

1 **Recent changes and drivers of the atmospheric evaporative demand in the**
2 **Canary Islands**

3 Vicente-Serrano, S.M.¹, Azorin-Molina, C.¹, Sanchez-Lorenzo, A.¹, El Kenawy, A.², Martín-
4 Hernández, N.¹, Peña-Gallardo, M.¹, Beguería, S.³, Tomas-Burguera, M.³

5 ¹*Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain;*

6 ²*Department of Geography, Mansoura University, Mansoura, Egypt;*³*Estación Experimental Aula Dei,*
7 *Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain.*

8
9 * Corresponding author: svicen@ipe.csic.es
10

11
12 **Abstract**

13 We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand
14 (AED) in the Canary Islands for the period 1961 -2013. We employed long and high quality time
15 series of meteorological variables to analyze current AED changes in this region and found that
16 AED has increased during the investigated period. Overall, the annual ETo, which was estimated by
17 means of the FAO-56 Penman-Monteith equation, increased significantly by 18.2 mm decade⁻¹ on
18 average, with a stronger trend in summer (6.7 mm decade⁻¹). In this study we analysed the
19 contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and
20 (ii) radiative (related to the available energy to evaporate a quantity of water) components to the
21 decadal variability and trends of ETo. More than 90% of the observed ETo variability at the
22 seasonal and annual scales can be associated with the variability of the aerodynamic component.
23 The variable that recorded more significant changes in the Canary Islands was relative humidity,
24 and among the different meteorological factors used to calculate ETo, relative humidity was the
25 main driver of the observed ETo trends. The observed trend could have negative consequences in a
26 number of water-depending sectors if it continues in the future.

28 **Key-words:** Reference Evapotranspiration, Aerodynamic component, Radiative component,
29 Temporal changes, Potential Evapotranspiration, Global warming, Canary Islands.

30

31 **1. Introduction**

32 The atmospheric evaporative demand (AED) is one of the key variables of the hydrological cycle
33 (Wang and Dickinson, 2012), with multiple implications for agriculture, hydrology and the
34 environment (Allen et al., 2015). Several studies have indicated that current global warming is
35 increasing the intensity of the hydrological cycle, mainly as a consequence of an intensification of
36 the AED (Huntington, 2006). Sherwood and Fu (2014) suggested that mechanisms driving the AED
37 over land regions could be the main driver of increasing climate aridity in world semi-arid regions
38 under a global warming scenario.

39 Warming may play an important role in increasing the AED via the aerodynamic component
40 (McVicar et al., 2012a). Following the Clausius-Clapeyron relationship, the quantity of water
41 vapour that a given mass of air can store increases exponentially with the air temperature.
42 Nevertheless, there are other climate variables whose temporal evolution could compensate the
43 increased AED induced by increasing air temperature, such as wind speed and vapour pressure
44 deficit (McVicar et al., 2012a). In addition, the radiative component of the AED, which is related to
45 the available solar energy that transforms a unit of liquid water into vapour, may compensate or
46 accentuate the increase in AED associated with warming. Wild et al. (2015) noted that solar
47 radiation increased over large regions since the 1980s as a consequence of changes in cloud cover
48 and/or atmospheric aerosol concentrations.

49 These large number of variables interact in a non-linear manner to determine the AED (McMahon
50 et al., 2013), so assessing recent changes in the AED and defining their determinant factors is not an
51 easy task. For this reason, while several studies analysed the AED at the global scale using different
52 datasets and methods, there is no general consensus on the recent AED evolution (Sheffield et al.,

53 2012; Matsoukas et al., 2011; Wang et al., 2012; Dai, 2013). In this context, the few existing direct
54 AED observations, based on evaporation pans, show a decrease since the 1950s at the global scale
55 (Peterson et al. 1995; Roderick and Farquhar 2002 and 2004), a finding that adds more uncertainty
56 regarding the behaviour of the AED under current global warming. These issues stress the need for
57 new studies that employ high quality datasets to assess the time evolution of the AED at the
58 regional scale.

59 There are a number of studies published in the last decade that analysed the AED evolution across
60 different regions of the World. Some of them are based on AED estimated using empirical
61 formulations, mostly based on air temperature data (e.g., Thornthwaite, 1958; Hargreaves and
62 Samani, 1995). However, to adequately quantify the AED evolution it is necessary to use long-time
63 series of the meteorological variables that control its radiative and aerodynamic components (e.g.
64 air temperature, vapour pressure deficit and wind speed). Although these variables are generally
65 poorly measured and highly inhomogeneous over both space and time, numerous regional studies
66 analysed the evolution of the AED by means of the robust Penman-Monteith (PM) equation using
67 long times series of these variables. The available regional studies show quite contradictory results,
68 where some studies showed AED negative trends, including those in China (Xu et al., 2006; Ma et
69 al., 2012; Zhang et al., 2007; Liu et al., 2015) and northwest India (Jhajharia et al., 2014). In
70 contrast, other regional studies found positive trends in AED, including those in central India
71 (Darshana et al., 2012), Iran (Kousari and Ahani, 2012; Tabari et al., 2012), Florida (Abtew et al.,
72 2011), continental Spain (Espadafor et al., 2011; Vicente-Serrano et al., 2014a; Azorin-Molina et
73 al., 2015), France (Chauiche et al., 2010) and Moldova (Piticar et al., 2015).

74 The contrasted trends among world regions would be a consequence of the evolution of the
75 different meteorological variables that control the AED. Specifically, some studies suggest that
76 temporal variability and changes in the AED are related to changes in the relative humidity, mainly
77 in semi-arid regions (Wang et al., 2012; Espadafor et al., 2011; Vicente-Serrano et al., 2014b),

78 whereas others stress the importance of solar radiation (Roderick and Farquhar, 2002; Roderick et
79 al., 2007; Ambas and Baltas, 2012; Fan and Thomas, 2013) or wind speed (McVicar et al., 2012b).
80 Among these studies, few analyzed the AED variability and trends and their possible drivers in the
81 eastern North Atlantic region (Chaouche et al., 2010; Vicente-Serrano et al., 2014a; Azorin-Molina
82 et al., 2015). Nevertheless, there are no studies about this issue in the sub-tropical areas of the north
83 Atlantic region. In this area, there are very few meteorological stations measuring long-term series
84 of the variables necessary to make robust calculations of the AED. This uneven distribution of
85 meteorological observatories constrains the high interest to know the evolution of atmospheric
86 processes in this region, where climate variability is strongly controlled by changes in the Hadley
87 circulation (Hansen et al., 2005) that affects the position and intensity of the subtropical anticyclone
88 belt. Knowing the evolution of AED and its main drivers in this region is highly relevant given the
89 general climate aridity of the region and the low availability of water resources (Custodio and
90 Cabrera, 2002). In this work we analyze the recent evolution and meteorological drivers of the AED
91 in the Canary Islands. The main hypothesis of the study is that in opposition to other continental
92 temperate regions of the North Hemisphere, the warm and humid climate of the subtropical Canary
93 Islands provides the water supply to the atmosphere needed to maintain the AED constant under the
94 current global warming scenarios; consequently, only wind speed and solar radiation could affect
95 the observed decadal variability and trends of the AED. Thus, the availability of long and high
96 quality time series of meteorological variables in the Canary Islands provides an opportunity to
97 analyze current AED changes in the sub-tropical northeastern Atlantic region and the role played by
98 different meteorological variables.

99

100 **2. Methods**

101 **2.1. Dataset**

102 We used the complete meteorological records of the Spanish National Meteorological Agency
103 (AEMET) in the Canary Islands for the following variables at the monthly scale: maximum and
104 minimum air temperature (308 stations), wind speed (99), sunshine duration (42) and mean relative
105 humidity (139). A majority of the stations cover short periods or are affected by large data gaps. As
106 the number of meteorological stations before 1961 was very little for several variables we restricted
107 our analysis to the period between 1961 and 2013. Specifically, only 8 meteorological stations had
108 data gaps of less than 20% of the months in all the necessary variables. As illustrated in Figure 1,
109 these stations are distributed between the Islands of Tenerife (3 stations), Gran Canaria (2), La
110 Palma (1), Lanzarote (1) and Fuerteventura (1). Given that some series included records for a longer
111 period (e.g., Izaña from 1933 and Santa Cruz de Tenerife from 1943), neighbouring stations with
112 shorter temporal coverage were used to reconstruct the existing data gaps in the selected
113 observatories, using a regression-based approach. Details of the site names, coordinates, relocations,
114 data gaps and inhomogeneities of the selected meteorological stations can be found in Table 1.
115 Then, the time series were subject to quality control and homogenization procedures. The quality
116 control procedure was based on comparison of the rank of each data record with the average rank of
117 the data recorded at adjacent stations (Vicente-Serrano et al., 2010). A relative homogeneity method
118 was applied to identify possible inhomogeneities. For this purpose, we used HOMER
119 (HOMogenization software in R), which compares each candidate series with a number of available
120 series (Mestre et al., 2013). The method provides an estimation of break points in the time series
121 relative to other stations, indicating high probabilities of the presence of inhomogeneities. This
122 method was applied to the different variables and time series following Mestre et al. (2013). Finally,
123 a single regional series for the different variables was obtained using a simple arithmetic average of
124 data values at the available eight stations.

125

126 **2.2. Calculation of ET₀**

127 The Penman-Monteith equation (PM) equation is the standard technique for calculation of ETo
 128 from climatic data (Allen et al.,1998), and it is the method officially adopted (with small variations)
 129 by the International Commission for Irrigation (ICID), the Food and Agriculture Organization
 130 (FAO) of the United Nations, and the American Society of Civil Engineers (ASCE). The PM
 131 method can be used globally, and has been widely verified based on lysimeter data from diverse
 132 climatic regions (Allen et al., 1994; Itenfisu et al., 2000; López-Urrea et al., 2006). Allen et al.
 133 (1998) simplified the PM equation, developing the FAO-56 PM equation, and defined the reference
 134 surface as a hypothetical crop with assumed height of 0.12 m, surface resistance of 70 s m^{-1} and
 135 albedo of 0.23 that had evaporation similar to that of an extended surface of green grass of uniform
 136 height that was actively growing and adequately watered. The ETo FAO-56 PM is expressed as:

$$137 \quad \text{ETo} = \frac{0.408 \cdot \Delta \cdot (R_n - G) + \gamma \cdot \frac{900}{T + 273} \cdot u_2 \cdot (e_s - e_a)}{\Delta + \gamma \cdot (1 + 0.34u_2)} \quad (1)$$

138
 139 where ETo is the reference evapotranspiration (mm day^{-1}), R_n is the net radiation at the crop surface
 140 ($\text{MJ m}^{-2} \text{ day}^{-1}$), G is the soil heat flux density ($\text{MJ m}^{-2} \text{ day}^{-1}$), T is the mean air temperature at 2 m
 141 height ($^{\circ}\text{C}$), u_2 is the wind speed at 2 m height (m s^{-1}), e_s is the saturation vapour pressure (kPa), e_a
 142 is the actual vapour pressure (kPa), $e_s - e_a$ is the saturation vapour pressure deficit (kPa), Δ is the
 143 slope of the vapour pressure curve ($\text{kPa } ^{\circ}\text{C}^{-1}$), and γ is the psychrometric constant ($\text{kPa } ^{\circ}\text{C}^{-1}$). Thus,
 144 the monthly ETo can be calculated from data of the monthly averages of five meteorological
 145 parameters: maximum and minimum air temperature, relative humidity (which allows calculating
 146 the vapour pressure deficit), wind speed at a height of 2 m, and daily sunshine duration (which
 147 allows estimating the net radiation). García et al. (2014) compared the capability of sunshine
 148 duration series to reconstruct long term radiation in the observatory of Izaña (Tenerife), showing
 149 very good temporal agreement between sunshine duration and radiation, independently of the

150 season of the year. Further details on the required equations to obtain the necessary parameters from
151 meteorological data can be consulted in Allen et al. (1998).

152 We also calculated the evolution of the radiative (Eq.2) and the aerodynamic components (Eq.3) of
153 the ETo, as follows:

$$154 \quad ETo(r) = \frac{[0.408\Delta(Rn - G)]}{[\Delta + \gamma(1 + 0.34u_s)]} \quad (2)$$

$$155 \quad ETo(a) = \frac{[r\left(\frac{900}{T + 272}\right)u_2(e_s - e_a)]}{[\Delta + \gamma(1 + 0.34u_s)]} \quad (3)$$

156

157 **2.3. Analysis**

158 Using the time series of ETo, we determined the seasonal (winter: December–February; spring:
159 March–May; summer: June–August; autumn: September–November) and annual ETo averages. To
160 analyze changes in ETo we used the nonparametric Mann-Kendall statistics that measures the
161 degree to which a trend is consistently increasing or decreasing. The Mann-Kendall statistic is
162 advantageous compared to parametric tests as it is robust to outliers and it does not assume any
163 underlying probability distribution of the data (Zhang et al., 2001). For these reasons, it has been
164 widely used for trend detection in a wide range of hydrological and climatological studies (e.g.,
165 Zhang et al., 2001; El Kenawy and McCabe, 2015). Autocorrelation was considered in the trend
166 analysis applied to the series of ETo, the series of the aerodynamic and radiative components of the
167 ETo and the series of the different climate variables (temperature, relative humidity, wind speed and
168 sunshine duration). This was applied using the FUME R package, which performs the modified
169 Mann-Kendall trend test, returning the corrected p-values after accounting for temporal
170 pseudoreplication (Hamed and Rao, 1998; Ye and Wang, 2004). To assess the magnitude of
171 change in ETo, we used a linear regression analysis between the series of time (independent
172 variable) and the ETo series (dependent variable). The slope of the regression indicated the amount
173 of change (ETo change per year), with higher slope values indicating greater change. We also

174 calculated the trend observed in the different meteorological variables (air temperature, relative
175 humidity, sunshine duration and wind speed) at both the seasonal and annual scales.
176 To get insight into the influence of changes in the different meteorological variables on ETo, we
177 related the evolution of ETo with relative humidity, maximum and minimum air temperature, wind
178 speed and sunshine duration by means of correlation analyses. To assess the importance of trends in
179 the different meteorological variables on the observed trends in ETo between 1961 and 2013, we
180 applied the PM equation while holding one variable as stationary (using the average from 1961 to
181 2013) each time. This approach provided five simulated series of ETo, one per input variable, which
182 could be compared to the ETo series computed with all the data to determine the isolated influence
183 of the five variables. Significant differences between each pair of ETo series (the original one and
184 the alternative one in which one variable was kept constant) were assessed by comparing the slopes
185 of the linear models, with time as the independent variable. A statistical test for the equality of
186 regression coefficients was used (Paternoster et al., 1998). The significance of the difference was
187 assessed at a confidence interval of 95% ($p<0.05$).

188

189 **3. Results**

190 **3.1. Average ETo values**

191 Figure 2 shows a box-plot with the seasonal and annual values of ETo in the different
192 meteorological stations across the Canary Islands, which are also summarized in Table 2. There
193 were strong seasonal differences in ETo, as all different meteorological stations show their
194 maximum values in summer and minimum in winter, albeit with strong differences among them. In
195 winter, the highest average values were recorded in the most arid islands (i.e., Fuerteventura and
196 Lanzarote) and in the station of Los Rodeos (North Tenerife). In summer, the stations of Izaña and
197 Los Rodeos showed the highest average values (663.8 and 612.9 mm, respectively). The lowest
198 summer ETo averages were recorded at the stations of Gran Canaria island (San Cristóbal and Gran

199 Canaria/Airport). At the annual scale, there were very few differences in the average values
200 between the stations of Los Rodeos, Izaña, Fuerteventura and Lanzarote, with very high ETo values
201 ranging between 1693 and 1784 mm (Table 2). The observatory with the lowest ETo values is
202 located in Gran Canaria Airport, although the observatory of San Cristóbal (also in the Gran
203 Canaria island) records the minimum values in summer. The magnitude of the differences can be
204 quite important (up to 34%) between the highest ETo values recorded in Los Rodeos, Izaña,
205 Fuerteventura and Lanzarote and the lowest ETo values (Gran Canaria and San Cristóbal). In
206 general, variability, as revealed by the coefficient of variation, was higher in the meteorological
207 stations that recorded the highest ETo values at the annual scale, but there was no clear spatial
208 pattern at the seasonal scale as different stations showed few differences in terms of the coefficients
209 of variation (Table 2).

210 In the majority of weather stations the seasonal and annual ETo magnitude was mostly driven by
211 the aerodynamic component. The average aerodynamic fraction was higher than the radiative
212 fraction in the weather stations that record the highest ETo values (Los Rodeos and Izaña) in all
213 seasons around the year (Figure 3). In other weather stations (Sta. Cruz de Tenerife and San
214 Cristóbal), the ETo associated with the radiative component was much higher than that observed for
215 the aerodynamic component (Table 3). The temporal variability in the aerodynamic component was
216 much higher than that observed in the radiative one, regardless of the season of the year or the
217 meteorological station.

218

219 **3.2. Long-term evolution of ETo**

220 The regional ETo series for the whole Canary Islands (Figure 4) shows a significant increase at the
221 annual scale ($18.2 \text{ mm decade}^{-1}$), which is stronger in summer ($6.7 \text{ mm decade}^{-1}$) (Table 4).
222 Nevertheless, there was a strong variability between the different meteorological stations, since
223 most meteorological stations experimented significant increases of ETo between 1961 and 2013.

224 The largest annual increase was recorded in Los Rodeos (34.8 mm decade⁻¹), La Palma (29.8 mm
225 decade⁻¹) and Lanzarote (29.7 mm decade⁻¹). Considering a longer period (1933-2013 for Izaña, and
226 1943-2013 for Santa Cruz de Tenerife), the changes are not statistically significant, although it was
227 not possible to check the homogeneity of the climate records prior to 1961 and thus the results for
228 the longer period must be carefully considered. For the period 1961-2013, there is no general spatial
229 pattern in the observed changes, thus some differences can be observed. For example, in the Gran
230 Canaria island, San Cristóbal station shows a statistically non-significant negative change in ETo on
231 the order of -8.4 mm decade⁻¹, while there is a general significant increase of 28.4 mm decade⁻¹ in
232 the Gran Canaria Airport.

233 Trends in the aerodynamic and radiative components showed clear differences among stations and
234 for the average Canary Islands (Figure 5). Main changes were recorded in the aerodynamic
235 component. The regional series showed an increase of 16.2 mm decade⁻¹ in the aerodynamic
236 component, but it only showed an increase of 2 mm decade⁻¹ in the radiative component (Table 5).
237 This can be translated to an average increase in the ETo of 89% over the whole period due to
238 changes in the aerodynamic component, and of 11% due to changes in the radiative component.
239 However, there are spatial differences between the meteorological stations, since the aerodynamic
240 component showed a decrease of 21 mm decade⁻¹ in San Cristóbal, compared to an increase of 44.6
241 mm decade⁻¹ in Los Rodeos. On the contrary, the radiative component showed lower differences
242 among stations, with values ranging from -9.9 mm decade⁻¹ in Los Rodeos to 12.7 mm decade⁻¹ in
243 San Cristóbal. Nevertheless, and regardless of the observed trends, the results indicate that the inter-
244 annual variability of ETo between 1961 and 2013 was mainly driven by the aerodynamic
245 component, independently of the season or the meteorological station considered (Table 6). The
246 temporal correlation between ETo and the aerodynamic component was statistically significant for
247 the different meteorological stations in the seasonal and the annual series, with correlation
248 coefficients higher than 0.95 in most cases. The correlation for the regional series was also strong

249 and statistically significant. In contrast, the correlation coefficients calculated between ETo and the
250 radiative component were much lower, and generally non-significant ($p < 0.05$). Los Rodeos is the
251 unique weather station where the correlation between ETo and the radiative component was
252 statistically significant at both the seasonal and annual scales, but showing a negative correlation.
253 Overall, the results show that the correlation between the annual radiative component and the total
254 annual regional series of ETo is statistically non-significant.

255

256 **3.3. Drivers of ETo variability and trends**

257 Table 7 shows the correlation between the different meteorological variables and ETo at the
258 seasonal and annual scales in the eight meteorological stations. Maximum and minimum air
259 temperatures were positively correlated with ETo and this relationship was statistically significant
260 in some stations, and the correlation coefficients tended to be higher for maximum air temperature.
261 In Los Rodeos and La Palma, the ETo variability could not be explained by the variability in air
262 temperature, with correlation coefficients weaker than 0.3. Overall, the results indicate that the
263 seasonal and annual series of ETo were significantly correlated with variations of sunshine duration
264 and wind speed, suggesting that these two variables are the key drivers of ETo variability in the
265 Canary Islands. The variable that showed the strongest correlation with the evolution of ETo in the
266 seasonal and annual series of the different meteorological observatories was relative humidity, with
267 negative coefficients. Only in the annual series of Santa Cruz de Tenerife the correlation was non-
268 significant. Moreover, there were no significant differences in the magnitude of correlations among
269 seasons.

270 The regional series summarise the pattern observed in the individual meteorological stations (Figure
271 6). In winter, relative humidity had the strongest correlation with ETo ($r = -0.85$), with a mostly
272 linear relationship. Minimum air temperature and sunshine duration showed significant positive
273 correlations with ETo ($r = 0.40$ and 0.36 , respectively). Maximum air temperature and wind speed

274 showed weaker correlation with the winter ETo. In spring, the magnitude of the correlations was
275 similar among the different variables, and the highest correlation corresponded again to relative
276 humidity ($r=-0.72$). A similar pattern was found in summer, where relative humidity showed the
277 strongest correlation ($r=-0.74$) followed by maximum and minimum air temperature. In autumn,
278 relative humidity also showed the strongest correlation and wind speed showed more importance
279 than both maximum and minimum air temperature. As expected, relative humidity showed the
280 strongest correlation with ETo ($r = -0.83$) at the annual scale, followed by wind speed ($r = 0.62$). On
281 the contrary, the correlation with maximum air temperature was statistically non-significant.

282 The general increase observed in ETo in the Canary Islands was largely determined by changes in
283 the different meteorological variables (Table 8). The maximum air temperature does not show
284 noticeable changes, with the exception of Gran Canaria/Airport, Lanzarote and San Cristóbal
285 stations where significant trends were found. The regional average did not show significant
286 changes. On the contrary, the minimum air temperature showed an average increase of $0.12\text{ }^{\circ}\text{C}$
287 decade^{-1} in summer and $0.09\text{ }^{\circ}\text{C}\text{ } \text{decade}^{-1}$ at the annual scale between 1961 and 2013. The
288 significant increase recorded in summer was found in six meteorological stations, with a maximum
289 of $0.25^{\circ}\text{ C decade}^{-1}$ in Izaña. Changes in relative humidity were also significant. There was a
290 significant decrease in winter, summer and annually, which represent a decline of $0.47\% \text{ decade}^{-1}$,
291 although there were differences among stations. Sunshine duration and wind speed did not show
292 noticeable changes, and the unique remarkable pattern was the significant increase of the summer
293 sunshine duration at the regional scale ($0.12\text{ hours decade}^{-1}$) and the significant increase of wind
294 speed in the station of Los Rodeos in the four seasons and also annually.

295 With respect to the sensitivity of changes in ETo to its five driving meteorological drivers (Figure
296 7), substantial differences were found between variables. The differences between observed ETo
297 and simulated ETo with average maximum and minimum air temperature were small irrespective of
298 the season, indicating a low sensitivity to these two variables. In contrast, ETo was more sensitive

299 to setting sunshine duration and wind speed at their mean values. Thus, in the station of Los
300 Rodeos, the predicted magnitude of change in winter, autumn and annually was different from the
301 observed magnitude of change. The highest sensitivity was, however, to relative humidity. In
302 general, the different meteorological stations showed an important increase in observed ETo with
303 respect to predicted ETo keeping relative humidity as constant. This was observed at the seasonal
304 and annual scales. Thus, in three meteorological stations the observed magnitude of change on
305 annual basis is between two and three times higher than that predicted considering relative humidity
306 as stationary. This pattern was also found in the regional series (Figure 8). Considering air
307 temperature, sunshine duration and wind speed as constant, there were no statistical differences
308 between the observed and predicted magnitudes of change, both seasonally and annually. On the
309 contrary, leaving relative humidity as constant, the magnitude of the trend was quite different to the
310 observations, and temporal trends would not be statistically significant. Thus, the magnitude of
311 change of ETo, considering relative humidity as constant, is significantly different from the
312 observed magnitude of change in winter and annually.

313

314 **4. Discussion**

315 This work analyses the recent evolution (1961-2013) of reference evapotranspiration (ETo) in the
316 Canary Islands and its relationship with the evolution of its atmospheric drivers. We analysed the
317 time evolution of ETo in eight meteorological stations in which the necessary meteorological
318 variables for calculation of the ETo were available. The results showed a general increase in ETo,
319 although different magnitudes of change were found between the different meteorological stations.
320 These differences did not follow any specific geographic pattern, so they must be considered either
321 due to random effects and uncertainty at various levels or due to micro-geographic effects that were
322 not considered in this study. There is not a general pattern that may connect the observed trends in a
323 certain forcing variable with the observed trend of ETo in each of the eight analysed stations

324 although those that showed a higher increase in ETo (i.e., Lanzarote, Los Rodeos and Gran Canaria)
325 displayed a higher increase in the aerodynamic component; a process which is in agreement with
326 the significant reductions observed in relative humidity.

327 Nevertheless, with the exception of the observatory of San Cristóbal in the north of Gran Canaria
328 Island, other meteorological observatories showed positive changes in ETo, with annual trends
329 statistically significant in six stations. In any case, we must also stress that trends in ETo at the
330 regional scale are mostly significant because of the low values in the beginning of the study period
331 starting in the 1960s. Thus, the results of the two sites with longer temporal coverage (i.e., Izaña
332 and Santa Cruz de Tenerife) do not show significant trends. This makes necessary to consider these
333 trends with caution since they could be driven by variability processes at the decadal scale.

334 The few existing studies in Northwest Africa (Ouysse et al., 2010; Tekken and Kropp, 2012) are not
335 comparable with our findings, since the variables required to apply the Penman-Monteith equation
336 were not available. Instead, these studies relied on simplified methods that just employ air
337 temperature records. Despite the difference in methods, these studies also found a general increase
338 in the ETo. The closest region in which it is possible to make a direct comparison using the same
339 method is the Iberian Peninsula, where a general increase of $24.5 \text{ mm decade}^{-1}$ was found between
340 1961 and 2011 (Vicente-Serrano et al., 2014a). This study also found that the variability and trends
341 in the aerodynamic component determined most of the observed variability and the magnitude of
342 change of ETo in a majority of the meteorological stations in the Iberian Peninsula. The radiative
343 component showed much lower temporal variability than the aerodynamic component did. Thus,
344 more than 90% of the observed ETo variability at the seasonal and annual scales can be associated
345 with the variability of the aerodynamic component. This is in agreement with the results obtained in
346 previous studies. For example, Wang et al. (2012) showed that recent ETo variability at the global
347 scale was mainly driven by the aerodynamic component. Equally, other studies in Southern Europe
348 indicated a higher importance of the aerodynamic component (Sanchez-Lorenzo et al., 2014;

349 Azorin-Molina et al., 2015). It could be argued, however, that quantification of the radiative
350 component in our study was based on a simplified assumption since it was calculated from sunshine
351 duration that is mostly determined by the cloud coverage (Hoyt, 1978). Nevertheless, it is also
352 worth noting that global radiation measurements, sunshine duration records contain a signal of the
353 direct effects of aerosols (Sanroma et al., 2010; Sanchez-Romero et al., 2014; Wild, 2015) in the
354 Canary Islands. Nevertheless, the Canary Islands is a region mostly free of anthropogenic aerosols
355 given the large frequency and intensity of trade winds (Mazorra et al., 2007), and it is not expected
356 that the frequency of Saharan dust events, that could affect incoming solar radiation, has noticeably
357 changed over the last decades (Flentje et al., 2015; Laken et al., 2015). Consequently, in the Canary
358 Islands we can consider high accuracy determining the radiative component using sunshine duration
359 series. In continental Spain, Azorin-Molina et al. (2015) also found strong positive correlations
360 between interannual variations of solar radiation and sunshine duration in different meteorological
361 stations. Overall, in the Canary Islands there is a positive and significant correlation between inter-
362 annual variations of ETo and sunshine duration, although this correlation did not explain the
363 observed trends of ETo in the region.

364 We showed that the temporal variability of ETo is strongly controlled by the temporal variability of
365 relative humidity. Specifically, seasonal and annual series of ETo in the different stations showed
366 very strong negative and significant correlations with those of the relative humidity. Thus, the
367 magnitude of correlations were much higher than those obtained for other meteorological variables,
368 and this finding was common to the whole set of meteorological stations. This strong control of
369 relative humidity on the temporal variability of ETo has been already identified in some studies in
370 the Iberian Peninsula (Vicente-Serrano et al., 2014b; Azorin-Molina et al., 2015; Espadafor et al.,
371 2013).

372 Among the variables that control the aerodynamic component, wind speed and maximum air
373 temperature did not show significant trends at the regional scale and only few stations recorded

374 significant trends in these variables, either at the seasonal or the annual scales. Significant trends
375 were obtained for minimum air temperature, mainly in summer. Recently, Croper and Hanna (2014)
376 analysed long term climate trends in the Macaronesia region, and for the Canary Islands they
377 showed an increase in air temperature during summer for the period 1981-2010. Martín et al. (2012)
378 analysed air temperature changes in the Tenerife Island from 1944 to 2010 and they also showed
379 that night-time air temperature increased rapidly compared to daytime temperature. Nevertheless,
380 they found strong spatial contrasts between the high mountains, that showed a higher increase, and
381 the coastal areas in which the air temperature regulation of the ocean could be reducing the general
382 air temperature increase.

383 In any case, the variable that recorded more significant changes in the Canary Islands was relative
384 humidity, and among the different meteorological variables used to calculate ETo, relative humidity
385 was the main driver of the observed ETo trends. Significant negative humidity trends were recorded
386 in winter, summer and autumn, but also annually. Thus, simulation of ETo series considering the
387 different meteorological variables as constant produced few differences in relation to the observed
388 evolution of ETo, with the exception of the relative humidity. Leaving relative humidity as constant
389 for the period 1961-2013 showed no significant ETo changes at seasonal and annual scales and also
390 statistically significant differences with changes obtained from observations. In continental Spain,
391 Vicente-Serrano et al. (2014b) showed a general decrease of relative humidity from the decade of
392 1960, mainly associated with a general decrease of the moisture transport to the Iberian Peninsula as
393 well as a certain precipitation decrease. Similarly, Espadafor et al. (2011) and Vicente-Serrano et al.
394 (2014b) showed that the strong increase in ETo in the last decades is associated with the relative
395 humidity decrease due to air temperature rise, which caused more severe drought events (Coll et al.,
396 2016; Lorenzo-Lacruz and Morán-Tejeda, 2016; Peña-Gallardo et al., 2016). In the Canary Islands,
397 no precipitation changes have been identified during the analyzed period (Sánchez-Benítez et al.,
398 2016). Therefore a lower moisture supply from the humidity sources to the islands should explain

399 the observed pattern toward a relative humidity decrease. Sherwood and Fu (2014) suggested that
400 differences in the air temperature increase between oceanic and continental areas could increase
401 land aridity, as a consequence of the sub-saturation conditions of the oceanic air masses that come
402 to the land areas, given higher warming rates in maritime regions in comparison to continental
403 areas. The results of this study confirm this pattern in the Canary Islands, since this region should
404 not be constrained by constant moisture supply from the surrounding warm Atlantic Ocean. Overall,
405 Willett et al. (2014) recently found a general decrease in relative humidity at the global scale,
406 including several islands and coastal regions in which the moisture supply was expected to be
407 unlimited. This finding suggests that contrasted mean air temperature and trends between land and
408 ocean areas could also play an important role in explaining this phenomenon, even at local scales.

409

410 **5. Conclusions**

411 We found that the reference evapotranspiration ETo increased by $18.2 \text{ mm decade}^{-1}$ -on average-
412 between 1961 and 2013 over the Canary Islands, with the highest increase recorded during summer.
413 Although there were noticeable spatial differences, this increase was mainly driven by changes in
414 the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
415 This study provides an outstanding example of how climate change and interactions between
416 different meteorological variables drive an increase of the ETo event in a subtropical North Atlantic
417 Islands. Given the general aridity conditions in most of the Canary Islands and the scarcity of water
418 resources, the observed trend could have negative consequences in a number of water-depending
419 sectors if it continues in the future.

420

421 **Acknowledgements**

422 The authors thank Spanish Meteorological Agency (AEMET) for providing the climate data used in
423 this study. This work was supported by the research project CGL2014-52135-C03-01, *Red de*
424 *variabilidad y cambio climático RECLIM* (CGL2014-517221-REDT) financed by the Spanish
425 Commission of Science and Technology and FEDER and “LIFE12 ENV/ES/000536-Demonstration

426 and validation of innovative methodology for regional climate change adaptation in the
427 Mediterranean area (LIFE MEDACC)" financed by the LIFE programme of the European
428 Commission. Cesar Azorin-Molina (JCI-2011-10263), Arturo Sanchez-Lorenzo (JCI-2012-12508)
429 and Marina Peña-Gallardo were granted by the Spanish Ministry of Economy and Competitiveness;
430 Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government;
431 and Miquel Tomas-Burguera was supported by a doctoral grant by the Ministerio de Educación,
432 Cultura y Deporte.

433

434 **References**

435 Abtew, W., Obeysekera, J., Ircanin, N., (2011): Pan evaporation and potential evapotranspiration
436 trends in South Florida. *Hydrol. Process.* 25, 958–969.

437 Allen, R. G. L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for
438 computing crop water requirements, Food and Agricultural Organization (FAO) *Irrig. Drain.* pap. 56, Rome.

439 Allen, C.D., Breshears, D., McDowell, N.G., (2015): On underestimation of global vulnerability to
440 tree mortality and forest die-off from hotter drought in the Anthropocene. *Ecosphere*, 6: 129.

441 Ambas, V. T., and E. Baltas (2012), Sensitivity analysis of different evapotranspiration methods
442 using a new sensitivity coefficient, *Global Nest J.*, 14, 335–343.

443 Azorin-Molina, C. Vicente-Serrano, S.M. ; Arturo Sanchez-Lorenzo; Tim R. McVicar ; Enrique
444 Morán-Tejeda ; Jesus Revuelto ; Ahmed El Kenawy, Natalia Martín-Hernández ; Miquel
445 Tomas-Burguera. Atmospheric evaporative demand observations, estimates and driving
446 factors in Spain (1961-2011). *Journal of Hydrology* 523: 262-277.

447 Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouce, B., Martin, E., Salas, D., Caballero, Y.,
448 2010. Analyses of precipitation, temperature and evapotranspiration in a French
449 Mediterranean region in the context of climate change. *Compt. Rendus Geosci.* 342, 234–
450 243.

451 Coll, J.R., Aguilar, E., Prohom, M., Sigró, J., (2016): Long-term drought variability and trends in
452 Barcelona (1787-2014). *Cuadernos de Investigación Geográfica*, 42, DOI:
453 10.18172/cig.2927

454 Cropper, T.E., Hanna, E., (2014): An analysis of the climate of Macaronesia, 1865-2012.
455 *International Journal of Climatology*, 34: 604-622.

456 Custodio, E., Cabrera, M.C. (2002): *¿Cómo convivir con la escasez de agua? El caso de las Islas*
457 *Canarias. Boletín Geológico y Minero* 113: 243-258.

458 Dai, A., (2013): Increasing drought under global warming in observations and models. *Nature*
459 *Climate Change* 3, 52–58.

460 Darshana, A., Pandey, R., Pandey, P., (2012): Analysing trends in reference evapotranspiration and
461 weather variables in the Tons River Basin in Central India. *Stoch. Env. Res. Risk A.*
462 <http://dx.doi.org/10.1007/s00477-012-0677-7>.

463 El Kenawy A and McCabe MF (2015) A multi-decadal assessment of the performance of gauge-
464 and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends,
465 *Int. J. of Climatol.*, doi:10.1002/joc.4374.

466 Espadafor, M., Lorite, I.J., Gavilán, P., Berengena, J., (2011): An analysis of the tendency of
467 reference evapotranspiration estimates and other climate variables during the last 45 years in
468 Southern Spain. *Agric. Water Manag.* 98, 1045–1061.

469 Fan, Z.-X., and A. Thomas (2013), Spatiotemporal variability of reference evapotranspiration and
470 its contributing climatic factors in Yunnan Province, SW China, 1961–2004, *Clim. Change*,
471 116, 309–325.

473 Flentje, H., Briel, B., Beck, C. et al. (2015): Identification and monitoring of Saharan dust: An
474 inventory representative for south Germany since 1997. *Atmospheric Environment* 109: 87-
475 96.

476 García, R.D., et al. (2014): Reconstruction of global solar radiation time series from 1933 to 2013 at
477 the Izaña Atmospheric Observatory. *Atmospheric Measurement Techniques* 7: 3139-3150.

478 Hamed, K.H. and A.R. Rao, (1998). A modified Mann Kendall trend test for autocorrelated data.
479 *Journal of Hydrology* 204, 182-196.

480 Hargreaves, G.L., Samani, Z.A., (1985): Reference crop evapotranspiration from temperature. *Appl.*
481 *Eng. Agric.* 1, 96-99.

482 Hoyt, D.V., (1978): Interannual Cloud-Cover Variations in the Contiguous United States. *J. Appl.*
483 *Meteor.*, 17, 354-357.

484 Huntington, T.G., (2006): Evidence for intensification of the global water cycle: Review and
485 synthesis. *Journal of Hydrology* 319: 83-95.

486 Itenfisu, D., Elliott, R.L., Allen, R.G., Walter, I.A., 2000. Comparison of Reference
487 Evapotranspiration Calculations across a Range of Climates. *Proceedings of the 4th National*
488 *Irrigation Symposium. ASAE, Phoenix, AZ.*

489 Jhajharia, D., Kumar, R., Dabral, P. P., Singh, V. P., Choudhary, R. R. and Dinpashoh, Y. (2015),
490 Reference evapotranspiration under changing climate over the Thar Desert in India. *Met.*
491 *Apps*, 22: 425-435. doi: 10.1002/met.1471.

492 Kousari, M.R., Ahani, H., (2012): An investigation on reference crop evapotranspiration trend from
493 1975 to 2005 in Iran. *Int. J. Climatol.* 32, 2387-2402.

494 Laken, B.A., Parviainen, H., García-Gil, A., Muñoz-Tuñón, C., Varela, A.M., Fernandez-Acosta,
495 S., Pallé, P., (2015): Thirty years of atmospheric extinction from telescopes of the North
496 Atlantic Canary Archipelago. *Journal of Climate*. doi: <http://dx.doi.org/10.1175/JCLI-D-14-00600.1>

497 Liu, T., Li, L., Lai, J., Liu, C., Zhuang, W. (2015): Reference evapotranspiration change and its
498 sensitivity to climate variables in southwest China. *Theoretical and Applied Climatology*. In
499 press.

500 López-Urrea, R., F. Martín de Santa Olalla, C. Fabeiro, and A. Moratalla (2006), Testing
501 evapotranspiration equations using lysimeter observations in a semiarid climate, *Agric.*
502 *Water Manage.*, 85, 15-26.

503 Lorenzo-Lacruz, J., Morán-Tejeda, E., (2016): Spatio-temporal patterns of meteorological droughts
504 in the Balearic Islands (Spain). *Cuadernos de Investigación Geográfica*, 42, DOI:
505 10.18172/cig.2948.

506 Ma, X., Zhang, M., Li, Y., Wang, S., Ma, Q., Liu, W., (2012): Decreasing potential
507 evapotranspiration in the Huanghe River Watershed in climate warming during 1960-2010.
508 *J. Geogr. Sci.* 22, 977-988.

509 Martín, J.L., Bethencourt, J., Cuevas-Agulló, E., (2012): Assessment of global warming on the
510 island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean
511 temperatures since 1944. *Climatic Change*, 114: 343-355.

512 Matsoukas, C., N. Benas, N. Hatzianastassiou, K. G. Pavlakis, M. Kanakidou, and I. Vardavas
513 (2011), Potential evaporation trends over land between 1983-2008: Driven by radiative
514 fluxes or vapour-pressure deficit?, *Atmos. Chem. Phys.*, 11, 7601-7616.

515 Mazorra, L., Diaz, F., Navarro, P., Deniz, F. (2007): Accumulated frequency estimation for daily
516 clearness index. *ISES Solar World Congress 2007*, ISES 20074, pp. 2632-2635.

517 Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J,
518 Vertacnik G, Klancar M, Dubuisson B, Stepanek P (2013) HOMER: HOMogenisation
519 softwarE in R- methods and applications. *Időjárás* 117: 47-67.

520

521 McMahon, T.A., Peel, M.C., Lowe, L., Srikanthan, R., McVicar, T.R., (2013): Estimating actual,
522 potential, reference crop and pan evaporation using standard meteorological data: a
523 pragmatic synthesis. *Hydrol. Earth Syst. Sci.* 17 (1), 1331–1363.

524 McVicar, T.R., Roderick, M.L., Donohue, R.J., Van Niel, T.G., (2012a): Less bluster ahead?
525 ecohydrological implications of global trends of terrestrial near-surface wind speeds.
526 *Ecohydrology* 5 (4), 381–388.

527 McVicar, T.R., Roderick, M.L., Donohue, R.J., et al., (2012b): Global review and synthesis of
528 trends in observed terrestrial near-surface wind speeds: implications for evaporation. *J.
529 Hydrol.* 416–417, 182–205.

530 Ouyssse, S., Laftouhi, N.-E., Tajeddine, K., (2010): Evaluation of evapotranspiration variation in the
531 Draa basin using statistical and empirical methods (South-Eastern Morocco). *XXXVIIIAH
532 Congress Groundwater Quality Sustainability.* Krakow, 12–17 September 2010.

533 Paternoster, R., Brame, R., Mazerolle, P., and Piquero, A. R. (1998). Using the Correct Statistical
534 Test for the Equality of Regression Coefficients. *Criminology*, 36(4), 859–866.

535 Peña-Gallardo, M., Gámiz-Fortis, S.R., Castro-Díez, Y., Esteban-Parra, M.J., (2016): Análisis
536 comparativo de índices de sequía en Andalucía para el periodo 1901-2012. *Cuadernos de
537 Investigación Geográfica*, 42, DOI: 10.18172/cig.2946.

538 Peterson, T. C., V. S. Golubev, and P. Y. Groisman (1995), Evaporation losing its strength, *Nature*,
539 377, 687–688.

540 Piticar, A., Mihailă, D., Lazurca, L.G., et al. (2015): Spatiotemporal distribution of reference
541 evapotranspiration in the Republic of Moldova. *Theoretical and Applied Climatology.* In
542 Press.

543 Roderick, M. L., and G. D. Farquhar (2002), The cause of decreased pan evaporation over the past
544 50 years, *Science*, 298, 1410–1411.

545 Roderick, M. L., and G. D. Farquhar (2004), Changes in Australian pan evaporation from 1970 to
546 2002, *Int. J. Climatol.*, 24, 1077–1090.

547 Sánchez-Benítez, A., García-Herrera, R., Vicente-Serrano, S.M., (2016). Revisiting precipitation
548 variability, trends and drivers in the Canary Islands. Submitted to the International Journal
549 of Climatology

550 Sanchez-Lorenzo, A., Vicente-Serrano, S.M., Wild, M., Calbó, J., Azorin-Molina, C., Peñuelas, J.,
551 (2014) Evaporation trends in Spain: a comparison of Class A pan and Piché atmometer
552 measurements. *Climate Research.* 61: 269–280.

553 Sanchez-Romero, A., A. Sanchez-Lorenzo, J. Calbó, J. A. González, and C. Azorin Molina (2014),
554 The signal of aerosolinduced changes in sunshine durationrecords: A review of the evidence,
555 *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2013JD021393.

556 Sanroma, E., Palle, E., and Sanchez-Lorenzo, A., (2010): Long-term changes in insolation and
557 temperatures at different altitudes. *Environmental Research Letters*, 5, 2.

558 Sheffield, J., Wood, E.J., Roderick, M.L., (2012): Little change in global drought over the past 60
559 years. *Nature* 491, 435–438.

560 Sherwood, S., Fu, Q. (2014): A drier future? *Science* 343: 737-739.

561 Tabari, H., Nikbakht, J., Talaee, P.H., 2012. Identification of trend in reference evapotranspiration
562 series with serial dependence in Iran. *Water Resour. Manag.* 26, 2219–2232.

563 Tekken, V., Kropp, J.P. (2012): Climate-driven or human-induced: Indicating severe water scarcity
564 in the Moulouya river basin (Morocco). *Water*, 4: 959–982.

565 Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. *Geogr. Rev.* 38,
566 55–94.

567 Vicente-Serrano, S.M., Beguería, S., Juan I. López-Moreno, Miguel A. García-Vera y P. Stepanek.
568 (2010): A complete daily precipitation database for North-East Spain: reconstruction, quality
569 control and homogeneity. *International Journal of Climatology*. 30, 1146-1163.

570 Vicente-Serrano, S.M., Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Jesús Revuelto, Juan I.
571 López-Moreno, José C. González-Hidalgo, Francisco Espejo. (2014a) Reference
572 evapotranspiration variability and trends in Spain, 1961–2011. *Global and Planetary
573 Change*, 121: 26-40.

574 Vicente-Serrano, S.M., Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Enrique Morán-Tejeda,
575 Jorge Lorenzo-Lacruz, Jesús Revuelto, Juan I. López-Moreno, Francisco Espejo (2014b):
576 Temporal evolution of surface humidity in Spain: recent trends and possible physical
577 mechanisms. *Climate Dynamics*. 42:2655–2674

578 Wang, K., Dickinson, R.E., (2012): A review of global terrestrial evapotranspiration:
579 observation, modeling, climatology, and climatic variability. *Rev. Geophys.* 50.
580 <http://dx.doi.org/10.1029/2011RG000373>.

581 Wang, K., Dickinson, R.E., Liang, S., 2012. Global atmospheric evaporative demand over land
582 from 1973 to 2008. *J. Clim.* 25 (23), 8353–8361.

583 Wild, M. (2015): Decadal changes in radiative fluxes at land and ocean surfaces and their relevance
584 for global warming. *WIREs Clim Change*. doi: 10.1002/wcc.372.

585 Willett, K.M., et al. (2014): HadISDH land surface multi-variable humidity and temperature record
586 for climate monitoring. *Climate of the Past* 10: 1983-2006.

587 Xu, Hh.-Y.u., Gong, L., Jiang, T., Chen, D., Singh, V.P., (2006): Analysis of spatial distribution
588 and temporal trend of reference evapotranspiration and pan evaporation in Changjiang
589 (Yangtze River) catchment. *J. Hydrol.* 327, 81–93.

590 Yue, S. and C. Wang (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect
591 Trend in Serially Correlated Hydrological Series. *Water Resources Management* 18, 201-
592 218.

593 Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow, *Water
594 Resources Research*, 37(4), 987-998.

595 Zhang, Y., Liu, C., Tang, Y., Yang, Y., (2007): Trends in pan evaporation and reference and actual
596 evapotranspiration across the Tibetan Plateau. *J. Geophys. Res. D: Atmos.* 112 (Article
597 numberD12110).

598
599
600

601
602

Table 1: Site names, coordinates, relocations, data gaps and inhomogeneities of the selected meteorological stations in the Canary Islands

Code	Longitude	Latitude	Name	relocation	Relative humidity		Sunshine duration		Wind speed		maximum temperature		minimum temperature	
					data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.	data gaps	Inhom.
C029O	-13.60	28.95	Lanzarote/Airport	1972	2.20%	1998	0.78%	1978-2002	0.47%	1971	1.23%	2004	1.23%	1988
C139E	-17.75	28.61	La Palma/Airport	1970	0.94%		2.51%		0.47%	1976	0.37%		0.37%	1997
C249I	-13.85	28.43	Fuerteventura/Airport	1969	0.15%	2000	1.25%	1995-2005	0.15%		0.23%	1983	0.23%	1977
C430E	-16.48	28.30	Izaña	--	1.72%	1999	7.40%	2005	6.91%		5.20%	1985	5.20%	
C447A	-16.31	28.46	Los Rodeos	--	0.31%		1.10%	1966	0.15%	1970	0.30%	2005	0.30%	2005
C449C	-16.25	28.45	Santa Cruz de Tenerife	--	0%		0.94%		0%	1987	0%		0%	1994
C649I	-15.38	27.91	Gran canaria/Airport	--	0.15%	1981-1994	2.67%	1978	0.31%	1972	0.20%	1984	0.20%	1994
C659P	-15.41	28.15	San Cristóbal	1994	11%		1.88%	1980	10.50%	1994	5.30%	1966	5.30%	

603

604

Table 2: Seasonal and annual averages (mm) and coefficients of variation of ETo in the eight meteorological stations, averaged over the period 1961-2013.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Regional Mean
Average									
Winter	222.0	181.5	297.5	250.2	298.1	251.6	294.5	217.7	251.6
Spring	390.1	302.2	468.8	414.1	460.8	361.5	468.7	342.3	401.1
Summer	512.7	415.5	612.9	663.8	560.2	438.7	586.1	383.0	521.6
Autumn	311.8	273.9	401.8	364.5	384.6	316.4	393.8	278.8	340.7
Annual	1435.5	1175.0	1784.4	1692.6	1702.0	1372.7	1741.0	1219.4	1515.3
Coefficient of variation									
Winter	0.05	0.11	0.12	0.18	0.10	0.11	0.09	0.11	0.06
Spring	0.04	0.10	0.07	0.12	0.08	0.10	0.06	0.08	0.05
Summer	0.03	0.12	0.07	0.07	0.07	0.08	0.07	0.07	0.04
Autumn	0.03	0.10	0.10	0.10	0.07	0.11	0.07	0.08	0.05
Annual	0.02	0.07	0.06	0.07	0.07	0.08	0.06	0.05	0.04

609 Table 3: Seasonal and annual averages (mm) and coefficients of variation of aerodynamic and
 610 radiative components of ETo in the eight meteorological stations. In bold the values greater than
 611 50% of the total ETo of the station

	Aerodynamic								
	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Average									
Winter	101.6	98.8	198.8	198.8	195.9	153.2	190.4	108.1	155.7
Spring	130.5	137.5	287.2	271.0	251.1	174.3	262.0	134.7	206.0
Summer	146.2	195.6	394.7	424.7	288.5	201.7	328.1	143.1	265.3
Autumn	109.3	133.4	249.1	263.6	211.7	157.6	225.9	102.0	181.6
Annual	487.5	568.0	1134.4	1158.6	945.8	690.7	1004.4	485.5	809.4
Coefficient of variation									
Winter	0.12	0.19	0.22	0.23	0.18	0.19	0.16	0.27	0.11
Spring	0.11	0.18	0.15	0.17	0.16	0.20	0.12	0.26	0.09
Summer	0.13	0.24	0.12	0.14	0.15	0.18	0.12	0.20	0.08
Autumn	0.13	0.21	0.20	0.14	0.14	0.20	0.15	0.25	0.10
Annual	0.09	0.16	0.13	0.12	0.14	0.16	0.11	0.17	0.07
Radiative									
Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Average	
Average									
Winter	120.4	82.7	98.6	51.4	102.2	98.4	104.1	109.6	95.9
Spring	259.7	164.7	181.5	143.1	209.7	187.2	206.7	207.6	195.0
Summer	366.5	220.0	218.3	239.1	271.7	237.0	258.0	240.0	256.3
Autumn	202.4	140.5	152.8	100.9	172.9	158.8	167.9	176.8	159.1
Annual	948.1	607.0	650.0	534.0	756.3	682.0	736.7	734.0	706.0
Coefficient of variation									
Winter	0.05	0.08	0.10	0.12	0.08	0.08	0.09	0.08	0.06
Spring	0.06	0.07	0.08	0.09	0.06	0.07	0.06	0.08	0.05
Summer	0.04	0.06	0.07	0.08	0.05	0.09	0.06	0.10	0.04
Autumn	0.05	0.05	0.08	0.07	0.05	0.06	0.06	0.06	0.04
Annual	0.03	0.04	0.07	0.06	0.04	0.05	0.04	0.06	0.03

612

613

614 Table 4: Magnitude of change (mm. decade⁻¹) of ET₀ in each meteorological station and the average of the
 615 eight stations over the period 1961-2013. Statistically significant at the 95% confidence level are given in
 616 bold. Numbers between brackets refer to the magnitudes of change for the periods 1933-2013 for Izaña and
 617 1943-2013 for Santa Cruz de Tenerife.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Winter	2.7 (0.31)	1.7	11.3	4.8 (-0.42)	3.2	9.1	7.1	-5.1	4.3
Spring	0.1 (-0.55)	7.7	7.1	-0.1 (-1.27)	3.9	7.2	4.0	-5.8	3.0
Summer	1.1 (-1.36)	16.0	7.6	6.0 (-0.64)	0.0	7.7	10.1	5.0	6.7
Autumn	2.0 (0.62)	3.6	11.2	3.7 (0.30)	-0.2	9.9	4.8	-5.0	3.8
Annual	7.3 (-1.95)	28.4	34.8	14.9 (-0.67)	9.2	29.8	29.7	-8.4	18.2

618

619 Table 5: Magnitude of change (mm. decade⁻¹) of both aerodynamic and radiative components of ETo in each
 620 meteorological station and the average of the eight stations over the period 1961-2013. Statistically
 621 significant at the 95% confidence level are given in bold. Numbers between brackets refer to the magnitudes
 622 of change for the periods 1933-2013 for Izaña and 1943-2013 for Santa Cruz de Tenerife.

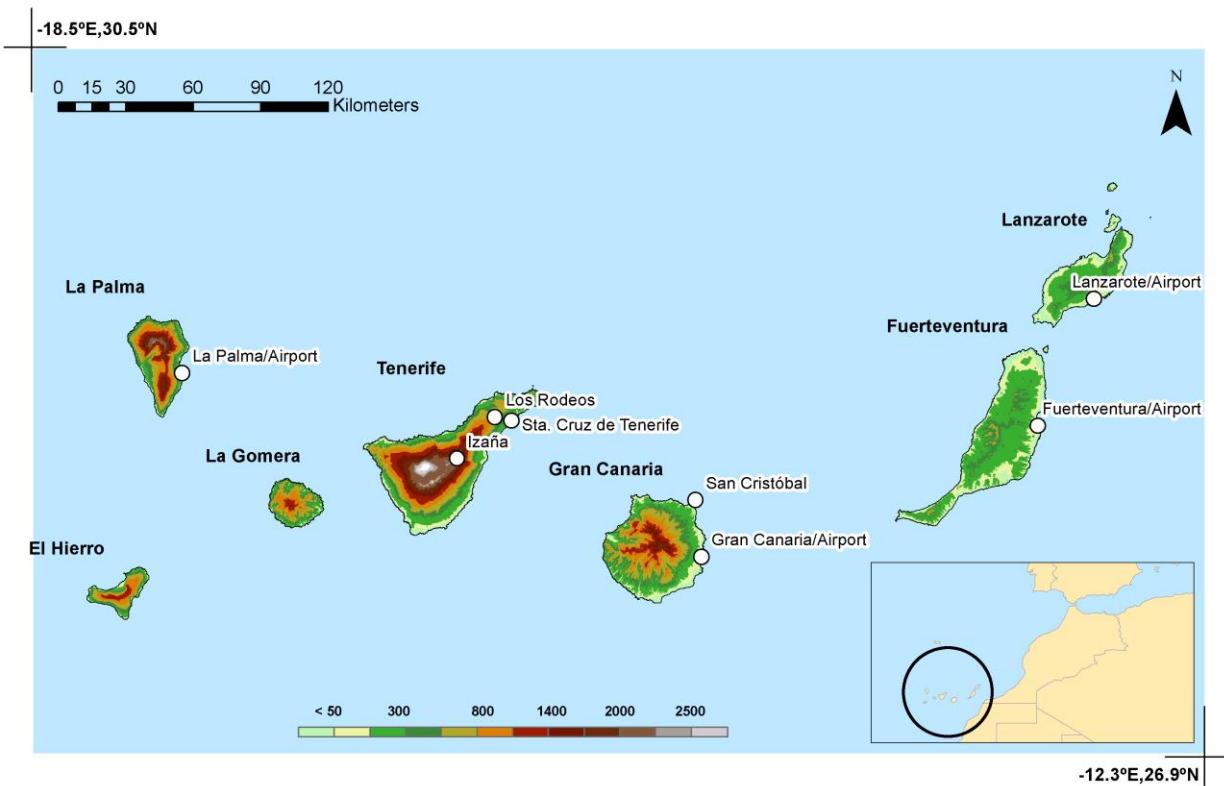
623

624

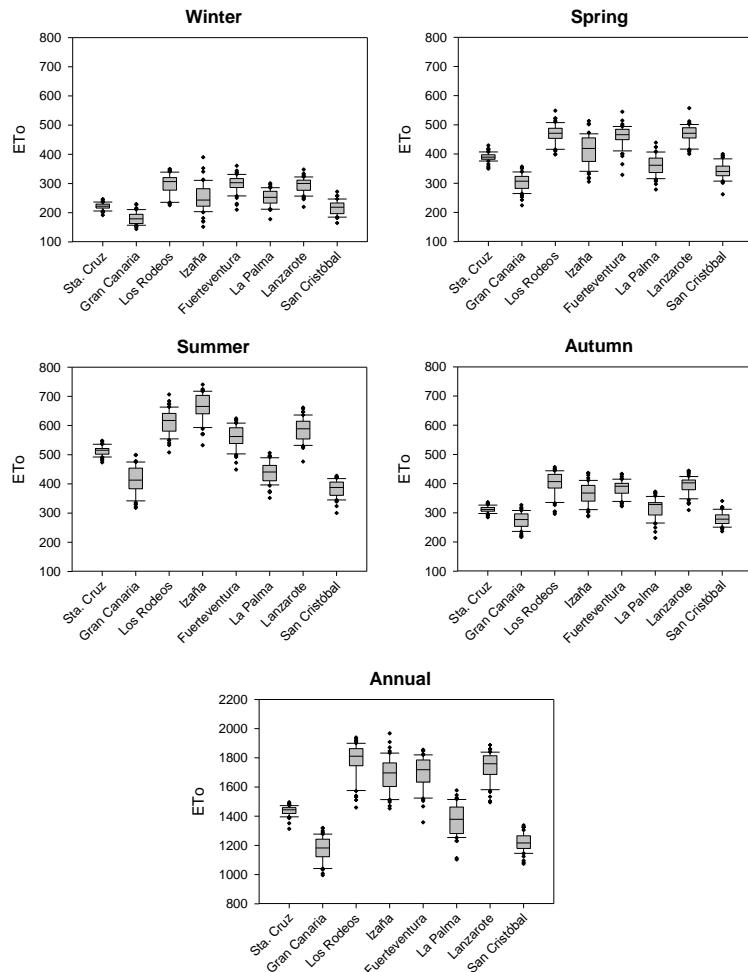
625

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Aerodynamic									
Winter	3.7 (0.09)	2.9	14.8	5.1 (-0.96)	4.6	10.1	9.1	-5.8	5.5
Spring	-1.3 (-1.84)		7.8	8.9	0.1 (-3.39)	2.4	3.3	2.7	-11.8
Summer	0.1 (-2.95)		16.8	9.9	6.7 (-3.38)	-1.1	2.5	8.1	-1.5
Autumn	2.1 (-0.51)		5.2	14.5	3.7 (-1.03)	-1.1	7.9	4.6	-3.8
Annual	4.7 (-6.25)		31.2	44.6	15.6 (-6.93)	6.5	19.8	28.0	-21.2
Radiative									
Winter	-1.0 (0.22)		-1.2	-3.5	-0.4 (0.51)	-1.4	-1.0	-2.0	0.8
Spring	1.4 (1.28)		-0.1	-1.8	-0.3 (2.12)	1.4	3.9	1.3	6.1
Summer	1.0 (1.58)		-0.8	-2.3	-0.7 (2.74)	1.1	5.1	2.0	6.5
Autumn	0.0 (1.13)		-1.6	-3.3	0.1 (1.34)	0.9	2.0	0.2	-1.2
Annual	2.7 (4.29)		-2.8	-9.9	-0.7 (6.25)	2.7	10.0	1.7	12.7

626 Table 6. Seasonal and annual Pearson's coefficients between the evolution of ETo and the evolution of
 627 aerodynamic and radiative components in the eight meteorological stations and the average. Statistically
 628 significant at the 95% confidence level are given in bold


	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Aerodynamic									
Winter	0.88	0.95	0.99	0.99	0.98	0.97	0.97	0.96	0.93
Spring	0.65	0.93	0.95	0.96	0.95	0.93	0.93	0.88	0.87
Summer	0.74	0.96	0.96	0.97	0.94	0.84	0.94	0.63	0.85
Autumn	0.75	0.96	0.98	0.98	0.96	0.96	0.97	0.90	0.95
Annual	0.78	0.97	0.98	0.97	0.97	0.95	0.96	0.88	0.95
Radiative									
Winter	0.05	0.37	-0.75	0.18	-0.62	-0.22	-0.44	-0.46	-0.02
Spring	0.38	0.52	-0.51	0.36	-0.25	0.14	0.07	-0.17	0.28
Summer	0.05	0.28	-0.37	-0.62	-0.12	0.23	0.08	0.41	0.29
Autumn	0.14	0.09	-0.67	-0.01	-0.23	0.43	-0.45	-0.05	0.05
Annual	-0.05	-0.20	-0.73	-0.36	-0.46	0.04	-0.28	-0.29	-0.15

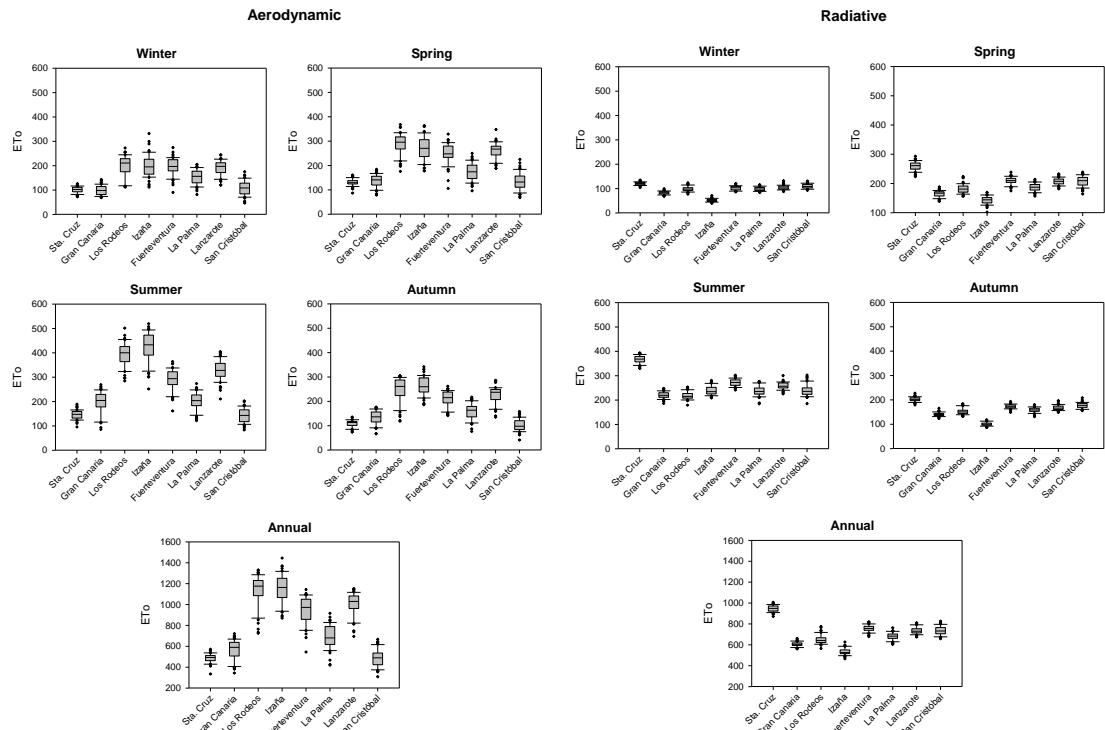
633 Table 7. Seasonal and annual Pearson's coefficients between the time series of ETo and the different
 634 meteorological variables in the eight meteorological stations, calculated for the period 1961-2013.
 635 Statistically significant at the 95% confidence level are given in bold


	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal
Maximum air temperature								
Winter	0.32	0.51	-0.12	0.89	-0.23	-0.01	-0.23	0.26
Spring	0.46	0.69	0.02	0.90	0.18	0.01	0.62	0.42
Summer	0.48	0.80	0.10	0.18	0.33	0.27	0.51	0.44
Autumn	0.18	0.64	0.04	0.71	0.29	0.12	0.09	0.43
Annual	0.17	0.41	-0.11	0.64	0.01	-0.03	0.16	0.46
Minimum air temperature								
Winter	0.15	0.50	0.13	0.83	-0.24	0.17	-0.13	0.01
Spring	0.24	0.53	0.19	0.83	0.12	0.19	0.49	0.10
Summer	0.24	0.55	0.11	0.23	0.16	0.33	0.55	0.17
Autumn	0.21	0.56	0.36	0.63	0.20	0.32	0.26	0.21
Annual	0.04	0.47	0.13	0.54	-0.11	0.30	0.27	-0.07
Relative humidity								
Winter	-0.52	-0.91	-0.57	-0.83	-0.92	-0.92	-0.89	-0.72
Spring	-0.34	-0.89	-0.70	-0.90	-0.89	-0.90	-0.77	-0.82
Summer	-0.35	-0.93	-0.83	-0.46	-0.90	-0.89	-0.80	-0.61
Autumn	-0.30	-0.94	-0.55	-0.74	-0.90	-0.91	-0.78	-0.76
Annual	-0.18	-0.93	-0.62	-0.59	-0.93	-0.94	-0.85	-0.86
Sunshine duration								
Winter	0.48	0.48	0.16	0.63	0.01	0.33	0.18	0.06
Spring	0.72	0.71	0.08	0.70	0.27	0.50	0.25	0.21
Summer	0.45	0.62	0.20	0.18	0.32	0.41	0.35	0.61
Autumn	0.47	0.38	0.20	0.53	0.14	0.69	0.16	0.34
Annual	0.40	0.30	-0.01	0.40	0.15	0.48	0.08	-0.09
Wind speed								
Winter	0.61	-0.01	0.84	0.29	0.54	0.29	0.35	0.62
Spring	0.47	0.18	0.62	0.33	0.52	0.22	0.24	0.44
Summer	0.65	0.37	0.48	0.77	0.39	-0.01	0.33	0.26
Autumn	0.62	0.22	0.78	0.48	0.31	0.27	0.62	0.48
Annual	0.73	0.47	0.72	0.69	0.50	0.25	0.34	0.38

640 Table 8. Magnitude of change ($^{\circ}\text{C}$, %, hours and ms^{-1} decade $^{-1}$) of the different meteorological variables
 641 over the period 1961-2013. In bold statistically significant trends at the 95%.

	Sta. Cruz de Tenerife	Gran Canaria/Airp.	Los Rodeos	Izaña	Fuerteventura	La Palma	Lanzarote	San Cristóbal	Mean
Maximum air temperature									
Winter	-0.06	-0.09	-0.05	-0.01	-0.08	-0.08	-0.18	-0.18	-0.09
Spring	-0.08	0.03	-0.02	-0.12	-0.02	-0.02	0.08	0.14	0.00
Summer	-0.06	0.20	0.00	-0.07	0.00	0.00	0.07	0.12	0.04
Autumn	-0.06	-0.08	-0.08	-0.04	-0.10	-0.06	-0.11	-0.17	-0.09
Annual	-0.05	0.03	-0.01	-0.05	-0.03	-0.02	-0.01	0.00	-0.02
Minimum air temperature									
Winter	-0.02	-0.01	0.02	0.16	-0.02	0.02	-0.02	0.14	0.03
Spring	0.02	0.03	0.03	0.18	0.04	0.04	0.05	0.09	0.06
Summer	0.08	0.12	0.10	0.25	0.11	0.07	0.10	0.13	0.12
Autumn	0.07	0.01	0.09	0.19	0.05	0.09	0.09	0.08	0.09
Annual	0.05	0.05	0.08	0.20	0.06	0.07	0.08	0.12	0.09
Relative humidity									
Winter	-0.51	-0.51	-0.22	-1.11	-0.81	-1.53	-1.56	-0.18	-0.80
Spring	0.18	-1.06	-0.22	0.20	-0.76	-0.96	-0.88	0.90	-0.33
Summer	0.39	-1.58	-0.16	-0.91	-0.06	-0.72	-0.99	0.45	-0.45
Autumn	0.02	-0.72	0.01	-0.26	-0.29	-1.65	-0.99	0.31	-0.45
Annual	0.02	-0.89	-0.03	-0.52	-0.49	-1.05	-1.11	0.32	-0.47
Sunshine duration									
Winter	0.02	-0.10	-0.04	0.02	-0.12	0.08	-0.05	-0.11	-0.04
Spring	0.08	0.11	0.08	0.06	0.03	0.22	-0.06	0.05	0.07
Summer	0.06	0.15	0.05	-0.03	0.00	0.25	0.09	0.35	0.12
Autumn	0.03	-0.04	0.03	0.08	0.00	0.19	0.03	-0.16	0.02
Annual	0.06	0.03	0.03	0.04	-0.01	0.18	0.02	0.04	0.05
Wind speed									
Winter	0.04	0.04	0.33	0.01	0.00	0.07	0.02	-0.18	0.04
Spring	-0.01	0.08	0.19	0.07	-0.08	-0.08	-0.13	-0.24	-0.03
Summer	0.02	0.21	0.24	-0.01	-0.05	-0.11	-0.06	0.01	0.03
Autumn	0.03	0.07	0.33	0.03	-0.07	-0.05	-0.04	-0.06	0.03
Annual	0.02	0.10	0.27	0.02	-0.04	-0.04	-0.04	-0.12	0.02

671 Figure 1: Location and relief of the Canary Islands and meteorological stations used in the study.
 672 Altitude is given in meters.

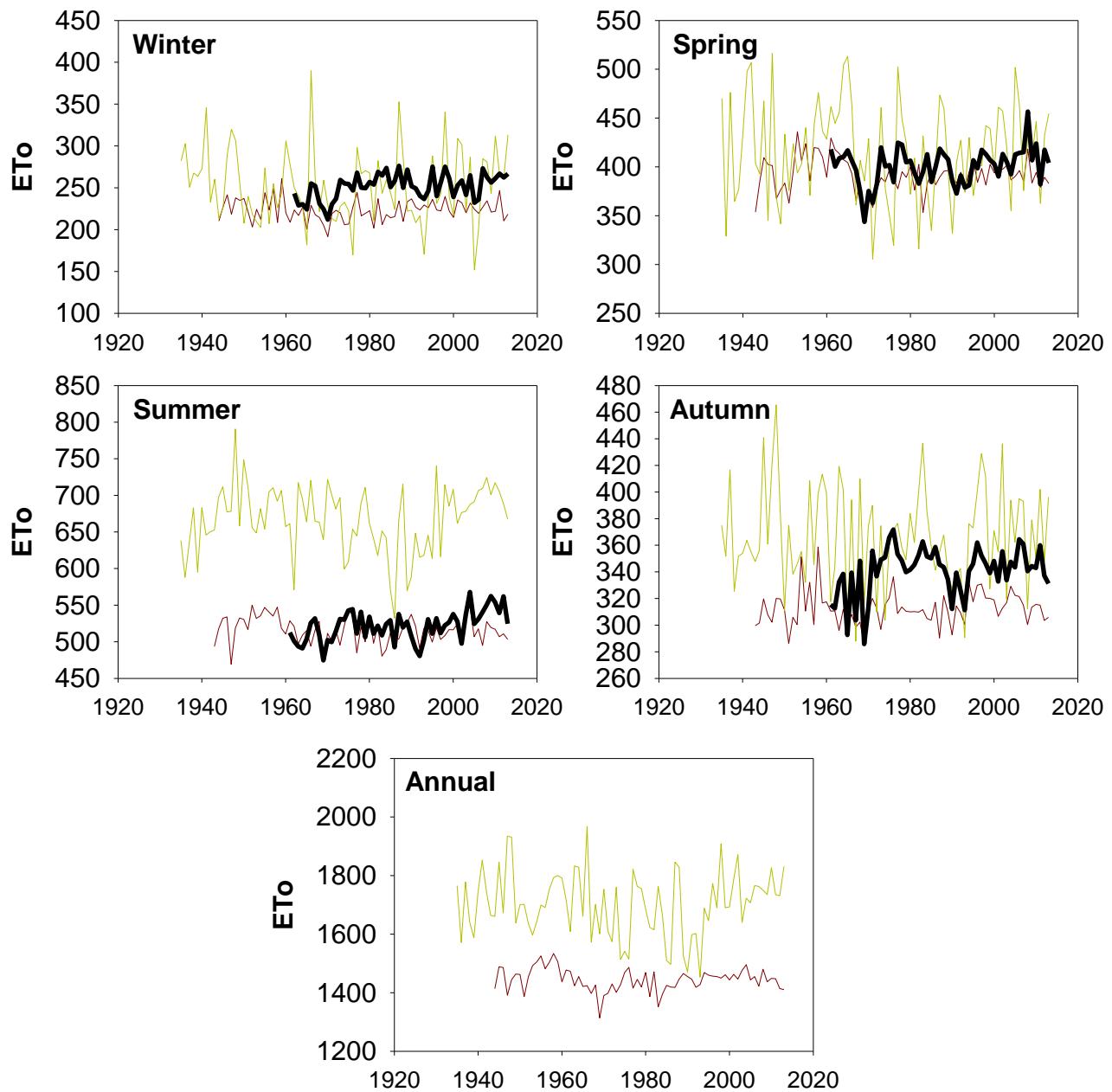


674

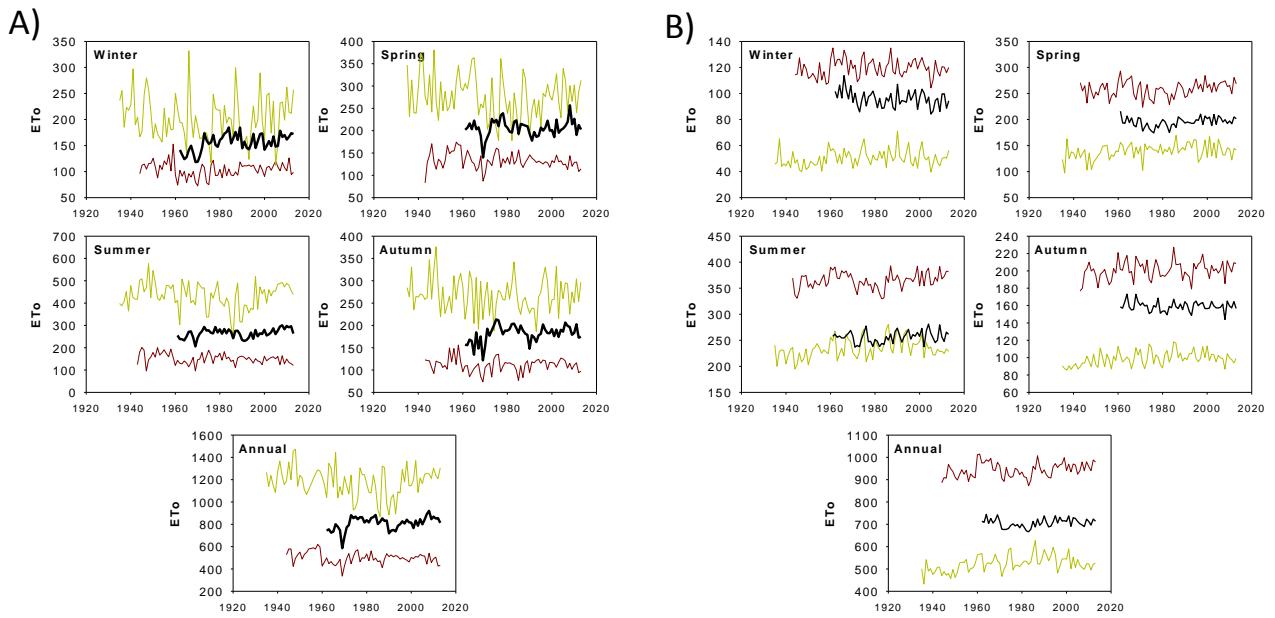
675 Figure 2: Box-plot with the annual and seasonal ETo values in the eight meteorological stations
 676 used in this study. The vertical lines of each plotted boxplot illustrate the 10th, 25th, 75th and 90th
 677 quantiles, respectively. The interquartile spread is represented by the range between the 25th and
 678 75th quantiles. The dots show the highest and lowest values.

679

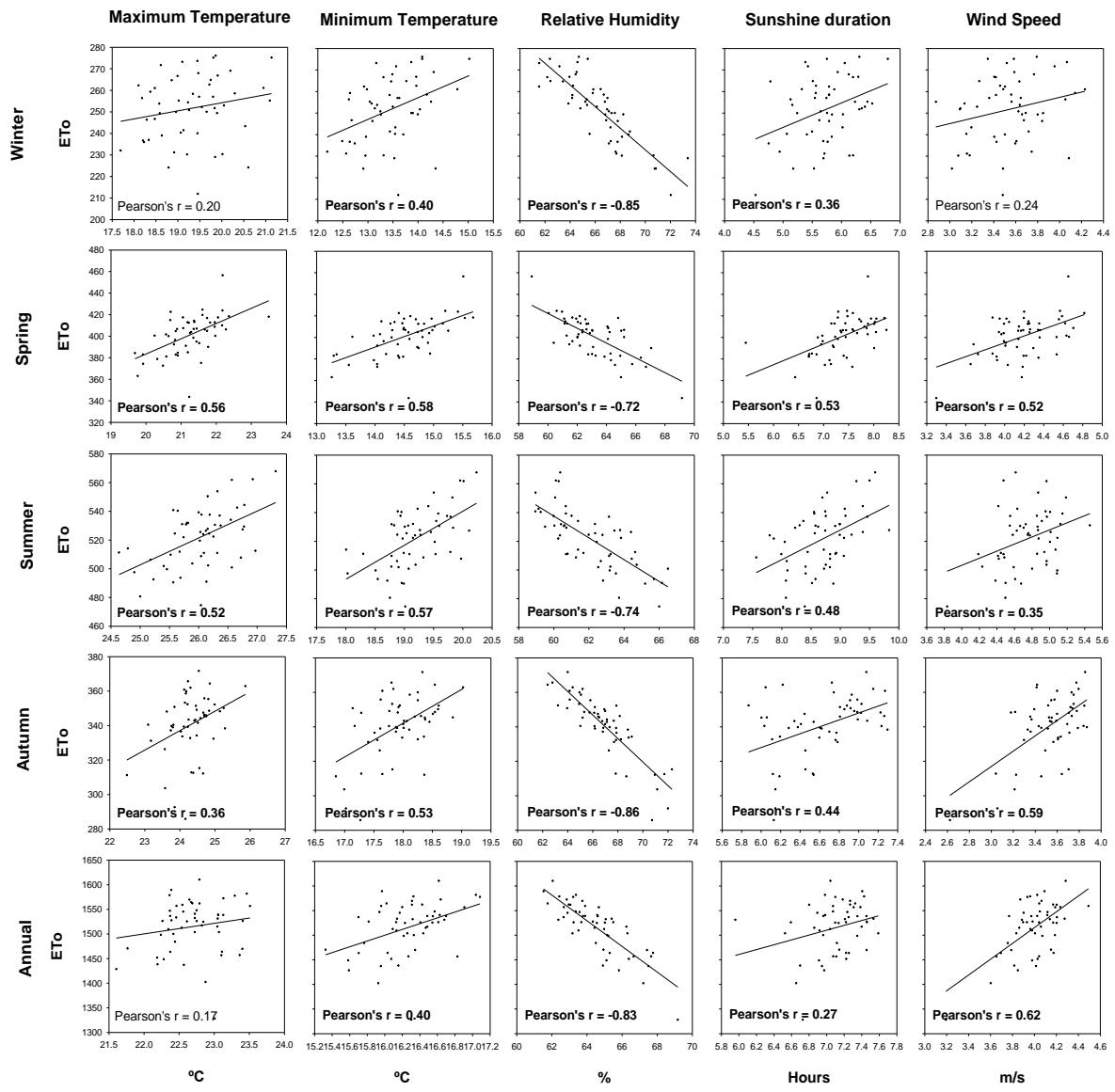
680


681

682 Figure 3: Box-plot with the annual and seasonal aerodynamic and radiative components of ETo in
 683 the eight meteorological stations used in this study

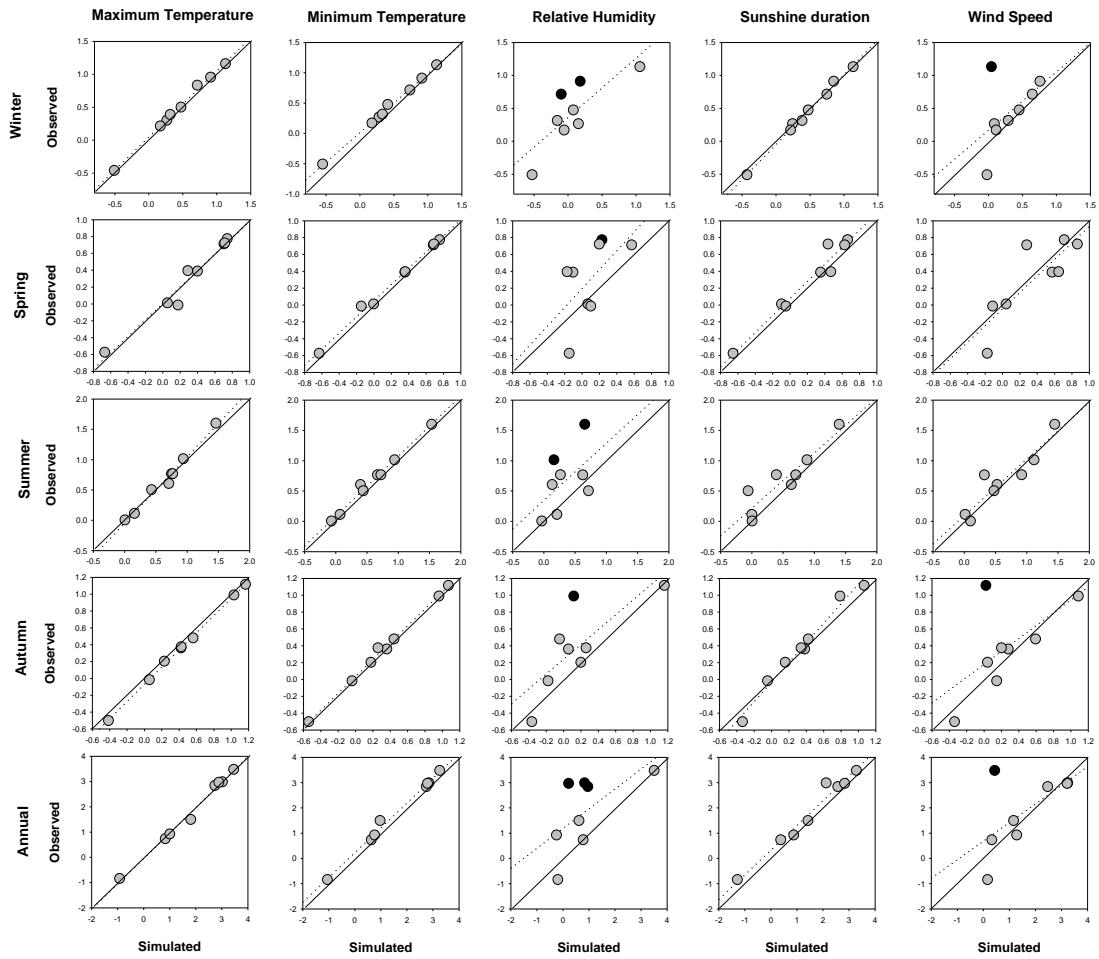

684

685


686

690 Figure 4: Evolution of seasonal and annual ETo in the two meteorological stations with longest
 691 records (Izaña, green and Santa Cruz de Tenerife, brown) and the average of the eight stations
 692 (black lines) from 1961 to 2013.

696 Figure 5: Evolution of seasonal and annual aerodynamic (A) and radiative (B) components of the
 697 ETo in the two meteorological stations with longest records (Izaña, green and Santa Cruz de
 698 Tenerife, brown) and the average of the eight stations (black lines) from 1961 to 2013



700

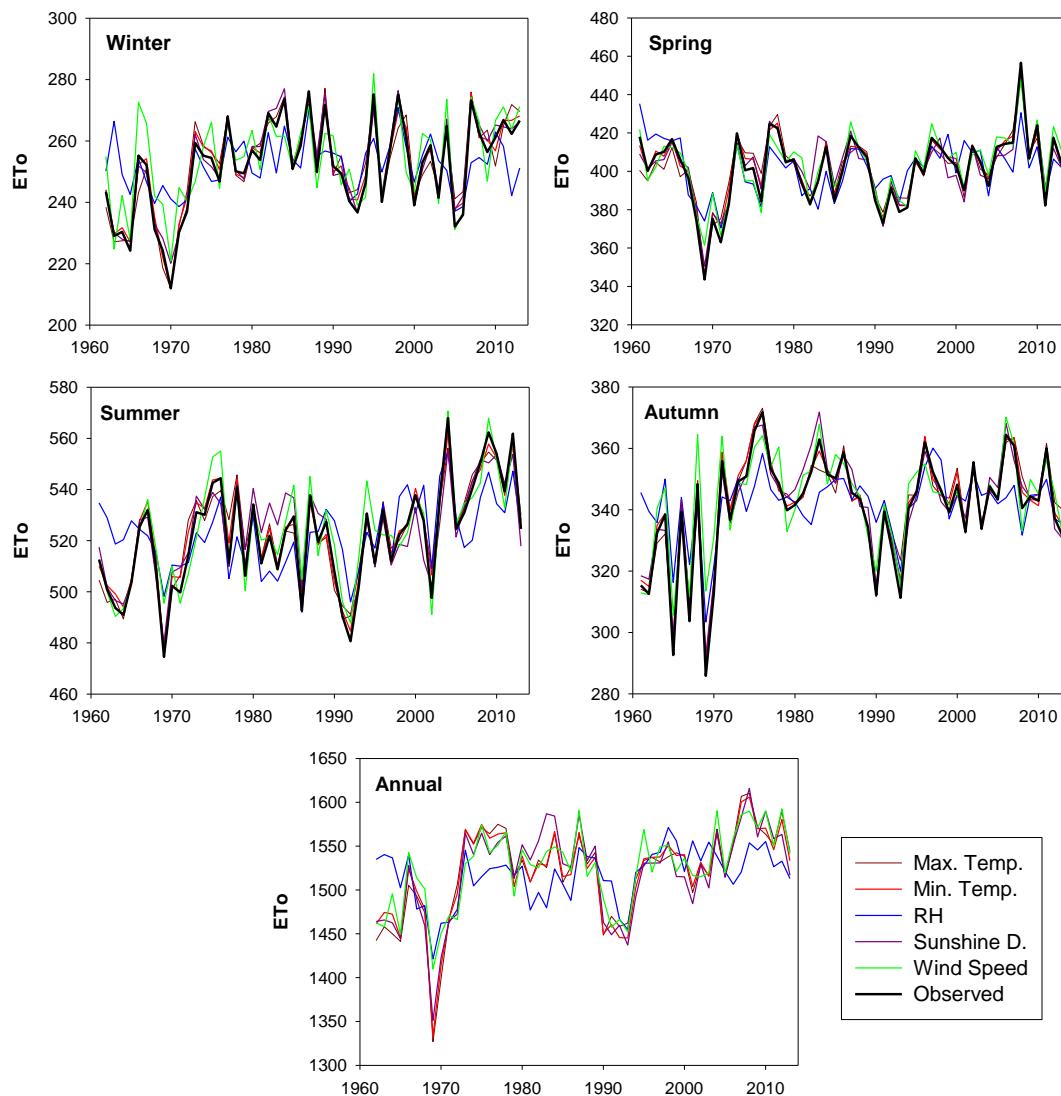
701 Figure 6. Relationship between the regional annual and seasonal ETo and the regional series of the
 702 different meteorological variables. Pearson's coefficients are included in each plot. In bold the
 703 coefficients statistically significant at the 0.95 confidence level

704

705

706

707


708

709

710

Figure 7: Relationship between the seasonal and annual observed magnitude of change of ET₀ (mm. year⁻¹) in each meteorological station and the simulated magnitude of change maintaining each meteorological variable as constant. Black dots indicate significant differences in the trends.

711

712

713

714 Figure 8: Seasonal and annual evolution of the observed regional ETo compared to the simulated
 715 ETo considering no temporal changes in each one of the meteorological variables from 1961 to
 716 2013.

717

718

719

720

721

722

723