed asymmetry (p< 0.05);
the asymmetry is reversed in M10. The average difference between the northward and southward phases
among the above models is 20mm. Several models (e.g., M1 and M21) yield too much precipitation during
the southward phase, while others (e.g., M2, M11, and M19) poorly reproduce the asymmetric precipitation
structure. The pattern correlations of this space-time structure (Figure 3 and Figure S7 in the supporting infor-
mation) are generally high (0.83–0.97, > 0.9 for the models in the SME) due to the models’ ability to repro-
duce the strong seasonality, which is characteristic in this region.

Figure 3. Zonally averaged monthly precipitation (mm/month) along the latitudes, averaged over the study region (10.5°E to
35.5°E), (a) all-GCMaverage and (b) observed values. The black solid line in Figures 3a and 3b indicates themonth of maximum
precipitation along the latitudes for the all-GCM average and observed precipitation. The red and grey solid lines and dotted
lines in Figure 3a indicate the same for high-resolution (high-res), low-resolution (low-res), and individual GCMs, respectively.

Figure 4. Taylor diagram showing the comparison of monthly (a) precipitation, (b) temperature, and (c) diurnal temperature range simulations over the region with
observations based on 1971–2000 climatology. Multimodel ensembles (all-GCM, high-res: high resolution and low-res: low resolution) and selected GCMs (M6, M7,
M18, M23, and M24) described in the text are marked in colors. All other models are shown as open circles.
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Agreement between the model-simulated and observed climatology is further evaluated in a Taylor Diagram
(Figure 4a) [Taylor, 2001]. In this polar plot, the reference or observed data are plotted on the abscissa, and
the model-simulated values lie in the first quadrant if the spatial correlation coefficient is positive. The radial
dimension indicates the standardized deviation (ratio of standard deviation of simulated and observed fields,
ratios >1 indicate that simulated values are more variable than observed) of the monthly climatology, and
the angular dimension shows the pattern correlations. These statistics are computed using the 1971–2000 cli-
matology. The similarity between model-simulated and observed precipitation is quantified in terms of their
correlation and the amplitude of the variability. For example, models M7, M20, and M21 have a pattern correla-
tion of about 0.85, but the standardized deviations are higher (>1.0) for M20 and M21 than M7. On the other
hand, the pattern correlation of M23 is slightly higher than M9, but the standardized deviation is lower (<1)
for M9. Many models show large variability even though the pattern correlations are high. The range of pattern
correlations and standardized deviations of five models in the SME are 0.82–0.90 and 0.96–1.08, respectively.
Also, the MME (n=25), MMEhires average (MMEhires, n=11), andMMElores average (MMElores, n=14) outper-
form many of the individual models, but their performance measures are within the range of the SME models.

We comparedmodeled interannual variability using standardized anomalies for the period of 1950–2000 and
coefficient of variation (Figure S8 in the supporting information) in CA and the subregions. The coefficient of
variation of observed annual precipitation varies between 10 and 20% within CA; however, the modeled
values (median across the 25 models) vary between 5 and 10%. Northern CA exhibits the largest variability,
while the equatorial CA shows the smallest. All models capture this pattern qualitatively (see Figure S8 in the
supporting information), although the variability is consistently low.

Figure 5. Comparison of observed and bias-corrected annual and monthly climatology of (a–d) precipitation and (e–h) temperature for the period of 1941–1970.
A difference map is shown in Figure S9 in the supporting information.
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The bias correction reduced the RMSD of annual precipitation to 30 ± 4mm. The spatial-temporal patterns
and magnitudes of the bias-corrected precipitation fields agree with the historical observed climatology
(Figures 5a–5d and Figure S9 in the supporting information).
3.1.2. Future Projections
The change in precipitation in CA relative to the historical (reference) period (1971–2000) varies between
�6% and 12% for the near term (2021–2050) and �9% and 27% for the long term (2070–2099) between
the 25 models and the two RCPs. In the near term, the MME mean projects a 2.4% and 2.8% increase in pre-
cipitation relative to the reference period for RCP45 and RCP85, respectively. The projected changes for the
long term are 4% and 7% for RCP45 and RCP85, respectively (Table 2). Overall, the MME average projections
show larger precipitation increases in the northern latitudes (~6% in the near term for both RCPs and 8%
and 15% in the long term for RCP45 and RCP85, respectively), moderate increases in the equatorial and
southwestern regions and a decline in the southeast in the near and long terms for both RCPs (Table 2 and
Figures 6a–6d). For a given model, the spatial patterns of precipitation in the projection periods are remarkably
similar to the historical period, despite the differences in the emission scenarios (figure not shown). The spatial
patterns of projected change between the RCPs are also similar within individual models. However, the
magnitude of change and its spatial variation within CA are not uniform across the models (Figures 6e–6h).
Large variations in the projected changes are noticeable in northern and eastern CA, particularly under the
long-term projections, compared to moderate variations elsewhere. Seventeen models project an increase in
precipitation in the northern and equatorial CA, whereas 14 models project an increase in southern CA
(Figures 6i–6l). Projected changes are greater than twice that of the MME in at least eight models in the near-
term and five models in the long term for both RCPs. The near-term projections do not vary much between
the RCPs, but they diverge in the long-term (Figure S10 in the supporting information).

To further confirm that the projected changes are significantly different from the historical period, we com-
pare the 30 year annual precipitation in the reference, near-, and long-term periods for the two RCPs by
means of a t test. We test the null hypothesis that the means in the respective periods are from the same
population; rejection of this implies that they are not (at 5% level). The results reveal that not all the models’
projections are significant, and substantial spatial variability exists between models and RCPs. The changes
that are significant in the projection periods are highlighted with hatching in Figures 6a–6d. We only show
(crosshatch) regions where at least half the models project a significant change. The changes, irrespective
of the RCPs, are not significant in the near term in most parts of CA, except in the northern latitudes. In
the long term, more models agree on the sign and magnitude of change under RCP85 than RCP45. Model
consensus on the decrease in precipitation in southeastern CA is also uncertain in the near-term and long-
term RCP45 scenario. The SME ensemble shows moderate reductions in the near term but an increase in
the long term (see Table 2).

The projected changes in the spatiotemporal pattern of the CA rain belt show an intense rainy season from
August to December (Figure 7). The wet season rainfall intensity is more pronounced in the long-term RCP85
compared to the RCP45. The location of maximum precipitation along the latitudes does not vary at
monthly scale.

Table 2. Multimodel Mean Change in Precipitation (%) and Temperature (°C) for the Near Term (2021–2050) and the Long Term (2070–2099) in Relation to the
Historical Period (1971–2000)a

Near Term (2021–2050) Long Term (2070–2099)

Precipitation (%) Temperature (°C) Precipitation (%) Temperature (°C)

RCP45 RCP85 RCP45 RCP85 RCP45 RCP85 RCP45 RCP85

Central Africa 2.2 (3.7) 2.7 (3.8) 1.4 1.6 3.7 (5.6) 7.0 (9.2) 2.3 (2.4) 4.1 (4.3)
Northern 4.5 (6.9) 5.5 (6.4) 1.4 1.6 (1.7) 6.6 (7.8) 14.0 (15.2) 2.3 (2.5) 4.1 (4.4)
equatorial west 1.7 (3.8) 1.8 (4.3) 1.3 1.5 2.6 (5.5) 4.6 (8.4) 2.1 (2.3) 3.9 (4.1)
Equatorial east 2.4 (0.6) 2.6 (0.5) 1.3 (1.4) 1.2 (1.6) 5.7 (5.1) 10.1 (7.4) 2.2 (2.3) 3.9 (4.1)
Southwestern 0.6 (2.7) 0.8 (2.6) 1.4 1.7 (1.6) 1.4 (4.5) 0.2 (3.8) 2.3 (2.4) 4.3
Southeastern �1.4 (�1.0) �1.0 (0) 1.5 (1.4) 1.7 �0.7 (2.2) �1.5 (3.2) 2.4 (2.5) 4.4 (4.3)

aProjected changes by the selected model ensemble (M6, M7, M18, M23, and M24) are given in parentheses. Only one value is given when they are the same
for both.
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Figure 6. Multimodel mean change in precipitation in the Congo Region in relation to the reference period of 1971–2000. (a–d) Change in precipitation as percen-
tage, (e–h) standard deviation of precipitation change across the models, and (i–l) number of models out 25 that projects an increase in precipitation as fraction.
Cross hatching in Figures 6a–6d indicate regions where annual values in the projection and reference periods are significantly different (p< 0.05 in t test) in more
than 50% of the models.
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3.2. Temperature
3.2.1. Historical Patterns
The temperature trends for CA vary from�0.03 to +0.19°C/decade during 1950–2000 across the 25 models. The
observed and all-model average trends for the same period are +0.14 and +0.10°C/decade, respectively. Only one
model (M8) shows a negative trend. Themodel-predicted spatial variation of average annual temperature for the
historical period (1971–2000) shows good agreement with the observations (Figures 2f–2i and Figure S11 in the
supporting information). The pattern correlation between the annual observed and simulated temperatures var-
ies between 0.7 and 0.9 for differentmodels. Pattern correlations are lowest in January, November and December
for all themodels, whereas the highest values are for April, May, June, and July (Figure S12 in the supporting infor-
mation). Themedian SS for annual and seasonal simulations for the historical period (1971–2000) varies between
0.3 and 0.7, except for DJF for whichmajority of the models show limited skill. Nevertheless, the models simulate
temperature better than precipitation as shown in the Taylor diagram (Figure 4b). The overall bias among the
models is 2±0.8°C (one standard deviation). Six models (M11–M16, variants from one modeling group), have
an overall warm bias, whereas, the models M9, M19, and M25 have an overall cold bias.

While changes in maximum and minimum temperature strongly affect the changes in mean temperature,
the difference between them provides added knowledge about regional climate change. The observed
DTR (maximum-minimum temperature) values are high (~14°C) in the northern and southern latitudes com-
pared to the equatorial region (~11°C, Figure 2o). Comparison of model-simulated annual DTR shows that the
spatial structure is satisfactorily simulated (pattern correlations 0.74–0.89, Figures 2k–2n), although many
models do not capture the observed variability (Figure 4c). The annual average DTR has an overall bias of
3.3 ± 0.8°C. Among the individual models, M7 has the lowest bias (1.8°C).

The bias-corrected temperature (Figures 5e–5h and Figures S9c and S9d in the supporting information) andDTR
fields are in good agreement with observations. The overall annual temperature bias is reduced to 0.15°C.

Figure 7. Zonally averaged deviation of monthly precipitation (mm/month) from the reference (1971–2000) climatology along the latitudes, averaged over the study
area (10.5°E to 35.5°E), (a–c) near term, 2021–2050, RCP45, (d–f) near-term, 2021–2050, RCP85, (g–i) long term, 2070–2099, RCP45, and (j–l) long term, 2070–99, RCP85.
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Figure 8. Multimodel mean change in temperature and diurnal temperature range over central Africa in relation to the reference period of 1971–2000. (a–d)
Temperature change (°C), (e–h) standard deviations of temperature change across models (n = 25), (i–l) average change in diurnal temperature range (°C), and
(m–p) standard deviation of the change in diurnal temperature range across models for the near term (2021–2050), long term (2070–2099), and RCP45 and RCP85.
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Figure 9. Skill scores for the (a) annual and (b) December-January-February, (c) March-April-May, (d) June-July-August, and
(e) September-October-November seasons for precipitation (blue) and temperature (red). Numbers of GCMs used in the
MME averages are shown in the x axis.
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3.2.2. Future Projections
The temperature anomalies for the two RCPs follow similar warming trends until the 2030s, but diverge
toward the end of the century. The rate of temperature change is greater for RCP85 than RCP45 after
2040. The uncertainties in the projections across the models are larger and more visible in RCP85 than
RCP45. Toward the end of the 21st century, RCP85 shows continuous warming as a result of increasing
GHG emissions, whereas RCP45 shows signs of stabilization (see Figure S13 in the supporting information).

The average, near-term temperature is projected to increase by 1.4°C and 1.6°C for RCP45 and RCP85, respec-
tively (Table 2). Over the long term, the temperature projections diverge considerably due to differences in
emission pathways between the two RCPs. The average, long-term (2070–2099) temperature increase is
2.3°C and 4.1°C for RCP45 and RCP85, respectively (Table 2).

The spatial distribution in the projected temperature change and the intermodel variability are similar for
both RCPs in the near term (Figures 8a, 8b, 8e, and 8f). In the long term, RCP85 projections exhibit larger spa-
tial and intermodel variability in average temperature than RCP45 projections (Figures 8c, 8d, 8g, and 8h).
Near the end of the 21st century, the subequatorial region undergoes greater warming than the equatorial
region for both emission scenarios, with warming in parts of southern CA exceeding 5°C for RCP85. The
DTR values display a decreasing pattern for most of the CA, except the southern CA for both the RCPs
(Figures 8i–8l). These spatial patterns remain the same for the near and long terms. However, the magnitude
of change and the intermodel variability is large for the long-term RCP85 scenario (Figures 8m–8p). The long-
term DTR projections under RCP85 are highly variable among models.

3.3. Model Performance and Projection Uncertainties

We examined the performance of models in simulating historical climate using skill scores. The highest skill
scores for an individual model are 0.7 (M17 and M18) and 0.80 (M8, M21, and M24) for precipitation and
temperature, respectively, but M8 shows limited skill for precipitation. Several combinations of models yield
higher skill scores than those of the “best” individual models. For example, the average of 13 models
(6 MMEhires and 7 MMElores) with pattern correlations greater than 0.6 and the standardized deviations
between 0.9 and 1.1 (subjective measures of acceptable model-data agreement) yields a skill score of 0.76 for
precipitation and 0.85 for temperature in the historical period. All models in the SME have an SS greater than 0.5.

We also examined the performance of multimodel ensemble averages (MME) in simulating the historical cli-
mate by computing the skill scores of different combination of models, starting from the individual models,
average of two models, the average of three models, and so on (limited to 500 combinations). The skill scores
are estimated for annual and seasonal precipitation and temperature fields (Figure 9). Temperature skill scores
are better than precipitation skill scores for all model combinations (Figure 9a). The upper whiskers in Figure 9
indicate the best skill scores obtained for different model combinations. For precipitation the best skill score
value peaks at five or six model averages and slightly reduces as more models are added that simulate precipi-
tation poorly (Figure 9a, whiskers of blue curve). The skill scores approach an asymptote after approximately five
models have been averaged, although the uncertainty of selecting the five models that give the best skill score
remain large, except for the JJA season. The uncertainty is reduced by at least 50% after five more models have
been added; it is further reduced by 50% with the addition of another ten models.

4. Discussion

We have examined historical simulations and future projections of two climate fields that exert considerable
control on the functioning of terrestrial ecosystems and water resources. Overall, the GCMs simulate the spatial
patterns and seasonal shifts of historical observations of temperature better than precipitation. The spatial varia-
bility andmagnitude of the observed annual and seasonal precipitation vary considerably in model simulations.
All but seven models produce too much precipitation in CA, particularly in the tropical Congo River Basin. The
strong seasonality, northward and southward movement of the rain belt, its asymmetric nature, and the bimo-
dal annual cycle near the equator are simulated well by some models but poorly in many (e.g., M2, M11, and
M25). The MMEhires models have better skill in simulating the seasonality in precipitation than the MMElores
models. The historical simulation of precipitation does not vary much between ensembles of the samemodels,
which suggest that differences inmodel performance is primarily due to the differences in model physics rather
than natural variability.
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We postulate that differences in model skill in simulating precipitation are partly dependent on how they
replicate the teleconnections with SST departures [Balas et al., 2007; Hastenrath, 1984; Hirst and Hastenrath,
1983; Suzuki, 2011]. Other mechanisms are also involved (e.g., global tropical circulations, Indian Ocean
SSTs, inland moisture transport, and topographically induced controls on MCS), but the Atlantic teleconnec-
tion may be one of the dominant (see Dezfuli and Nicholson [2013], Hirst and Hastenrath [1983], Jackson et al.
[2009], Nicholson and Grist [2003], and Mitchell and Wallace [1992]). Moreover, CA also lacks observed gage
data [New et al., 2000]; therefore, comparing outputs such as wind patterns and SST departures in the tropical
Atlantic could provide more insight about climate model performance. We investigated the correlation
between SST departures in the eastern Atlantic (0°S–15°S and 0°E–10°E) and precipitation during the
rainy seasons in NC, EQW, and SW. The results show that only a few models agree with the observations
(Figure 10). Many models show strong positive correlations with SST in the SON season in EQW, but not
the observed relationship in MAM—the secondary rainy season in EQW. We have highlighted a few models
that are able to capture the relationship reasonably; these models also exhibit better agreement with historical
precipitation and temperature climatology (high values of SS, spatial pattern correlations, and the asymmetric
structure of precipitation seasonality). Precipitation and SST linkage are further influenced by remote forcings,
for example, by seasonal wind stress relaxation over the Equatorial Atlantic [Hirst and Hastenrath, 1983; Todd
and Washington, 2004], which can partly explain the differences in the two rainy season peaks.

GCMs evaluated here and several of their predecessors exhibit a pattern of excessive precipitation off the equa-
tor but not sufficient on the equator, which is often referred to as the double ITCZ problem [Bellucci et al., 2010;
Lin, 2007]. Recent studies report that many CMIP5 models (e.g., M5, M7, M20, and M25) exhibit the double ITCZ
structure [Dufresne et al., 2013; Gent et al., 2011; Li and Xie, 2014]. The presence of a strong double ITCZ in M15,
M19, and M25 or the absence of it in M8, M18, and M21, as reported by Li and Xie [2014], does not reveal any
differences in skill in simulating the historical annual precipitation. However, the latter models reproduce the
monthly space time structure better (Figure S7 in the supporting information). Model parameterization
schemes, their performance and potential inadequacies, and further research needs in tropical regions are
further discussed in Cook and Vizy [2006], Dai [2006], Monerie et al. [2012], Pearson et al. [2014], Phillips and
Gleckler [2006], and Washington et al. [2013]. Gent et al. [2011] and Meehl et al. [2013] provide evidence of
improved representation of model processes (e.g., convection, plant functional type dependency on soil moist-
ure, and evapotranspiration) and subsequent improvements in precipitation and temperature simulations in
models M5 and its successor M6; however, the double ITCZ problem remains in M5. The southern Atlantic
moisture flow, which is modulated by seasonal SSTs and trade winds, is an important source of atmospheric
moisture and, subsequently precipitation in CA [Gimeno et al., 2012;Hastenrath, 1991; Kent et al., 2015]; however,
many models exhibit too strong or weak coupling with Atlantic SSTs. The overestimation of ocean evaporation
in M25, as reported in Bentsen et al. [2013], can be the cause of significant overestimation of precipitation in the
CA. Evolution of Atlantic SSTs, which is an important driver of CA’s precipitation, in several CMIP5 models is pre-
sented in Richter et al. [2014]. They illustrate that somemodel simulations (e.g., M18 andM24) have substantially
improved compared to their earlier versions and propose that modeling groups should intensify their efforts to

Figure 10. Correlation between seasonal precipitation and SSTs near West African coast (0°S–15°S, 0°E–10°E) at the begin-
ning of the season. Calculations are based on 1950–2000 seasonal anomalies based on the reference period of 1971–2000.
The grey open circles show individual model correlations, whereas colored circles show specific models mentioned in the
text. The dark black squares show the correlation between observed precipitation and SSTs for the same period.
Correlations for the main rainy season in the four regions, identified in parenthesis (see Figure 1) are reported.
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improve basic model performance. Most models, according to Richter et al., overestimate the Atlantic cold ton-
gue SSTs, which have implications on the latitudinal position of the ITCZ and seasonality and magnitude of
continental precipitation.

The MCSs also play significant role in spatiotemporal variability of precipitation in CA. The importance of
topographic (e.g., Rift Valley and Cameroon highlands) and environmental (e.g., relative humidity and con-
vective available potential energy, remote forcings such as SSTs and wind stress) controls on the growth
and propagation of MCSs, and the lack of their representation and subsequent poor simulation of precipita-
tion in GCMs are evaluated in recent studies (e.g., see Farnsworth et al. [2011], Jackson et al. [2009], Janiga and
Thorncroft [2014], and [Richter et al., 2014]). Therefore, we emphasize, for instance, that causal mechanisms
related to the northward and southward phases of precipitation (Jackson et al. [2009] and Hirst and
Hastenrath [1983], see Figure 3) and their representation in models require separate consideration.

Although, the ensemble average of MMEhires models reproduces observed precipitation better than the
average of MMElores models, we do not find a consistent pattern of better performance among the
MMEhires models. For example, M7 and M18 simulate precipitation better than M5 and M21, although all
four simulate temperature and DTR about the same. The observed spatial patterns in precipitation such as
the east-west distribution near the equator (see Figure 2 and Figure S1 in the supporting information) are

Figure 11. Comparison of projected changes in (a–d) precipitation (Pr) and (e–h) temperature (T) with skill scores for 5, 10,
15, and 20 MME averages. Each MME combination consists of 500 samples. The red asterisks show the median of skill score
on x axis and projection values on y axis; 50% of (n = 250) the samples lie within the inner contour line. These plots visualize
location, spread, correlation, skewness, and tails of skill scores versus projections.
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not captured by many models, with the eastern heavy rain zone (~20°E–25°E) appears to be drifted farther
eastward than observed. This pattern is more apparent in the MMElores models. The SME compares well with
historical observations than the all average.

The Taylor diagram shows that the pattern correlations of precipitation vary between 0.65 and 0.95. For com-
parison, the values reported for global correlations of precipitation in two previous CMIP studies (CMIP2 and
CMIP3) are ~0.4–0.7 and ~0.5–0.8, respectively [Phillips and Gleckler, 2006]. Note that the present generation
of GCMs includes time-varying GHG concentrations and aerosols and dynamic land use change, which many
previous generations of GCMs did not include. The Taylor diagram also reveals that the majority of the mod-
els show large intraannual variability and greater model to observation mismatch for precipitation than tem-
perature. However, the MME or the subsets of models (SME, MMEhires, and MMElores) consistently
outperform individual models for both precipitation and temperature, which suggests that a smaller group
of models can be used in regional climate change assessment. The SME is a subset of MMEhires, which sug-
gests that a combination of skillful process representation and horizontal resolution improves model perfor-
mance. However, precipitation projections of the SME (and most of the MMEhires) vary under both emission
scenarios, indicating that model skill does not necessarily reduce projection uncertainty between models.

The performance of the multimodel ensemble means in the historical period improves as more models are
added (Figure 9), irrespective of the performance of individual models. This is attributable to the contribution
of different skill levels by individual models, which negates individual model errors, in agreement with conclu-
sions drawn for other regions (see Knutti et al. [2010], Pierce et al. [2009], and Phillips and Gleckler [2006]).
However, as more models are added to the MME, the historical performance becomes less important for project-
ing future changes. For example, with a five-member MME, the median value of projected change in precipita-
tion (temperature) in the near- and long-term RCP85 are 2.9±1.9% (1.6±0.1°C) and 7.3±4.0% (4.1±0.3°C),
respectively, whereas with 15-member MME, the projected changes are 2.8±0.8% (1.6±0.05°C) and 7.1±1.6%
(4.1±0.1°C), respectively (the ranges are one standard deviation from the median); which indicates that projec-
tion uncertainty reduces withmoremodels in theMME, particularly true for precipitation projections. To illustrate
this further, we plot the historical skill scores against projected changes in precipitation (Figures 11a–11d) and
temperature (Figures 11e–11h) for the near and long terms and for the two RCPs. The figure uses 5, 10, 15,
and 20 MME averages of several model combinations. For a skill score range between 0.50 and 0.75, the near-
term projections vary between 2% and 5% for the two RCPs when 15 or more models are used. The long-term
RCPs still overlap with the near-term projections in many of the MME combinations. However, in the long-term
scenarios, models with higher skill scores (e.g., 0.70–0.75 range) uniformly predict a smaller increase in precipita-
tion than models with lower skill scores (e.g., 0.50–0.55, Figures 11a–11d). In contrast, as the number of models
increases in the MMEs, the skill scores of historical temperature simulations improve and a well-defined warming
signal emerges in the near and long terms for both RCPs. It is also clear that the choice of GCMs and emission
scenarios will dominate the climate change projection toward the end of the century. Interestingly, the SME pro-
jections lie within the ranges reported above (see Table 2); however, the spatial patterns are slightly different in
the precipitation projections (Figure S14 in the supporting information). Both ensembles project a reduction in
precipitation in southern CA, but the increase in the north in the near term is slightly less. The SME also shows
a region of reduced precipitation in the EQE along the Rift Valley (0°N–5°N and 30°E–35°E) in the near term.

The rate of change in precipitation during the northward and southward phases of the ITCZ is significantly
different (Figure 7); the contrast appears prominently in the long-term RCP85. In the equatorial region, pro-
jected changes are higher in the second semester (SON) compared to the first semester (MAM); we expect
that these disparities are modulated by different circulation patterns (e.g., tropical jets), SST anomalies in
the Atlantic and Indian Oceans, and the contribution of MCS [Dezfuli and Nicholson, 2013; Jackson et al.,
2009; Pearson et al., 2014] and therefore warrant separate investigation. Recent efforts exploring spatial reso-
lution and representation of convection processes reveal that both improve model simulations in the tropical
regions; however, processes representation is themain source of biases [Birch et al., 2014; Pearson et al., 2014].

Overall, precipitation increases during the wet and dry seasons in the northern and equatorial regions but
decreases in the south. The increase (or decrease in the south) is more prominent under RCP85 than
RCP45, indicating a stronger response of the climate system to anthropogenic warming. In addition to the
drying, both maximum and minimum temperatures rise simultaneously in the south (DTR increases, see
Figure 8), which will have implications on hydrology and ecosystem functioning in the region. Projected
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changes in the near and long terms are consistent with projections reported inMeehl et al. [2012] for M5. We
also find that overall projections lie within the range reported in the IPCC Fourth Assessment Report; notably,
the long-term projections for RCP45 and RCP85 are comparable with that of the B1 and A1F1 scenarios in the
fourth assessment [Rogelj et al., 2012; Solomon et al., 2007].

The comparisons above present an informed model selection process for regional climate change assess-
ment. Our analyses show that the models in the SME have high SS, simulate the historical climatology well,
and exhibit good correlations with likely mechanisms that dominate the regional climate. Recent work on
mechanisms controlling precipitation variability in CA and model performance further support this [Dezfuli
and Nicholson, 2013; Giannini et al., 2008; Richter et al., 2014; Sandjon et al., 2012; Washington et al., 2013].
We anticipate that models that simulate precipitation and temperature well exhibit better performance with
other variables and teleconnections such as the ENSO and the Atlantic Multidecadal Oscillation.

The choice of emission scenarios will dominate the projection toward the end of the century as seen in Figures 6
and 8. Consensus among GCMs on the temperature and DTR projections are high and distinctly different
between the two RCPs, but it is rather weak in the precipitation projections. The limited model skill for precipita-
tion in the tropics is attributable to several factors including, though not limited to (a) inadequate process under-
standing, (b) physical processes representation and parameterization, (c) rather coarse horizontal resolution, and
(d) insufficient observations in the region to better constrain models. Further, terrestrial vegetation response and
the climate system are closely coupled; how tropical vegetation will respond to changes in climate still remains a
large source of uncertainty [see Huntingford et al., 2013]. Mechanisms through which vegetation influences cli-
mate include albedo, canopy conductance, photosynthesis, and water and energy fluxes [Richardson et al.,
2013]. Feedback between vegetation and climate are represented by plant functional types; however, represen-
tation of vegetation (particularly tropical vegetation) in GCMs that couples land surface to the atmosphere
requires considerable improvements [Bonan, 2008; Friend et al., 2014; Randall et al., 2007].Diagnostic analyses
of these issues are beyond the scope of this study, but several of these are discussed in Knutti and Sedlacek
[2013], Giannini et al. [2008], [Pearson et al. [2014], and [Richardson et al. [2013]. Based on a global analysis using
several CMIP5 and CMIP3 models, Knutti and Sedlacek [2013] reports that projected changes in temperature and
precipitation are remarkably similar in CMIP5 and CMIP3. Given that, by design, the CMIP5 models use the same
GHG, land use and other input forcings, themain reason for divergent projections ought to be the representation
of different physical processes. Attributes that modulate the space-time variability of precipitation, including the
SST anomalies in the tropical oceans, movement of the ITCZ, zonal and meridional wind patterns, moisture flux,
and cloudiness are presented in Nicholson and Dezfuli [2013],Nicholson and Grist [2003], Sandjon et al. [2012], and
Suzuki [2011]. Detailed investigations of how algorithms represent these attributes will illuminate the limitations
climate models have in simulating precipitation fields in tropical regions like CA.

Our analyses highlight that both precipitation and temperature simulated by all models exhibit biases that
should prevent their direct use in climate change impact and adaptation studies. Even the individual models
and the MME that yield better performance in the historical period contain systematic biases, which are attribu-
table to the limited skills in simulating the spatial patterns and variability. Hence, the statistical bias correction
methods, such as EDCDF, are employed to correct biases in the monthly climate fields. Ehret et al. [2012] argue
that bias correction methods, similar to what is employed in this study, are not valid procedures that can be
used to correct GCM simulation mismatch, as they are statistical methods that neither take into account the
model’s physical processes nor consider any feedback mechanisms associated with other variables. However,
we emphasize the inherent limitations (discussed elsewhere in this paper) of climate models in simulating var-
ious climate fields, particularly in the tropical regions like the CA, where observations are severely lacking. The
uncertainty associated with the choice of bias correction method is marginal compared to climate model and
emission scenario selection [Chen et al., 2011; Li et al., 2010]. Any climate change assessment where the GCM
outputs are used as input will inherit the biases in the subsequent outputs. Studies on climate change impacts
on land surface hydrology and agriculture report that models forced with outputs directly from the GCMs or
even regional climate models nested within GCMs result in unacceptably biased simulations, and therefore,
the GCM (or regional model) outputs ought to be bias corrected [Glotter et al., 2014; Salathé et al., 2007; Sulis
et al., 2012;Wood et al., 2004]. Since the model outputs cannot be used directly, we apply bias correction that
corrects all moments of the climate fields’ statistical distribution at monthly scale. We choose monthly outputs
over daily because the region lacks good coverage of observed daily climate fields. We proposemethods where
historical model performance and future changes can be quantitatively assessed and develop bias-corrected
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climate fields that can be used to analyze climate change response of ecosystem services in the future. Similar
bias correctionmethods have been successfully implemented in several studies [Maurer and Hidalgo, 2008; Piani
et al., 2010; Teutschbein and Seibert, 2012; Thrasher et al., 2012;Watanabe et al., 2012]. Our analyses also demon-
strate that the choice of climate models and emission scenario will dominate the variability in climate change
projections. The impacts of the projected changes in precipitation and temperature on the hydrological cycle in
the Congo River Basin will be explored in a companion study.

5. Conclusions

We present an evaluation of the performance of several CMIP5 models in CA and assess climate projections
for two RCPs. The multimodel evaluation highlights the spatiotemporal variability of precipitation and
temperature in CA and illustrates the uncertainties in 21st century projections. Although several GCMs
simulate important features (in precipitation and temperature) and the climatology in the CA reasonably well,
model outputs ought to be corrected before they can be used as practical planning tools. We identified a
subset of models based on historical performance and causal mechanisms that can provide plausible future
projections and highlighted uncertainties associated with model selection. The advances in climate model
development in CMIP5 provide a better perspective on how global changes and circulations affect regional
climate in central Africa (e.g., SST changes in tropical Atlantic). Future efforts on climate change mitigation
and adaptation in CA should consider these global implications.

The climate fields developed in this study can be used in hydrologic and ecosystem modeling at regional
and local scales. They can also be used to develop diagnostic tools to analyze threats to water and food
security, as well as ecosystem sustainability. Even though the focus of our analysis is the CA, the data
generated are available for the global land areas and provide spatially and temporally consistent preci-
pitation and temperature fields for specific regions that end users seek. The precipitation, temperature,
and DTR data for the period of 1950–2099 are available at 1° spatial resolution over global land areas in
netCDF format from http://hydrology.princeton.edu/data.php. The monthly data set includes both
before and after bias-corrected climate fields.

References
Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield (2011), Carbon

emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38(5), L05805.
Baccini, A., N. Laporte, S. J. Goetz, M. Sun, and H. Dong (2008), A first map of tropical Africa’s above-ground biomass derived from satellite

imagery, Environ. Res. Lett., 3(4).
Balas, N., S. E. Nicholson, and D. Klotter (2007), The relationship of rainfall variability in West central Africa to sea surface temperature

fluctuations, Int. J. Climatol., 27(10), 1335–1349.
Bao, Y., F. L. Qiao, and Z. Y. Song (2012), The historical global carbon cycle simulation of FIO-ESM, paper presented at EGU General Assembly

2012, EGU, Vienna, Austria.
Bellucci, A., S. Gualdi, and A. Navarra (2010), The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical

circulation regimes, J. Clim., 23(5), 1127–1145.
Bentsen, M., et al. (2013), The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,

Geosci. Model Dev., 6(3), 687–720.
Bi, D. (2012), The ACCESS Coupled Model: Description, Control Climate and Evaluation.
Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor (2014), The scale dependence and structure of convergence fields preceding the

initiation of deep convection, Geophys. Res. Lett., 41, 4769–4776, doi:10.1002/2014GL060493.
Bohn, T. J., D. P. Lettenmaier, K. Sathulur, L. C. Bowling, E. Podest, K. C. McDonald, and T. Friborg (2007), Methane emissions from western

Siberian wetlands: Heterogeneity and sensitivity to climate change, Environ. Res. Lett., 2(4).
Boko, M., I. Niang, A. Nyong, C. Vogel, A. Githeko, M. Medany, B. Osman-Elasha, R. Tabo, and P. Yanda (2007), Africa climate change 2007:

Impacts, adaptation and vulnerability, in Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by M. L. Parry et al., Cambridge Univ. Press, Cambridge, U. K.

Bonan, G. B. (2008), Forests and climate change: Forcings, feedback, and the climate benefits of forests, Science, 320(5882), 1444–1449.
Bruinsma, J. (2003), World Agriculture: Towards 2015/2030: An FAO Perspective, 520 pp., Earthscan/James & James, London, U. K.
Chen, J., O. Haerter, S. Hagemann, and C. Piani (2011), On the contribution of statistical bias correction to the uncertainty in the projected

hydrological cycle, Geophys. Res. Lett., 38, L20403, doi:10.1029/2011GL049318.
Collier, P., G. Conway, and T. Venables (2008), Climate change and Africa, Oxford Rev. Econ. Policy, 24(2), 337–353.
Collins, W., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C. Jones, M. Joshi, and S. Liddicoat (2011),

Development and evaluation of an Earth-system model-HadGEM2, Geosci. Model Dev. Discuss., 4, 997–1062.
Cook, K. H., and E. K. Vizy (2006), Coupled model simulations of the West African monsoon system: Twentieth- and 21st century simulations,

J. Clim., 19(15), 3681–3703.
Dai, A. (2006), Precipitation characteristics in eighteen coupled climate models, J. Clim., 19(18), 4605–4630.
DeFries, R. S., T. Rudel, M. Uriarte, and M. Hansen (2010), Deforestation driven by urban population growth and agricultural trade in the 21st

century, Nat. Geosci., 3(3), 178–181.

Acknowledgments
We thank the two anonymous reviewers
for their valuable comments. We
acknowledge the World Climate
Research Program’s Working Group on
Coupled Modeling, which is responsible
for CMIP, and we thank the climate
modeling groups (listed in Table 1) for
producing and making available their
model output. We would like to thank
Nadine Laporte at the Woods Hole
Research Center, Falmouth, MA, and
Ronald B. Smith at the Department of
Geology and Geophysics at Yale
University, New Haven, CT, for their
valuable comments during the devel-
opment of this manuscript. For CMIP,
the U.S. Department of Energy’s
Program for Climate Model Diagnosis
and Intercomparison provides coordi-
nating support and led development of
software infrastructure in partnership
with the Global Organization for Earth
System Science Portals. Noel Aloysius
acknowledges the support provided by
the School of Forestry and
Environmental Studies, the Graduate
School of Arts and Sciences at Yale
University, and the Department of Civil
and Environmental Engineering at
Princeton University. This work was
supported in part by the facilities and
staff of the Yale University Faculty of
Arts and Sciences High Performance
Computing Center, the National Science
Foundation under grant CNS 08–21132
that partially funded acquisition of the
facilities, and NOAA grants
NA10OAR4310130 and
NA11OAR4310097.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 149

http://hydrology.princeton.edu/data.php
http://dx.doi.org/10.1002/2014GL060493
http://dx.doi.org/10.1029/2011GL049318


Demaria, E. M. C., E. P. Maurer, J. Sheffield, E. Bustos, D. Poblete, S. Vicuña, and F. Meza (2012), Using a gridded global data set to characterize
regional hydroclimate in central Chile, J. Hydrometeorol., 14, 251–265.

Dezfuli, A. K., and S. E. Nicholson (2013), The relationship of rainfall variability in western equatorial Africa to the tropical oceans and
atmospheric circulation. Part II: The boreal autumn, J. Clim., 26(1), 66–84.

Dufresne, J. L., et al. (2013), Climate changeprojections using the IPSL-CM5 Earth SystemModel: FromCMIP3 toCMIP5,Clim. Dyn., 40(9–10), 2123–2165.
Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert (2012), HESS opinions “Should we apply bias correction to global and regional

climate model data?”, Hydrol. Earth Syst. Sci. Discuss., 9(4), 5355–5387.
Farnsworth, A., E. White, C. J. R. Williams, E. Black, and D. R. Kniveton (2011), Understanding the large scale driving mechanisms of rainfall

variability over central Africa, in African Climate and Climate Change: Physical, Social and Political Perspectives, edited by C. J. R. Williams and
D. R. Kniveton, pp. 101–122, Springer, New York.

Fisher, J. B., et al. (2013), African tropical rainforest net carbon dioxide fluxes in the twentieth century, Phil. Trans. R. Soc. B, 368(1625).
Friend, A. D., et al. (2014), Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric

CO2, Proc. Natl. Acad. Sci. U.S.A., 111(9), 3280–3285.
Gent, P. R., G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, and M. Vertenstein

(2011), The community climate system model version 4, J. Clim., 24(19), 4973–4991.
Giannini, A., M. Biasutti, I. Held, and A. Sobel (2008), A global perspective on African climate, Clim. Change, 90(4), 359–383.
Gimeno, L., A. Stohl, R. M. Trigo, F. Dominguez, K. Yoshimura, L. Yu, A. Drumond, A. M. Durn-Quesada, and R. Nieto (2012), Oceanic and

terrestrial sources of continental precipitation, Rev. Geophys., 50, RG4003, doi:10.1029/2012RG000389.
Giorgetta, M. A., et al. (2013), Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model

intercomparison project phase 5, J. Adv. Model. Earth Syst., 5(3), 572–597.
Glotter, M., J. Elliott, D. McInerney, N. Best, I. Foster, and E. J. Moyer (2014), Evaluating the utility of dynamical downscaling in agricultural

impacts projections, Proc. Natl. Acad. Sci. U.S.A., 111(24), 8776–8781.
Hastenrath, S. (1984), Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector,

Mon. Weather Rev., 112(6), 1097–1107.
Hastenrath, S. (1991), Interannual variability of the atmosphere–ocean system, in Climate Dynamics of the Tropics, edited, pp. 322–329,

Kluwer Acad., Dordrecht, Netherlands.
Hazeleger, W., et al. (2010), EC-Earth: A Seamless Earth-System Prediction Approach in Action, Bull. Am. Meteorol. Soc., 91(10), 1357.
Hazeleger, W., et al. (2012), EC-Earth V2.2: Description and validation of a new seamless earth systempredictionmodel,Clim. Dyn., 39(11), 2611–2629.
Hirst, A. C., and S. Hastenrath (1983), Diagnostics of hydrometeorological anomalies in the Zaire (Congo) basin, Q. J. R. Meteorol. Soc.,

109(462), 881–892.
Houze, R. A. (2004), Mesoscale convective systems, Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.
Huntingford, C., P. Zelazowski, D. Galbraith, L. M. Mercado, S. Sitch, R. Fisher, and M. Lomas (2013), Simulated resilience of tropical rainforests

to CO2-induced climate change, Nat. Geosci., 6(4), 268–273.
Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski (2008), A new sea surface temperature and sea ice boundary data set for the

community atmosphere model, J. Clim., 21(19), 5145–5153.
International Institute for Applied Systems Analysis (2009), RCP Database (version 2.0). [Available at http://www.iiasa.ac.at/web-apps/tnt/RcpDb.]
Ines, A. V. M., and J. W. Hansen (2006), Bias correction of daily GCM rainfall for crop simulation studies, Agric. Forest Meteorol., 138(1–4), 44–53.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate change 2007: Impacts, adaptation and vulnerability: Contribution of

working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Rep., 976 pp., Intergovernmental
Panel on Climate Change, Cambridge, U. K.

Iversen, T., et al. (2012), The Norwegian Earth System Model, NorESM1-M - Part 2: Climate response and scenario projections, Geosci. Model
Dev. Discuss., 5(3), 2933–2998.

Jackson, B., S. E. Nicholson, and D. Klotter (2009), Mesoscale convective systems over western equatorial Africa and their relationship to
large-scale circulation, Mon. Weather Rev., 137(4), 1272–1294.

Janiga, M. A., and C. D. Thorncroft (2014), Convection over tropical Africa and the east Atlantic during the West African monsoon: Regional
and diurnal variability, J. Clim., 27, 4159–4188.

Kent, C., R. Chadwick, and D. P. Rowell (2015), Understanding uncertainties in future projections of seasonal tropical precipitation, J. Clim.,
28(11), 4390–4413.

Knutti, R., and J. Sedlacek (2013), Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369–373.
Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl (2010), Challenges in combining projections frommultiple climate models, J. Clim.,

23(10), 2739–2758.
Laing, A. G., and J. M. Fritsch (1993), Mesoscale convective complexes in Africa, Mon. Weather Rev., 121(8), 2254–2263.
Laporte, N. T., J. A. Stabach, R. Grosch, T. S. Lin, and S. J. Goetz (2007), Expansion of industrial logging in central Africa, Science, 316(5830), 1451.
Lawrence, P. J., et al. (2012), Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in

the Community Climate System Model (CCSM4) from 1850 to 2100, J. Clim., 25(9), 3071–3095.
Li, G., and S. Xie (2014), Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ

problems, J. Clim., 27(4), 1765–1780.
Li, H., J. Sheffield, and E. F. Wood (2010), Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on

Climate Change AR4 models using equidistant quantile matching, J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.
Lin, J.-L. (2007), The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis, J. Clim., 20(18), 4497–4525.
Lobell, D. B., M. B. Burke, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor (2008), Prioritizing climate change adaptation needs for

food security in 2030, Science, 319(5863), 607–610.
Maurer, E. P., and H. G. Hidalgo (2008), Utility of daily versus monthly large-scale climate data: An intercomparison of two statistical

downscaling methods, Hydrol. Earth Syst. Sci., 12(2), 551–563.
Meehl, G. A., et al. (2012), Climate system response to external forcings and climate change projections in CCSM4, J. Clim., 25(11), 3661–3683.
Meehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand

(2013), Climate change projections in CESM1(CAM5) compared to CCSM4, J. Clim., 26(17), 6287–6308.
Mitchell, T. D., and P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated

high-resolution grids, Int. J. Climatol., 25(6), 693–712.
Mitchell, T., and J. M. Wallace (1992), The annual cycle in equatorial convection and sea surface temperature, J. Clim., 5(10), 1140–1156.
Monerie, P. A., B. Fontaine, and P. Roucou (2012), Expected future changes in the African monsoon between 2030 and 2070 using some

CMIP3 and CMIP5 models under a medium-low RCP scenario, J. Geophys. Res., 117, D16111, doi:10.1029/2012JD017510.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 150

http://dx.doi.org/10.1029/2012RG000389
http://dx.doi.org/10.1029/2004RG000150
http://www.iiasa.ac.at/web-apps/tnt/RcpDb
http://dx.doi.org/10.1029/2009JD012882
http://dx.doi.org/10.1029/2012JD017510


Moss, R. H., et al. (2010), The next generation of scenarios for climate change research and assessment, Nature, 463(7282), 747–756.
Murphy, A. H. (1988), Skill scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev.,

116(12), 2417–2424.
New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century space–time climate variability. Part II: Development of 1901–96

monthly grids of terrestrial surface climate, J. Clim., 13(13), 2217–2238.
Nicholson, S. E., and A. K. Dezfuli (2013), The relationship of rainfall variability in western equatorial Africa to the tropical oceans and

atmospheric circulation. Part I: The boreal spring, J. Clim., 26(1), 45–65.
Nicholson, S. E., and J. P. Grist (2003), The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa, J. Clim.,

16(7), 1013–1030.
Nkem, J., F. B. Kalame, M. Idinoba, O. A. Somorin, O. Ndoye, and A. Awono (2010), Shaping forest safety nets with markets: Adaptation to

climate change under changing roles of tropical forests in Congo Basin, Environ. Sci. Policy, 13(6), 498–508.
Notz, D., F. A. Haumann, H. Haak, J. H. Jungclaus, and J. Marotzke (2013), Arctic sea-ice evolution as modeled by Max Planck Institute for

Meteorology’s Earth system model, J. Adv. Model. Earth Syst., 5(2), 173–194.
Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough (2014), Modelling the diurnal cycle of tropical convection

across the ‘grey zone’, Q. J. R. Meteorol. Soc., 140(679), 491–499.
Phillips, T. J., and P. J. Gleckler (2006), Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel

statistics, Water Resour. Res., 42, W03202, doi:10.1029/2005WR004313.
Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter (2010), Statistical bias correction of global simulated

daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395(3–4), 199–215.
Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler (2009), Selecting global climate models for regional climate change studies, Proc.

Natl. Acad. Sci. U.S.A., 106(21), 8441–8446.
Randall, D. A., et al. (2007), Cilmate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ.
Press, Cambridge, U. K., and New York.

Revenga, C., S. Murray, J. Abramovitz, and A. Hammond (1998), Watersheds of the World: Ecological Value and Vulnerability, World Res. Inst.,
Washington, D. C.

Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey (2013), Climate change, phenology, and phenological
control of vegetation feedbacks to the climate system, Agric. Forest Meteorol., 169, 156–173.

Richter, I., S.-P. Xie, S. Behera, T. Doi, and Y. Masumoto (2014), Equatorial Atlantic variability and its relation to mean state biases in CMIP5,
Clim. Dyn., 42(1–2), 171–188.

Rogelj, J., M. Meinshausen, and R. Knutti (2012), Global warming under old and new scenarios using IPCC climate sensitivity range estimates,
Nat. Clim. Change, 2(4), 248–253.

Rotstayn, L. D., M. A. Collier, M. R. Dix, Y. Feng, H. B. Gordon, S. P. O’Farrell, I. N. Smith, and J. Syktus (2010), Improved simulation of Australian
climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment, Int. J. Climatol., 30(7), 1067–1088.

Salathé, E. P., Jr., P. W. Mote, and M. W. Wiley (2007), Review of scenario selection and downscaling methods for the assessment of climate
change impacts on hydrology in the United States pacific northwest, Int. J. Climatol., 27(12), 1611–1621.

Sandjon, A. T., A. Nzeukou, and C. Tchawoua (2012), Intraseasonal atmospheric variability and its interannual modulation in central Africa,
Meteorol. Atmos. Phys., 117(3–4), 167–179.

Schmidt, G. A., R. Ruedy, J. E. Hansen, I. Aleinov, N. Bell, M. Bauer, S. Bauer, B. Cairns, V. Canuto, and Y. Cheng (2006), Present-day atmospheric
simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data, J. Clim., 19(2), 153–192.

Schneider, T., T. Bischoff, and G. H. Haug (2014), Migrations and dynamics of the Intertropical Convergence Zone, Nature, 513(7516), 45–53.
Sheffield, J., G. Goteti, and E. F. Wood (2006), Development of a 50 year high-resolution global data set of meteorological forcings for land

surface modeling, J. Clim., 19(13), 3088–3111.
Sheffield, J., E. F. Wood, and F. Munoz-Arriola (2010), Long-term regional estimates of evapotranspiration for Mexico based on downscaled

ISCCP data, J. Hydrometeorol., 11(2), 253–275.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) (2007), Climate change 2007: The Physical

Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge Univ. Press, Cambridge, U. K.

Sulis, M., C. Paniconi, M. Marrocu, D. Huard, and D. Chaumont (2012), Hydrologic response to multimodel climate output using a physically
based model of groundwater/surface water interactions, Water Resour. Res., 48, W12510, doi:10.1029/2012WR012304.

Suzuki, T. (2011), Seasonal variation of the ITCZ and its characteristics over central Africa, Theor. Appl. Climatol., 103(1), 39–60.
Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(D7), 7183–7192,

doi:10.1029/2000JD900719.
Taylor, K. E., V. Balaji, S. Hankin, M. Juckers, and B. Lawrence (2009a), CMIP5 and AR5 Data Reference Syntax (DRS), 7 pp., World Clim. Res. Program.
Taylor, K. E., R. Stouffer, and G. Meehl (2009b), A summary of the CMIP5 experiment design, pp. 33. [Available at http://cmip-pcmdi.llnl.gov/

cmip5/docs/Taylor_CMIP5_design.pdf, (last access: May 2012).]
Taylor, K. E., R. Stouffer, and G. Meehl (2012), An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93(4), 485.
Teutschbein, C., and J. Seibert (2012), Bias correction of regional climate model simulations for hydrological climate-change impact studies:

Review and evaluation of different methods, J. Hydrol., 456–457, 12–29.
Thrasher, B. L., E. P. Maurer, C. McKellar, and P. B. Duffy (2012), Technical note: Bias correcting climate model simulated daily temperature

extremes with quantile mapping, Hydrol. Earth Syst. Sci. Discuss., 9(4), 5515–5529.
Todd, M. C., and R. Washington (2004), Climate variability in central equatorial Africa: Influence from the Atlantic sector, Geophys. Res. Lett.,

31, L23202, doi:10.1029/2004GL020975.
United Nations Environment Programme (2006), Africa environment outlook 2:Our environment, our wealth Rep., 576 pp., United Nations

Environment Programme (UNEP), Nairobi, Kenya.
Voldoire, A., et al. (2012), The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dyn., 1–31.
Volodin, E. M., N. A. Dianskii, and A. V. Gusev (2010), Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric

and oceanic general circulations, Izv. Atmos. Ocean. Phys., 46(4), 414–431.
Wang, A. H., D. P. Lettenmaier, and J. Sheffield (2011), Soil moisture drought in China, 1950–2006, J. Clim., 24(13), 3257–3271.
Washington, R., R. James, H. Pearce, W. M. Pokam, and W. Moufouma-Okia (2013), Congo Basin rainfall climatology: Can we believe the

climate models?, Phil. Trans. R. Soc. B, 368(1625).
Watanabe, M., et al. (2010), Improved climate simulation by MIROC5: Mean States, variability, and climate sensitivity, J. Clim., 23(23), 6312–6335.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 151

http://dx.doi.org/10.1029/2005WR004313
http://dx.doi.org/10.1029/2012WR012304
http://dx.doi.org/10.1029/2000JD900719
http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf
http://dx.doi.org/10.1029/2004GL020975


Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, and T. Yokohata, (2011), MIROC-ESM:
Model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev. Discuss., 4, 1063–1128.

Watanabe, S., S. Kanae, S. Seto, P. J. F. Yeh, Y. Hirabayashi, and T. Oki (2012), Intercomparison of bias-correction methods for monthly
temperature and precipitation simulated by multiple climate models, J. Geophys. Res., 117, D23114, doi:10.1029/2012JD018192.

Wilkie, D., G. Morelli, F. Rotberg, and E. Shaw (1999), Wetter is not better: Global warming and food security in the Congo Basin, Global
Environ. Change, 9(4), 323–328.

Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, 627 pp., Academic Press, Burlington, Mass.
Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier (2004), Hydrologic implications of dynamical and statistical approaches to

downscaling climate model outputs, Clim. Change, 62(1), 189–216.
Wu, T., et al. (2013), Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century, J. Geophys.

Res. Atmos., 118(10), 4326–4327.
Xin, X.-G., T.-W. Wu, and J. Zhang (2013), Introduction of CMIP5 experiments Carried out with the Climate System Models of Beijing Climate

Center, Adv. Clim. Change Res., 4(1), 41–49.
Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki (2006), Present-day climate and

climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3), J. Meteorol. Soc. Jpn., 84(2), 333–363.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023656

ALOYSIUS ET AL. CLIMATE CHANGE IN CENTRAL AFRICA 152

http://dx.doi.org/10.1029/2012JD018192

