

Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands

Vicente-Serrano, S.M.¹, Azorin-Molina, C.¹, Sanchez-Lorenzo, A.¹, El Kenawy, A.², Martín-Hernández, N.¹, Peña-Gallardo, M.¹, Beguería, S.³, Tomas-Burguera, M.³

¹*Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain;*

²Department of Geography, Mansoura University, Mansoura, Egypt; ³Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain.

* Corresponding author: svicen@ipe.csic.es

Abstract

13 We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand
14 (AED) in the Canary Islands for the period 1961 -2013. We employed long and high quality time
15 series of meteorological variables to analyze current AED changes in this region and found that
16 AED has increased during the investigated period. Overall, the annual ETo, which was estimated by
17 means of the FAO-56 Penman-Monteith equation, increased significantly by $18.2 \text{ mm decade}^{-1}$ on
18 average, with a stronger trend in summer ($6.7 \text{ mm decade}^{-1}$). In this study we analysed the
19 contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and
20 (ii) radiative (related to the available energy to evaporate a quantity of water) components to the
21 decadal variability and trends of ETo. More than 90% of the observed ETo variability at the
22 seasonal and annual scales can be associated with the variability of the aerodynamic component.
23 The variable that recorded more significant changes in the Canary Islands was relative humidity,
24 and among the different meteorological factors used to calculate ETo, relative humidity was the
25 main driver of the observed ETo trends. The observed trend could have negative consequences in a
26 number of water-depending sectors if it continues in the future.

28 **Key-words:** Reference Evapotranspiration, Aerodynamic component, Radiative component,
29 Temporal changes, Potential Evapotranspiration, Global warming, Canary Islands.

30

31 **1. Introduction**

32 The atmospheric evaporative demand (AED) is one of the key variables of the hydrological cycle
33 (Wang and Dickinson, 2012), with multiple implications for agriculture, hydrology and the
34 environment (Allen et al., 2015). Several studies have indicated that current global warming is
35 increasing the intensity of the hydrological cycle, mainly as a consequence of an intensification of
36 the AED (Huntington, 2006). Sherwood and Fu (2014) suggested that mechanisms driving the AED
37 over land regions could be the main driver of increasing climate aridity in world semi-arid regions
38 under a global warming scenario.

39 Warming may play an important role in increasing the AED via the aerodynamic component
40 (McVicar et al., 2012a). Following the Clausius-Clapeyron relationship, the quantity of water
41 vapour that a given mass of air can store increases exponentially with the air temperature.
42 Nevertheless, there are other climate variables whose temporal evolution could compensate the
43 increased AED induced by increasing air temperature, such as wind speed and vapour pressure
44 deficit (McVicar et al., 2012a). In addition, the radiative component of the AED, which is related to
45 the available solar energy that transforms a unit of liquid water into vapour, may compensate or
46 accentuate the increase in AED associated with warming. Wild et al. (2015) noted that solar
47 radiation increased over large regions since the 1980s as a consequence of changes in cloud cover
48 and/or atmospheric aerosol concentrations.

49 These large number of variables interact in a non-linear manner to determine the AED (McMahon
50 et al., 2013), so assessing recent changes in the AED and defining their determinant factors is not an
51 easy task. For this reason, while several studies analysed the AED at the global scale using different
52 datasets and methods, there is no general consensus on the recent AED evolution (Sheffield et al.,

53 2012; Matsoukas et al., 2011; Wang et al., 2012; Dai, 2013). In this context, the few existing direct
54 AED observations, based on evaporation pans, show a decrease since the 1950s at the global scale
55 (Peterson et al. 1995; Roderick and Farquhar 2002 and 2004), a finding that adds more uncertainty
56 regarding the behaviour of the AED under current global warming. These issues stress the need for
57 new studies that employ high quality datasets to assess the time evolution of the AED at the
58 regional scale.

59 There are a number of studies published in the last decade that analysed the AED evolution across
60 different regions of the World. Some of them are based on AED estimated using empirical
61 formulations, mostly based on air temperature data (e.g., Thornthwaite, 1958; Hargreaves and
62 Samani, 1995). However, to adequately quantify the AED evolution it is necessary to use long-time
63 series of the meteorological variables that control its radiative and aerodynamic components (e.g.
64 air temperature, vapour pressure deficit and wind speed). Although these variables are generally
65 poorly measured and highly inhomogeneous over both space and time, numerous regional studies
66 analysed the evolution of the AED by means of the robust Penman-Monteith (PM) equation using
67 long times series of these variables. The available regional studies show quite contradictory results,
68 where some studies showed AED negative trends, including those in China (Xu et al., 2006; Ma et
69 al., 2012; Zhang et al., 2007; Liu et al., 2015) and northwest India (Jhajharia et al., 2014). In
70 contrast, other regional studies found positive trends in AED, including those in central India
71 (Darshana et al., 2012), Iran (Kousari and Ahani, 2012; Tabari et al., 2012), Florida (Abtew et al.,
72 2011), continental Spain (Espadafor et al., 2011; Vicente-Serrano et al., 2014a; Azorin-Molina et
73 al., 2015), France (Chauiche et al., 2010) and Moldova (Piticar et al., 2015).

74 The contrasted trends among world regions would be a consequence of the evolution of the
75 different meteorological variables that control the AED. Specifically, some studies suggest that
76 temporal variability and changes in the AED are related to changes in the relative humidity, mainly
77 in semi-arid regions (Wang et al., 2012; Espadafor et al., 2011; Vicente-Serrano et al., 2014b),

78 whereas others stress the importance of solar radiation (Roderick and Farquhar, 2002; Roderick et
79 al., 2007; Ambas and Baltas, 2012; Fan and Thomas, 2013) or wind speed (McVicar et al., 2012b).
80 Among these studies, few analyzed the AED variability and trends and their possible drivers in the
81 eastern North Atlantic region (Chaouche et al., 2010; Vicente-Serrano et al., 2014a; Azorin-Molina
82 et al., 2015). Nevertheless, there are no studies about this issue in the sub-tropical areas of the north
83 Atlantic region. In this area, there are very few meteorological stations measuring long-term series
84 of the variables necessary to make robust calculations of the AED. This uneven distribution of
85 meteorological observatories constrains the high interest to know the evolution of atmospheric
86 processes in this region, where climate variability is strongly controlled by changes in the Hadley
87 circulation (Hansen et al., 2005) that affects the position and intensity of the subtropical anticyclone
88 belt. Knowing the evolution of AED and its main drivers in this region is highly relevant given the
89 general climate aridity of the region and the low availability of water resources (Custodio and
90 Cabrera, 2002). In this work we analyze the recent evolution and meteorological drivers of the AED
91 in the Canary Islands. The main hypothesis of the study is that in opposition to other continental
92 temperate regions of the North Hemisphere, the warm and humid climate of the subtropical Canary
93 Islands provides the water supply to the atmosphere needed to maintain the AED constant under the
94 current global warming scenarios; consequently, only wind speed and solar radiation could affect
95 the observed decadal variability and trends of the AED. Thus, the availability of long and high
96 quality time series of meteorological variables in the Canary Islands provides an opportunity to
97 analyze current AED changes in the sub-tropical northeastern Atlantic region and the role played by
98 different meteorological variables.

99

100 **2. Methods**

101 **2.1. Dataset**

102 We used the complete meteorological records of the Spanish National Meteorological Agency
103 (AEMET) in the Canary Islands for the following variables at the monthly scale: maximum and
104 minimum air temperature (308 stations), wind speed (99), sunshine duration (42) and mean relative
105 humidity (139). A majority of the stations cover short periods or are affected by large data gaps. As
106 the number of meteorological stations before 1961 was very little for several variables we restricted
107 our analysis to the period between 1961 and 2013. Specifically, only 8 meteorological stations had
108 data gaps of less than 20% of the months in all the necessary variables. As illustrated in Figure 1,
109 these stations are distributed between the Islands of Tenerife (3 stations), Gran Canaria (2), La
110 Palma (1), Lanzarote (1) and Fuerteventura (1). Given that some series included records for a longer
111 period (e.g., Izaña from 1933 and Santa Cruz de Tenerife from 1943), neighbouring stations with
112 shorter temporal coverage were used to reconstruct the existing data gaps in the selected
113 observatories, using a regression-based approach. Details of the site names, coordinates, relocations,
114 data gaps and inhomogeneities of the selected meteorological stations can be found in Table 1.
115 Then, the time series were subject to quality control and homogenization procedures. The quality
116 control procedure was based on comparison of the rank of each data record with the average rank of
117 the data recorded at adjacent stations (Vicente-Serrano et al., 2010). A relative homogeneity method
118 was applied to identify possible inhomogeneities. For this purpose, we used HOMER
119 (HOMogenization software in R), which compares each candidate series with a number of available
120 series (Mestre et al., 2013). The method provides an estimation of break points in the time series
121 relative to other stations, indicating high probabilities of the presence of inhomogeneities. This
122 method was applied to the different variables and time series following Mestre et al. (2013). Finally,
123 a single regional series for the different variables was obtained using a simple arithmetic average of
124 data values at the available eight stations.

125

126 **2.2. Calculation of ET₀**

127 The Penman-Monteith equation (PM) equation is the standard technique for calculation of ETo
 128 from climatic data (Allen et al., 1998), and it is the method officially adopted (with small variations)
 129 by the International Commission for Irrigation (ICID), the Food and Agriculture Organization
 130 (FAO) of the United Nations, and the American Society of Civil Engineers (ASCE). The PM
 131 method can be used globally, and has been widely verified based on lysimeter data from diverse
 132 climatic regions (Allen et al., 1994; Itenfisu et al., 2000; López-Urrea et al., 2006). Allen et al.
 133 (1998) simplified the PM equation, developing the FAO-56 PM equation, and defined the reference
 134 surface as a hypothetical crop with assumed height of 0.12 m, surface resistance of 70 s m^{-1} and
 135 albedo of 0.23 that had evaporation similar to that of an extended surface of green grass of uniform
 136 height that was actively growing and adequately watered. The ETo FAO-56 PM is expressed as:

$$137 \quad \text{ETo} = \frac{0.408 \cdot \Delta \cdot (R_n - G) + \gamma \cdot \frac{900}{T + 273} \cdot u_2 \cdot (e_s - e_a)}{\Delta + \gamma \cdot (1 + 0.34u_2)} \quad (1)$$

138
 139 where ETo is the reference evapotranspiration (mm day^{-1}), R_n is the net radiation at the crop surface
 140 ($\text{MJ m}^{-2} \text{ day}^{-1}$), G is the soil heat flux density ($\text{MJ m}^{-2} \text{ day}^{-1}$), T is the mean air temperature at 2 m
 141 height ($^{\circ}\text{C}$), u_2 is the wind speed at 2 m height (m s^{-1}), e_s is the saturation vapour pressure (kPa), e_a
 142 is the actual vapour pressure (kPa), $e_s - e_a$ is the saturation vapour pressure deficit (kPa), Δ is the
 143 slope of the vapour pressure curve ($\text{kPa } ^{\circ}\text{C}^{-1}$), and γ is the psychrometric constant ($\text{kPa } ^{\circ}\text{C}^{-1}$).

144 The FAO-56 PM is an equation initially designed for crop monitoring and irrigation operation at
 145 daily and sub-daily scales. This equation involves non-linear relationships among the variables used
 146 for calculation and averaging these variables for long-term intervals could affect the reliability of
 147 the ETo estimations. Nevertheless, Allen et al. (1998) indicated that the FAO-56 PM equation can
 148 be used for daily, weekly, ten-day or monthly calculations, and several previous studies have
 149 computed the Penman Monteith ETo using monthly values for some variables (e.g., Sheffield et al.,
 150 2012; Dai, 2013). We have found that using monthly averages instead of daily records for the

151 different variables has not a relevant influence on the ETo estimations in the Canary Islands. Figure
 152 2 shows an example using two of the available stations (Los Rodeos and Izaña) for the 1978-2010
 153 period. The relationship between the monthly sum of the daily ETo calculations and the ETo
 154 calculation from the monthly averages, justifies the equality of applying both procedures. This is
 155 observed for the ETo monthly values (including seasonality) but also considering monthly
 156 standardized anomalies in which seasonality is removed. Moreover, there are other technical
 157 reasons that recommend the use of monthly instead daily records to calculate ETo since testing and
 158 correcting the temporal homogeneity of the necessary variables on a daily basis is highly
 159 problematic, whereas testing and correcting homogeneity using monthly records is reliable (e.g.
 160 Venema et al., 2012).

161 Therefore, the monthly ETo was calculated from data of the monthly averages of five
 162 meteorological parameters: maximum and minimum air temperature, relative humidity (which
 163 allows calculating the vapour pressure deficit), wind speed at a height of 2 m, and daily sunshine
 164 duration (which allows estimating the net radiation). García et al. (2014) compared the capability of
 165 sunshine duration series to reconstruct long term radiation in the observatory of Izaña (Tenerife),
 166 showing very good temporal agreement between sunshine duration and radiation, independently of
 167 the season of the year. Further details on the required equations to obtain the necessary parameters
 168 from meteorological data can be consulted in Allen et al. (1998).

169 We also calculated the evolution of the radiative (Eq.2) and the aerodynamic components (Eq.3) of
 170 the ETo, as follows:

$$171 \text{ETo}(r) = \frac{[0.408\Delta(Rn - G)]}{[\Delta + \gamma(1 + 0.34u_s)]} \quad (2)$$

$$172 \text{ETo}(a) = \frac{[r\left(\frac{900}{T + 272}\right)u_2(e_s - e_a)]}{[\Delta + \gamma(1 + 0.34u_s)]} \quad (3)$$

173

174 **2.3. Analysis**

175 Using the time series of ETo, we determined the seasonal (winter: December–February; spring:
176 March–May; summer: June–August; autumn: September–November) and annual ETo averages. To
177 analyze changes in ETo we used the nonparametric Mann-Kendall statistics that measures the
178 degree to which a trend is consistently increasing or decreasing. The Mann-Kendall statistic is
179 advantageous compared to parametric tests as it is robust to outliers and it does not assume any
180 underlying probability distribution of the data (Zhang et al., 2001). For these reasons, it has been
181 widely used for trend detection in a wide range of hydrological and climatological studies (e.g.,
182 Zhang et al., 2001; El Kenawy and McCabe, 2015). Autocorrelation was considered in the trend
183 analysis applied to the series of ETo, the series of the aerodynamic and radiative components of the
184 ETo and the series of the different climate variables (temperature, relative humidity, wind speed and
185 sunshine duration). This was applied using the FUME R package, which performs the modified
186 Mann-Kendall trend test, returning the corrected p-values after accounting for temporal
187 pseudoreplication (Hamed and Rao, 1998; Ye and Wang, 2004). To assess the magnitude of
188 change in ETo, we used a linear regression analysis between the series of time (independent
189 variable) and the ETo series (dependent variable). The slope of the regression indicated the amount
190 of change (ETo change per year), with higher slope values indicating greater change. We also
191 calculated the trend observed in the different meteorological variables (air temperature, relative
192 humidity, sunshine duration and wind speed) at both the seasonal and annual scales.
193 To get insight into the influence of changes in the different meteorological variables on ETo, we
194 related the evolution of ETo with relative humidity, maximum and minimum air temperature, wind
195 speed and sunshine duration by means of correlation analyses. To assess the importance of trends in
196 the different meteorological variables on the observed trends in ETo between 1961 and 2013, we
197 applied the PM equation while holding one variable as stationary (using the average from 1961 to
198 2013) each time. This approach provided five simulated series of ETo, one per input variable, which
199 could be compared to the ETo series computed with all the data to determine the isolated influence

200 of the five variables. Significant differences between each pair of ETo series (the original one and
201 the alternative one in which one variable was kept constant) were assessed by comparing the slopes
202 of the linear models, with time as the independent variable. A statistical test for the equality of
203 regression coefficients was used (Paternoster et al., 1998). The significance of the difference was
204 assessed at a confidence interval of 95% ($p<0.05$).

205

206 **3. Results**

207 **3.1. Average ETo values**

208 Figure 3 shows a box-plot with the seasonal and annual values of ETo in the different
209 meteorological stations across the Canary Islands, which are also summarized in Table 2. There
210 were strong seasonal differences in ETo, as all different meteorological stations show their
211 maximum values in summer and minimum in winter, albeit with strong differences among them. In
212 winter, the highest average values were recorded in the most arid islands (i.e., Fuerteventura and
213 Lanzarote) and in the station of Los Rodeos (North Tenerife). In summer, the stations of Izaña and
214 Los Rodeos showed the highest average values (663.8 and 612.9 mm, respectively). The lowest
215 summer ETo averages were recorded at the stations of Gran Canaria island (San Cristóbal and Gran
216 Canaria/Airport). At the annual scale, there were very few differences in the average values
217 between the stations of Los Rodeos, Izaña, Fuerteventura and Lanzarote, with very high ETo values
218 ranging between 1693 and 1784 mm (Table 2). The observatory with the lowest ETo values is
219 located in Gran Canaria Airport, although the observatory of San Cristóbal (also in the Gran
220 Canaria island) records the minimum values in summer. The magnitude of the differences can be
221 quite important (up to 34%) between the highest ETo values recorded in Los Rodeos, Izaña,
222 Fuerteventura and Lanzarote and the lowest ETo values (Gran Canaria and San Cristóbal). In
223 general, variability, as revealed by the coefficient of variation, was higher in the meteorological
224 stations that recorded the highest ETo values at the annual scale, but there was no clear spatial

225 pattern at the seasonal scale as different stations showed few differences in terms of the coefficients
226 of variation (Table 2).

227 In the majority of weather stations the seasonal and annual ETo magnitude was mostly driven by
228 the aerodynamic component. The average aerodynamic fraction was higher than the radiative
229 fraction in the weather stations that record the highest ETo values (Los Rodeos and Izaña) in all
230 seasons around the year (Figure 4). In other weather stations (Sta. Cruz de Tenerife and San
231 Cristóbal), the ETo associated with the radiative component was much higher than that observed for
232 the aerodynamic component (Table 3). The temporal variability in the aerodynamic component was
233 much higher than that observed in the radiative one, regardless of the season of the year or the
234 meteorological station.

235

236 **3.2. Long-term evolution of ETo**

237 The regional ETo series for the whole Canary Islands (Figure 5) shows a significant increase at the
238 annual scale ($18.2 \text{ mm decade}^{-1}$), which is stronger in summer ($6.7 \text{ mm decade}^{-1}$) (Table 4).
239 Nevertheless, there was a strong variability between the different meteorological stations, since
240 most meteorological stations experimented significant increases of ETo between 1961 and 2013.
241 The largest annual increase was recorded in Los Rodeos ($34.8 \text{ mm decade}^{-1}$), La Palma (29.8 mm
242 decade^{-1}) and Lanzarote ($29.7 \text{ mm decade}^{-1}$). Considering a longer period (1933-2013 for Izaña, and
243 1943-2013 for Santa Cruz de Tenerife), the changes are not statistically significant, although it was
244 not possible to check the homogeneity of the climate records prior to 1961 and thus the results for
245 the longer period must be carefully considered. For the period 1961-2013, there is no general spatial
246 pattern in the observed changes, thus some differences can be observed. For example, in the Gran
247 Canaria island, San Cristóbal station shows a statistically non-significant negative change in ETo on
248 the order of $-8.4 \text{ mm decade}^{-1}$, while there is a general significant increase of $28.4 \text{ mm decade}^{-1}$ in
249 the Gran Canaria Airport.

250 Trends in the aerodynamic and radiative components showed clear differences among stations and
251 for the average Canary Islands (Figure 6). Main changes were recorded in the aerodynamic
252 component. The regional series showed an increase of 16.2 mm decade⁻¹ in the aerodynamic
253 component, but it only showed an increase of 2 mm decade⁻¹ in the radiative component (Table 5).
254 This can be translated to an average increase in the ETo of 89% over the whole period due to
255 changes in the aerodynamic component, and of 11% due to changes in the radiative component.
256 However, there are spatial differences between the meteorological stations, since the aerodynamic
257 component showed a decrease of 21 mm decade⁻¹ in San Cristóbal, compared to an increase of 44.6
258 mm decade⁻¹ in Los Rodeos. On the contrary, the radiative component showed lower differences
259 among stations, with values ranging from -9.9 mm decade⁻¹ in Los Rodeos to 12.7 mm decade⁻¹ in
260 San Cristóbal. Nevertheless, and regardless of the observed trends, the results indicate that the inter-
261 annual variability of ETo between 1961 and 2013 was mainly driven by the aerodynamic
262 component, independently of the season or the meteorological station considered (Table 6). The
263 temporal correlation between ETo and the aerodynamic component was statistically significant for
264 the different meteorological stations in the seasonal and the annual series, with correlation
265 coefficients higher than 0.95 in most cases. The correlation for the regional series was also strong
266 and statistically significant. In contrast, the correlation coefficients calculated between ETo and the
267 radiative component were much lower, and generally non-significant ($p < 0.05$). Los Rodeos is the
268 unique weather station where the correlation between ETo and the radiative component was
269 statistically significant at both the seasonal and annual scales, but showing a negative correlation.
270 Overall, the results show that the correlation between the annual radiative component and the total
271 annual regional series of ETo is statistically non-significant.
272

273 **3.3. Drivers of ETo variability and trends**

274 Table 7 shows the correlation between the different meteorological variables and ETo at the
275 seasonal and annual scales in the eight meteorological stations. Maximum and minimum air
276 temperatures were positively correlated with ETo and this relationship was statistically significant
277 in some stations, and the correlation coefficients tended to be higher for maximum air temperature.
278 In Los Rodeos and La Palma, the ETo variability could not be explained by the variability in air
279 temperature, with correlation coefficients weaker than 0.3. Overall, the results indicate that the
280 seasonal and annual series of ETo were significantly correlated with variations of sunshine duration
281 and wind speed, suggesting that these two variables are the key drivers of ETo variability in the
282 Canary Islands. The variable that showed the strongest correlation with the evolution of ETo in the
283 seasonal and annual series of the different meteorological observatories was relative humidity, with
284 negative coefficients. Only in the annual series of Santa Cruz de Tenerife the correlation was non-
285 significant. Moreover, there were no significant differences in the magnitude of correlations among
286 seasons.

287 The regional series summarise the pattern observed in the individual meteorological stations (Figure
288 7). In winter, relative humidity had the strongest correlation with ETo ($r=-0.85$), with a mostly
289 linear relationship. Minimum air temperature and sunshine duration showed significant positive
290 correlations with ETo ($r=0.40$ and 0.36 , respectively). Maximum air temperature and wind speed
291 showed weaker correlation with the winter ETo. In spring, the magnitude of the correlations was
292 similar among the different variables, and the highest correlation corresponded again to relative
293 humidity ($r=-0.72$). A similar pattern was found in summer, where relative humidity showed the
294 strongest correlation ($r=-0.74$) followed by maximum and minimum air temperature. In autumn,
295 relative humidity also showed the strongest correlation and wind speed showed more importance
296 than both maximum and minimum air temperature. As expected, relative humidity showed the
297 strongest correlation with ETo ($r = -0.83$) at the annual scale, followed by wind speed ($r = 0.62$). On
298 the contrary, the correlation with maximum air temperature was statistically non-significant.

299 The general increase observed in ETo in the Canary Islands was largely determined by changes in
300 the different meteorological variables (Table 8). The maximum air temperature does not show
301 noticeable changes, with the exception of Gran Canaria/Airport, Lanzarote and San Cristóbal
302 stations where significant trends were found. The regional average did not show significant
303 changes. On the contrary, the minimum air temperature showed an average increase of 0.12 °C
304 decade⁻¹ in summer and 0.09 °C decade⁻¹ at the annual scale between 1961 and 2013. The
305 significant increase recorded in summer was found in six meteorological stations, with a maximum
306 of 0.25° C decade⁻¹ in Izaña. Changes in relative humidity were also significant. There was a
307 significant decrease in winter, summer and annually, which represent a decline of 0.47% decade⁻¹,
308 although there were differences among stations. Sunshine duration and wind speed did not show
309 noticeable changes, and the unique remarkable pattern was the significant increase of the summer
310 sunshine duration at the regional scale (0.12 hours decade⁻¹) and the significant increase of wind
311 speed in the station of Los Rodeos in the four seasons and also annually.

312 With respect to the sensitivity of changes in ETo to its five driving meteorological drivers (Figure
313 8), substantial differences were found between variables. The differences between observed ETo
314 and simulated ETo with average maximum and minimum air temperature were small irrespective of
315 the season, indicating a low sensitivity to these two variables. In contrast, ETo was more sensitive
316 to setting sunshine duration and wind speed at their mean values. Thus, in the station of Los
317 Rodeos, the predicted magnitude of change in winter, autumn and annually was different from the
318 observed magnitude of change. The highest sensitivity was, however, to relative humidity. In
319 general, the different meteorological stations showed an important increase in observed ETo with
320 respect to predicted ETo keeping relative humidity as constant. This was observed at the seasonal
321 and annual scales. Thus, in three meteorological stations the observed magnitude of change on
322 annual basis is between two and three times higher than that predicted considering relative humidity
323 as stationary. This pattern was also found in the regional series (Figure 9). Considering air

324 temperature, sunshine duration and wind speed as constant, there were no statistical differences
325 between the observed and predicted magnitudes of change, both seasonally and annually. On the
326 contrary, leaving relative humidity as constant, the magnitude of the trend was quite different to the
327 observations, and temporal trends would not be statistically significant. Thus, the magnitude of
328 change of ETo, considering relative humidity as constant, is significantly different from the
329 observed magnitude of change in winter and annually.

330

331 **4. Discussion**

332 This work analyses the recent evolution (1961-2013) of reference evapotranspiration (ETo) in the
333 Canary Islands and its relationship with the evolution of its atmospheric drivers. We analysed the
334 time evolution of ETo in eight meteorological stations in which the necessary meteorological
335 variables for calculation of the ETo were available. The results showed a general increase in ETo,
336 although different magnitudes of change were found between the different meteorological stations.
337 These differences did not follow any specific geographic pattern, so they must be considered either
338 due to random effects and uncertainty at various levels or due to micro-geographic effects that were
339 not considered in this study. There is not a general pattern that may connect the observed trends in a
340 certain forcing variable with the observed trend of ETo in each of the eight analysed stations
341 although those that showed a higher increase in ETo (i.e., Lanzarote, Los Rodeos and Gran Canaria)
342 displayed a higher increase in the aerodynamic component; a process which is in agreement with
343 the significant reductions observed in relative humidity.

344 Nevertheless, with the exception of the observatory of San Cristóbal in the north of Gran Canaria
345 Island, other meteorological observatories showed positive changes in ETo, with annual trends
346 statistically significant in six stations. In any case, we must also stress that trends in ETo at the
347 regional scale are mostly significant because of the low values in the beginning of the study period
348 starting in the 1960s. Thus, the results of the two sites with longer temporal coverage (i.e., Izaña

349 and Santa Cruz de Tenerife) do not show significant trends. This makes necessary to consider these
350 trends with caution since they could be driven by variability processes at the decadal scale.
351 The few existing studies in Northwest Africa (Ouysse et al., 2010; Tekken and Kropp, 2012) are not
352 comparable with our findings, since the variables required to apply the Penman-Monteith equation
353 were not available. Instead, these studies relied on simplified methods that just employ air
354 temperature records. Despite the difference in methods, these studies also found a general increase
355 in the ETo. The closest region in which it is possible to make a direct comparison using the same
356 method is the Iberian Peninsula, where a general increase of $24.5 \text{ mm decade}^{-1}$ was found between
357 1961 and 2011 (Vicente-Serrano et al., 2014a). This study also found that the variability and trends
358 in the aerodynamic component determined most of the observed variability and the magnitude of
359 change of ETo in a majority of the meteorological stations in the Iberian Peninsula. The radiative
360 component showed much lower temporal variability than the aerodynamic component did. Thus,
361 more than 90% of the observed ETo variability at the seasonal and annual scales can be associated
362 with the variability of the aerodynamic component. This is in agreement with the results obtained in
363 previous studies. For example, Wang et al. (2012) showed that recent ETo variability at the global
364 scale was mainly driven by the aerodynamic component. Equally, other studies in Southern Europe
365 indicated a higher importance of the aerodynamic component (Sanchez-Lorenzo et al., 2014;
366 Azorin-Molina et al., 2015). It could be argued, however, that quantification of the radiative
367 component in our study was based on a simplified assumption since it was calculated from sunshine
368 duration that is mostly determined by the cloud coverage (Hoyt, 1978). Nevertheless, it is also
369 worth noting that global radiation measurements, sunshine duration records contain a signal of the
370 direct effects of aerosols (Sanroma et al., 2010; Sanchez-Romero et al., 2014; Wild, 2015) in the
371 Canary Islands. Nevertheless, the Canary Islands is a region mostly free of anthropogenic aerosols
372 given the large frequency and intensity of trade winds (Mazorra et al., 2007), and it is not expected
373 that the frequency of Saharan dust events, that could affect incoming solar radiation, has noticeably

374 changed over the last decades (Flentje et al., 2015; Laken et al., 2015). Consequently, in the Canary
375 Islands we can consider high accuracy determining the radiative component using sunshine duration
376 series. In continental Spain, Azorin-Molina et al. (2015) also found strong positive correlations
377 between interannual variations of solar radiation and sunshine duration in different meteorological
378 stations. Overall, in the Canary Islands there is a positive and significant correlation between inter-
379 annual variations of ETo and sunshine duration, although this correlation did not explain the
380 observed trends of ETo in the region.

381 We showed that the temporal variability of ETo is strongly controlled by the temporal variability of
382 relative humidity. Specifically, seasonal and annual series of ETo in the different stations showed
383 very strong negative and significant correlations with those of the relative humidity. Thus, the
384 magnitude of correlations were much higher than those obtained for other meteorological variables,
385 and this finding was common to the whole set of meteorological stations. This strong control of
386 relative humidity on the temporal variability of ETo has been already identified in some studies in
387 the Iberian Peninsula (Vicente-Serrano et al., 2014b; Azorin-Molina et al., 2015; Espadafor et al.,
388 2013).

389 Among the variables that control the aerodynamic component, wind speed and maximum air
390 temperature did not show significant trends at the regional scale and only few stations recorded
391 significant trends in these variables, either at the seasonal or the annual scales. Significant trends
392 were obtained for minimum air temperature, mainly in summer. Recently, Croper and Hanna (2014)
393 analysed long term climate trends in the Macaronesia region, and for the Canary Islands they
394 showed an increase in air temperature during summer for the period 1981-2010. Martín et al. (2012)
395 analysed air temperature changes in the Tenerife Island from 1944 to 2010 and they also showed
396 that night-time air temperature increased rapidly compared to daytime temperature. Nevertheless,
397 they found strong spatial contrasts between the high mountains, that showed a higher increase, and

398 the coastal areas in which the air temperature regulation of the ocean could be reducing the general
399 air temperature increase.

400 In any case, the variable that recorded more significant changes in the Canary Islands was relative
401 humidity, and among the different meteorological variables used to calculate ETo, relative humidity
402 was the main driver of the observed ETo trends. Significant negative humidity trends were recorded
403 in winter, summer and autumn, but also annually. Thus, simulation of ETo series considering the
404 different meteorological variables as constant produced few differences in relation to the observed
405 evolution of ETo, with the exception of the relative humidity. Leaving relative humidity as constant
406 for the period 1961-2013 showed no significant ETo changes at seasonal and annual scales and also
407 statistically significant differences with changes obtained from observations. In continental Spain,
408 Vicente-Serrano et al. (2014b) showed a general decrease of relative humidity from the decade of
409 1960, mainly associated with a general decrease of the moisture transport to the Iberian Peninsula as
410 well as a certain precipitation decrease. Similarly, Espadafor et al. (2011) and Vicente-Serrano et al.
411 (2014b) showed that the strong increase in ETo in the last decades is associated with the relative
412 humidity decrease due to air temperature rise, which caused more severe drought events (Coll et al.,
413 2016; Lorenzo-Lacruz and Morán-Tejeda, 2016; Peña-Gallardo et al., 2016). In the Canary Islands,
414 no precipitation changes have been identified during the analyzed period (Sánchez-Benítez et al.,
415 2016). Therefore a lower moisture supply from the humidity sources to the islands should explain
416 the observed pattern toward a relative humidity decrease. Sherwood and Fu (2014) suggested that
417 differences in the air temperature increase between oceanic and continental areas could increase
418 land aridity, as a consequence of the sub-saturation conditions of the oceanic air masses that come
419 to the land areas, given higher warming rates in maritime regions in comparison to continental
420 areas. The results of this study confirm this pattern in the Canary Islands, since this region should
421 not be constrained by constant moisture supply from the surrounding warm Atlantic Ocean. Overall,
422 Willett et al. (2014) recently found a general decrease in relative humidity at the global scale,

423 including several islands and coastal regions in which the moisture supply was expected to be
424 unlimited. This finding suggests that contrasted mean air temperature and trends between land and
425 ocean areas could also play an important role in explaining this phenomenon, even at local scales.

426

427 **5. Conclusions**

428 We found that the reference evapotranspiration ETo increased by $18.2 \text{ mm decade}^{-1}$ -on average-
429 between 1961 and 2013 over the Canary Islands, with the highest increase recorded during summer.
430 Although there were noticeable spatial differences, this increase was mainly driven by changes in
431 the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
432 This study provides an outstanding example of how climate change and interactions between
433 different meteorological variables drive an increase of the ETo event in a subtropical North Atlantic
434 Archipelago. Given the general aridity conditions in most of the Canary Islands and the scarcity of
435 water resources, the observed trend could have negative consequences in a number of water-
436 depending sectors if it continues in the future.

437

438 **Acknowledgements**

439 The authors thank Spanish Meteorological Agency (AEMET) for providing the climate data used in
440 this study. This work was supported by the research projects PCIN-2015-220, CGL2014-52135-
441 C03-01, *Red de variabilidad y cambio climático RECLIM* (CGL2014-517221-REDT) financed by
442 the Spanish Commission of Science and Technology and FEDER, “IMDROFLOOD-Improved
443 Drought and Flood Early Warning, Forecasting and Mitigation using real-time hydroclimatic
444 indicators” supported under the Water Joint programme Initiative “Water Challenges for a
445 Changing World”, Water Works 2014 Cofunded call and “LIFE12 ENV/ES/000536-Demonstration
446 and validation of innovative methodology for regional climate change adaptation in the
447 Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European
448 Commission. Cesar Azorin-Molina (JCI-2011-10263), Arturo Sanchez-Lorenzo (JCI-2012-12508)
449 and Marina Peña-Gallardo were granted by the Spanish Ministry of Economy and Competitiveness;
450 Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government;
451 and Miquel Tomas-Burguera was supported by a doctoral grant by the Ministerio de Educación,
452 Cultura y Deporte.

453

454 **References**

455 Abtew, W., Obeysekera, J., Ircanin, N., (2011): Pan evaporation and potential evapotranspiration
456 trends in South Florida. *Hydrol. Process.* 25, 958–969.

457 Allen, R. G. L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for
458 computing crop water requirements, Food and Agricultural Organization (FAO) *Irrig. Drain.*
459 pap. 56, Rome.

460 Allen, C.D., Breshears, D., McDowell, N.G., (2015): On underestimation of global vulnerability to
461 tree mortality and forest die-off from hotter drought in the Anthropocene. *Ecosphere*, 6: 129.

462 Ambas, V. T., and E. Baltas (2012), Sensitivity analysis of different evapotranspiration methods
463 using a new sensitivity coefficient, *Global Nest J.*, 14, 335–343.

464 Azorin-Molina, C. Vicente-Serrano, S.M. ; Arturo Sanchez-Lorenzo; Tim R. McVicar ; Enrique
465 Morán-Tejeda ; Jesus Revuelto ; Ahmed El Kenawy, Natalia Martín-Hernández ; Miquel
466 Tomas-Burguera. Atmospheric evaporative demand observations, estimates and driving
467 factors in Spain (1961-2011). *Journal of Hydrology* 523: 262-277.

468 Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouce, B., Martin, E., Salas, D., Caballero, Y.,
469 2010. Analyses of precipitation, temperature and evapotranspiration in a French
470 Mediterranean region in the context of climate change. *Compt. Rendus Geosci.* 342, 234–
471 243.

472 Coll, J.R., Aguilar, E., Prohom, M., Sigró, J., (2016): Long-term drought variability and trends in
473 Barcelona (1787-2014). *Cuadernos de Investigación Geográfica*, 42, DOI:
474 10.18172/cig.2927

475 Cropper, T.E., Hanna, E., (2014): An analysis of the climate of Macaronesia, 1865-2012.
476 *International Journal of Climatology*, 34: 604-622.

477 Custodio, E., Cabrera, M.C. (2002): ¿Cómo convivir con la escasez de agua? El caso de las Islas
478 Canarias. *Boletín Geológico y Minero* 113: 243-258.

479 Dai, A., (2013): Increasing drought under global warming in observations and models. *Nature*
480 *Climate Change* 3, 52–58.

481 Darshana, A., Pandey, R., Pandey, P., (2012): Analysing trends in reference evapotranspiration and
482 weather variables in the Tons River Basin in Central India. *Stoch. Env. Res. Risk A.*
483 <http://dx.doi.org/10.1007/s00477-012-0677-7>.

484 El Kenawy A and McCabe MF (2015) A multi-decadal assessment of the performance of gauge-
485 and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends,
486 *Int. J. of Climatol.*, doi:10.1002/joc.4374.

487 Espadafor, M., Lorite, I.J., Gavilán, P., Berengena, J., (2011): An analysis of the tendency of
488 reference evapotranspiration estimates and other climate variables during the last 45 years in
489 Southern Spain. *Agric. Water Manag.* 98, 1045–1061.

490 Fan, Z.-X., and A. Thomas (2013), Spatiotemporal variability of reference evapotranspiration and
491 its contributing climatic factors in Yunnan Province, SW China, 1961–2004, *Clim. Change*,
492 116, 309–325.

493 Flentje, H., Briel, B., Beck, C. et al. (2015): Identification and monitoring of Saharan dust: An
494 inventory representative for south Germany since 1997. *Atmospheric Environment* 109: 87-
495 96.

496 García, R.D., et al. (2014): Reconstruction of global solar radiation time series from 1933 to 2013 at
497 the Izaña Atmospheric Observatory. *Atmospheric Measurement Techniques* 7: 3139-3150.

498 Hamed, K.H. and A.R. Rao, (1998). A modified Mann Kendall trend test for autocorrelated data.
499 *Journal of Hydrology* 204, 182-196.

500 Hargreaves, G.L., Samani, Z.A., (1985): Reference crop evapotranspiration from temperature. *Appl.*
501 *Eng. Agric.* 1, 96–99.

502 Hoyt, D.V., (1978): Interannual Cloud-Cover Variations in the Contiguous United States. *J. Appl.*
503 *Meteor.*, 17, 354–357.

504 Huntington, T.G., (2006): Evidence for intensification of the global water cycle: Review and
505 synthesis. *Journal of Hydrology* 319: 83-95.

506 Itenfisu, D., Elliott, R.L., Allen, R.G., Walter, I.A., 2000. Comparison of Reference
507 Evapotranspiration Calculations across a Range of Climates. *Proceedings of the 4th National*
508 *Irrigation Symposium. ASAE, Phoenix, AZ.*

509 Jhajharia, D., Kumar, R., Dabral, P. P., Singh, V. P., Choudhary, R. R. and Dinpashoh, Y. (2015),
510 Reference evapotranspiration under changing climate over the Thar Desert in India. *Met.*
511 *Apps*, 22: 425–435. doi: 10.1002/met.1471.

512 Kousari, M.R., Ahani, H., (2012): An investigation on reference crop evapotranspiration trend from
513 1975 to 2005 in Iran. *Int. J. Climatol.* 32, 2387–2402.

514 Laken, B.A., Parviainen, H., García-Gil, A., Muñoz-Tuñón, C., Varela, A.M., Fernandez-Acosta,
515 S., Pallé, P., (2015): Thirty years of atmospheric extinction from telescopes of the North
516 Atlantic Canary Archipelago. *Journal of Climate*. doi: <http://dx.doi.org/10.1175/JCLI-D-14-00600.1>

517 Liu, T., Li, L., Lai, J., Liu, C., Zhuang, W. (2015): Reference evapotranspiration change and its
518 sensitivity to climate variables in southwest China. *Theoretical and Applied Climatology*. In
519 press.

520 López-Urrea, R., F. Martín de Santa Olalla, C. Fabeiro, and A. Moratalla (2006), Testing
521 evapotranspiration equations using lysimeter observations in a semiarid climate, *Agric.*
522 *Water Manage.*, 85, 15–26.

523 Lorenzo-Lacruz, J., Morán-Tejeda, E., (2016): Spatio-temporal patterns of meteorological droughts
524 in the Balearic Islands (Spain). *Cuadernos de Investigación Geográfica*, 42, DOI:
525 10.18172/cig.2948.

526 Ma, X., Zhang, M., Li, Y., Wang, S., Ma, Q., Liu, W., (2012): Decreasing potential
527 evapotranspiration in the Huanghe River Watershed in climate warming during 1960-2010.
528 *J. Geogr. Sci.* 22, 977–988.

529 Martín, J.L., Bethencourt, J., Cuevas-Agulló, E., (2012): Assessment of global warming on the
530 island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean
531 temperatures since 1944. *Climatic Change*, 114: 343-355.

532 Matsoukas, C., N. Benas, N. Hatzianastassiou, K. G. Pavlakis, M. Kanakidou, and I. Vardavas
533 (2011), Potential evaporation trends over land between 1983–2008: Driven by radiative
534 fluxes or vapour-pressure deficit?, *Atmos. Chem. Phys.*, 11, 7601–7616.

535 Mazorra, L., Diaz, F., Navarro, P., Deniz, F. (2007): Accumulated frequency estimation for daily
536 clearness index. *ISES Solar World Congress 2007*, ISES 20074, pp. 2632-2635.

537 Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J,
538 Vertacnik G, Klancar M, Dubuisson B, Stepanek P (2013) HOMER: HOMogenisation
539 softwarE in R- methods and applications. *Időjárás* 117: 47-67.

540 McMahon, T.A., Peel, M.C., Lowe, L., Srikanthan, R., McVicar, T.R., (2013): Estimating actual,
541 potential, reference crop and pan evaporation using standard meteorological data: a
542 pragmatic synthesis. *Hydrol. Earth Syst. Sci.* 17 (1), 1331–1363.

543 McVicar, T.R., Roderick, M.L., Donohue, R.J., Van Niel, T.G., (2012a): Less bluster ahead?
544 ecohydrological implications of global trends of terrestrial near-surface wind speeds.
545 *Ecohydrology* 5 (4), 381–388.

546 McVicar, T.R., Roderick, M.L., Donohue, R.J., et al., (2012b): Global review and synthesis of
547 trends in observed terrestrial near-surface wind speeds: implications for evaporation. *J.*
548 *Hydrol.* 416–417, 182–205.

550 Ouyssse, S., Laftouhi, N.-E., Tajeddine, K., (2010): Evaluation of evapotranspiration variation in the
551 Draa basin using statistical and empirical methods (South-Eastern Morocco). XXXVIIIAH
552 Congress Groundwater Quality Sustainability. Krakow, 12–17 September 2010.

553 Paternoster, R., Brame, R., Mazerolle, P., and Piquero, A. R. (1998). Using the Correct Statistical
554 Test for the Equality of Regression Coefficients. *Criminology*, 36(4), 859–866.

555 Peña-Gallardo, M., Gámiz-Fortis, S.R., Castro-Díez, Y., Esteban-Parra, M.J., (2016): Análisis
556 comparativo de índices de sequía en Andalucía para el periodo 1901-2012. *Cuadernos de*
557 *Investigación Geográfica*, 42, DOI: 10.18172/cig.2946.

558 Peterson, T. C., V. S. Golubev, and P. Y. Groisman (1995), Evaporation losing its strength, *Nature*,
559 377, 687–688.

560 Piticar, A., Mihăilă, D., Lazurca, L.G., et al. (2015): Spatiotemporal distribution of reference
561 evapotranspiration in the Republic of Moldova. *Theoretical and Applied Climatology*. In
562 Press.

563 Roderick, M. L., and G. D. Farquhar (2002), The cause of decreased pan evaporation over the past
564 50 years, *Science*, 298, 1410–1411.

565 Roderick, M. L., and G. D. Farquhar (2004), Changes in Australian pan evaporation from 1970 to
566 2002, *Int. J. Climatol.*, 24, 1077–1090.

567 Sánchez-Benítez, A., García-Herrera, R., Vicente-Serrano, S.M., (2016). Revisiting precipitation
568 variability, trends and drivers in the Canary Islands. Submitted to the *International Journal*
569 of *Climatology*

570 Sanchez-Lorenzo, A., Vicente-Serrano, S.M., Wild, M., Calbó, J., Azorin-Molina, C., Peñuelas, J.,
571 (2014) Evaporation trends in Spain: a comparison of Class A pan and Piché atmometer
572 measurements. *Climate Research*. 61: 269–280.

573 Sanchez-Romero, A., A. Sanchez-Lorenzo, J. Calbó, J. A. González, and C. Azorin Molina (2014),
574 The signal of aerosolinduced changes in sunshine durationrecords: A review of the evidence,
575 *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021393.

576 Sanroma, E., Palle, E., and Sanchez-Lorenzo, A., (2010): Long-term changes in insolation and
577 temperatures at different altitudes. *Environmental Research Letters*, 5, 2.

578 Sheffield, J., Wood, E.J., Roderick, M.L., (2012): Little change in global drought over the past 60
579 years. *Nature* 491, 435–438.

580 Sherwood, S., Fu, Q. (2014): A drier future? *Science* 343: 737-739.

581 Tabari, H., Nikbakht, J., Talaee, P.H., 2012. Identification of trend in reference evapotranspiration
582 series with serial dependence in Iran. *Water Resour. Manag.* 26, 2219–2232.

583 Tekken, V., Kropp, J.P. (2012): Climate-driven or human-induced: Indicating severe water scarcity
584 in the Moulouya river basin (Morocco). *Water*, 4: 959-982.

585 Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. *Geogr. Rev.* 38,
586 55–94.

587 Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G.,
588 Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos,
589 M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K.,
590 Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti,
591 M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T. (2012):
592 Benchmarking homogenization algorithms for monthly data, *Clim. Past*, 8, 89-115.

593 Vicente-Serrano, S.M., Beguería, S., Juan I. López-Moreno, Miguel A. García-Vera y P. Stepanek.
594 (2010): A complete daily precipitation database for North-East Spain: reconstruction, quality
595 control and homogeneity. *International Journal of Climatology*. 30, 1146-1163.

596 Vicente-Serrano, S.M., Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Jesús Revuelto, Juan I.
597 López-Moreno, José C. González-Hidalgo, Francisco Espejo. (2014a) Reference
598 evapotranspiration variability and trends in Spain, 1961–2011. *Global and Planetary*
599 *Change*, 121: 26-40.

600 Vicente-Serrano, S.M., Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Enrique Morán-Tejeda,
601 Jorge Lorenzo-Lacruz, Jesús Revuelto, Juan I. López-Moreno, Francisco Espejo (2014b):
602 Temporal evolution of surface humidity in Spain: recent trends and possible physical
603 mechanisms. *Climate Dynamics.* 42:2655–2674

604 Wang, K., Dickinson, R.E., (2012): A review of global terrestrial evapotranspiration:
605 observation, modeling, climatology, and climatic variability. *Rev. Geophys.* 50.
606 <http://dx.doi.org/10.1029/2011RG000373>.

607 Wang, K., Dickinson, R.E., Liang, S., 2012. Global atmospheric evaporative demand over land
608 from 1973 to 2008. *J. Clim.* 25 (23), 8353–8361.

609 Wild, M. (2015): Decadal changes in radiative fluxes at land and ocean surfaces and their relevance
610 for global warming. *WIREs Clim Change.* doi: 10.1002/wcc.372.

611 Willett, K.M., et al. (2014): HadISDH land surface multi-variable humidity and temperature record
612 for climate monitoring. *Climate of the Past* 10: 1983–2006.

613 Xu, Hh.-Y.u., Gong, L., Jiang, T., Chen, D., Singh, V.P., (2006): Analysis of spatial distribution
614 and temporal trend of reference evapotranspiration and pan evaporation in Changjiang
615 (Yangtze River) catchment. *J. Hydrol.* 327, 81–93.

616 Yue, S. and C. Wang (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect
617 Trend in Serially Correlated Hydrological Series. *Water Resources Management* 18, 201–
618 218.

619 Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow, *Water
620 Resources Research*, 37(4), 987-998.

621 Zhang, Y., Liu, C., Tang, Y., Yang, Y., (2007): Trends in pan evaporation and reference and actual
622 evapotranspiration across the Tibetan Plateau. *J. Geophys. Res. D: Atmos.* 112 (Article
623 numberD12110).

624

625

626

627
628

Table 1: Site names, coordinates, relocations, data gaps and inhomogeneities of the selected meteorological stations in the Canary Islands

Code	Longitude	Latitude	Name	relocation	Relative humidity		Sunshine duration		Wind speed		maximum temperature		minimum temperature	
					data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.
C029O	-13.60	28.95	Lanzarote/Airport	1972	2.20%	1998	0.78%	1978-2002	0.47%	1971	1.23%	2004	1.23%	1988
C139E	-17.75	28.61	La Palma/Airport	1970	0.94%		2.51%		0.47%	1976	0.37%		0.37%	1997
C249I	-13.85	28.43	Fuerteventura/Airport	1969	0.15%	2000	1.25%	1995-2005	0.15%		0.23%	1983	0.23%	1977
C430E	-16.48	28.30	Izaña	--	1.72%	1999	7.40%	2005	6.91%		5.20%	1985	5.20%	
C447A	-16.31	28.46	Los Rodeos	--	0.31%		1.10%	1966	0.15%	1970	0.30%	2005	0.30%	2005
C449C	-16.25	28.45	Santa Cruz de Tenerife	--	0%		0.94%		0%	1987	0%		0%	1994
C649I	-15.38	27.91	Gran canaria/Airport	--	0.15%	1981-1994	2.67%	1978	0.31%	1972	0.20%	1984	0.20%	1994
C659P	-15.41	28.15	San Cristóbal	1994	11%		1.88%	1980	10.50%	1994	5.30%	1966	5.30%	

629

630

Table 2: Seasonal and annual averages (mm) and coefficients of variation of ETo in the eight meteorological stations, averaged over the period 1961-2013.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Regional Mean
Average									
Winter	222.0	181.5	297.5	250.2	298.1	251.6	294.5	217.7	251.6
Spring	390.1	302.2	468.8	414.1	460.8	361.5	468.7	342.3	401.1
Summer	512.7	415.5	612.9	663.8	560.2	438.7	586.1	383.0	521.6
Autumn	311.8	273.9	401.8	364.5	384.6	316.4	393.8	278.8	340.7
Annual	1435.5	1175.0	1784.4	1692.6	1702.0	1372.7	1741.0	1219.4	1515.3
Coefficient of variation									
Winter	0.05	0.11	0.12	0.18	0.10	0.11	0.09	0.11	0.06
Spring	0.04	0.10	0.07	0.12	0.08	0.10	0.06	0.08	0.05
Summer	0.03	0.12	0.07	0.07	0.07	0.08	0.07	0.07	0.04
Autumn	0.03	0.10	0.10	0.10	0.07	0.11	0.07	0.08	0.05
Annual	0.02	0.07	0.06	0.07	0.07	0.08	0.06	0.05	0.04

635 Table 3: Seasonal and annual averages (mm) and coefficients of variation of aerodynamic and
 636 radiative components of ETo in the eight meteorological stations. In bold the values greater than
 637 50% of the total ETo of the station

	Aerodynamic								
	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Average									
Winter	101.6	98.8	198.8	198.8	195.9	153.2	190.4	108.1	155.7
Spring	130.5	137.5	287.2	271.0	251.1	174.3	262.0	134.7	206.0
Summer	146.2	195.6	394.7	424.7	288.5	201.7	328.1	143.1	265.3
Autumn	109.3	133.4	249.1	263.6	211.7	157.6	225.9	102.0	181.6
Annual	487.5	568.0	1134.4	1158.6	945.8	690.7	1004.4	485.5	809.4
Coefficient of variation									
Winter	0.12	0.19	0.22	0.23	0.18	0.19	0.16	0.27	0.11
Spring	0.11	0.18	0.15	0.17	0.16	0.20	0.12	0.26	0.09
Summer	0.13	0.24	0.12	0.14	0.15	0.18	0.12	0.20	0.08
Autumn	0.13	0.21	0.20	0.14	0.14	0.20	0.15	0.25	0.10
Annual	0.09	0.16	0.13	0.12	0.14	0.16	0.11	0.17	0.07
Radiative									
Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Average	
Average									
Winter	120.4	82.7	98.6	51.4	102.2	98.4	104.1	109.6	95.9
Spring	259.7	164.7	181.5	143.1	209.7	187.2	206.7	207.6	195.0
Summer	366.5	220.0	218.3	239.1	271.7	237.0	258.0	240.0	256.3
Autumn	202.4	140.5	152.8	100.9	172.9	158.8	167.9	176.8	159.1
Annual	948.1	607.0	650.0	534.0	756.3	682.0	736.7	734.0	706.0
Coefficient of variation									
Winter	0.05	0.08	0.10	0.12	0.08	0.08	0.09	0.08	0.06
Spring	0.06	0.07	0.08	0.09	0.06	0.07	0.06	0.08	0.05
Summer	0.04	0.06	0.07	0.08	0.05	0.09	0.06	0.10	0.04
Autumn	0.05	0.05	0.08	0.07	0.05	0.06	0.06	0.06	0.04
Annual	0.03	0.04	0.07	0.06	0.04	0.05	0.04	0.06	0.03

638

639

640 Table 4: Magnitude of change (mm. decade⁻¹) of ETo in each meteorological station and the average of the
 641 eight stations over the period 1961-2013. Statistically significant at the 95% confidence level are given in
 642 bold. Numbers between brackets refer to the magnitudes of change for the periods 1933-2013 for Izaña and
 643 1943-2013 for Santa Cruz de Tenerife.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Winter	2.7 (0.31)	1.7	11.3	4.8 (-0.42)	3.2	9.1	7.1	-5.1	4.3
Spring	0.1 (-0.55)	7.7	7.1	-0.1 (-1.27)	3.9	7.2	4.0	-5.8	3.0
Summer	1.1 (-1.36)	16.0	7.6	6.0 (-0.64)	0.0	7.7	10.1	5.0	6.7
Autumn	2.0 (0.62)	3.6	11.2	3.7 (0.30)	-0.2	9.9	4.8	-5.0	3.8
Annual	7.3 (-1.95)	28.4	34.8	14.9 (-0.67)	9.2	29.8	29.7	-8.4	18.2

644

645 Table 5: Magnitude of change (mm. decade⁻¹) of both aerodynamic and radiative components of ETo in each
 646 meteorological station and the average of the eight stations over the period 1961-2013. Statistically
 647 significant at the 95% confidence level are given in bold. Numbers between brackets refer to the magnitudes
 648 of change for the periods 1933-2013 for Izaña and 1943-2013 for Santa Cruz de Tenerife.

649

650

651

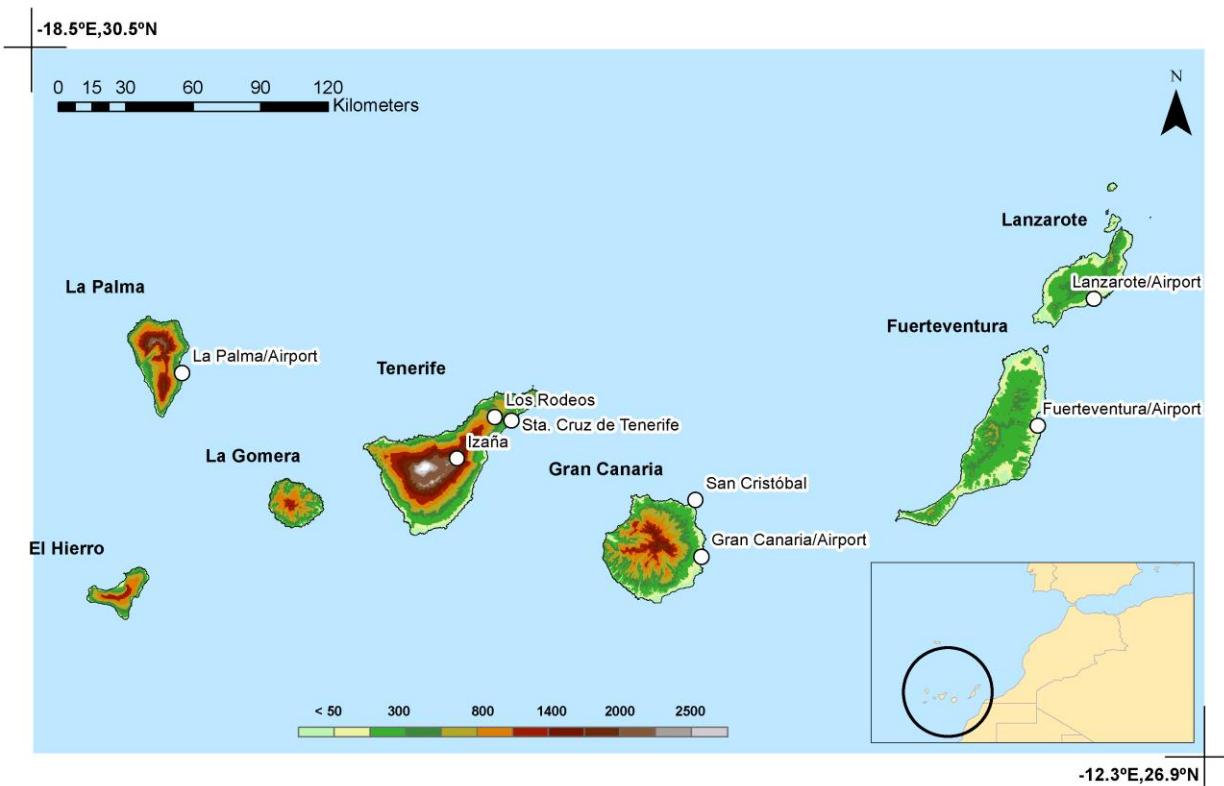
	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Aerodynamic									
Winter	3.7 (0.09)	2.9	14.8	5.1 (-0.96)	4.6	10.1	9.1	-5.8	5.5
Spring	-1.3 (-1.84)		7.8	8.9	0.1 (-3.39)	2.4	3.3	2.7	-11.8
Summer	0.1 (-2.95)		16.8	9.9	6.7 (-3.38)	-1.1	2.5	8.1	-1.5
Autumn	2.1 (-0.51)		5.2	14.5	3.7 (-1.03)	-1.1	7.9	4.6	-3.8
Annual	4.7 (-6.25)		31.2	44.6	15.6 (-6.93)	6.5	19.8	28.0	-21.2
Radiative									
Winter	-1.0 (0.22)		-1.2	-3.5	-0.4 (0.51)	-1.4	-1.0	-2.0	0.8
Spring	1.4 (1.28)		-0.1	-1.8	-0.3 (2.12)	1.4	3.9	1.3	6.1
Summer	1.0 (1.58)		-0.8	-2.3	-0.7 (2.74)	1.1	5.1	2.0	6.5
Autumn	0.0 (1.13)		-1.6	-3.3	0.1 (1.34)	0.9	2.0	0.2	-1.2
Annual	2.7 (4.29)		-2.8	-9.9	-0.7 (6.25)	2.7	10.0	1.7	12.7

652 Table 6. Seasonal and annual Pearson's coefficients between the evolution of ETo and the evolution of
 653 aerodynamic and radiative components in the eight meteorological stations and the average. Statistically
 654 significant at the 95% confidence level are given in bold

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Aerodynamic									
Winter	0.88	0.95	0.99	0.99	0.98	0.97	0.97	0.96	0.93
Spring	0.65	0.93	0.95	0.96	0.95	0.93	0.93	0.88	0.87
Summer	0.74	0.96	0.96	0.97	0.94	0.84	0.94	0.63	0.85
Autumn	0.75	0.96	0.98	0.98	0.96	0.96	0.97	0.90	0.95
Annual	0.78	0.97	0.98	0.97	0.97	0.95	0.96	0.88	0.95
Radiative									
Winter	0.05	0.37	-0.75	0.18	-0.62	-0.22	-0.44	-0.46	-0.02
Spring	0.38	0.52	-0.51	0.36	-0.25	0.14	0.07	-0.17	0.28
Summer	0.05	0.28	-0.37	-0.62	-0.12	0.23	0.08	0.41	0.29
Autumn	0.14	0.09	-0.67	-0.01	-0.23	0.43	-0.45	-0.05	0.05
Annual	-0.05	-0.20	-0.73	-0.36	-0.46	0.04	-0.28	-0.29	-0.15

659 Table 7. Seasonal and annual Pearson's coefficients between the time series of ETo and the different
 660 meteorological variables in the eight meteorological stations, calculated for the period 1961-2013.
 661 Statistically significant at the 95% confidence level are given in bold

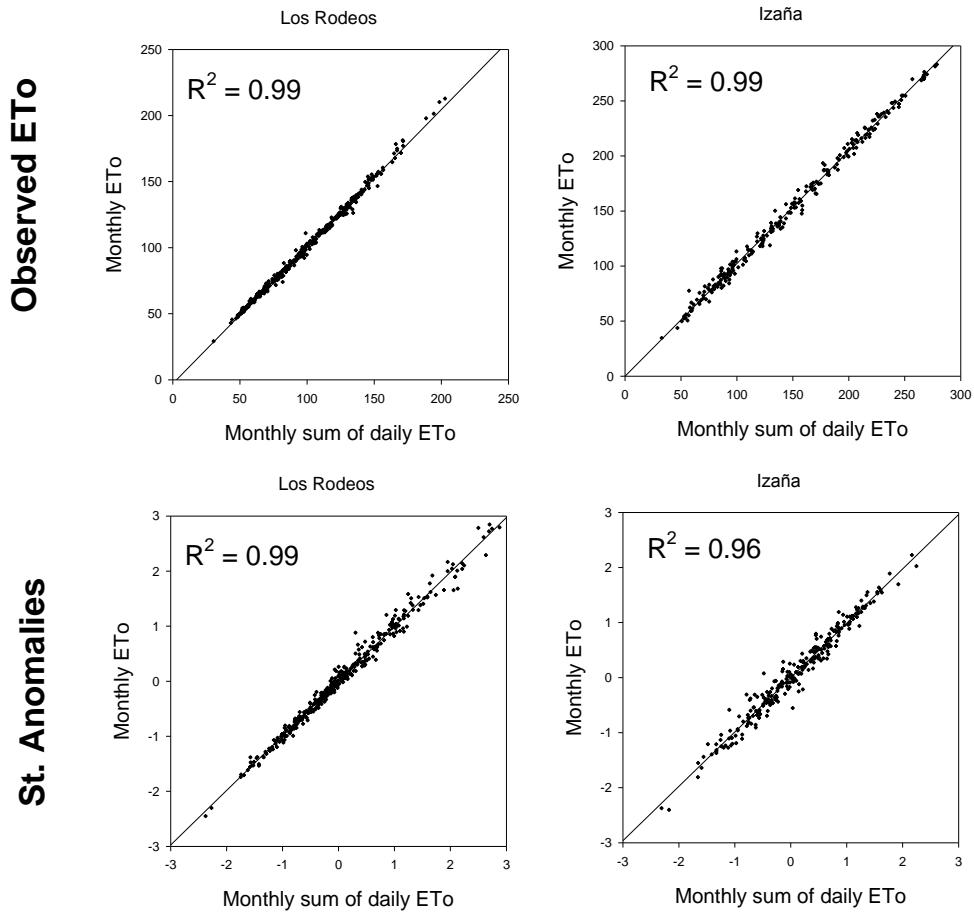
	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal
Maximum air temperature								
Winter	0.32	0.51	-0.12	0.89	-0.23	-0.01	-0.23	0.26
Spring	0.46	0.69	0.02	0.90	0.18	0.01	0.62	0.42
Summer	0.48	0.80	0.10	0.18	0.33	0.27	0.51	0.44
Autumn	0.18	0.64	0.04	0.71	0.29	0.12	0.09	0.43
Annual	0.17	0.41	-0.11	0.64	0.01	-0.03	0.16	0.46
Minimum air temperature								
Winter	0.15	0.50	0.13	0.83	-0.24	0.17	-0.13	0.01
Spring	0.24	0.53	0.19	0.83	0.12	0.19	0.49	0.10
Summer	0.24	0.55	0.11	0.23	0.16	0.33	0.55	0.17
Autumn	0.21	0.56	0.36	0.63	0.20	0.32	0.26	0.21
Annual	0.04	0.47	0.13	0.54	-0.11	0.30	0.27	-0.07
Relative humidity								
Winter	-0.52	-0.91	-0.57	-0.83	-0.92	-0.92	-0.89	-0.72
Spring	-0.34	-0.89	-0.70	-0.90	-0.89	-0.90	-0.77	-0.82
Summer	-0.35	-0.93	-0.83	-0.46	-0.90	-0.89	-0.80	-0.61
Autumn	-0.30	-0.94	-0.55	-0.74	-0.90	-0.91	-0.78	-0.76
Annual	-0.18	-0.93	-0.62	-0.59	-0.93	-0.94	-0.85	-0.86
Sunshine duration								
Winter	0.48	0.48	0.16	0.63	0.01	0.33	0.18	0.06
Spring	0.72	0.71	0.08	0.70	0.27	0.50	0.25	0.21
Summer	0.45	0.62	0.20	0.18	0.32	0.41	0.35	0.61
Autumn	0.47	0.38	0.20	0.53	0.14	0.69	0.16	0.34
Annual	0.40	0.30	-0.01	0.40	0.15	0.48	0.08	-0.09
Wind speed								
Winter	0.61	-0.01	0.84	0.29	0.54	0.29	0.35	0.62
Spring	0.47	0.18	0.62	0.33	0.52	0.22	0.24	0.44
Summer	0.65	0.37	0.48	0.77	0.39	-0.01	0.33	0.26
Autumn	0.62	0.22	0.78	0.48	0.31	0.27	0.62	0.48
Annual	0.73	0.47	0.72	0.69	0.50	0.25	0.34	0.38


666 Table 8. Magnitude of change ($^{\circ}\text{C}$, %, hours and ms^{-1} decade $^{-1}$) of the different meteorological variables
 667 over the period 1961-2013. In bold statistically significant trends at the 95%.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Maximum air temperature									
Winter	-0.06	-0.09	-0.05	-0.01	-0.08	-0.08	-0.18	-0.18	-0.09
Spring	-0.08	0.03	-0.02	-0.12	-0.02	-0.02	0.08	0.14	0.00
Summer	-0.06	0.20	0.00	-0.07	0.00	0.00	0.07	0.12	0.04
Autumn	-0.06	-0.08	-0.08	-0.04	-0.10	-0.06	-0.11	-0.17	-0.09
Annual	-0.05	0.03	-0.01	-0.05	-0.03	-0.02	-0.01	0.00	-0.02
Minimum air temperature									
Winter	-0.02	-0.01	0.02	0.16	-0.02	0.02	-0.02	0.14	0.03
Spring	0.02	0.03	0.03	0.18	0.04	0.04	0.05	0.09	0.06
Summer	0.08	0.12	0.10	0.25	0.11	0.07	0.10	0.13	0.12
Autumn	0.07	0.01	0.09	0.19	0.05	0.09	0.09	0.08	0.09
Annual	0.05	0.05	0.08	0.20	0.06	0.07	0.08	0.12	0.09
Relative humidity									
Winter	-0.51	-0.51	-0.22	-1.11	-0.81	-1.53	-1.56	-0.18	-0.80
Spring	0.18	-1.06	-0.22	0.20	-0.76	-0.96	-0.88	0.90	-0.33
Summer	0.39	-1.58	-0.16	-0.91	-0.06	-0.72	-0.99	0.45	-0.45
Autumn	0.02	-0.72	0.01	-0.26	-0.29	-1.65	-0.99	0.31	-0.45
Annual	0.02	-0.89	-0.03	-0.52	-0.49	-1.05	-1.11	0.32	-0.47
Sunshine duration									
Winter	0.02	-0.10	-0.04	0.02	-0.12	0.08	-0.05	-0.11	-0.04
Spring	0.08	0.11	0.08	0.06	0.03	0.22	-0.06	0.05	0.07
Summer	0.06	0.15	0.05	-0.03	0.00	0.25	0.09	0.35	0.12
Autumn	0.03	-0.04	0.03	0.08	0.00	0.19	0.03	-0.16	0.02
Annual	0.06	0.03	0.03	0.04	-0.01	0.18	0.02	0.04	0.05
Wind speed									
Winter	0.04	0.04	0.33	0.01	0.00	0.07	0.02	-0.18	0.04
Spring	-0.01	0.08	0.19	0.07	-0.08	-0.08	-0.13	-0.24	-0.03
Summer	0.02	0.21	0.24	-0.01	-0.05	-0.11	-0.06	0.01	0.03
Autumn	0.03	0.07	0.33	0.03	-0.07	-0.05	-0.04	-0.06	0.03
Annual	0.02	0.10	0.27	0.02	-0.04	-0.04	-0.04	-0.12	0.02

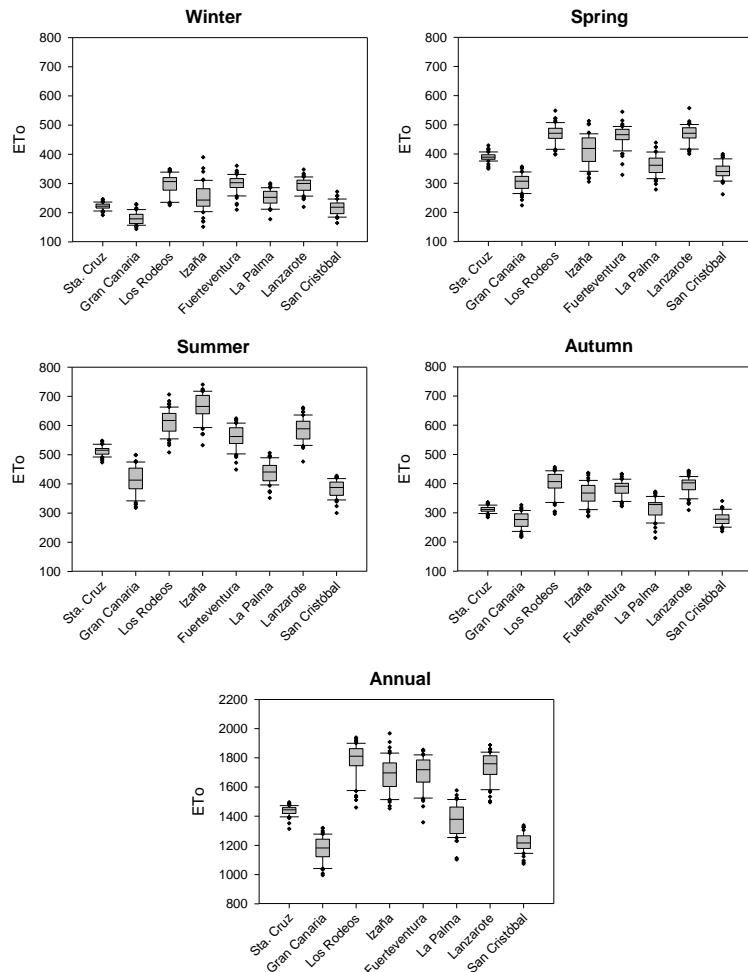
693

694


695

696

697 Figure 1: Location and relief of the Canary Islands and meteorological stations used in the study.
698 Altitude is given in meters.


699

700

701 Figure 2. Comparison between the average monthly ETo obtained from daily meteorological
 702 records and the ETo directly calculated from monthly meteorological variables. Two meteorological
 703 stations in the Canary Islands are used for the period 1978-2010 (Los Rodeos and Izaña). The figure
 704 shows the relationship between monthly ETo series but also between the series of standardized
 705 anomalies in which seasonality is removed.

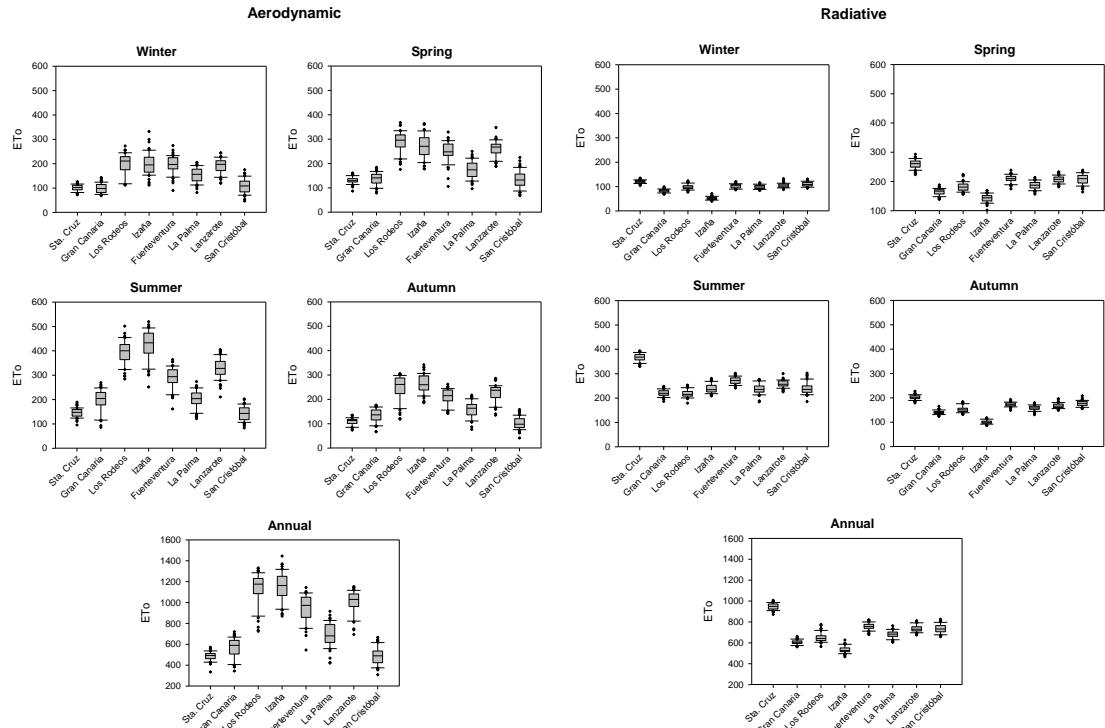
706

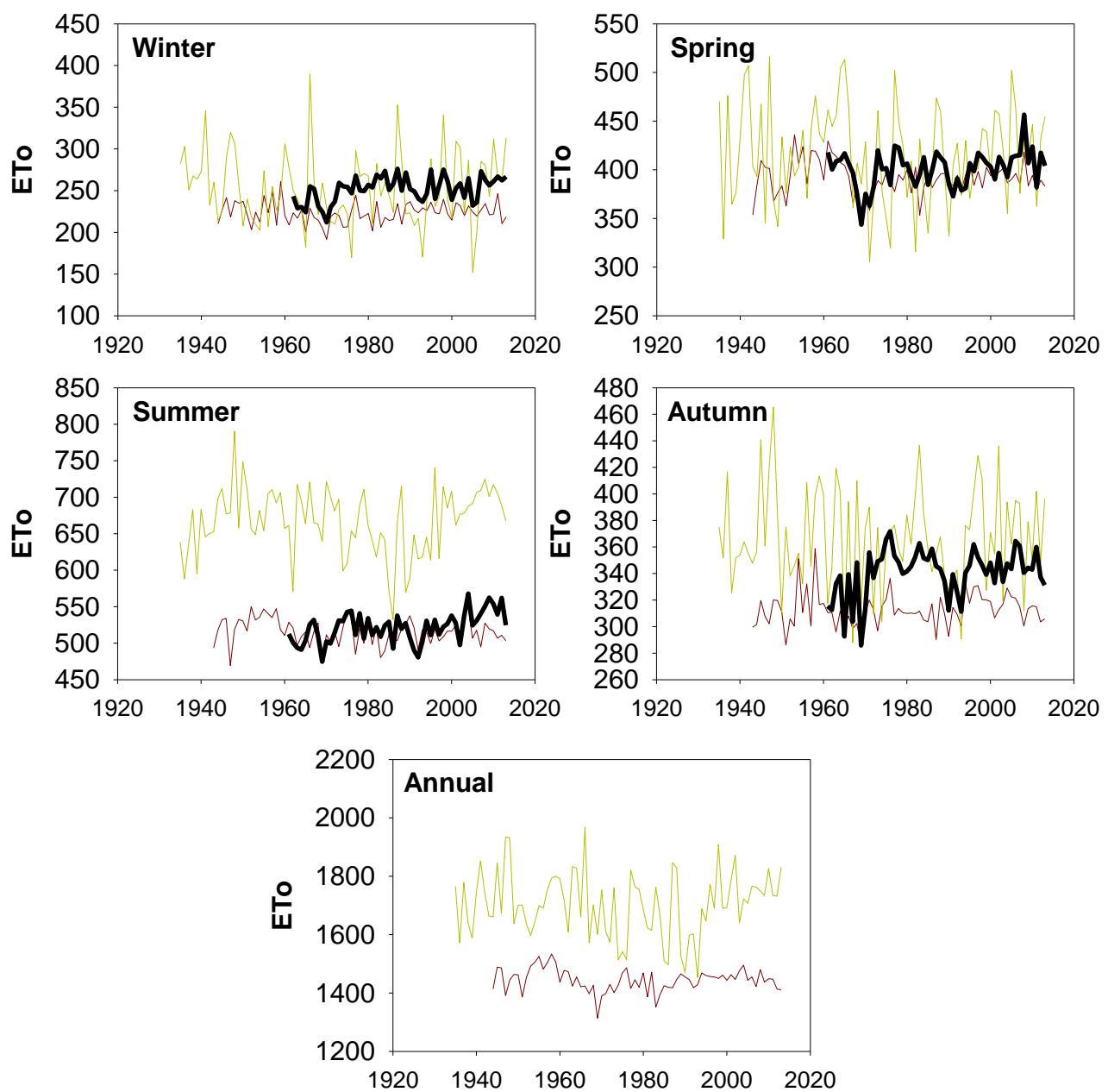
707

708 Figure 3: Box-plot with the annual and seasonal ETo values in the eight meteorological stations
 709 used in this study. The vertical lines of each plotted boxplot illustrate the 10th, 25th, 75th and 90th
 710 quantiles, respectively. The interquartile spread is represented by the range between the 25th and
 711 75th quantiles. The dots show the highest and lowest values.

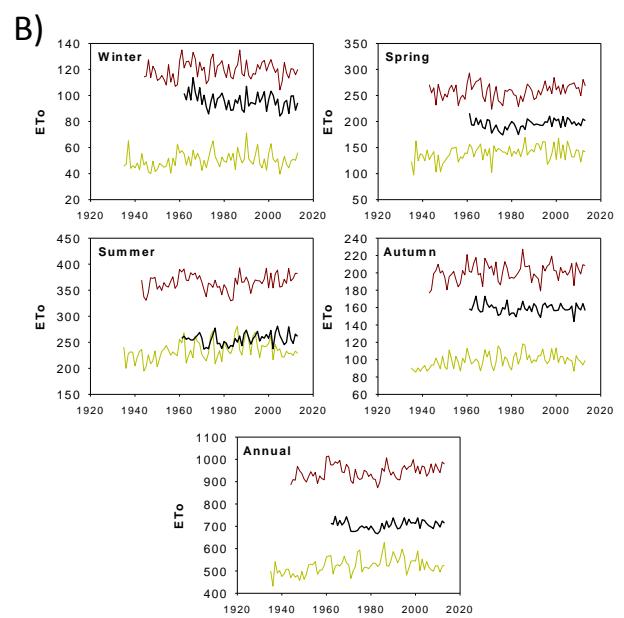
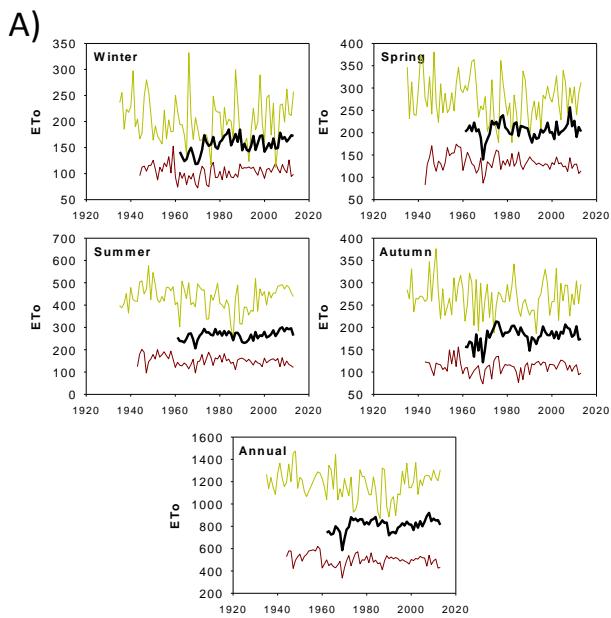
712

713

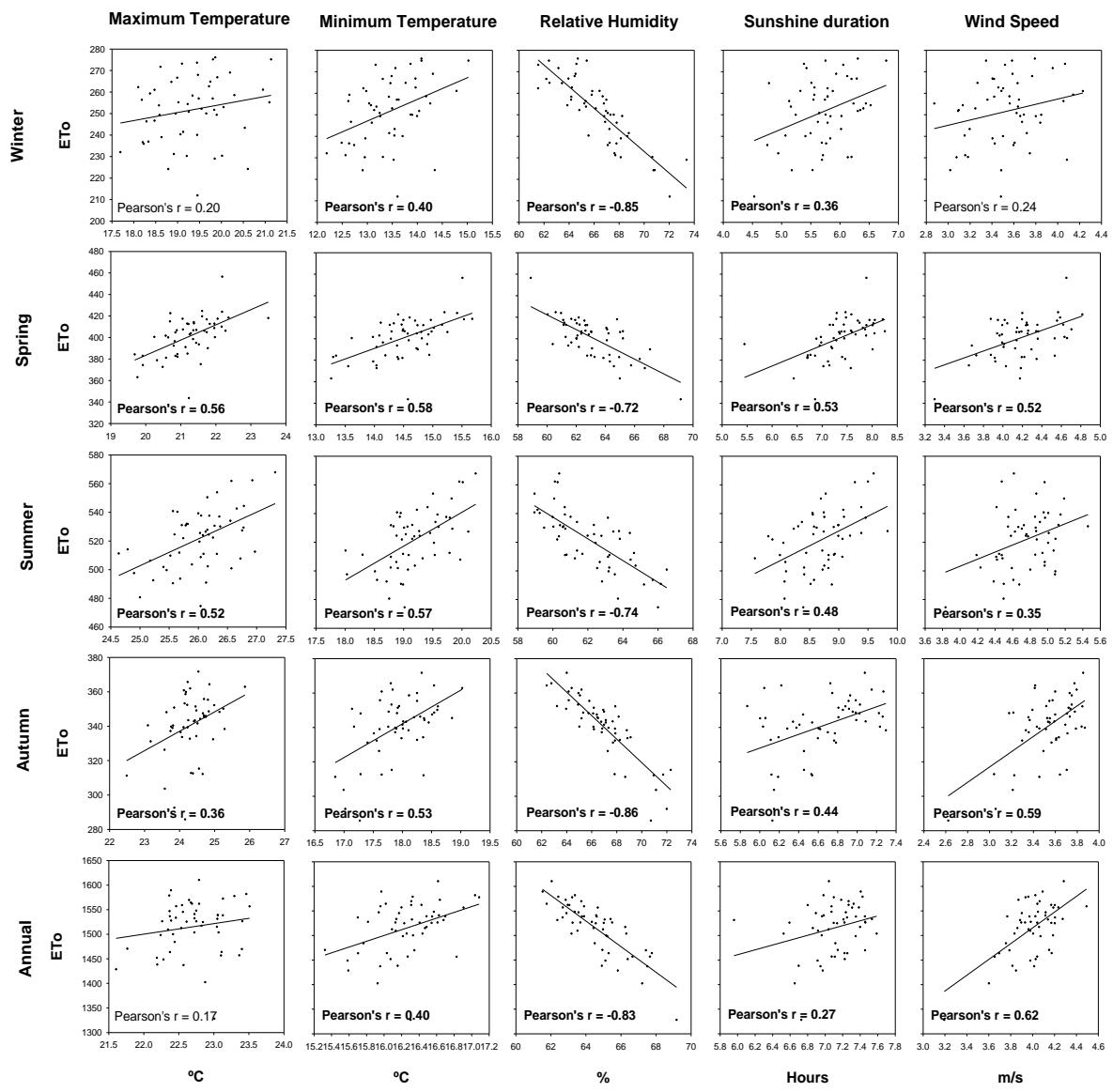

714


715 Figure 4: Box-plot with the annual and seasonal aerodynamic and radiative components of ETo in
716 the eight meteorological stations used in this study

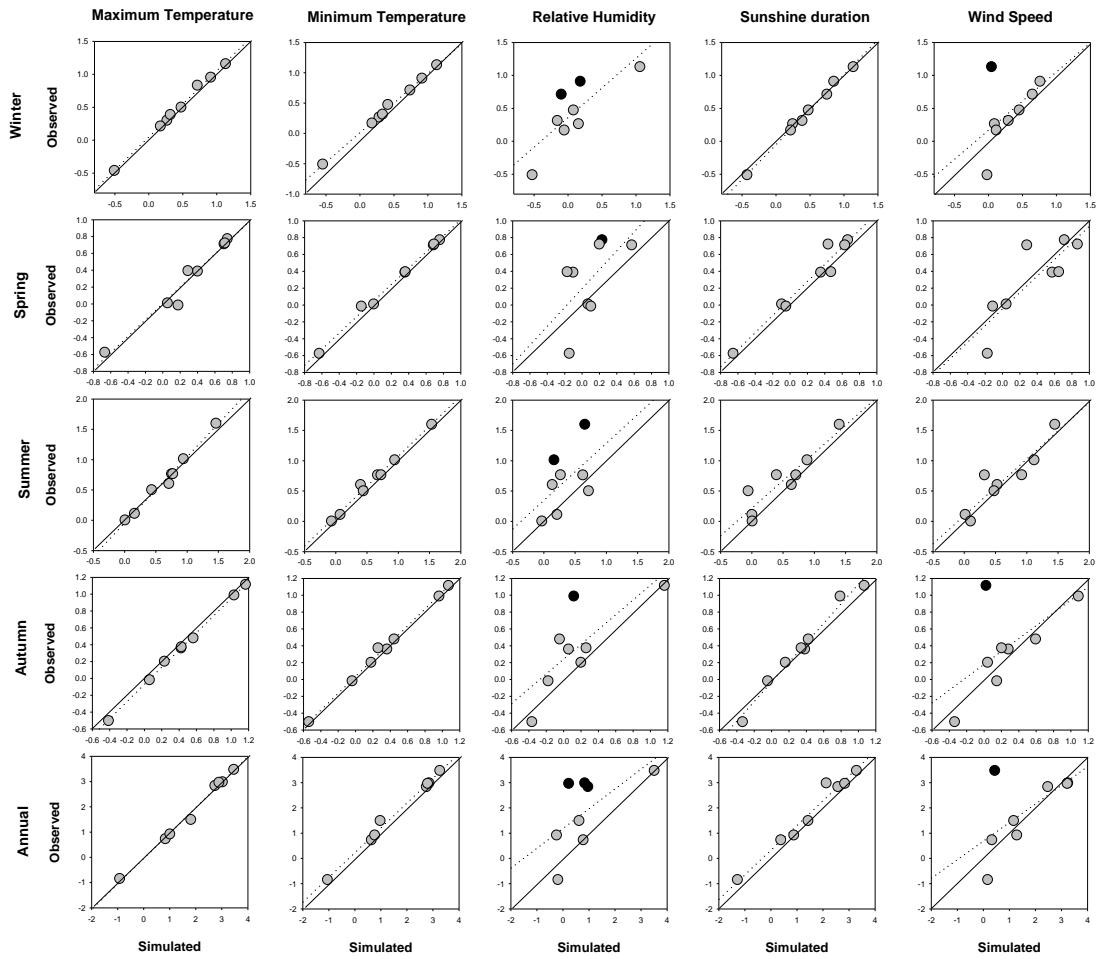
717

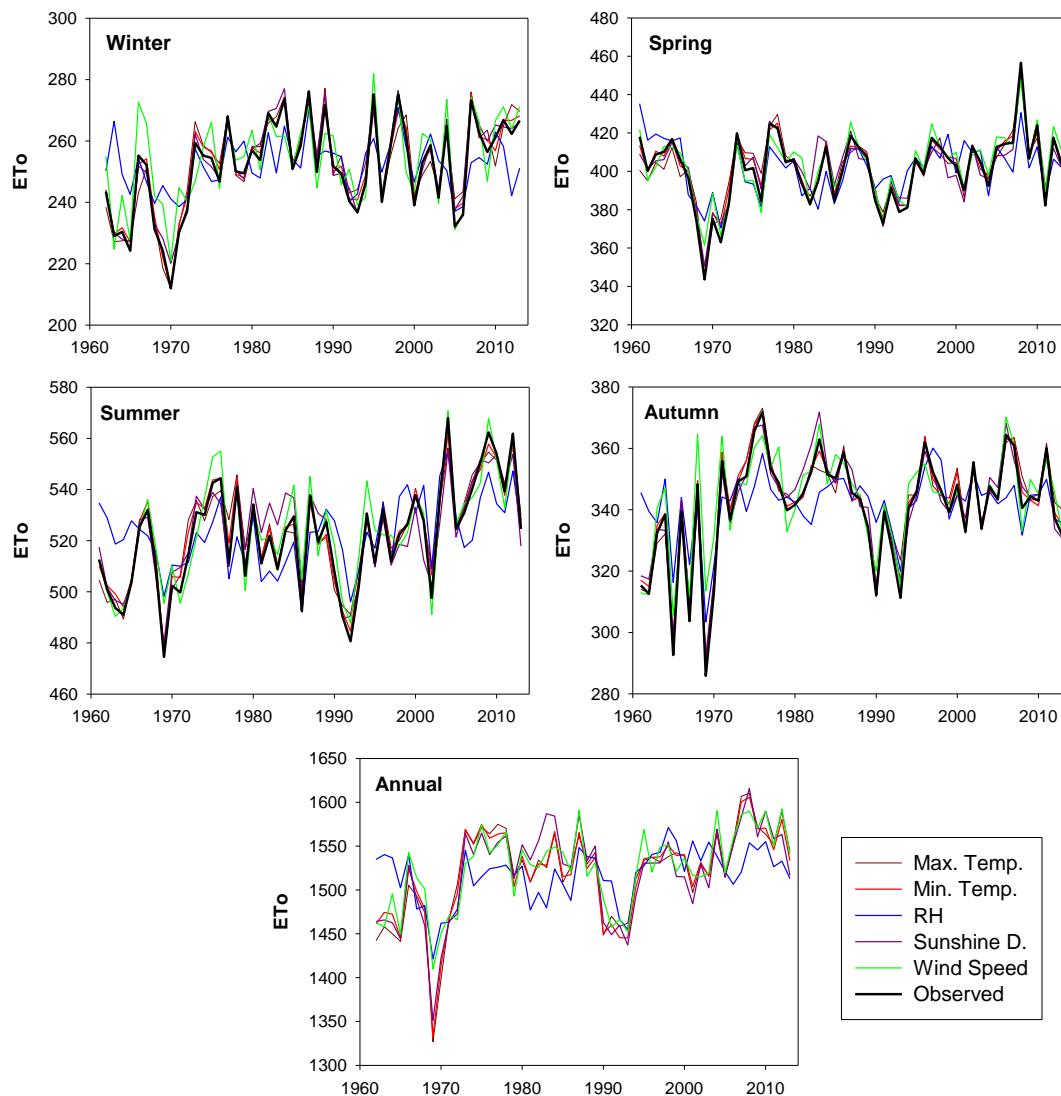


718

719



723 Figure 5: Evolution of seasonal and annual ETo in the two meteorological stations with longest
 724 records (Izaña, green and Santa Cruz de Tenerife, brown) and the average of the eight stations
 725 (black lines) from 1961 to 2013.


729 Figure 6: Evolution of seasonal and annual aerodynamic (A) and radiative (B) components of the
 730 ETo in the two meteorological stations with longest records (Izaña, green and Santa Cruz de
 731 Tenerife, brown) and the average of the eight stations (black lines) from 1961 to 2013


733

734 Figure 7. Relationship between the regional annual and seasonal ETo and the regional series of the
 735 different meteorological variables. Pearson's coefficients are included in each plot. In bold the
 736 coefficients statistically significant at the 0.95 confidence level

737

741 Figure 8: Relationship between the observed change in ETo (mm. year-1) in each meteorological
 742 station and the change in simulated ETo considering each one of the meteorological variables used
 743 to calculate ETo as constant for the period 1961-2013. Black dots indicate significant differences in
 744 the trends.

746

747

748 Figure 9: Seasonal and annual evolution of the observed regional ETo compared to the evolution of
 749 simulated ETo considering each one of the meteorological variables used to calculate ETo as
 750 constant for the period 1961-2013

751

752

753

754

755

756

757