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Abstract: Some regional procedures to estimate hydrological quantiles at ungauged sites, such as the index-flood method, 

require the delineation of homogeneous regions as a basic step for their application. The homogeneity of these delineated 

regions is usually tested providing a yes/no decision. However, complementary measures that are able to quantify the degree 10 

of heterogeneity of a region are needed to compare regions, evaluate the impact of particular sites and rank the performance 

of different delineating methods. Well-known existing heterogeneity measures are not well-defined for ranking regions, as 

they entail drawbacks such as assuming a given probability distribution, providing negative values and being affected by the 

region size. Therefore, a framework for defining and assessing desirable properties of a heterogeneity measure in the 

regional hydrological context is needed. In the present study, such a framework is proposed through a four-step procedure 15 

based on Monte Carlo simulations. Several heterogeneity measures, some of which commonly known, others derived from 

recent approaches or adapted from other fields are presented and developed to be assessed. The assumption-free Gini Index 

applied on the at-site L-variation coefficient (L-CV) over a region led to the best results. The measure of the percentage of 

sites for which the regional L-CV is outside the confidence interval of the at-site L-CV is also found to be relevant, as it 

leads to more stable results regardless of the regional L-CV value. An illustrative application is also presented for didactical 20 

purposes, through which the subjectivity of commonly used criteria in assessing the performance of different delineation 

methods is underlined. 

Keywords: hydrology; regional analysis; ungauged site estimate; heterogeneity degree; L-variation coefficient; Gini Index. 

1 Introduction 

Regional hydrological frequency analysis (RHFA) is needed to estimate extreme hydrological events when no hydrological 25 

data are available at a target site or to improve at-site estimates especially for short data records (e.g. Burn and Goel, 2000; 

Requena et al., 2016). This is done by transferring information from hydrologically similar gauged sites. Delineation of 

homogeneous regions is a basic step for the application of a number of regional procedures such as the well-known index-

flood method (Dalrymple, 1960; Chebana and Ouarda, 2009). Such a method employs information from sites within a given 

homogeneous region to estimate required quantiles at a given target site. The heterogeneity concept has been considered in a 30 
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number of fields, including ecology, geology and information sciences (e.g. Li and Reynolds, 1995; Mays et al., 2002; Wu et 

al., 2008). However, the present paper focuses on the heterogeneity concept in hydrology derived from ‘regional 

homogeneity’. In this regard, regional homogeneity is often defined as the condition that floods at all the sites in a region 

have the same probability distribution except for a scale factor (e.g. Cunnane, 1988).  

In order to delineate homogeneous regions, numerous studies have proposed and compared similarity measures entailing 5 

climatic (e.g. mean annual rainfall), hydrologic (e.g. mean daily flow), physiographic (e.g. drainage area) and combined 

descriptors (see Ali et al., 2012 and references herein) to be used as input to statistical tools for grouping sites. The selection 

of these descriptors is carried out by stepwise regression, principal components or canonical correlation, among others (e.g. 

Brath et al., 2001; Ouarda et al., 2001; Ilorme and Griffis, 2013). Known statistical tools, such as cluster analysis, or new 

approaches, such as the affinity propagation algorithm, are considered to form homogeneous regions based on the previously 10 

identified similarity measures (e.g. Burn, 1989; Ouarda and Shu, 2009; Ali et al., 2012; Wazneh et al., 2015). For further 

references on regional flood frequency analysis, please see Ouarda (2013), Salinas et al. (2013) and references herein. 

Moreover, many tests have been introduced and compared throughout the literature to decide whether a given delineated 

region can be considered as homogenous (e.g. Dalrymple, 1960; Wiltshire, 1986; Scholz and Stephens, 1987; Chowdhury et 

al., 1991; Fill and Stedinger, 1995; Viglione et al., 2007). The homogeneity test proposed by Hosking and Wallis (1993) is 15 

usually utilised. In this test the statistic H is related to the variability of the at-site L-variation coefficient (L-CV) over a 

region (e.g. Alila, 1999; Burn and Goel, 2000; Castellarin et al., 2001; Shu and Burn, 2004; Smith et al., 2015).  

In practice, apart from determining if a region can be considered as homogeneous by making a yes/no binary decision (e.g. 

Warner, 2008) generally based on a significance test, the quantification of the degree of heterogeneity is also necessary. 

Heterogeneity measures are required for such a task. Two approaches can be considered in this regard: (i) the use of 20 

heterogeneity measures for determining the effect of the departure from the homogeneous region assumption on the quantile 

estimate; and (ii) the use of heterogeneity measures for ranking regions according to their degree of heterogeneity. Regarding 

the former, quantifying the degree of heterogeneity provides a notion of the inaccuracy incurred through the estimation of 

quantiles by a regional method, for which homogeneous regions are assumed but a ‘non-perfect’ homogeneous region is 

used. This approach has already been studied, being closely related to the homogeneity test notion (e.g. Hosking and Wallis, 25 

1997; Wright et al., 2014), which is further explained below.  

The second approach corresponds to the focus of the present paper. Through this second approach, different regional 

delineation methods can be properly compared to identify the best one. This will be the method delineating the ‘most 

homogeneous region’. Also, heterogeneity measures can be helpful in ranking potential homogeneous regions formed by 

removing discordant sites. By analogy with distribution selection (e.g. Laio et al., 2009), the concept of heterogeneity 30 

measure considered here plays the role of a ‘model selection criterion’, such as the Akaike Information Criterion (Akaike, 

1973); whereas the homogeneity test plays the role of a ‘goodness-of-fit test’. The former ranks delineated regions by 

providing unambiguous results to identify the best one in terms of heterogeneity; whereas the latter indicates if the given 

region can be considered as homogeneous or not.  
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In relation to the use of heterogeneity measures as a proxy for quantile error (approach (i)), the test statistic H is indeed 

considered by Hosking and Wallis (1993) as a heterogeneity measure for which given thresholds are established. These 

thresholds are obtained as a trade-off between quantile error due to regional heterogeneity and gain obtained by considering 

the whole regional information instead of that of a sub-region or at-site data. Therefore, instead of providing a binary 

decision based on a given significance level (α), e.g. reject the region as homogenous when H > 1.64 for α = 5%; as a more 5 

general guideline the region is considered as ‘acceptably homogeneous’ if 1H , ‘possibly heterogeneous’ if 21  H  

or ‘definitely heterogeneous’ if 2H . Recently, Wright et al. (2015) compared the performance of five statistics in this 

regard: the three L-moment-based statistics of Hosking and Wallis (1993) and two non-parametric statistics, the Anderson-

Darling and the Durbin-Knott test statistic.  

A number of studies have proposed and compared methods in which different combinations of similarity measures and/or 10 

statistical tools are considered for delineating regions (references below). As a consequence of the non-availability of a well-

justified heterogeneity measure for comparison purposes (approach (ii)), studies usually consider measures based either on H 

or on errors from the quantile estimate step. Shu and Burn (2004) utilised the percentage of (initially) homogeneous regions 

and the mean of H over regions obtained by each considered method for distinguishing the best one. Farsadnia et al. (2014) 

identified the best grouping method among those analysed as that leading to the lowest number of ‘possibly homogeneous’ 15 

and ‘heterogeneous’ regions according to H.  Ilorme and Griffis (2013) used an H weighted average regarding the data 

length of each region to compare regions obtained by removing discordant sites based on different criteria.  

However, H is not well-defined for ranking regions according to their heterogeneity degree, as it possesses several 

drawbacks. First, it is originally built as a significance test. Thus, its value depends on specific assumptions that may not be 

fulfilled in practice, such as assuming a regional kappa distribution that even though flexible may not characterise the data. 20 

Second, it may entail negative values for particular situations, which may distort results making difficult the suitable ranking 

of regions. Third, it is affected by the number of sites in the region, tending to obtain small heterogeneity values for small 

regions even if they are not homogeneous (Hosking and Wallis, 1997, page 66-67). This tends to complicate comparison 

among regions with different sizes. 

Instead of using measures based on H, other studies quantified the performance of different delineating methods by 25 

comparing quantile errors (e.g. Castellarin et al., 2001; Ouali et al., 2016). However, the latter approach implies performing 

the last step of a regional analysis (i.e. quantile estimation) when dealing with an initial step (i.e. region delineation); which 

involves additional calculations, uncertainty due to the assumption of a given parent distribution for the data and a non direct 

assessment of the delineation method. A different approach was recently proposed by Viglione (2010) and Das and Cunnane 

(2011) regarding the use of the confidence intervals for L-CV to assess heterogeneity, for which details are given in Sect. 3.  30 

Therefore, a general framework is needed to allow defining and assessing desirable properties of a heterogeneity measure in 

the regional hydrological context in order to properly identify a suitable measure. Such a measure should overcome the 

aforementioned drawbacks: it should be free of assumptions, positive and not affected by region size. Furthermore, the use 

of a heterogeneity measure should allow direct comparison of the heterogeneity of regions delineated by different methods. 
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Indeed, it should allow ranking the heterogeneity degree of several regions to identify ‘the most homogeneous region’ or to 

assess the effect of some sites on the ‘heterogeneity degree’ of the region. In the present paper, such a framework is 

proposed under an evaluation of the heterogeneity measures based on Monte Carlo simulations. Several measures extracted 

from literature in hydrology and other fields are presented and/or adapted to be assessed as well-justified heterogeneity 

measures. The present paper is organised as follows. The procedure for the assessment of a heterogeneity measure is 5 

presented in Sect. 2. The heterogeneity measures considered to be checked by the proposed procedure are introduced in Sect. 

3. Results of the assessment are illustrated in Sect. 4. Discussion of results is presented in Sect. 5. An illustrative application 

is shown in Sect. 6 and conclusions are summarised in Sect. 7.  

2 Assessment of a heterogeneity measure  

A simulation-based procedure consisting of four steps is proposed to study the behaviour of a given heterogeneity measure 10 

(generically denoted Z) regarding its desirable properties in the regional hydrological context. The steps of the procedure are: 

(i) sensitivity analyses of varying factors involved in the definition of a region; (ii) success rate in identifying the most 

heterogeneous region; (iii) evolution of the variability for the Z average with respect to the degree of regional heterogeneity; 

and (iv) effect of discordant sites. The first step is applied to all the considered heterogeneity measures (presented in Sect. 3), 

while the remaining steps are applied to those not entailing unacceptable results from the first step. Some elements of the 15 

procedure are inspired and adapted from studies where different aims were sought (e.g. Hosking and Wallis, 1997; Viglione 

et al., 2007; Chebana and Ouarda, 2007; Castellarin et al., 2008; Wright et al., 2015). 

2.1. Synthetic regions   

Before further describing the aforementioned steps and desirable properties, elements of the framework needed for 

performing the assessment procedure are presented. The procedure is based on synthetic regions generated through Monte 20 

Carlo simulations from a representative flood parent distribution commonly used in frequency analysis, the Generalised 

Extreme Value (GEV) distribution. A region is defined by its number of gauging sites (N), at-site data length (n), regional 

average L-CV (𝑅), regional average L-skewness coefficient (3
𝑅) and a unit regional sample mean. The heterogeneity of a 

given region may be due to differences in any feature of the at-site frequency distribution among sites. In particular the L-

CV, which is a dimensionless measure of the dispersion of the distribution that is also related to the slope of the associated 25 

flood frequency curve, has been considered as representative of such differences (e.g. Stedinger and Lu, 1995; Viglione, 

2010). In the present study, heterogeneous regions are simulated using the heterogeneity rate , defined as  = (max𝑖(𝜏𝑖) −

min𝑖(𝜏𝑖))/𝜏𝑅 (e.g. Hosking and Wallis, 1997; Das and Cunnane, 2012)
.
, where 𝑖 is the L-CV at site i with i = 1, …, N. 

Since in practice large values of the L-skewness coefficient (3) are related to large values of the L-CV  (Hosking and 

Wallis, 1997, page 68), the same heterogeneity rate of  is considered for 3. A region is defined as homogeneous for  = 0%, 30 

implying that 𝑖  and 3
𝑖  are the same for all the sites in the region (i.e. 𝑖 = 𝑅  

and 3
𝑖 = 3

𝑅). The heterogeneity of a given 
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region increases as  increases from 0% to 100%. This implies that 
i
 and 3

𝑖  vary linearly. We then have for the first site 

1 = 𝑅 − 𝑅 𝛾 2⁄  and for the last site 𝑁 = 𝑅 + 𝑅 𝛾 2⁄ . The same can be written for 3
𝑖 . Note that this relation is commonly 

used in other studies (e.g. Hosking and Wallis, 1997; Wright et al., 2015) as a plausible way of simulating varying conditions 

over a region. 

Finally, a given region consists of at-site data generated from a GEV distribution with parameters obtained through at-site L-5 

moments. At-site data are standardised by their sample mean to frame them in the regional context (e.g. Bocchiola et al., 

2003; Requena et al., 2016). Note that heterogeneity measures directly based on L-moments lead to the same results for 

standardised or non-standardised data. A region with N = 15, n = 30, 𝑅  
= 0.2 and 3 

𝑅 = 0.2 is considered as a reference for the 

simulation study. Hereafter, the value of 3 is (usually) omitted, as 3 is considered to have the same value as . The number 

of simulations NS of a given region is taken to be equal to 500, which is considered large enough to obtain robust results. 10 

These fixed values of the factors, as well as their varying values used below, are selected according to the literature and with 

the aim of providing a general view of the behaviour of the measures without excessively complicating the simulation study.  

It is important to highlight that the use of simulated data in the assessment of new techniques in regional frequency analysis 

is a very well established approach and it has been used in a number of publications (e.g. Hosking and Wallis, 1997; Seidou 

et al., 2006; Chebana and Ouarda, 2007). Indeed, this is the only way to deal with issues related to data quality.  15 

2.2. Sensitivity analyses   

The first step of the assessment of a heterogeneity measure Z is the analysis of the effect of varying factors involved in the 

definition of a region. This step is performed through sensitivity analysis to identify if the behaviour of Z is acceptable in 

relation to what is ideally expected from a heterogeneity measure.  

Effect of the heterogeneity rate: The degree of heterogeneity of a region is the aimed value to be quantified by Z. A 20 

surrogate of such a degree of regional heterogeneity is the heterogeneity rate , which is used to initially define the 

heterogeneity of the simulated region to be evaluated by Z. Hence, Z should increase with . This analysis is performed by 

obtaining Z for  = 0%, 10% ,…, 90%, 100% over NS = 500, keeping the remaining values of the reference region (i.e. N = 

15; n = 30; 𝑅 = 0.2).  

Effect of the number of sites: The size of a region, represented by the number of sites N, is a relevant factor to the degree of 25 

its heterogeneity. A large N is required to properly estimate quantiles associated with high return periods, as more data are 

available; yet homogeneous regions are more difficult to obtain for large N due to more potential dissimilarities between 

sites (Ouarda et al., 2001; Chebana and Ouarda, 2007). Nevertheless, by definition Z should not be affected by N, as it 

should provide the same results for regions with a different size but the same degree of heterogeneity. Therefore, the smaller 

is the influence of N on Z the better Z is. This analysis is performed by obtaining Z for N = 5, 10, 15, 20, 25, 30, 40, 50, 60, 30 

70 over NS = 500, keeping the remaining values of the reference region (i.e. n = 30; 𝑅 = 0.2). Two different values of the 
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heterogeneity rate ( = 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of 

heterogeneity. 

Effect of the regional average L-moment ratios: Z should ideally provide similar results for regions entailing the same 

degree of heterogeneity, regardless of the values of 𝑅  
and 3 

𝑅 , in order to provide an appropriate comparison and ranking of 

the regions. For instance, two regions with sites generated from a different 𝑅  value but considering the same value  = 0% 5 

should entail similar Z values, as both are ‘perfectly’ homogeneous. However, such an output may not be easy to obtain due 

to the fact that 𝑅  is associated with a measure of dispersion. Thus, the smaller the influence of 𝑅 and 3 
𝑅  on Z the better Z 

will be. This analysis is performed by comparing the results of 𝑅 = 0.2, which is related to the reference region, with those 

obtained by 𝑅 = 0.4. It is done by varying the heterogeneity rate  and by varying the number of sites N. Recall that 3 
𝑅  is 

considered to have the same value as 𝑅 . 10 

Effect of the record length: The amount of available at-site information, represented by the data length n, is associated with 

the accuracy of the value of Z. The longer n is the better will be the information provided by each site to determine the 

regional degree of heterogeneity. Therefore, the analysis of the effect of n should be focused on identifying the minimum n 

required to obtain reliable values of Z. This analysis is performed by obtaining Z for n = 10, 20,…, 90, 100 over NS = 500, 

keeping the remaining values of the reference region (i.e. N = 15; 𝑅 = 0.2). Two different values of the heterogeneity rate ( 15 

= 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of heterogeneity. 

2.3. Success rate 

The second step in the assessment of Z is the evaluation of its success rate (SR) for identifying the most heterogeneous 

region. Note that the SR notion is commonly used in a number of fields such as biology (e.g. Canaves et al., 2004). Without 

loss of generality, such an evaluation is performed on two regions A and B. For  A < B,  SR is defined as the ratio of the 20 

number of samples simulated from a given region A and a given region B, for which Z correctly identifies B as the most 

heterogeneous region, to the total number of simulated samples. Thus, the larger SR is the better Z will be. The aim is to 

verify the ability of Z to compare regions with different degrees of heterogeneity, when entailing or not different 

characteristics (i.e.,  
A ≠  

B or   
A =  

B, and NA ≠ NB or NA = NB). A large set of 48 cases is considered to obtain a wide 

view of the behaviour of Z, as combination of the following factor values: A = 0%, 30%, 50%, 70% with B = A+10%, 25 

A+20%, A+30%; NA = NB, NA ≠ NB (for N = 10, 25);  
A =  

B,  
A ≠  

B
 (for 𝑅 = 0.1, 0.2, 0.3, 0.4) over NS = 500, keeping 

the remaining values of the reference region (i.e. n = 30).  

2.4. Evolution of the variability for the Z average with respect to the degree of regional heterogeneity 

The third step of the assessment of Z is the analysis of the evolution of the variability of the average value of Z as a function 

of the degree of regional heterogeneity. The aim is to determine the capability of Z to accurately rank regions according to 30 

their degree of heterogeneity when it is summarised as an average of the Z values obtained for several (sub)regions that are 
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obtained by a given delineation method. This provides an assessment of its capability to compare results from several 

delineation methods. This is a twofold analysis. Firstly, a monotonic relation should exist between the average Z and the 

degree of heterogeneity, as explained in Sect. 2.2. Secondly, the variability of the average Z along such a monotonic relation 

should be small enough to not affect a proper ranking of the regions.  

We consider two regions A and B, without loss of generality. The idea is that (sub)regions delineated by a given method 5 

should theoretically entail different  
𝑅 values ( 

A
 ≠  

B), having similar or different values of other characteristics (i.e. NA ≠ 

NB or NA = NB). In order to be able to evaluate the behaviour of the Z average, the same degree of heterogeneity is considered 

for both regions (A = B = ), as under this assumption Z values should be similar. The procedure is the following: NS = 500 

simulated regions A and B with A = B =  and given values NA,  
A and NB,  

B are generated, obtaining for each simulation 

the average of Z over the two regions. These averages are aggregated into their mean value over Ns as representative value. 10 

The representative value is obtained for 22 cases as a result of combining: NA = 10, 25; NB = 10, 25; and 
R
 = 0.1, 0.2, 0.3, 

0.4 with  
A ≠  

B, keeping the remaining values of the reference region (i.e. n = 30). Then, the variability of the set of 

representative values of the Z average is analysed through a boxplot for the given . The aforementioned procedure is 

performed for each  = 0%, 10%,…, 90%, 100%, obtaining a boxplot for each  value. For a given , Z is better as the 

variability of the corresponding set of representative values is smaller, since similar values of Z should be expected due to A 15 

= B. Then, Z is better as the interquantile range is shorter, where the interquantile range is the box of the boxplot. For 

varying , Z is better as it does not imply overlapping of the interquantile ranges for different  values, which leads to a more 

appropriate ranking of the regions. 

2.5. Effect of discordant sites 

The fourth step of the assessment of Z is the analysis of the effect of discordant sites in a region. The aim is to check the 20 

capability of Z to show a progressive variation of its value as a consequence of a progressive change in the degree of regional 

heterogeneity, induced here by replacing given ‘homogeneous’ sites by given ‘discordant’ sites in a region. Both the effect of 

the ‘nature’ of the discordant sites, characterised by the L-CV  
𝑑 and L-skewness coefficient 3

𝑑  of their parent distribution, 

and the effect of the number of such discordant sites (k) are considered.  

The procedure is described below. Note that the values of the factors used in this section are selected to facilitate the 25 

graphical representation. Thus, a homogeneous region (i.e.  = 0%) with N  = 20,  
𝑅  = 0.25 and n = 30 is considered as the 

initial region. Then, k of its sites (with k = 1,…, N/2) are replaced by k discordant sites belonging to a parent distribution 

characterised by  
𝑑, with d = 0% within the group of discordant sites. The analysis is performed for  

𝑑= 0.1, 0.2, 0.25, 0.3, 

0.4. Remark that  
𝑅 = 0.25 is considered for the homogeneous region so that the discordant sites are not ‘discordant’ at the 

midpoint of the range used for  
𝑑 (i.e. at  

𝑅 =  
𝑑 = 0.25). The procedure is repeated for NS = 500 simulations of the initial 30 

homogeneous region, estimating a mean value of Z over Ns for each ( 
𝑑, k) pair. For the region formed by ‘homogenous’ and 

‘discordant’ sites, named as mixed region, Z is expected to be larger for larger k values. Indeed, a larger number of 
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discordant sites in the region should increase the degree of regional heterogeneity. Also, Z is expected to be larger as the 

difference between  
𝑅 and   

𝑑  gets larger, since the addition of sites with a ‘larger discordance’ should increase the degree of 

regional heterogeneity. On the other hand, for the sub-region formed by the sites belonging to the initial homogeneous 

region, Z is expected to keep the same values regardless of the value of k, which in this case is the number of initial sites 

removed. The degree of regional heterogeneity should be relatively constant in this case, since all the sites belong to the 5 

same initial homogeneous region. Note that a mixed region can be seen as a sort of bimodal region used in other studies (e.g. 

Chebana and Ouarda, 2007). 

3 Heterogeneity measures 

The aim of this section is to present and develop heterogeneity measures based on different approaches to be assessed by the 

procedure proposed in Sect. 2. Heterogeneity measures are selected as a result of a general and comprehensive literature 10 

review in a number of fields including hydrology. We can distinguish three types of measures: (a) known in RHFA; (b) 

derived from recent approaches in RHFA; and (c) used in other fields and adapted here to the regional hydrological context. 

Therefore, a total of eight measures are considered.  

3.1. Measures known in RHFA 

The first group consists of the well-known statistics H, V, H2 and V2 (Hosking, 2015), as well as the k-sample Anderson-15 

Darling (AD) statistic (Scholz and Stephens, 1987; Scholz and Zhu, 2015).  

Even though H is not properly defined as a heterogeneity measure for ranking the degree of heterogeneity of several regions 

(see Sect. 1), it is considered in this study because it is commonly adopted in regional analysis. As the aim of this study is to 

provide a general heterogeneity measure, its associated distribution-free statistic V is also considered. Specifically, V is a 

statistic of the dispersion of the sample L-CV t in a region, expressed as: 20 

𝑉 = √
∑ 𝑛𝑖(𝑡𝑖 − 𝑡𝑅)2𝑁

𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

, (1) 

with  

𝑡𝑅 =
∑ 𝑛𝑖𝑡

𝑖𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

,     (2) 

where 𝑡𝑖 is the sample L-CV at site i and 𝑡𝑅 is its associated regional average. H is a measure of the variability of t in the 

region compared with that expected for simulated homogeneous regions. It is built by normalising V by its mean 𝜇𝑉 and 

standard deviation 𝜎𝑉: 
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𝐻 =
𝑉 − 𝜇𝑉

𝜎𝑉

,        (3) 

where 𝜇𝑉 and 𝜎𝑉 are obtained from NH = 500 simulated homogeneous regions with the same n and N as the given region, 

generated from a kappa distribution fitted to the regional average L-moment ratios. 

The extensions of V and H by considering not only t but also the sample L-skewness coefficient 𝑡3, traditionally known as 𝑉2 

and 𝐻2, are also included in this study. Their inclusion is motivated by recent results regarding the usefulness of H2 for 

testing homogeneity when considering different thresholds from those of H (Wright et al., 2014): 5 

𝑉2 =
∑ 𝑛𝑖√(𝑡𝑖 − 𝑡𝑅)2 + (𝑡3

𝑖 − 𝑡3
𝑅)

2𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

, 
(4) 

𝐻2 =
𝑉2 − 𝜇𝑉2

𝜎𝑉2

, (5) 

where 𝑡3
𝑖  is the sample L-skewness coefficient at site i and 𝑡3

𝑅 is its associated regional average. 𝑡3
𝑅 is defined analogous to 𝑡𝑅 

in Eq. (2). In order to avoid results conditioned on the given value of  𝑡 
𝑅 and 𝑡3

𝑅, 𝑉 and 𝑉2 are standardised here by their 

regional values, defining 𝑉′ and 𝑉2
′
 respectively as: 

𝑉′ =
√

∑ 𝑛𝑖 (
𝑡𝑖 − 𝑡𝑅

𝑡𝑅 )
2

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 
(6) 

𝑉2
′ =

∑ 𝑛𝑖√(
𝑡𝑖 − 𝑡𝑅

𝑡𝑅 )
2

+  (
𝑡3

𝑖 − 𝑡3
𝑅

𝑡3
𝑅 )

2

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 

(7) 

The AD statistic, which is a rank-based statistic based on comparing the at-site empirical distributions with the pooled 

empirical distribution of the data, is also included in this first group: 10 

𝐴𝐷 =
1

𝑀
∑

1

𝑛𝑖

𝑁

𝑖=1

∑
(𝑀𝑚𝑖𝑗 − 𝑗𝑛𝑖)

2

𝑗(𝑀 − 𝑗)

𝑀−1

𝑗=1

, (8) 

where 𝑀 = ∑ 𝑛𝑖
𝑁
𝑖=1  and 𝑚𝑖𝑗 is the number of observations in the i

th
 sample not greater than 𝑦𝑗, where 𝑦1 < ⋯ < 𝑦𝑀 is the 

pooled ordered sample of the data, which in the regional context entails considering the data of each site first divided by its 

corresponding mean and then ordered. The AD statistic has already been considered in several studies. Viglione et al. (2007) 

assessed its behaviour as a homogeneity test statistic, recommending its use when 𝑡3
𝑅 > 0.23. Wright et al. (2015) evaluated 

its performance as a heterogeneity measure regarding its ability to be a surrogate of the quantile error, yet obtaining a weak 15 

performance partially attributed to a possible influence of the procedure used for estimating errors.  
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3.2. Measures derived from recent approaches in RHFA 

The second group is represented by a measure derived from a relatively novel approach in which the confidence interval for 

the at-site L-CV 𝑡𝑖 (with i: 1,…N) is estimated and compared with 𝑡𝑅. The focus is to evaluate how often the latter is 

included in such confidence intervals in order to assess if differences between 𝑡𝑖 and 𝑡𝑅 can be attributed to sample 5 

variability or to regional heterogeneity.  

Viglione (2010) proposed a procedure for obtaining the confidence interval for L-CV without considering a given parent 

distribution of the data, applying it to a didactic illustration for comparing several regional approaches. The procedure is 

summarised below: the variance of the sample L-CV t, var(t), is estimated according to Elamir and Seheult (2004) which is 

implemented in Viglione (2014); simple empirical corrections are applied on t and var(t) based on the values of 𝑡3 and n; and 10 

the confidence interval for t is then obtained from a log-Student’s distribution considering corrected values of t and var(t). 

For instance, for a 90% confidence interval, a region is considered as heterogeneous if 100 – (P05 + P95) ≪ 90%, where P05 

(P95) is the percentage of sites for which 𝑡 
𝑅 is below (above) the confidence interval for 𝑡𝑖. The larger (P05 + P95) is, the 

larger the regional heterogeneity will be. Das and Cunnane (2011) obtained such a confidence interval based on simulations 

from a GEV distribution, with the aim of evaluating if a usual method to select catchment descriptors for delineating regions 15 

in Ireland provided homogeneous regions. The number of sites for which 𝑡 
𝑅 is outside the 𝑡𝑖 confidence intervals is 

considered as a measure of heterogeneity, also expressed as a percentage of sites.  

In the present study, the heterogeneity measure considered regarding this approach is named as PCI and defined as the total 

percentage of sites in the region for which 𝑡 
𝑅 is outside the 90% confidence interval for 𝑡 

𝑖. As the parent distribution of the 

data is unknown in practice, such a confidence interval is estimated following the aforementioned distribution-free approach.  20 

3.3. Measures used in other fields and adapted here to the regional hydrological context 

The last group consists of the Gini index (GI) (Gini, 1912; Ceriani and Verme, 2012), which is a measure of inequality of 

incomes in a population commonly used in economics; and of a measure based on the entropy-based Kullback-Leibler (KL) 

divergence (Kullback and Leibler, 1951), which estimates the distance between two probability distributions and is used for 

different purposes in a number of fields including hydrology (e.g. Weijs et al., 2010).  25 

The definition of the GI is usually given according to the Lorenz curve (Gastwirth, 1972), but it can be expressed in other 

ways. Specifically, the sample GI: 

𝐺𝐼 =
∑ ∑ |𝑥𝑖 − 𝑥𝑗|𝑛

𝑗=1
𝑛
𝑖=1

2𝑛2𝜇
, (9) 

corrected for short sample sizes can be defined as (Glasser, 1962; Zeileis, 2014): 
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𝐺𝐼 =
∑ (2𝑖 − 𝑛 − 1)𝑥𝑖:𝑛

𝑛
𝑖=1

𝑛(𝑛 − 1)𝜇
, (10) 

where 𝑥𝑖:𝑛 are the sample order statistics and 𝜇 is their mean. Theoretically, GI ranges from zero to one. The former is 

obtained when all the 𝑥𝑖 values are equal, and the latter is given when all but one value equals zero (in an infinite 

population). Note that although GI has not been directly applied to hydrology, it is connected with the well-known L-

moments which do. Both are based on sample order statistics. Indeed, 𝐺𝐼 = 𝐺𝑀𝐷/2𝜇 (for 𝜇 > 0), where GMD is the Gini’s 

mean difference statistic (Yitzhaki and Schechtman, 2012); and 𝐺𝑀𝐷 = 2𝑙2, where l2 is the second sample L-moment 5 

(Hosking and Wallis, 1997). Hence, GI corrected for short samples corresponds to the sample L-CV t (Hosking, 1990), 

which implies that if GI is applied on the flood observations at site i, the result is 𝑡 
𝑖. Then, in order to adapt GI to the 

regional hydrological context, in this study GI is applied on 𝑡 
𝑖 over sites. This provides a value of the inequality or 

variability of the at-site L-CV 𝑡 
𝑖 in the region, and hence it can be seen as a measure of the heterogeneity of the region. 

Therefore, the measure considered in this study is 𝐺𝐼(𝑡𝑖, 𝑖 = 1, … , 𝑁):  10 

𝐺𝐼 =
∑ (2𝑖 − 𝑁 − 1)𝑡𝑖:𝑛

𝑁
𝑖=1

𝑁(𝑁 − 1)𝑡̅
, (11) 

where 𝑡𝑖:𝑛 are the sample order statistics, 𝑡̅ is their mean, and the number of sites N corresponds to the data length of 𝑡. Note 

that 𝐺𝐼(𝑡𝑖 , 𝑖 = 1, … , 𝑁) is equivalent to 𝑡(𝑡𝑖, 𝑖 = 1, … , 𝑁). Also, note that this is somehow analogous to the approach based 

on moments used in early studies (e.g. Stedinger and Lu, 1995), where the coefficient of variation (𝐶𝑣 = 𝜎 𝜇⁄ ) of the 

coefficient of variation of the data (i.e. 𝐶𝑣(𝐶𝑣𝑖 , 𝑖 = 1, … , 𝑁)) was used for building simulated regions; defining 

homogeneous regions for 𝐶𝑣(𝐶𝑣𝑖) = 0 and extremely heterogeneous regions for 𝐶𝑣(𝐶𝑣𝑖) ≥ 0.4.  15 

The KL divergence (so-called relative entropy) of the probability distribution P with respect to Q is defined as: 

𝐾𝐿(𝑃||𝑄) = ∫ 𝑝(𝑥)ln[𝑝(𝑥)/𝑞(𝑥)] 𝑑𝑥 (12) 

where p and q are the density functions. The expression related to the discrete case is the following (e.g. Hausser and 

Strimmer, 2009) 

𝐾𝐿(𝑃||𝑄) = ∑ 𝑃𝑚ln (
𝑃𝑚

𝑄𝑚

)
𝑚

 (13) 

for which nonparametric versions of the probabilities P and Q may be considered, such as a kernel density function, in order 

to avoid subjectivity in selecting a given parametric probability distribution. 𝐾𝐿𝑖𝑗  can then be defined as the KL divergence 20 

of the probability distribution at site i with respect to the probability distribution at site j, where 𝐾𝐿𝑖𝑗 ≠ 𝐾𝐿𝑗𝑖 . The 

dissimilarity matrix of the region is obtained by computing the KL divergence between sites as:  
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𝐷𝐾𝐿 =  (

𝐾𝐿11 … 𝐾𝐿1𝑁

⋮ 𝐾𝐿𝑖𝑗 ⋮

𝐾𝐿𝑁1 … 𝐾𝐿𝑁𝑁

) (14) 

The degree of regional heterogeneity is then evaluated by ‖𝐷𝐾𝐿‖, which in this study is considered as the absolute column 

sum normalized norm: 

‖𝐷𝐾𝐿‖ =  
𝑚𝑎𝑥𝑗 ∑ |𝐾𝐿𝑖𝑗|𝑖

𝑁
 (15) 

4 Results 

Simulation results obtained by the application of the proposed assessment procedure (Sect. 2) to the considered 

heterogeneity measures (Sect. 3) are presented in this section. Note that a summary of the results obtained from each step is 5 

presented in Table 1.  

4.1. Sensitivity analyses   

Results of the effect of varying factors defining a region (Sect. 2.2) are presented through boxplots and mean values of the 

heterogeneity measure over Ns = 500 simulations of the corresponding region, in order to show complete information. 

Results for 
R 

= 0.2 refer to those related to the reference region. Figure 1 shows that all the considered measures show a 10 

good behaviour regarding the heterogeneity rate , as their values increase with . This dependence is less pronounced for 𝐻2 

and  𝑉2
′, which are the measures that depend on both t and 𝑡3; and for AD and ‖𝐷𝐾𝐿‖, which are based on the whole 

information. 

The effect of N on the considered measures is shown for 
R 

= 0.2 when  = 0% (i.e. ‘perfect’ homogeneous regions) and  = 

50% in Figs. 2 and 3, respectively. In both cases, it is found that 𝑉′, 𝑉2
′, PCI and GI are not affected by N, although they show 15 

some departure from their constant Z mean value and a larger variability (i.e. larger box) when N ≤ 10. In this regard, Das 

and Cunnane (2012) also found an effect for N < 10 on quantile error measures (considering n = 35). In general this effect is 

less marked for GI when  = 0% (Fig. 2c,d) and for 𝑉′and 𝑉2
′ when  = 50% (Fig. 3a,b).  

It is also found that results for H, and to a lower degree for 𝐻2, change depending on the value of . Both measures behave 

correctly for   = 0% (Fig. 2a,b); yet they depend on N for  = 50% (Fig. 3a,b). This is likely due to the nature of H and 𝐻2 as 20 

homogeneity test statistics. Note that this undesirable effect increases as  increases (e.g. Fig. 4). ‖𝐷𝐾𝐿‖ does not behave 

correctly neither for  = 0% nor  = 50%, as it depends on N. The same holds for AD, for which such dependence is higher.  

The influence of varying regional average L-moments is shown by comparing the Z mean values for 
R 

= 0.4 with those 

previously obtained for 
R 

= 0.2. Z mean values varying  are displayed in Fig. 1b,d. In this regard, 𝑉2
′ and AD are shown not 

to be suitable, as results for 
R 

= 0.2 and 
R 

= 0.4 varying  are far from each other. H and 𝐻2 work worse for higher degrees 25 
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of regional heterogeneity than for smaller ones; whereas 𝑉′, GI and ‖𝐷𝐾𝐿‖ show the opposite behaviour with an overall 

better performance of 𝑉′ and GI. PCI presents a favorable similar behaviour for both small and high . Results for Z mean 

values varying N are displayed for  = 0% in Fig. 2b,d; and for  = 50% in Fig. 3b,d. In both cases 𝑉2
′ and AD present a 

similar bad behaviour to the one shown in Fig. 1b,d. A suitable behaviour is found for 𝑉′, PCI and GI for  = 50%, while a 

worse behaviour is found for H, 𝐻2 and ‖𝐷𝐾𝐿‖ (Fig. 3b,d). Such a behaviour of H, 𝐻2 and ‖𝐷𝐾𝐿‖ is also shown for  = 0% 5 

(Fig. 2b,d), for which the remaining measures also present similar bad results. In this regard, it is important to remark that no 

‘perfect’ homogeneous regions exist in reality (Stedinger and Lu, 1995). And that according to the practical threshold H < 2, 

commonly used for considering a region as homogeneous enough to perform a regional analysis, even regions with  = 50% 

may be taken as homogenous in practice (see values of H for  in Fig. 1a). Hence, for the purpose of the assessment of the 

regional heterogeneity degree, the behaviour of the measures for  = 50% is more relevant than for  = 0%. 10 

Finally, the effect of varying the record length n for  = 0% and  = 50% is shown in Fig. 5. Recall that it is expected that 

increasing n affects Z, as more information of the at-site distributions is available in such a case. In this regard, it is found 

that the measures H, 𝐻2, AD and PCI are not (or slightly) affected by n when  = 0%, but they highly increase their values as 

n increases when  = 50%. Whereas 𝑉′, 𝑉2
′, GI and ‖𝐷𝐾𝐿‖ are affected by n when  = 0%; becoming less affected when  = 

50%, by decreasing less their values as n increases. As a result, 𝑉′and GI are the only measures that become relatively stable 15 

for a given data length. Such a data length is around n = 30, which is a value usually considered in practice (e.g. Hosking 

and Wallis, 1997, page 134; Chebana and Ouarda, 2009). It can be mentioned that for a very small data length (n = 10), the 

approximation used in PCI for estimating var(t) was not reliable. Nevertheless, this issue is not relevant since such a data 

length is too short to be considered in practice, and such values do not affect the overall interpretation of the results.   

As a result of the aforementioned sensitivity analyses (see Table 1 for a summary), 𝑉′, PCI and GI are considered as 20 

potentially suitable heterogeneity measures. Thus, the following steps of the assessment procedure are only applied to these 

measures. Results of H are also included for comparison purposes. 

4.2. Success rate 

The ability of the measures to identify the most heterogeneous region between two regions A and B is shown via the success 

rate SR (Sect. 2.3). A summary of the results obtained for  
A

 =  
B and  

A ≠  
B (with A < B), when considering several 25 

values of N and  for each region is displayed in Table 2 to facilitate their interpretation. Note that each combination  
A  vs. 

 
B corresponds to a total of 48 cases obtained by varying N and . Results for a small difference between  

𝑅  values, 

characterised by  
A  = 0.2 ≠  

B = 0.3 and vice versa; and for a large difference, characterised by  
A  = 0.1 ≠  

B = 0.4 and 

vice versa, are displayed as representative of the behaviour of the measures. Note that the summarised information reflects 

the main conclusions extracted from the partial results.  30 

The SR average is shown as a notion of the overall behaviour of the measures. Recall that the larger SR is, the better Z will 

be. When  
A

 =  
B the SR average of H, 𝑉′ and GI are comparable, with 𝑉′ and GI leading to the largest values; while PCI 
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leads to the lowest ones. When  
A <  

B  the largest SR average is obtained for 𝑉′ and is very closely followed by GI. Yet, in 

this case H presents a worse behaviour, which is similar to that of PCI. When  
A >  

B the situation changes, with H leading 

to the largest values. Yet, the difference between the values obtained by 𝑉′ (or GI) and H is less marked than when  
A <  

B. 

Note that the larger the difference between  
A and  

B is, the larger the difference between the SR average of H and 𝑉′ (or GI) 

is; whereas the value of PCI remains almost constant. Therefore, although PCI does not obtain the greatest values in any case, 5 

it outperforms H or GI (and 𝑉′) when  
A ≪  

B or when  
A ≫  

B, respectively, i.e. for high differences between  
A and  

B. 

The best results for the total SR average are obtained by GI, followed by 𝑉′.  

The SR minimum and SR maximum are displayed as a notion of the variability of the SR results (Table 2). Results related to 

the SR minimum are analogous to those obtained by the SR average; giving H an overall worse behaviour. This highlights 

the low ability of H to identify the most heterogeneous region in certain circumstances. Note that the overall behaviour of H 10 

regarding SR is partially due to existing trends regarding N and  
𝑅. H obtains larger heterogeneity values as N increases and 

as  
𝑅 decreases (as shown in Fig. 3b), entailing an ‘unfounded’ better behaviour when  

A >  
B and NA < NB, and vice versa. 

Also note that all measures have difficulties obtaining a large SR minimum when  
A >  

B. This includes H also, even though 

it obtained a good SR average in such a situation. This arises from the fact that, in such a case, the region with the lowest 

degree of heterogeneity (region A) is associated with a larger  
𝑅 entailing a larger sample variability, and complicating its 15 

identification as the less heterogeneous region. SR maximum values show that even though the maximum difference between 

A and B considered in the analysis is 30%, all measures obtain (in certain circumstances) a SR equal or close to 100%. In 

summary, GI obtains the best results for the SR analysis followed by 𝑉′. 

4.3. Evolution of the variability of the Z average with respect to the degree of regional heterogeneity 

The variability of the heterogeneity measures as a function of the degree of regional heterogeneity, represented by , is 20 

shown in Fig. 6. The boxplot of the 22 representative (mean over Ns = 500) values of Z obtained from cases in which a given 

region A and a given region B with the same  but different characteristics are considered is shown for varying values of  in 

the x-axis (see Sect. 2.4). As expected from the results of Fig. 1, heterogeneity measures in Fig. 6 increase with , showing a 

monotonic positive dependence. Regarding their variability along such a monotonic relation, H presents a different 

behaviour from the rest of the measures. It shows a strong increasing variability as  increases. Then, in this case, H overlaps 25 

its interquantile ranges from  = 70% to 100%. This behaviour may imply an unappropriated ranking of the regions with 

these high values of the heterogeneity rate . Indeed, overlapped values cannot be considered significantly different, whereas 

they correspond to two different  values. Such behaviour is not seen for the other considered measures. In this regard, an 

overall favorable larger distance between interquantile ranges is found for 𝑉′, followed by PCI and then GI. However, the 

four considered measures present an overlapping for  = 0% and 10%. This may imply an unappropriated ranking of the 30 

regions related to these very small values of , yet those regions are less common in practice. In summary, 𝑉′ obtains the best 
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performance for the variability evolution analysis. It presents a small variability for a given  value; and it almost presents no 

overlapping between interquantile ranges for varying . 

4.4. Effect of discordant sites 

The effect of discordant sites (Sect. 2.5) is shown in Fig. 7. The mean values of the heterogeneity measures over Ns = 500 

are obtained when replacing k sites (with k = 1,…, 10) in an initially homogeneous region (with N = 20) by k discordant sites 5 

belonging to a given parent distribution defined by 𝑑 . Note that unlike Fig. 1, where the heterogeneity value of two kinds of 

regions with the same degree of heterogeneity but different regional L-CV may be compared; in Fig. 7 progressive changes 

in the heterogeneity of a single homogeneous region are assessed. For the mixed region formed by sites from both  
𝑅 and  

𝑑, 

the overall results confirm that the considered measures involve larger values of Z for larger k values, as a result of replacing 

a larger number of discordant sites in the region; and larger values of Z as the difference between  
𝑅 and  

𝑑  increases, as a 10 

result of replacing sites with a larger discordance (Fig. 7a).  

However, when   
𝑑 >  

𝑅 (Fig. 7b) the measures face some difficulties in ranking the degree of heterogeneity for high values 

of k. This is due to the larger sample variability entailed by the discordant sites in such a case, which makes the whole mixed 

region seem less heterogeneous. Note that this is also the reason of the lack of asymmetry of the results regarding the vertical 

line at the midpoint of the x-axis (i.e.  
𝑑  = 0.25 =  

𝑅). Nevertheless, not all measures are equally affected by this issue. GI 15 

obtains the best results, as for instance it is able to differentiate the degree of heterogeneity for k ≤ 8 when  
𝑑  = 0.35 and 0.4. 

It is followed by PCI, which behaves properly for k ≤ 8 when  
𝑑  = 0.35 and for k ≤ 7 when  

𝑑  = 0.4; and by 𝑉′, which obtains 

adequate results for k ≤ 7 when  
𝑑  = 0.35 and k ≤ 6 when  

𝑑  = 0.4. The worst results are obtained by H, which only behaves 

properly for k ≤ 6 when  
𝑑  = 0.35 and k ≤ 4 when  

𝑑  = 0.4. Results for the sub-region formed by the remaining (N - k) sites 

of the initial homogeneous region (Fig. 7a) support the results in Fig. 2, as H and GI are practically not affected by the 20 

number of sites of the homogeneous region, while 𝑉′ and PCI present a slight decrease in their heterogeneity values as the 

number of sites (N - k) decreases. In summary, GI presents the best results for the analysis of discordant sites.  

5 Discussion 

Overall, GI can be considered as the best heterogeneity measure among all the evaluated measures, closely followed by 𝑉′ 

(see a summary in Table 1). However, as expected, none of the measures are perfect, due to their inability to perfectly fulfill 25 

all the desirable properties in practice. GI presents the advantage of being computed as a measure of the standardised mean 

distance between pairs of 𝑡 
𝑖 values. Hence, it does not depend on any assumptions concerning parameters or parent 

distributions. 𝑉′ is similar but it specifically depends on the estimate of the regional average 𝑡𝑅, as it compares it to each 𝑡 
𝑖 

value. Thus, due to the similar but slightly better results obtained by GI and its widely accepted use in other fields, the use of 

GI would be preferable in practice.  30 
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H is by nature the statistic of a homogeneity test. Hence, it is defined to identify whether a given region can be considered as 

homogeneous or not, not to compare the heterogeneity degree of several regions. Note that this is also valid for other test 

statistics (e.g. AD). As a consequence of the intrinsic disadvantages of H (see Sect. 1) and the obtained results, the use of H 

as a heterogeneity measure for ranking regions is not recommended. The unsatisfactory results obtained for 𝑉2
′ and 𝐻2 could 

be related to the way in which t and 𝑡3 are combined (see Sect. 3), which may not be appropriate for assessing the degree of 5 

regional heterogeneity. The unsuitable results associated with ‖𝐷𝐾𝐿‖ could be related to considering the whole information 

of the data, which may mask the effect of factors favouring heterogeneity. It should be noted that other norms aside from the 

one in Eq. (15) were considered, but they did not lead to better performances. Further research should focus on the 

development of a better adaptation of the entropy-based measures to estimate the degree of regional heterogeneity.   

The PCI measure is obtained without assuming a given parent distribution of the data; although it considers a log-Student 10 

distribution for estimating the L-CV confidence interval. Also, even though it depends partially on the selected confidence 

level, mean PCI values over Ns = 500 for different confidence levels (90% and 95%) were found to be highly correlated (not 

shown). This fact removes subjectivity from the use of PCI as a heterogeneity measure, as for such a purpose only the ranking 

of values is needed. It is also important to highlight the stable performance of PCI regardless of the value of  
𝑅. This makes 

PCI outperform GI and 𝑉′ for identifying the most heterogeneous region when such a region has a much lower  
𝑅 than others 15 

to be compared with (see Table 2). As a consequence, PCI and GI could be used together in practice as two different and 

complementary criteria. This is common in other applications; for instance several criteria are commonly applied when 

ranking candidate distributions (e.g. the Akaike information criterion and the Bayesian information criterion). It is important 

to mention that the use of PCI as a homogeneity test in practice may lead to the false rejection of homogeneous regions. 

Indeed, even when a region is ‘perfectly’ homogeneous ( = 0%) the mean value of PCI may indicate slight heterogeneity 20 

(e.g. it is slightly larger than 10% in Fig. 1).  

As indicated in Sect. 1, the heterogeneity measures selected in this study may be used for the assessment of the degree of 

heterogeneity of regions obtained through the use of different delineation methods. When a region is divided into several 

sub-regions by a given delineation method, the GI (or PCI) value can be evaluated at each sub-region. Then, the average 

value can be used to compare several delineation methods applied on the given region. The best delineation method will be 25 

the one with the lowest GI (or PCI) value for the region of study (see Sect. 6 for an illustrative application). It is important to 

note that a heterogeneity measure should not be used as a decision variable for the delineation of regions, as it would imply 

using redundant information at different steps of the regional analysis. The heterogeneity measure can also be used for 

evaluating the heterogeneity of a given region when particular sites are removed, with the aim of helping in the identification 

of homogeneous regions. For instance, if a region is found as heterogeneous by using a given test and by entailing a number 30 

of discordant sites, the heterogeneity measure can help in the identification of the ‘most homogeneous region’ as a result of 

removing different combinations of sites. However, it is important to highlight that physical reasoning has to be provided for 

removing a given (discordant) site. Thus the heterogeneity measure serves only as a facilitator for the identification of the 

site(s) to be further analysed (e.g. Viglione, 2010; Ilorme and Griffis, 2013).  
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6 Illustrative application 

An illustrative application on observed data is presented for didactical purposes. The considered case study consists of 44 

sites from the hydrometric station network of the southern part of the province of Quebec, Canada (for more description of 

the data and the region see Chokmani and Ouarda 2004). The flow data are managed by the Ministry of the Environment of 

Quebec services. Descriptors and at-site spring flood quantiles are available for the considered sites (Kouider et al. 2002). A 5 

summary of the statistics associated with the spring maximum peak flow data, relevant descriptors for flood frequency 

analysis (e.g. Shu and Ouarda 2007) and at-site spring flood quantiles is shown in Table 3. Note that due to the data used in 

this application are observed instead of simulated, the real degree of heterogeneity of the regions, as well as the real parent 

distribution of the data are unknown. Thus, it is not possible to truly compare the performance of the different heterogeneity 

measures. In this regard, it is important to remark that the purpose of this illustrative application is then to show that 10 

commonly used criteria for identifying the best method for delineating regions may be subjective, as well as to guide 

practitioners in the use of heterogeneity measures.  

The heterogeneity of the whole study region is evaluated by using a homogeneity test (Hosking and Wallis 1997), resulting 

in a heterogeneous region (H > 2, see Table 4). Hence, the region is then divided into sub-regions by using cluster analysis 

(e.g. Burn 1989) with the Ward’s method, as it is one of the most applied in hydrology (e.g. Hosking and Wallis 1997, 15 

Mishra et al. 2008). Because of the illustrative character of this application, three simple clustering settings are considered as 

the different delineation methods. Clustering A consists in applying cluster analysis based on catchment area, annual mean 

total precipitation and annual mean degree-days below 0°C (see Table 3). Clustering B consists in applying cluster analysis 

only based on the catchment mean slope; and Clustering C is based on catchment slope and fraction of the catchment 

controlled by lakes (see Table 3). Catchment area and annual mean total precipitation are descriptors generally recognised as 20 

very relevant for flood frequency analysis. Hence, it is expected that the sub-regions formed by Clustering A are more 

appropriate than the sub-regions formed by Clusterings B or C, which in this context implies that such sub-regions are less 

heterogeneous.  

The results obtained by applying the best heterogeneity measure found in the present study, the GI, are shown in Table 4. For 

comparison purposes, the results obtained by applying commonly used criteria for identifying the best delineation method 25 

are also shown. They are H, and the quantile error calculated as the relative root mean square error (RRMSE) (see Sect. 1). 

No more results are shown for space reasons and simplicity. Remind that the lower the heterogeneity measure or RRMSE 

value is, the better the delineation method will be. Note that in this case study, identifying the best delineation method 

implies identifying the best clustering setting. Two distributions commonly used in regional flood frequency analysis are 

considered when applying the index-flood method (Dalrymple 1960) for estimating the quantiles to be evaluated through 30 

RRMSE. These distributions are the GEV and the generalised logistic (GLO) distribution; and the quantiles to be evaluated 

are the 10- and 100-year return period (T) spring flood quantile. RRMSE results related to a given distribution are only 
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shown in Table 4 if the regional distribution is accepted by a goodness-of-fit measure (Hosking 2015). For comparison 

purposes, RRMSE results are obtained even if the given region is not “homogeneous” according to the homogeneity test.  

According to the results in Table 4, H identifies Clustering B as the best delineation method by considering either the H 

average or the H weighted average. Nevertheless, due to H is based on simulations, the H value for the sub-regions slightly 

change if the procedure is repeated. In this particular case study, this implies that in some cases H average in Clustering B 5 

becomes larger than H average in Clustering A, and then Clustering A is selected as the best one. Moreover, although not 

happening in this case study, it may occur that H has negative values which may also contribute to complicate the evaluation 

of its average.  

RRMSE average for T = 100 identifies Clustering A as the best delineation method. However, RRMSE average for T = 10 

identifies Clustering C as the best one. Hence, a different decision is taken depending on the quantile considered for the 10 

assessment. Besides, it is also relevant to indicate that the selection of the best delineation method based on RRMSE may 

also depend on the regional distribution used. For instance, different distributions could be accepted for a given sub-region, 

resulting in different RRMSE values which could affect the final decision. In this regard, it is important to remark that when 

observed data are used, it is not possible to know neither the real regional parent distribution of the data, nor the real parent 

distribution to be used in obtaining the at-site quantiles used for evaluating RRMSE.   15 

In the present application, the GI identifies Clustering A as the best delineation method, where the descriptors used for such 

purpose are expected to be more relevant. The GI is a more objective criterion for identifying the heterogeneity of a region 

than criteria commonly used in practice. Besides, its use as heterogeneity measure is supported by the four-step simulation-

based assessment procedure performed in the present paper.  

7  Conclusions 20 

Delineation of homogeneous regions is required for the application of regional frequency analysis methods such as the index 

flood procedure. The availability of an estimate of the degree of heterogeneity of these delineated regions is necessary in 

order to compare the performances of different delineation methods or to evaluate the impact of including particular sites. 

Due to the unavailability of a well-justified and generally recognised measure for performing such comparisons, a number of 

studies have relied on measures that are not well-defined or approaches that involve additional steps during the delineation 25 

stage of regional frequency analysis. 

In the present paper, a simulation-based general framework is presented for assessing the performance of potential 

heterogeneity measures in the field of regional hydrological frequency analysis (RHFA), according to a number of desirable 

properties. The proposed four-step assessment procedure consists of: sensitivity analysis by varying the factors of a region; 

evaluation of the success rate for identification of the most heterogeneous region; estimation of the evolution of the 30 

variability for the heterogeneity measure average with respect to the degree of regional heterogeneity; and study of the effect 

of discordant sites. The procedure is applied on a set of measures including commonly used ones, measures that are derived 



19 

 

from recent approaches, and measures that are adapted from other fields to the regional hydrological context. The 

assumption-free Gini Index (GI) frequently considered in economics and applied here on the L-variation coefficient (L-CV) 

of the regional sites obtained the best results. A lower performance was obtained for the measure of the percentage of sites 

(PCI) for which the regional L-CV is outside the confidence interval for the at-site L-CV. However, this measure was 

considered relevant because of its stable behaviour regardless of the regional value of L-CV. The application of both 5 

measures may be recommended in practice. The use of different criteria to determine the degree of regional heterogeneity 

can help adequately identify the sites to be further analysed for obtaining homogeneous regions. Further research efforts are 

necessary to develop robust and general heterogeneity measures in the field of RHFA. In this study, an illustrative 

application is also included for didactical purposes. The subjectivity related to commonly used criteria in assessing the 

performance of different delineation methods is underlined through it. In this regard, further research may also focus on the 10 

application of heterogeneity measures to a variety of case studies in order to analyse practical aspects.  
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Table 1. Summary of the results of the studied measures for the four-step assessment procedure. The behaviour of a 

given measure for each sensitivity analysis in step (i) is graded as: good (G), acceptable (A), bad (B) or unacceptable 

(U). Measures entailing an ‘unacceptable (U)’ behaviour are not assessed by the rest of steps; yet a complete 

assessment of H is performed for comparison purposes. For steps (ii), (iii) and (iv) considered measures are ranked 

from the best results (1
st
) to the worst results (4

th
).  5 

Measures 

(i) Sensitivity analyses 

(ii) Success 

rate (SR) 

(iii) Variability 

evolution 

(iv) Effect of 

discordant sites  
N 

 
𝑅  n 

 = 0%  = 50% 

H G G U B B 3
rd

 * 4
th

 *** 4
th

 

𝐻2 A G U B B - - - 

𝑉′ G A G A A 2
nd

 1
st
 3

rd
 

𝑉2
′ A A G U B - - - 

AD A U U U B - - - 

PCI G A A A B 4
th

 ** 2
nd

 2
nd

 

GI G G A A A 1
st
 3

rd
 1

st
 

‖𝐷𝐾𝐿‖ A U U B B - - - 

 

(*) High limitations for given circumstances; (**) Favorable stable values regardless of  
𝑅 ; (***) Unacceptable results. 

 

 

 10 

 

 

 

 

 15 
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Table 2. Summary of the success rate (SR) minimum, average and maximum of the considered measures (H, 𝑽′, PCI 

and GI), expressed in percentage, when comparing the heterogeneity of two regions A and B. For a given  
𝐀  and  

𝐁, 

such values are computed as the minimum, average and maximum of SR over 48 cases, respectively. For each case, 

SR is obtained as the mean over Ns = 500 simulations of two regions with n = 30 and given NA, NB, A and B. Values in 

bold indicate the measure obtaining the largest SR minimum, SR average and SR maximum, respectively.  5 

 
A  vs.  

B   
A   

B 
Minimum Average Maximum 

H 𝑉′ PCI GI H 𝑉′ PCI GI H 𝑉′ PCI GI 

 
A =  

B 
0.2 0.2 33 47 40 50 74.5 77.9 67.3 77.7 99 99 91 100 

0.3 0.3 36 46 34 51 72.2 74.4 65.1 75.2 98 94 87 98 

 
A <  

B 
0.1 0.4 7 69 36 57 58.8 86.4 61.4 85.7 87 98 83 98 

0.2 0.3 24 59 40 62 68.1 81.0 64.1 80.8 96 97 88 98 

 
A >  

B 
0.3 0.2 47 34 33 34 77.3 70.4 67.6 71.8 100 96 92 97 

0.4 0.1 33 14 26 15 80.5 61.0 69.1 63.3 100 94 95 99 

Total average: 30 45 35 45 71.9 75.2 65.8 75.7 97 96 89 98 

 

 

 

 

 10 

 

 

 

 

 15 
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Table 3. Summary of the statistics of descriptors, spring maximum peak flow series, and available at-site quantiles for 

the 44 sites considered in the illustrative application. 

Variables Unit Min Mean Max Std. 

Descriptors 

Catchment area km
2
 208 1062 5820 1075 

Catchment mean slope % 0.99 2.67 6.81 1.29 

Fraction of the catchment controlled by 

lakes 
% 0.1 1.63 5 1.38 

Annual mean total precipitation mm 932 1057 1195 62 

Annual men degree-days below 0°C 
degree-

day 
8589 11769 14158 1432 

Spring 

maximum 

peak flow 

series 

Data length years 15 36 80 16.7 

At-site mean m
3
s

-1
 46.7 235.1 1137.4 209.7 

At-site L-CV (t)  0.145 0.199 0.319 0.036 

At-site L-skewness (t3)  -0.032 0.139 0.404 0.098 

At-site 

quantiles 

10-  year spring flood quantile m
3
s

-1
 70.8 342.49 1616.08 298.93 

100-year spring flood quantile m
3
s

-1
 107.8 469.11 2006.38 375.52 

 
 

 5 

 

 

 

 

 10 
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Table 4. Results of the illustrative application: heterogeneity measures H and GI, and RRMSE. RRMSE values are 

associated with the GLO regional distribution; RRMSE values within parenthesis are associated with the GEV 

regional distribution. Bold values indicate the best result for each criterion.  

Clustering 
Sub-

region 

Nbr 

sites 

H   GI   RRMSE (%) 

Value Average 
Weighted 

average 
 Value Average  

T = 100   T = 10 

    Value Average   Value Average 

Whole region 44 2.21 2.21 2.21   0.092 0.092   17.81 17.81   5.81 5.81 

A 
A1 31 2.06 

1.23 1.57 
  0.101 

0.087 
  18.03 

14.94 
 6.26 

5.64 
A2 13 0.4   0.074   (11.85)  (5.01) 

B 
B1 25 0.49 

1.21 1.11 
  0.077 

0.094 
  16.34 

18.26 
 5.22 

5.93 
B2 19 1.93   0.111   20.18  6.63 

C 
C1 26 2.05 

1.39 1.51 
 0.100 

0.091 
 18.46 

16.92 
 6.22 

5.48 
C2 18 0.73  0.082  (15.38)  (4.74) 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 
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Fig. 1. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15, 

n = 30 and 𝑹 = 0.2) varying the heterogeneity rate ; and (b) (d) comparison of the corresponding mean with the one obtained by 

considering 𝑹 = 0.4. 

 5 
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Fig. 2. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and 𝑹 = 0.2), with a heterogeneity rate  = 0%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering 𝑹 = 0.4. 

 5 
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Fig. 3. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and 𝑹 = 0.2), with a heterogeneity rate  = 50%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering 𝑹 = 0.4. 

 5 

 

Fig. 4. Sensitivity analysis: mean of H and 𝑯𝟐 over Ns = 500 simulations of the reference region (n = 30 and 𝑹 = 0.2) for a 

heterogeneity rate  = 100%, varying the number of sites N. 

 

 10 
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Fig. 5. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15 

and 𝑹 = 0.2), for a heterogeneity rate  = 0% and  = 50%, varying the data length n; and (b) (d) comparison of the corresponding 

mean for  = 0% and  = 50%. 

 5 
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Fig. 6. Boxplots of representative values of the heterogeneity measure average obtained for 22 cases, varying the heterogeneity rate 

 in the x-axis. For each case, such a representative value is obtained as the average between a given region A and a given region B 

over Ns = 500 simulations of the given regions, entailing the same  (i.e. A = B) but different characteristics (i.e. NA ≠ NB or NA = 

NB with  
𝐀

 ≠  
𝐁).  5 
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(a) 

 

(b) 

Fig. 7. Mean values of the heterogeneity measures over Ns = 500 simulations of a given homogeneous region with N = 20 sites, n = 5 
30 and 𝑹= 0.25, for which k sites are replaced by k discordant sites generated by a GEV with L-Cv 𝒅, varying 𝒅 in the x-axis: (a) 

full plot; and (b) zoom to the right part of the x-axis. 

 


