10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Recent changes and drivers of the atmospheric evaporative demand in the
Canary Islands

Vicente-Serrano, S.M.*, Azorin-Molina, C.}, Sanchez-Lorenzo, A.}, El Kenawy, A.2, Martin-
Hernandez, N.%, Pefia-Gallardo, M., Begueria, S.3, Tomas-Burguera, M.?

IInstituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain;
’Department of Geography, Mansoura University, Mansoura, Egypt;’Estacion Experimental Aula Dei,
Consejo Superior de Investigaciones Cientificas (EEAD-CSIC), Zaragoza, Spain.

* Corresponding author: svicen@ipe.csic.es

Abstract

We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand
(AED) in the Canary Islands for the period 1961 -2013. We employed long and high quality time
series of meteorological variables to analyze current AED changes in this region and found that
AED has increased during the investigated period. Overall, the annual ETo, which was estimated by
means of the FAO-56 Penman-Monteith equation, increased significantly by 18.2 mm decade™ on
average, with a stronger trend in summer (6.7 mm decade™). In this study we analysed the
contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and
(ii) radiative (related to the available energy to evaporate a quantity of water) componets to the
decadal variability and trends of ETo. More than 90% of the observed ETo variability at the
seasonal and annual scales can be associated with the variability of the aerodynamic component.
The variable that recorded more significant changes in the Canary Islands was relative humidity,
and among the different meteorological factors used to calculate ETo, relative humidity was the
main driver of the observed ETo trends. The observed trend could have negative consequences in a

number of water-depending sectors if it continues in the future.
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1. Introduction

The atmospheric evaporative demand (AED) is one of the key variables of the hydrological cycle
(Wang and Dickinson, 2012), with multiple implications for agriculture, hydrology and the
environment (Allen et al., 2015). Several studies have indicated that current global warming is
increasing the intensity of the hydrological cycle, mainly as a consequence of an intensification of
the AED (Huntington, 2006). Sherwood and Fu (2014) suggested that mechanisms driving the AED
over land regions could be the main driver of increasing climate aridity in world semi-arid regions
under a global warming scenario.

Warming may play an important role in increasing the AED via the aerodynamic component
(McVicar et al., 2012a). Following the Clausius-Clapeyron relationship, the quantity of water
vapour that a given mass of air can store increases exponentially with the air temperature.
Nevertheless, there are other climate variables whose temporal evolution could compensate the
increased AED induced by increasing air temperature, such as wind speed and vapour pressure
deficit (McVicar et al., 2012a). In addition, the radiative component of the AED, which is related to
the available solar energy that transforms a unit of liquid water into vapour, may compensate or
accentuate the increase in AED associated with warming. Wild et al. (2015) noted that solar
radiation increased over large regions since the 1980s as a consequence of changes in cloud cover
and/or atmospheric aerosol concentrations.

These large number of variables interact in a non-linear manner to determine the AED (McMahon
et al., 2013), so assessing recent changes in the AED and defining their determinant factors is not an
easy task. For this reason, while several studies analysed the AED at the global scale using different

datasets and methods, there is no general consensus on the recent AED evolution (Sheffield et al.,
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2012; Matsoukas et al., 2011; Wang et al., 2012; Dai, 2013). In this context, the few existing direct
AED observations, based on evaporation pans, show a decrease since the 1950s at the global scale
(Peterson et al. 1995; Roderick and Farquhar 2002 and 2004), a finding that adds more uncertainty
regarding the behaviour of the AED under current global warming. These issues stress the need for
new studies that employ high quality datasets to assess the time evolution of the AED at the
regional scale.

There are a number of studies published in the last decade that analysed the AED evolution across
different regions of the World. Some of them are based on AED estimated using empirical
formulations, mostly based on air temperature data (e.g., Thornthwaite, 1958; Hargreaves and
Samani, 1995). However, to adequately quantify the AED evolution it is necessary to use long-time
series of the meteorological variables that control its radiative and aerodynamic components (e.g.
air temperature, vapour pressure deficit and wind speed). Although these variables are generally
poorly measured and highly inhomogeneous over both space and time, numerous regional studies
analysed the evolution of the AED by means of the robust Penman-Monteith (PM) equation using
long times series of these variables. The available regional studies show quite contradictory results,
where some studies showed AED negative trends, including those in China (Xu et al., 2006; Ma et
al., 2012; Zhang et al., 2007; Liu et al., 2015) and northwest India (Jhajharia et al., 2014). In
contrast, other regional studies found positive trends in AED, including those in central India
(Darshana et al., 2012), Iran (Kousari and Ahani, 2012; Tabari et al., 2012), Florida (Abtew et al.,
2011), continental Spain (Espadafor et al., 2011; Vicente-Serrano et al., 2014a; Azorin-Molina et
al., 2015), France (Chaouche et al., 2010) and Moldova (Piticar et al., 2015).

The contrasted trends among world regions would be a consequence of the evolution of the
different meteorological variables that control the AED. Specifically, some studies suggest that
temporal variability and changes in the AED are related to changes in the relative humidity, mainly

in semi-arid regions (Wang et al., 2012; Espadafor et al., 2011; Vicente-Serrano et al., 2014b),
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whereas others stress the importance of solar radiation (Roderick and Farquhar, 2002; Roderick et
al., 2007; Ambas and Baltas, 2012; Fan and Thomas, 2013) or wind speed (McVicar et al., 2012b).

Among these studies, few analyzed the AED variability and trends and their possible drivers in the
eastern North Atlantic region (Chaouche et al., 2010; Vicente-Serrano et al., 2014a; Azorin-Molina
et al., 2015). Nevertheless, there are no studies about this issue in the sub-tropical areas of the north
Atlantic region. In this area, there are very few meteorological stations measuring long-term series
of the variables necessary to make robust calculations of the AED. This uneven distribution of
meteorological observatories constrains the high interest to know the evolution of atmospheric
processes in this region, where climate variability is strongly controlled by changes in the Hadley
circulation (Hansen et al., 2005) that affects the position and intensity of the subtropical anticyclone
belt. Knowing the evolution of AED and its main drivers in this region is highly relevant given the
general climate aridity of the region and the low availability of water resources (Custodio and
Cabrera, 2002). In this work we analyze the recent evolution and meteorological drivers of the AED
in the Canary Islands. The main hypothesis of the study is that in opposition to other continental
temperate regions of the North Hemisphere, the warm and humid climate of the subtropical Canary
Islands provides the water supply to the atmosphere needed to maintain the AED constant under the
current global warming scenarios; consequently, only wind speed and solar radiation could affect
the observed decadal variability and trends of the AED. Thus, the availability of long and high
quality time series of meteorological variables in the Canary Islands provides an opportunity to
analyze current AED changes in the sub-tropical northeastern Atlantic region and the role played by

different meteorological variables.

2. Methods

2.1. Dataset
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We used the complete meteorological records of the Spanish National Meteorological Agency
(AEMET) in the Canary Islands for the following variables at the monthly scale: maximum and
minimum air temperature (308 stations), wind speed (99), sunshine duration (42) and mean relative
humidity (139). A majority of the stations cover short periods or are affected by large data gaps. As
the number of meteorological stations before 1961 was very little for several variables we restricted
our analysis to the period between 1961 and 2013. Specifically, only 8 meteorological stations had
data gaps of less than 20% of the months in all the necessary variables. As illustrated in Figure 1,
these stations are distributed between the Islands of Tenerife (3 stations), Gran Canaria (2), La
Palma (1), Lanzarote (1) and Fuerteventura (1). Given that some series included records for a longer
period (e.g., Izafia from 1933 and Santa Cruz de Tenerife from 1943), neighbouring stations with
shorter temporal coverage were used to reconstruct the existing data gaps in the selected
observatories, using a regression-based approach. Details of the site names, coordinates, relocations,
data gaps and inhomogeneities of the selected meteorological stations can be found in Table 1.

Then, the time series were subject to quality control and homogenization procedures. The quality
control procedure was based on comparison of the rank of each data record with the average rank of
the data recorded at adjacent stations (Vicente-Serrano et al., 2010). A relative homogeneity method
was applied to identify possible inhomogeneities. For this purpose, we used HOMER
(HOMogenization software in R), which compares each candidate series with a number of available
series (Mestre et al., 2013). The method provides an estimation of break points in the time series
relative to other stations, indicating high probabilities of the presence of inhomogeneities. This
method was applied to the different variables and time series following Mestre et al. (2013). Finally,
a single regional series for the different variables was obtained using a simple arithmetic average of

data values at the available eight stations.

2.2. Calculation of ETo
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The Penman-Monteith equation (PM) equation is the standard technique for calculation of ETo
from climatic data (Allen et al.,1998), and it is the method officially adopted (with small variations)
by the International Commission for Irrigation (ICID), the Food and Agriculture Organization
(FAO) of the United Nations, and the American Society of Civil Engineers (ASCE). The PM
method can be used globally, and has been widely verified based on lysimeter data from diverse
climatic regions (Allen et al., 1994; Itenfisu et al., 2000; Lopez-Urrea et al., 2006). Allen et al.
(1998) simplified the PM equation, developing the FAO-56 PM equation, and defined the reference
surface as a hypothetical crop with assumed height of 0.12 m, surface resistance of 70 s m™ and
albedo of 0.23 that had evaporation similar to that of an extended surface of green grass of uniform

height that was actively growing and adequately watered. The ETo FAO-56 PM is expressed as:

900
0.408-A- (R, —G) + v g575 - (e —eJ)

ET, =
@ A+ y(1+034u,) (1)

where ETo is the reference evapotranspiration (mm day™), R, is the net radiation at the crop surface
(MJ m? day™), G is the soil heat flux density (MJ m? day™), T is the mean air temperature at 2 m
height (°C), u. is the wind speed at 2 m height (m s™), e; is the saturation vapour pressure (kPa), e,
is the actual vapour pressure (kPa), es-e, is the saturation vapour pressure deficit (kPa), 4 is the
slope of the vapour pressure curve (kPa °C™), and yis the psychrometric constant (kPa °C™).

The FAO-56 PM is an equation initially designed for crop monitoring and irrigation operation at
daily and sub-daily scales. This equation involves non-linear relationships among the variables used
for calculation and averaging these variables for long-term intervals could affect the reliability of
the ETo estimations. Nevertheless, Allen et al. (1998) indicated that the FAO-56 PM equation can
be used for daily, weekly, ten-day or monthly calculations, and several previous studies have
computed the Penman Monteith ETo using monthly values for some variables (e.g., Sheffield et al.,

2012; Dai, 2013). We have found that using monthly averages instead of daily records for the
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different variables has not a relevant influence on the ETo estimations in the Canary Islands. Figure
2 shows an example using two of the available stations (Los Rodeos and lzafia) for the 1978-2010
period. The relationship between the monthly sum of the daily ETo calculations and the ETo
calculation from the monthly averages, justifies the equality of applying both procedures. This is
observed for the ETo monthly values (including seasonality) but also considering monthly
standardized anomalies in which seasonality is removed. Moreover, there are other technical
reasons that recommend the use of monthly instead daily records to calcule ETo since testing and
correcting the temporal homogeneity of the necessary variables on a daily basis is highly
problematic, whereas testing and correcting homogeneity using monthly records is reliable (e.g.
Venema et al., 2012).

Therefore, the monthly ETo was calculated from data of the monthly averages of five
meteorological parameters: maximum and minimum air temperature, relative humidity (which
allows calculating the vapour pressure deficit), wind speed at a height of 2 m, and daily sunshine
duration (which allows estimating the net radiation). Garcia et al. (2014) compared the capability of
sunshine duration series to reconstruct long term radiation in the observatory of lIzafia (Tenerife),
showing very good temporal agreement between sunshine duration and radiation, independently of
the season of the year. Further details on the required equations to obtain the necessary parameters
from meteorological data can be consulted in Allen et al. (1998).

We also calculated the evolution of the radiative (Eq.2) and the aerodynamic components (Eq.3) of
the ETo, as follows:

[0.408A(Rn — G)]

ET =
o(r) [A+ y(1 + 0.34u.)] )
900
[T m) L] (Es - Eaj]
ETola) =
[A 4+ v(1+ 0.34u,)] (3)
2.3. Analysis
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Using the time series of ETo, we determined the seasonal (winter: December—February; spring:
March—May; summer: June—August; autumn: September—November) and annual ETo averages. To
analyze changes in ETo we used the nonparametric Mann-Kendall statistics that measures the
degree to which a trend is consistently increasing or decreasing. The Mann-Kendall statistic is
advantageous compared to parametric tests as it is robust to outliers and it does not assume any
underlying probability distribution of the data (Zhang et al., 2001). For these reasons, it has been
widely used for trend detection in a wide range of hydrological and climatological studies (e.qg.,
Zhang et al., 2001; El Kenawy and McCabe, 2015). Autocorrelation was considered in the trend
analysis applied to the series of ETo, the series of the aerodynamic and radiative components of the
ETo and the series of the different climate variables (temperature, relative humidity, wind speed and
sunshine duration). This was applied using the FUME R package, which performs the modified
Mann-Kendall trend test, returning the corrected p-values after accounting for temporal
pseudorreplication (Hamed and Rao, 1998; Ye and Wang, 2004). To assess the magnitude of
change in ETo, we used a linear regression analysis between the series of time (independent
variable) and the ETo series (dependent variable). The slope of the regression indicated the amount
of change (ETo change per year), with higher slope values indicating greater change. We also
calculated the trend observed in the different meteorological variables (air temperature, relative
humidity, sunshine duration and wind speed) at both the seasonal and annual scales.

To get insight into the influence of changes in the different meteorological variables on ETo, we
related the evolution of ETo with relative humidity, maximum and minimum air temperature, wind
speed and sunshine duration by means of correlation analyses. To assess the importance of trends in
the different meteorological variables on the observed trends in ETo between 1961 and 2013, we
applied the PM equation while holding one variable as stationary (using the average from 1961 to
2013) each time. This approach provided five simulated series of ETo, one per input variable, which

could be compared to the ETo series computed with all the data to determine the isolated influence
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of the five variables. Significant differences between each pair of ETo series (the original one and
the alternative one in which one variable was kept constant) were assessed by comparing the slopes
of the linear models, with time as the independent variable. A statistical test for the equality of
regression coefficients was used (Paternoster et al., 1998). The significance of the difference was

assessed at a confidence interval of 95% (p<0.05).

3. Results

3.1. Average ETo values

Figure 3 shows a box-plot with the seasonal and annual values of ETo in the different
meteorological stations across the Canary Islands, which are also summarized in Table 2. There
were strong seasonal differences in ETo, as all different meteorological stations show their
maximum values in summer and minimum in winter, albeit with strong differences among them. In
winter, the highest average values were recorded in the most arid islands (i.e., Fuerteventura and
Lanzarote) and in the station of Los Rodeos (North Tenerife). In summer, the stations of Izafia and
Los Rodeos showed the highest average values (663.8 and 612.9 mm, respectively). The lowest
summer ETo averages were recorded at the stations of Gran Canaria island (San Cristébal and Gran
Canaria/Airport). At the annual scale, there were very few differences in the average values
between the stations of Los Rodeos, Izafia, Fuerteventura and Lanzarote, with very high ETo values
ranging between 1693 and 1784 mm (Table 2). The observatory with the lowest ETo values is
located in Gran Canaria Airport, although the observatory of San Cristobal (also in the Gran
Canaria island) records the minimum values in summer. The magnitude of the differences can be
quite important (up to 34%) between the highest ETo values recorded in Los Rodeos, Izafia,
Fuerteventura and Lanzarote and the lowest ETo values (Gran Canaria and San Cristobal). In
general, variability, as revealed by the coefficient of variation, was higher in the meteorological

stations that recorded the highest ETo values at the annual scale, but there was no clear spatial



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

pattern at the seasonal scale as different stations showed few differences in terms of the coefficients
of variation (Table 2).

In the majority of weather stations the seasonal and annual ETo magnitude was mostly driven by
the aerodynamic component. The average aerodynamic fraction was higher than the radiative
fraction in the weather stations that record the highest ETo values (Los Rodeos and Izafa) in all
seasons around the year (Figure 4). In other weather stations (Sta. Cruz de Tenerife and San
Cristobal), the ETo associated with the radiative component was much higher than that observed for
the aerodynamic component (Table 3). The temporal variability in the aerodynamic component was
much higher than that observed in the radiative one, regardless of the season of the year or the

meteorological station.

3.2. Long-term evolution of ETo

The regional ETo series for the whole Canary Islands (Figure 5) shows a significant increase at the
annual scale (18.2 mm decade™), which is stronger in summer (6.7 mm decade™) (Table 4).
Nevertheless, there was a strong variability between the different meteorological stations, since
most meteorological stations experimented significant increases of ETo between 1961 and 2013.
The largest annual increase was recorded in Los Rodeos (34.8 mm decade™), La Palma (29.8 mm
decade™) and Lanzarote (29.7 mm decade™). Considering a longer period (1933-2013 for Izafia, and
1943-2013 for Santa Cruz de Tenerife), the changes are not statistically significant, although it was
not possible to check the homogeneity of the climate records prior to 1961 and thus the results for
the longer period must be carefully considered. For the period 1961-2013, there is no general spatial
pattern in the observed changes, thus some differences can be observed. For example, in the Gran
Canaria island, San Cristdbal station shows a statistically non-significant negative change in ETo on
the order of -8.4 mm decade™, while there is a general significant increase of 28.4 mm decade™ in

the Gran Canaria Airport.
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Trends in the aerodynamic and radiative components showed clear differences among stations and
for the average Canary lIslands (Figure 6). Main changes were recorded in the aerodynamic
component. The regional series showed an increase of 16.2 mm decade™ in the aerodynamic
component, but it only showed an increase of 2 mm decade™ in the radiative component (Table 5).
This can be translated to an average increase in the ETo of 89% over the whole period due to
changes in the aerodynamic component, and of 11% due to changes in the radiative component.
However, there are spatial differences between the meteorological stations, since the aerodynamic
component showed a decrease of 21 mm decade™ in San Cristobal, compared to an increase of 44.6
mm decade™ in Los Rodeos. On the contrary, the radiative component showed lower differences
among stations, with values ranging from -9.9 mm decade™ in Los Rodeos to 12.7 mm decade™ in
San Cristobal. Nevertheless, and regardless of the observed trends, the results indicate that the inter-
annual variability of ETo between 1961 and 2013 was mainly driven by the aerodynamic
component, independently of the season or the meteorological station considered (Table 6). The
temporal correlation between ETo and the aerodynamic component was statistically significant for
the different meteorological stations in the seasonal and the annual series, with correlation
coefficients higher than 0.95 in most cases. The correlation for the regional series was also strong
and statistically significant. In contrast, the correlation coefficients calculated between ETo and the
radiative component were much lower, and generally non-significant (p<0.05). Los Rodeos is the
unique weather station where the correlation between ETo and the radiative component was
statistically significant at both the seasonal and annual scales, but showing a negative correlation.
Overall, the results show that the correlation between the annual radiative component and the total

annual regional series of ETo is statistically non-significant.

3.3. Drivers of ETo variability and trends

11
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Table 7 shows the correlation between the different meteorological variables and ETo at the
seasonal and annual scales in the eight meteorological stations. Maximum and minimum air
temperatures were positively correlated with ETo and this relationship was statistically significant
in some stations, and the correlation coefficients tended to be higher for maximum air temperature.
In Los Rodeos and La Palma, the ETo variability could not be explained by the variability in air
temperature, with correlation coefficients weaker than 0.3. Overall, the results indicate that the
seasonal and annual series of ETo were significantly correlated with variations of sunshine duration
and wind speed, suggesting that these two variables are the key drivers of ETo variability in the
Canary Islands. The variable that showed the strongest correlation with the evolution of ETo in the
seasonal and annual series of the different meteorological observatories was relative humidity, with
negative coefficients. Only in the annual series of Santa Cruz de Tenerife the correlation was non-
significant. Moreover, there were no significant differences in the magnitude of correlations among
seasons.

The regional series summarise the pattern observed in the individual meteorological stations (Figure
7). In winter, relative humidity had the strongest correlation with ETo (r=-0.85), with a mostly
linear relationship. Minimum air temperature and sunshine duration showed significant positive
correlations with ETo (r=0.40 and 0.36, respectively). Maximum air temperature and wind speed
showed weaker correlation with the winter ETo. In spring, the magnitude of the correlations was
similar among the different variables, and the highest correlation corresponded again to relative
humidity (r=-0.72). A similar pattern was found in summer, where relative humidity showed the
strongest correlation (r=-0.74) followed by maximum and minimum air temperature. In autumn,
relative humidity also showed the strongest correlation and wind speed showed more importance
than both maximum and minimum air temperature. As expected, relative humidity showed the
strongest correlation with ETo (r = -0.83) at the annual scale, followed by wind speed (r = 0.62). On

the contrary, the correlation with maximum air temperature was statistically non-significant.
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The general increase observed in ETo in the Canary Islands was largely determined by changes in
the different meteorological variables (Table 8). The maximum air temperature does not show
noticeable changes, with the exception of Gran Canaria/Airport, Lanzarote and San Cristobal
stations where significant trends were found. The regional average did not show significant
changes. On the contrary, the minimum air temperature showed an average increase of 0.12 °C
decade™ in summer and 0.09 °C decade™ at the annual scale between 1961 and 2013. The
significant increase recorded in summer was found in six meteorological stations, with a maximum
of 0.25° C decade™ in Izafla. Changes in relative humidity were also significant. There was a
significant decrease in winter, summer and annually, which represent a decline of 0.47% decade™,
although there were differences among stations. Sunshine duration and wind speed did not show
noticeable changes, and the unique remarkable pattern was the significant increase of the summer
sunshine duration at the regional scale (0.12 hours decade™) and the significant increase of wind
speed in the station of Los Rodeos in the four seasons and also annually.

With respect to the sensitivity of changes in ETo to its five driving meteorological drivers (Figure
8), substantial differences were found between variables. The differences between observed ETo
and simulated ETo with average maximum and minimum air temperature were small irrespective of
the season, indicating a low sensitivity to these two variables. In contrast, ETo was more sensitive
to setting sunshine duration and wind speed at their mean values. Thus, in the station of Los
Rodeos, the predicted magnitude of change in winter, autumn and annually was different from the
observed magnitude of change. The highest sensitivity was, however, to relative humidity. In
general, the different meteorological stations showed an important increase in observed ETo with
respect to predicted ETo keeping relative humidity as constant. This was observed at the seasonal
and annual scales. Thus, in three meteorological stations the observed magnitude of change on
annual basis is between two and three times higher than that predicted considering relative humidity

as stationary. This pattern was also found in the regional series (Figure 9). Considering air
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temperature, sunshine duration and wind speed as constant, there were no statistical differences
between the observed and predicted magnitudes of change, both seasonally and annually. On the
contrary, leaving relative humidity as constant, the magnitude of the trend was quite different to the
observations, and temporal trends would not be statistically significant. Thus, the magnitude of
change of ETo, considering relative humidity as constant, is significantly different from the

observed magnitude of change in winter and annually.

4. Discussion

This work analyses the recent evolution (1961-2013) of reference evapotranspiration (ETo) in the
Canary Islands and its relationship with the evolution of its atmospheric drivers. We analysed the
time evolution of ETo in eight meteorological stations in which the necessary meteorological
variables for calculation of the ETo were available. The results showed a general increase in ETo,
although different magnitudes of change were found between the different meteorological stations.
These differences did not follow any specific geographic pattern, so they must be considered either
due to random effects and uncertainty at various levels or due to micro-geographic effects that were
not considered in this study. There is not a general pattern that may connect the observed trends in a
certain forcing variable with the observed trend of ETo in each of the eight analysed stations
although those that showed a higher increase in ETo (i.e., Lanzarote, Los Rodeos and Gran Canaria)
displayed a higher increase in the aerodynamic component; a process which is in agreement with
the significant reductions observed in relative humidity.

Nevertheless, with the exception of the observatory of San Cristébal in the north of Gran Canaria
Island, other meteorological observatories showed positive changes in ETo, with annual trends
statistically significant in six stations. In any case, we must also stress that trends in ETo at the
regional scale are mostly significant because of the low values in the beginning of the study period

starting in the 1960s. Thus, the results of the two sites with longer temporal coverage (i.e., 1zafia
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and Santa Cruz de Tenerife) do not show significant trends. This makes necessary to consider these
trends with caution since they could be driven by variability processes at the decadal scale.

The few existing studies in Northwest Africa (Ouysse et al., 2010; Teken and Kropp, 2012) are not
comparable with our findings, since the variables required to apply the Penman-Monteith equation
were not available. Instead, these studies relied on simplified methods that just employ air
temperature records. Despite the difference in methods, these studies also found a general increase
in the ETo. The closest region in which it is possible to make a direct comparison using the same
method is the Iberian Peninsula, where a general increase of 24.5 mm decade™ was found between
1961 and 2011 (Vicente-Serrano et al., 2014a). This study also found that the variability and trends
in the aerodynamic component determined most of the observed variability and the magnitude of
change of ETo in a majority of the meteorological stations in the Iberian Peninsula. The radiative
component showed much lower temporal variability than the aerodynamic component did. Thus,
more than 90% of the observed ETo variability at the seasonal and annual scales can be associated
with the variability of the aerodynamic component. This is in agreement with the results obtained in
previous studies. For example, Wang et al. (2012) showed that recent ETo variability at the global
scale was mainly driven by the aerodynamic component. Equally, other studies in Southern Europe
indicated a higher importance of the aerodynamic component (Sanchez-Lorenzo et al., 2014,
Azorin-Molina et al., 2015). It could be argued, however, that quantification of the radiative
component in our study was based on a simplified assumption since it was calculated from sunshine
duration that is mostly determined by the cloud coverage (Hoyt, 1978). Nevertheless, it is also
worth noting that global radiation measurements, sunshine duration records contain a signal of the
direct effects of aerosols (Sanroma et al., 2010; Sanchez-Romero et al., 2014; Wild, 2015) in the
Canary Islands. Nevertheless, the Canary Islands is a region mostly free of anthropogenic aerosols
given the large frequency and intensity of trade winds (Mazorra et al., 2007), and it is not expected

that the frequency of Saharan dust events, that could affect incoming solar radiation, has noticeably
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changed over the last decades (Flentje et al., 2015; Laken et al., 2015). Consequently, in the Canary
Islands we can consider high accuracy determining the radiative component using sunshine duration
series. In continental Spain, Azorin-Molina et al. (2015) also found strong positive correlations
between interannual variations of solar radiation and sunshine duration in different meteorological
stations. Overall, in the Canary Islands there is a positive and significant correlation between inter-
annual variations of ETo and sunshine duration, although this correlation did not explain the
observed trends of ETo in the region.

We showed that the temporal variability of ETo is strongly controlled by the temporal variability of
relative humidity. Specifically, seasonal and annual series of ETo in the different stations showed
very strong negative and significant correlations with those of the relative humidity. Thus, the
magnitude of correlations were much higher than those obtained for other meteorological variables,
and this finding was common to the whole set of meteorological stations. This strong control of
relative humidity on the temporal variability of ETo has been already identified in some studies in
the Iberian Peninsula (Vicente-Serrano et al., 2014b; Azorin-Molina et al., 2015; Espadafor et al.,
2013).

Among the variables that control the aerodynamic component, wind speed and maximum air
temperature did not show significant trends at the regional scale and only few stations recorded
significant trends in these variables, either at the seasonal or the annual scales. Significant trends
were obtained for minimum air temperature, mainly in summer. Recently, Croper and Hanna (2014)
analysed long term climate trends in the Macaronesia region, and for the Canary Islands they
showed an increase in air temperature during summer for the period 1981-2010. Martin et al. (2012)
analysed air temperature changes in the Tenerife Island from 1944 to 2010 and they also showed
that night-time air temperature increased rapidly compared to daytime temperature. Nevertheless,

they found strong spatial contrasts between the high mountains, that showed a higher increase, and
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the coastal areas in which the air temperature regulation of the ocean could be reducing the general
air temperature increase.

In any case, the variable that recorded more significant changes in the Canary Islands was relative
humidity, and among the different meteorological variables used to calculate ETo, relative humidity
was the main driver of the observed ETo trends. Significant negative humidity trends were recorded
in winter, summer and autumn, but also annually. Thus, simulation of ETo series considering the
different meteorological variables as constant produced few differences in relation to the observed
evolution of ETo, with the exception of the relative humidity. Leaving relative humidity as constant
for the period 1961-2013 showed no significant ETo changes at seasonal and annual scales and also
statistically significant differences with changes obtained from observations. In continental Spain,
Vicente-Serrano et al. (2014b) showed a general decrease of relative humidity from the decade of
1960, mainly associated with a general decrease of the moisture transport to the Iberian Peninsula as
well as a certain precipitation decrease. Similarly, Espadafor et al. (2011) and Vicente-Serrano et al.
(2014b) showed that the strong increase in ETo in the last decades is associated with the relative
humidity decrease due to air temperature rise, which caused more severe drought events (Coll et al.,
2016; Lorenzo-Lacruz and Moran-Tejeda, 2016; Pefia-Gallardo et al., 2016). In the Canary Islands,
no precipitation changes have been identified during the analyzed period (Sanchez-Benitez et al.,
2016). Therefore a lower moisture supply from the humidity sources to the islands should explain
the observed pattern toward a relative humidity decrease. Sherwood and Fu (2014) suggested that
differences in the air temperature increase between oceanic and continental areas could increase
land aridity, as a consequence of the sub-saturation conditions of the oceanic air masses that come
to the land areas, given higher warming rates in maritime regions in comparison to continental
areas. The results of this study confirm this pattern in the Canary Islands, since this region should
not be constrained by constant moisture supply from the surrounding warm Atlantic Ocean. Overall,

Willett et al. (2014) recently found a general decrease in relative humidity at the global scale,
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including several islands and coastal regions in which the moisture supply was expected to be
unlimited. This finding suggests that contrasted mean air temperature and trends between land and

ocean areas could also play an important role in explaining this phenomenon, even at local scales.

5. Conclusions

We found that the reference evapotranspiration ETo increased by 18.2 mm decade™ -on average-
between 1961 and 2013 over the Canary Islands, with the highest increase recorded during summer.
Although there were noticeable spatial differences, this increase was mainly driven by changes in
the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
This study provides an outstanding example of how climate change and interactions between
different meteorological variables drive an increase of the ETo event in a subtropical North Atlantic
Archipelago. Given the general aridity conditions in most of the Canary Islands and the scarcity of
water resources, the observed trend could have negative consequences in a number of water-

depending sectors if it continues in the future.
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Table 1: Site names, coordinates, relocations, data gaps and inhomogeneities of the selected meteorological stations in the Canary Islands

Code | Longitude | Latitude | Name relocation Relative humidity Sunshine duration Wind speed maximum temperature minimum temperature
data gaps Inhom. data gaps | Inhom. data gaps Inhom. | datagaps |Inhom. data gaps Inhom.

C0290 -13.60 28.95 | Lanzarote/Airport 1972 2.20% 1998 0.78% | 1978-2002 0.47% 1971 1.23% 2004 1.23% 1988

C139E -17.75 28.61 | La Palma/Airport 1970 0.94% 2.51% 0.47% 1976 0.37% 0.37% | 1997

C2491 -13.85 28.43 | Fuerteventura/Airport 1969 0.15% 2000 1.25% | 1995-2005 0.15% 0.23% 1983 0.23% 1977

C430E -16.48 28.30 | lzafia -- 1.72% 1999 7.40% 2005 6.91% 5.20% 1985 5.20%

C447A -16.31 28.46 | Los Rodeos -- 0.31% 1.10% 1966 0.15% 1970 0.30% 2005 0.30% | 2005

C449C -16.25 28.45 | Santa Cruz de Tenerife | -- 0% 0.94% 0% 1987 0% 0% | 1994

1981-
C6491 -15.38 27.91 | Gran canaria/Airport -- 0.15% | 1994 2.67% 1978 0.31% 1972 0.20% 1984 0.20% | 1994
C659P -15.41 28.15 | San Cristébal 1994 11% 1.88% 1980 10.50% 1994 5.30% 1966 5.30%
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Table 2: Seasonal and annual averages (mm) and coefficients of variation of ETo in the eight

meteorological stations, averaged over the period 1961-2013.

Sta. Cruz de Gran Los
Tenerife Canaria/Airp. | Rodeos | lzafia Fuerteventura | LaPalma | Lanzarote San Cristobal Regional Mean
Average
Winter 222.0 181.5 297.5 | 250.2 298.1 251.6 294.5 217.7 251.6
Spring 390.1 302.2 468.8 | 414.1 460.8 361.5 468.7 342.3 401.1
Summer 512.7 415.5 612.9 | 663.8 560.2 438.7 586.1 383.0 521.6
Autumn 311.8 273.9 401.8 | 364.5 384.6 316.4 393.8 278.8 340.7
Annual 1435.5 1175.0 1784.4 | 1692.6 1702.0 1372.7 1741.0 1219.4 1515.3
Coefficient of variation
Winter 0.05 0.11 0.12 0.18 0.10 0.11 0.09 0.11 0.06
Spring 0.04 0.10 0.07 0.12 0.08 0.10 0.06 0.08 0.05
Summer 0.03 0.12 0.07 0.07 0.07 0.08 0.07 0.07 0.04
Autumn 0.03 0.10 0.10 0.10 0.07 0.11 0.07 0.08 0.05
Annual 0.02 0.07 0.06 0.07 0.07 0.08 0.06 0.05 0.04
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635 Table 3: Seasonal and annual averages (mm) and coefficients of variation of aerodynamic and
636 radiative components of ETo in the eight meteorological stations.In bold the values greater than
637 50% of the total ETo of the station

Aerodynamic

Sta. Cruz Los La San
de Tenerife | Gran Canaria/Airp. | Rodeos | lzafia | Fuerteventura | Palma Lanzarote Cristébal Mean
Average
Winter 101.6 98.8 198.8 | 198.8 195.9 153.2 190.4 108.1 155.7
Spring 130.5 137.5 287.2 | 271.0 251.1 174.3 262.0 134.7 206.0
Summer 146.2 195.6 394.7 | 4247 288.5 201.7 328.1 143.1 265.3
Autumn 109.3 133.4 249.1 263.6 211.7 157.6 225.9 102.0 181.6
Annual 487.5 568.0 1134.4 | 1158.6 945.8 690.7 1004.4 485.5 809.4

Coefficient of variation

Winter 0.12 0.19 0.22 0.23 0.18 0.19 0.16 0.27 0.11

Spring 0.11 0.18 0.15 0.17 0.16 0.20 0.12 0.26 0.09

Summer 0.13 0.24 0.12 0.14 0.15 0.18 0.12 0.20 0.08

Autumn 0.13 0.21 0.20 0.14 0.14 0.20 0.15 0.25 0.10

Annual 0.09 0.16 0.13 0.12 0.14 0.16 0.11 0.17 0.07
Radiative

Sta. Cruz Los La San
de Tenerife | Gran Canaria/Airp. | Rodeos | lzafia | Fuerteventura | Palma Lanzarote Cristobal Average

Average

Winter 120.4 82.7 98.6 51.4 102.2 98.4 104.1 109.6 95.9

Spring 259.7 164.7 181.5 143.1 209.7 187.2 206.7 207.6 195.0

Summer 366.5 220.0 2183 | 239.1 271.7 237.0 258.0 240.0 256.3

Autumn 202.4 140.5 152.8 | 100.9 172.9 158.8 167.9 176.8 159.1

Annual 948.1 607.0 650.0 | 534.0 756.3 682.0 736.7 734.0 706.0

Coefficient of variation

Winter 0.05 0.08 0.10 0.12 0.08 0.08 0.09 0.08 0.06
Spring 0.06 0.07 0.08 0.09 0.06 0.07 0.06 0.08 0.05
Summer 0.04 0.06 0.07 0.08 0.05 0.09 0.06 0.10 0.04
Autumn 0.05 0.05 0.08 0.07 0.05 0.06 0.06 0.06 0.04
Annual 0.03 0.04 0.07 0.06 0.04 0.05 0.04 0.06 0.03
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Table 4: Magnitude of change (mm. decade™) of ETo in each meteorological station and the average of the
eight stations over the period 1961-2013. Statistically significant at the 95% confidence level are given in
bold. Numbers between brackets refer to the magnitudes of change for the periods 1933-2013 for Izafia and

1943-2013 for Santa Cruz de Tenerife.

Sta. Cruz de Gran Canaria/Airp. Los Rodeos Izafa Fuerteventura La Palma Lanzarote San Mean
Tenerife Cristobal
Winter 2.7(0.31) 1.7 11.3 | 4.8(-0.42) 3.2 9.1 7.1 5.1 43
Spring 0.1 (-0.55) 7.7 7.1 | -0.1(-1.27) 3.9 7.2 4.0 -5.8 3.0
Summe 1.1(-1.36) 16.0 7.6 | 6.0(-0.64) 0.0 7.7 10.1 5.0 6.7
r
Autumn 2.0(0.62) 3.6 11.2 3.7 (0.30) -0.2 9.9 4.8 -5.0 3.8
Annual 7.3(-1.95) 28.4 34.8 14.9 (-0.67) 9.2 29.8 29.7 -8.4 18.2
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Table 5: Magnitude of change (mm. decade™) of both aerodynamic and radiative components of ETo in each

meteorological station and the average of the eight stations over the period 1961-2013. Statistically

significant at the 95% confidence level are given in bold. Numbers between brackets refer to the magnitudes
of change for the periods 1933-2013 for Izafia and 1943-2013 for Santa Cruz de Tenerife.

Sta. Cruz de Gran Los San
Tenerife Canaria/Airp. Rodeos | lzafia Fuerteventura | La Palma | Lanzarote | Cristébal | Mean
Aerodynamic
Winter 3.7 (0.09) 2.9 14.8 5.1(-0.96) 4.6 10.1 9.1 -5.8 5.5
Spring -1.3(-1.84) 7.8 8.9 0.1(-3.39) 2.4 3.3 2.7 -11.8 1.5
Summer 0.1(-2.95) 16.8 9.9 6.7 (-3.38) -1.1 2.5 8.1 -1.5 5.2
Autumn 2.1(-0.51) 5.2 14.5 3.7 (-1.03) -1.1 7.9 4.6 -3.8 4.1
Annual 4.7 (-6.25) 31.2 44.6 | 15.6 (-6.93) 6.5 19.8 28.0 -21.2 16.2
Radiative

Winter -1.0(0.22) -1.2 -3.5 -0.4 (0.51) -1.4 -1.0 -2.0 0.8 -1.2
Spring 1.4 (1.28) 0.1 -1.8| -03(2.12) 1.4 3.9 1.3 6.1 15
Summer 1.0 (1.58) -0.8 -2.3 -0.7 (2.74) 11 5.1 2.0 6.5 1.5
Autumn 0.0(1.13) -1.6 -3.3 0.1(1.34) 0.9 2.0 0.2 -1.2 -0.4
Annual 2.7 (4.29) -2.8 -9.9 -0.7 (6.25) 2.7 10.0 1.7 12.7 2.0
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Table 6. Seasonal and annual Pearson’s coefficients between the evolution of ETo and the evolution of

aerodynamic and radiative components in the eight meteorological stations and the average. Statistically

significant at the 95% confidence level are given in bold

Sta. Cruzde | Gran Los ‘ ‘ ‘ ‘ San ‘
Tenerife Canaria/Airp. | Rodeos | lzafia Fuerteventura | La Paima | Lanzarote | Cristébal Mean
Aerodynamic
Winter 0.88 0.95 0.99 0.99 0.98 0.97 0.97 0.96 0.93
Spring 0.65 0.93 0.95 0.96 0.95 0.93 0.93 0.88 0.87
Summer 0.74 0.96 0.96 0.97 0.94 0.84 0.94 0.63 0.85
Autumn 0.75 0.96 0.98 0.98 0.96 0.96 0.97 0.90 0.95
Annual 0.78 0.97 0.98 0.97 0.97 0.95 0.96 0.88 0.95
Radiative

Winter 0.05 0.37 0.75 0.18 -0.62 -0.22 -0.44 -0.46 -0.02
Spring 0.38 0.52 -0.51 0.36 -0.25 0.14 0.07 -0.17 0.28
Summer 0.05 0.28 -0.37 -0.62 -0.12 0.23 0.08 0.41 0.29
Autumn 0.14 0.09 -0.67 -0.01 -0.23 0.43 -0.45 -0.05 0.05
Annual -0.05 -0.20 -0.73 -0.36 -0.46 0.04 -0.28 -0.29 -0.15
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659 Table 7. Seasonal and annual Pearson’s coefficients between the time series of ETo and the different

660 meteorological variables in the eight meteorological stations, calculated for the period 1961-2013.
661 Statistically significant at the 95% confidence level are given in bold
662 Sta. Cruz
de Gran Los La San
663 Tenerife Canaria/Airp. | Rodeos lzaiia Fuerteventura | Palma Lanzarote | Cristébal

Maximum air temperature

664 Winter 0.32 0.51 0.12 0.89 023| -001 -0.23 0.26
Spring 0.46 0.69 0.02 0.90 018 | 001 0.62 0.42
665
Summer 0.48 0.80 0.10 018 033| 027 0.51 0.44
Autumn 0.18 0.64 0.04 0.71 029| o012 0.09 0.43
Annual 0.17 0.41 0.11 0.64 001| -003 0.16 0.46

Minimum air temperature

Winter 0.15 0.50 0.13 0.83 -0.24 0.17 -0.13 0.01
Spring 0.24 0.53 0.19 0.83 0.12 0.19 0.49 0.10
Summer 0.24 0.55 0.11 0.23 0.16 0.33 0.55 0.17
Autumn 0.21 0.56 0.36 0.63 0.20 0.32 0.26 0.21
Annual 0.04 0.47 0.13 0.54 -0.11 0.30 0.27 -0.07

Relative humidity

Winter -0.52 -0.91 -0.57 -0.83 -0.92 -0.92 -0.89 -0.72
Spring -0.34 -0.89 -0.70 -0.90 -0.89 -0.90 -0.77 -0.82
Summer -0.35 -0.93 -0.83 -0.46 -0.90 -0.89 -0.80 -0.61
Autumn -0.30 -0.94 -0.55 -0.74 -0.90 -0.91 -0.78 -0.76
Annual -0.18 -0.93 -0.62 -0.59 -0.93 -0.94 -0.85 -0.86

Sunshine duration

Winter 0.48 0.48 0.16 0.63 0.01 0.33 0.18 0.06
Spring 0.72 0.71 0.08 0.70 0.27 0.50 0.25 0.21
Summer 0.45 0.62 0.20 0.18 0.32 0.41 0.35 0.61
Autumn 0.47 0.38 0.20 0.53 0.14 0.69 0.16 0.34
Annual 0.40 0.30 -0.01 0.40 0.15 0.48 0.08 -0.09
Wind speed
Winter 0.61 -0.01 0.84 0.29 0.54 0.29 0.35 0.62
Spring 0.47 0.18 0.62 0.33 0.52 0.22 0.24 0.44
Summer 0.65 0.37 0.48 0.77 0.39 -0.01 0.33 0.26
Autumn 0.62 0.22 0.78 0.48 0.31 0.27 0.62 0.48

Annual 0.73 0.47 0.72 0.69 0.50 0.25 0.34 0.38
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over the period 1961-2013. In bold statistically significant trends at the 95%.

Sta. Cruz Mean
de Gran Los La San
Tenerife Canaria/Airp. | Rodeos Izafia Fuerteventura | Palma Lanzarote | Cristébal
Maximum air temperature
-0.06 -0.09 -0.05 -0.01 -0.08 -0.08 -0.18 -0.18 -0.09
Winter
-0.08 0.03 -0.02 -0.12 -0.02 -0.02 0.08 0.14 0.00
Spring
-0.06 0.20 0.00 -0.07 0.00 0.00 0.07 0.12 0.04
Summer
-0.06 -0.08 -0.08 -0.04 -0.10 -0.06 -0.11 -0.17 -0.09
Autumn
-0.05 0.03 -0.01 -0.05 -0.03 -0.02 -0.01 0.00 -0.02
Annual
Minimum air temperature
-0.02 -0.01 0.02 0.16 -0.02 0.02 -0.02 0.14 0.03
Winter
0.02 0.03 0.03 0.18 0.04 0.04 0.05 0.09 0.06
Spring
0.08 0.12 0.10 0.25 0.11 0.07 0.10 0.13 0.12
Summer
0.07 0.01 0.09 0.19 0.05 0.09 0.09 0.08 0.09
Autumn
0.05 0.05 0.08 0.20 0.06 0.07 0.08 0.12 0.09
Annual
Relative humidity
-0.51 -0.51 -0.22 -1.11 -0.81 -1.53 -1.56 -0.18 -0.80
Winter
0.18 -1.06 -0.22 0.20 -0.76 -0.96 -0.88 0.90 -0.33
Spring
0.39 -1.58 -0.16 -0.91 -0.06 -0.72 -0.99 0.45 -0.45
Summer
0.02 -0.72 0.01 -0.26 -0.29 -1.65 -0.99 0.31 -0.45
Autumn
0.02 -0.89 -0.03 -0.52 -0.49 -1.05 -1.11 0.32 -0.47
Annual
Sunshine duration
0.02 -0.10 -0.04 0.02 -0.12 0.08 -0.05 -0.11 -0.04
Winter
0.08 0.11 0.08 0.06 0.03 0.22 -0.06 0.05 0.07
Spring
0.06 0.15 0.05 -0.03 0.00 0.25 0.09 0.35 0.12
Summer
0.03 -0.04 0.03 0.08 0.00 0.19 0.03 -0.16 0.02
Autumn
0.06 0.03 0.03 0.04 -0.01 0.18 0.02 0.04 0.05
Annual
Wind speed
0.04 0.04 0.33 0.01 0.00 0.07 0.02 -0.18 0.04
Winter
-0.01 0.08 0.19 0.07 -0.08 -0.08 -0.13 -0.24 -0.03
Spring
0.02 0.21 0.24 -0.01 -0.05 -0.11 -0.06 0.01 0.03
Summer
0.03 0.07 0.33 0.03 -0.07 -0.05 -0.04 -0.06 0.03
Autumn
0.02 0.10 0.27 0.02 -0.04 -0.04 -0.04 -0.12 0.02
Annual

Table 8. Magnitude of change (2C, %, hours and ms™* decade™) of the different meteorological variables
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Figure 1: Location and relief of the Canary Islands and meteorological stations used in the study.
Altitude is given in meters.
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701 Figure 2. Comparison between the average monthly ETo obtained from daily meteorological

702  records and the ETo directly calculated from monthly meteorological variables. Two meteorological
703  stations in the Canary Islands are used for the period 1978-2010 (Los Rodeos and lIzafia). The figure

704 shows the relationship between monthly ETo series but also between the series of standardized
705 anomalies in which seasonally is removed.
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Figure 4: Box-plot with the annual and seasonal aerodynamic and radiative components of ETo in

the eight meteorological stations used in this study
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Figure 7. Relationship between the regional annual and seasonal ETo and the regional series of the

different meteorological variables. Pearson’s coefficients are included in each plot. In bold the

coefficients statistically significant at the 0.95 confidence level
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Figure 8: Relationship between the observed change in ETo (mm. year-1) in each meteorological
station and the change in simulated ETo considering each one of the meteorological variables used
to calculate ETo as constant for the period 1961-2013. Black dots indicate significant differences in
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