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Authors’ reply to Editor and Referees “Heterogeneity measures in 

hydrological frequency analysis: review and new developments” by 

A. I. Requena et al. 

A) Authors’ reply to Editor Dr. Stacey Archfield 

Editor Decision: Publish subject to minor revisions (further review by Editor)  

COMMENTS TO THE AUTHOR: 

All reviewers acknowledge the revisions have improved the manuscript and the authors have 

addressed many of the technical comments raised in the first set of reviews; however, two of the 

reviewers felt additional revision is needed to further clarify and strengthen the presentation of 

the research.  

At this point, I would ask the authors to carefully respond and revise the manuscript based on 

this set of reviews. After that is complete, I will make a final decision on the manuscript. 

Reply: The authors thank the editor for managing the present manuscript, as well as for her 

thorough and constructive comments over the revision process. All comments provided by the 

reviewers have been addressed below, and corresponding changes have been included in the 

revised manuscript. Please, see Authors’ reply to Reviewers for details.  
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B) Authors’ reply to Anonymous Referee #2: Report #1 

I recommend acceptance of the updated manuscript as it is. 

Reply: The authors thank the reviewer for the time spent in the revision process of this 

manuscript and the constructive comments provided over this process. 

C) Authors’ reply to New Referee #3 Keith Sawicz: Report #3 

The manuscript titled "Heterogeneity measures in hydrological frequency analysis: review and 

new developments." The study explores measures of heterogeneity on synthesized data, and I 

believe that it’s contribution is value to the hydrologic sciences. The authors have improved the 

clarity of data synthesis methods from its last iteration, however I believe that additional revision 

is necessary before publication. I have included specific comments as examples of how to revise 

the manuscript for clarity and simplicity.  

Reply: The authors thank the reviewer for the thorough revision and for the useful comments 

provided for the improvement of the manuscript. 

1. Page 1 Line 21: “…used criteria in assessing…” should be changed to “used criteria to 

assess” 

Reply: The change has been done in the revised manuscript. 

2. Page 1 Line 28: “homogenous regions” has not been defined before this point. Care needs 

to be taken to use this nomenclature and I think that it is being used inappropriately in this case. 

Consider either replacing homogeneous with terminology used in the previous sentence 

(“hydrologically similar gauged sites”). Page 2 Line 3 has a definition of regional homogeneity 

that defines what the term means. Please define this term before using terminology like 

“homogeneous regions.” 
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Reply: The authors thank the reviewer for pointing this out. The first paragraph of the 

Introduction has been rewritten following his suggestions. Please, see the revised manuscript. 

3. Page 2 Line 9: Change “Known statistical tools” to “Traditional statistical tools.” 

Reply: The change has been done in the revised manuscript (P2, L10). 

4. Page 2 Line 21-22: I do not believe that there is a definition of what you mean by “the 

quantile estimate.” Please define prior to this statement. 

Reply: The definition has been included in P1, L30 – P2, L1 of the revised manuscript: “[…] to 

estimate the magnitude of extreme events related to a given probability (or return period) at a 

target site, which are called quantiles.” Note that “quantile estimate” has been changed to 

“quantile estimation” (P2, L23-24 in the revised manuscript). 

5. Page 3 Line 11: The sentence containing “As a consequence of the non-

availability…from the quantile estimate step.” is overly complex. Consider simplifying the 

sentence structure to convey a clear point. 

Reply: The sentence has been rewritten as follows (P3, L13-15 in the revised manuscript): 

“These studies usually consider measures based either on H or on errors from the quantile 

estimation step. The reason is the non-availability of a well-justified heterogeneity measure for 

comparison purposes (approach (ii)).” 

6. Page 3 Line 26: I am not sure which approach you are referring to here when you say 

“…the latter approach…” The structure just before this sentence does not make it clear. 

Reply: The authors apologise for the lack of clarity. “The latter approach” has been changed to 

“comparing quantile errors” (P3, L28 in the revised manuscript). 

7. Page 5 Line 9: The sentence containing “the value of tau3 is (usually) omitted, as tau3 is 

considered to have the same value as tau.” seems to either be a finding from this study or an 
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observation from other studies. If it is a finding of this study, this information is appropriate in 

the results, not the methods. If it is an observation from previous studies, a citation is needed. 

Reply: The authors thank the reviewer for pointing out this blunder. The reference “(e.g. 

Hosking and Wallis, 1997)” has been included in this regard (P5, L14-15 in the revised 

manuscript). 

8. Page 5 Line 14: I agree that with the sentence containing “…the use of simulated data in 

the assessment of new techniques in regional frequency analysis is a very well established 

approach…“ in that simulated data can be used to generally test new techniques because you can 

generate data with simple assumptions and not need to address uncertainty or bias in your data. 

However, while it is clear that data was simulated to test the new approach, it is not clear to me 

what kind of data was simulated. Was streamflow time series generated? Were synthetic flood 

frequency curves generated and sampled? You do not need to necessarily include the data that 

you generated, but it is important to specify the steps that you used to generate said data. The 

assumption is that when these steps are followed, you will arrive at the same conclusions of the 

paper even if the exact same data was not synthesized. 

Reply: The authors apologize for the lack of clarity concerning this element. The information 

was in fact presented in the first paragraph of Sect. 2.1 “Synthetic regions”, which mentioned 

that “The procedure is based on synthetic regions generated through Monte Carlo simulations 

from a representative flood parent distribution […]”. For clarity, this sentence has been rewritten 

as follows in the revised manuscript (P4, L24-26): “The procedure is based on synthetic regions 

with flood data samples generated through Monte Carlo simulations from a representative flood 

parent probability distribution […]”. Such a parent distribution is built under the general 

characteristics defined in Sect. 2.1, and under the particular characteristic described when 

performing each step of the methodology. 

9. Page 5 Line 15: "Indeed, this is the only way to deal with issues related to data quality". I 

don't agree with this statement. In order to simulate data, you are making assumptions about 

hydrologic systems by the GEV distribution. Like is mentioned in the manuscript, data 
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simulation is commonly used to test new approaches, but this is usually to address sampling bias 

and remove features of real data such as data availability/length and measurement uncertainty. 

Reply: The authors agree with the reviewer. To avoid confusion, this statement is removed in the 

revised version of the manuscript. 

10. Page 8 Line 9: “Heterogeneity measures”. The previous section is titled ‘assessment of 

heterogeneity measures,’ but this section mentions the measures. Logically, I think you should 

introduce what you are going to compare before you talk about how you will compare them, 

unless there is a good reason otherwise. 

Reply: The authors thank the reviewer and agree with him concerning this comment. However, 

the authors structured the manuscript in this manner with a specific objective: The authors 

believe that locating the section “assessment of heterogeneity measures” before “heterogeneity 

measures” helps to focus on the properties that a heterogeneity measure should have in the 

hydrological regional context, and also focus on the framework needed for their evaluation. 

Indeed, it is important to present the properties that heterogeneity measures should have, before 

proceeding with the development of these measures. Note that the other way around, placing first 

the section “heterogeneity measures”, in which different kinds of measures from different 

approaches are defined and developed, may deviate the attention of the reader from the main 

focus of the paper.  

11. Page 12 Line 11: In the sentence that says “all considered measures show a good 

behavior regarding the heterogeneity rate y, as their values increase with y.”, good behavior is 

not a good way of describing this. These measures seem to be positively correlated with an 

increasing y, which would mean that all of the measures can indicate heterogeneity. However, 

the sentence as it is written is imprecise and vague. This is an example of sentence structure that 

should be simplified to better convey what you precisely mean and not rely on the reader to 

interpret what you mean. 

Reply: The authors thank the reviewer for this comment. The sentence has been modified as 

follows (P12, L10-12 in the revised manuscript) “[…] all considered measures seem to be 

positively correlated with an increasing heterogeneity rate . This means that their behaviour is 
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appropriate as they may indicate heterogeneity”. According to the suggestion of the reviewer, 

other sentences have been revised for their improvement. Some of the adjectives have been kept 

to help the reader understand the implications of a given dependence or effect. Please, see 

changes in Sect. 4.1 in the revised manuscript. 

12. Table 1: I have not found where the definition of what is considered good, acceptable, or 

bad. Was there a numerical threshold determined for each of these? Are they purely qualitative? 

This table is comparing different measures of heterogeneity, so showing the quantitative 

thresholds that you used is useful to the reader.  

Reply: The classification “good, acceptable or bad” is linked to the first step of the assessment 

procedure called “sensitivity analysis”. This step may be considered as a preliminary step for 

identifying which measures may be appropriate as heterogeneity measures in the regional 

hydrological context. The definition of “good, acceptable or bad” is then purely qualitative. A 

more exhaustive analysis with objective criteria is later performed through steps two to four.  

The following sentences have been modified for additional clarity: 

- P4, L18-19: “The first step is applied to all the studied heterogeneity measures […] and 

may be considered as preliminary”.  

- P13, L21-22: “As a result of the aforementioned qualitative sensitivity analysis results 

(see Table 1 for a summary), V′, PCI and GI are considered as potentially suitable 

heterogeneity measures.” 

13. Figures (General): Generally, I find the figures to be labeled well and clear to understand. 

There is a legend in the figures that identify the difference between gray and black lines. One 

addition to this legend should be a mention of gray and black colors with respect to y values. 

Reply: The legend of the figures includes the information needed for their interpretation. 
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D) Authors’ reply to New Referee #4 William Farmer: Report #2 

The authors have provided a scientifically-sound and well-written manuscript presenting, 

through controlled, scientific experiments using synthetically generated data, a novel technique 

for assessing the heterogeneity of a region. The authors have sufficiently responded to all 

previous reviewer comments and the body of the manuscript has improved. Most of my concerns 

are minor, but a will address my most important concerns first. 

Reply: The authors thank the reviewer for the thorough revision and for all the useful comments 

provided for the improvement of the manuscript. 

1. The editor and the reviewers called for a section using “real data” or observational data. I 

think this has been added, but I actually think, in its present form, it detracts from the 

manuscript. The synthetic experiments provide a more controlled justification of the novel 

method. When observational data is presented we are confronted with the problem that the true 

underlying condition is completely unknown. Therefore, exercises based on observational data 

must be cleverly defined so as to best approximate an unknown truth; this is an incredibly 

challenging task. For example, no one can definitively state that one of the three observational 

approaches to regionalization presented here is inherently better than any other. One can make a 

strong argument, and the authors have attempted to ensure that some of the approaches seem 

unlikely, but the truth is not known. Therefore, the result cannot be taken as inconclusive 

evidence. In this way, the introduction of observational data detracts from the neat, controlled 

experiments using synthetic data. 

Reply: The assessment procedure based on simulations is the tool presented in this study to 

identify which heterogeneity measure may be considered as the best one. As mentioned by the 

reviewer, previous reviewers and the editor strongly suggested the inclusion of a section based 

on real data as illustration. Due to the impossibility of knowing the degree of heterogeneity of a 

region based on real observations, the authors decided to present such an analysis as an 

“Illustrative application”. The aim of that section is then to provide an example of how different 

measures are used in practice and their drawbacks, as well as to guide the reader in the use of the 

heterogeneity measure found to be the best according to the proposed assessment procedure. This 
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point was underlined in Sect. 6 (P17, L9-14 in the revised manuscript): “Note that due to the data 

used in this application are observed instead of simulated, the real degree of heterogeneity of the 

regions, as well as the real parent distribution of the data are unknown. Thus, it is not possible to 

truly compare the performance of the different heterogeneity measures. In this regard, it is 

important to remark that the purpose of this illustrative application is then to show that 

commonly used criteria for identifying the best method for delineating regions may be 

subjective, as well as to guide practitioners in the use of heterogeneity measures.” 

Nevertheless, the authors agree with the reviewer that the premise indicating one of the 

delineation methods to be better than the others should be relaxed, as this is just an assumption. 

The text in Sect. 6 “Illustrative application” has been modified accordingly. Please, see related 

changes in the revised manuscript. 

2. I am not advocating for the rejection of observational data. Instead, I propose using this 

data or another constructed example to discuss the limitations of this approach in practice. The 

authors suggest that the optimal metric would identify approach A as optimal. What factors 

might affect this discovery in practice? Beyond the excellent sensitivity analysis, are there 

external uncertainties that may affect your, by analogy, Type I and Type II errors? 

Reply: The purpose of the illustrative application has been better highlighted by relaxing the 

statement indicating Clustering A as the best setting. This has been motivated by the previous 

comment of the reviewer; as such a premise is indeed just an assumption. In this regard, the 

following sentence has been included at the end of Sect. 6: “It is worth mentioning that 

Clustering A could be ideally assumed to be the best setting for forming sub-regions, as it is 

based on relevant descriptors for flood frequency analysis. However, this would just be an 

assumption that cannot be verified due to the use of observed data”. For more details, please see 

changes in Sect. 6 of the revised manuscript. Regarding Type I and Type II errors, please see 

Authors’ reply to Comment 12 below.  

3. In this same vein, I’d like to see the authors expand Table 4. While the GI metric 

identifies A when a simple average is used, the more-appropriate weighted average identifies 

approach B as optimal. Furthermore, the weighted-averaging of GI suggests that A, B nor C are 
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less heterogeneous than using the entire region. Only the RRMSE of the 100-year event 

identifies approach A consistently. What causes this difference? Is it meaningful? (NOTE: When 

I computed weighted averages for GI I got 0.093, 0.092, and 0.093 for A, B, and C respectively. 

For RRMSE of the 100-year event, I got 16.20, 18.00, and 17.20; for the 10-year event I got 

5.89, 5.83, and 5.61.) 

Reply: The authors thank the reviewer for the comment. Although a weighted average may seem 

more appropriate, it is important to analyse why a value should be weighted. H is a measure that 

is affected by the number of sites of a region, which may be the reason of sometimes attempting 

to avoid this issue by weighing it. Nevertheless, the GI is a measure not affected by the number 

of sites, and then a simple average may be considered as suitable to understand its behaviour. 

While on the contrary, computing a weighted average may distort results. With the aim of 

avoiding any misunderstandings, the weighted average of H shown in Table 4 was removed in 

the revised version of the manuscript. Note that such results were not relevant for the discussion 

in Sect. 6. 

4. Let me close my main comments by saying that the remainder of the manuscript is very 

well written and the scientific procedure is well devised and executed. The findings are both 

novel and interesting, meriting publication. In coordination with the editor’s opinion, I would 

advise revising the narrative of the observational example. 

Reply: The authors thank the reviewer for all the comments. Section 6 “Illustrative application” 

has been modified according to the suggestions given by the reviewer in this revision. Please, see 

changes in Sect. 6 in the revised manuscript. 

(ADDITIONAL COMMENTS) 

The following a several more minor comments that I feel may be worthy of consideration 

towards improving the manuscript. They are presented in loose sequential order. 

Reply: The authors thank the reviewer for the thorough revision. 
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5. P1, L27: Is hydrologic transfer from similar sites the only approach? 

Reply: The sentence has been rewritten as “This is usually done by transferring information from 

hydrologically similar gauged sites”. 

6. P3, L7: What were the results of Wright et al. (2015)? How are they useful to this 

discussion? 

Reply: The reference Wright et al. (2015) is included here (P3, L9 in the revised manuscript) to 

highlight that the approach related to “the use of heterogeneity measures as a proxy of quantile 

error” (P3, L3 in the revised manuscript) is already studied in the literature, which is mentioned 

in P2, L27-28 in the revised manuscript: “This approach has already been studied, being closely 

related to the homogeneity test notion (e.g. Hosking and Wallis, 1997; Wright et al., 2014), 

which is further explained below”.  

Relevant results of Wright et al. (2014 and 2015) for the present study are later shown when 

describing the heterogeneity measures considered (Sect. 3.1): 

- P9, L6-8: “[…] V  and H , are also included in this study. Their inclusion is motivated by 

recent results regarding the usefulness of H  for testing homogeneity when considering 

different thresholds from those of H (Wright et al., 2014)”. 

- P9, L17 – P10, L2: Regarding the AD statistic, “Wright et al. (2015) evaluated its 

performance as a heterogeneity measure regarding its ability to be a surrogate of the 

quantile error, yet obtaining a weak performance partially attributed to a possible 

influence of the procedure used for estimating errors”.  

7. P4, L29: This statement is unclear to me. While L-CV and L-skew may be correlated, the 

heterogeneity rate appears to be more akin to variability, being a range divided by an average. Is 

there evidence to support similar variabilities? Can you clarify this statement? At first I thought 

you meant that L-CV equaled L-skew, but this is certainly not correct. I mention my 

misunderstanding only as an example the need for clarity. 

Reply: The values of the L-CV and L-skewness, as well as other factors considered in the study, 

are selected based on the literature and with the aim of providing a general view of the behaviour 
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of the studied measures in different circumstances (see Sect. 2.1). This selection is done due to 

the impossibility of performing an exhaustive analysis considering all possible values for each 

factor. Similar variabilities for the at-site L-CV and L-skewness are considered based on the 

literature, and based on the fact that sites with a large L-CV often have a large L-skewness (see 

e.g. Hosking and Wallis, 1997, page 68 and Table 4.1). Regarding possible values of L-CV and 

L-skewness, please see Figure 1 in Viglione et al. (2007).  

To improve clarity, the original statement has been modified as follows (P5, L2-4 in the revised 

manuscript): “Since in practice large values of the L-skewness coefficient ( ) are related to 

large values of the L-CV , and based on studies in the literature (e.g. see Hosking and Wallis, 

1997, page 68 and Table 4.1; Viglione et al. 2007, Figure 1), the same heterogeneity rate of  is 

considered for  .” 

8. P5, L1: In this paragraph, it might be clearer to use display equations rather than in-line 

equations. 

Reply: The authors thank the reviewer for the comment. However, in line with standard 

formatting practices for equations, it may be preferable to keep the two equations in-line, as they 

are not referenced later in the text, and many displayed equations are already included in the 

manuscript. 

9. P6, L1: Would there be value to considering more heterogeneity rates? 

Reply: Other values were considered in preliminary analyses, but only results related to  = 0% 

and 50% are shown due to space limitations, and because they may be considered as 

representative of the behaviour of the measures. Recall that in Sect. 2.1 (P5, L16-18 in the 

revised manuscript), it is indicated “[…] values of the factors, as well as their varying values 

used below, are selected according to the literature and with the aim of providing a general view 

of the behaviour of the measures without excessively complicating the simulation study.” 
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10. P11, E11: Could the average L-CV be replaced by the regional L-CV? What would be the 

effect? 

Reply: In the present study, synthetic flood data are built by considering the same data length for 

each site. Hence no effect would be observed in this case.  

11. P13, L2: It may be useful to consider revising the presentation of results to appear more 

objective. For example, “favorable” and “bad” behavior seems to approach a subjective 

presentation. I often struggle with this in my own writing, so I only pass this comment along in 

case you find it useful. 

Reply: The authors thank the reviewer for this honest comment. The presentation of results was 

revised and changes were made. Some of the adjectives were kept to help the reader understand 

the implications of a given dependence or effect. Please, see changes in Sect. 4.1 of the revised 

version of the manuscript. 

12. P13, L24: This error rate seems to be an analog to Type I and Type II errors in hypothesis 

testing. Would that be a useful way to think about this approach? Does one metric provide a 

smaller error rate in either case? 

Reply: The authors thank the reviewer for this interesting point of view. The success rate is an 

objective criterion used for assessing the ability of a given heterogeneity measure to identify the 

most heterogeneous region. Its assessment is based on simulations where the heterogeneity rate 

of region A, A, is always smaller that the heterogeneity rate of region, B. If we think of the 

success rate as in hypothesis testing, we would realise that the way in which its assessment is 

done does not allow e.g. evaluating a type II error. Indeed, type II error consists in “accepting H0 

(i.e. H0: A < B) when it is false” and would be “zero”. If we really want to establish a 

connection between hypothesis testing and success rate, it could be considered that the success 

rate is related to the correct inference of “accepting H0 when H0 is true”, which is 1 – Type I 

error. To avoid misunderstandings and confusion, the authors do not recommend establishing 

this link in the present work. 
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Abstract: Some regional procedures to estimate hydrological quantiles at ungauged sites, such as the index-flood method, 

require the delineation of homogeneous regions as a basic step for their application. The homogeneity of these delineated 

regions is usually tested providing a yes/no decision. However, complementary measures that are able to quantify the degree 10 

of heterogeneity of a region are needed to compare regions, evaluate the impact of particular sites and rank the performance 

of different delineating methods. Well-known existing heterogeneity measures are not well-defined for ranking regions, as 

they entail drawbacks such as assuming a given probability distribution, providing negative values and being affected by the 

region size. Therefore, a framework for defining and assessing desirable properties of a heterogeneity measure in the 

regional hydrological context is needed. In the present study, such a framework is proposed through a four-step procedure 15 

based on Monte Carlo simulations. Several heterogeneity measures, some of which commonly known, others derived from 

recent approaches or adapted from other fields are presented and developed to be assessed. The assumption-free Gini Index 

applied on the at-site L-variation coefficient (L-CV) over a region led to the best results. The measure of the percentage of 

sites for which the regional L-CV is outside the confidence interval of the at-site L-CV is also found to be relevant, as it 

leads to more stable results regardless of the regional L-CV value. An illustrative application is also presented for didactical 20 

purposes, through which the subjectivity of commonly used criteria to assess the performance of different delineation 

methods is underlined. 

Keywords: hydrology; regional analysis; ungauged site estimate; heterogeneity degree; L-variation coefficient; Gini Index. 

1 Introduction 

Regional hydrological frequency analysis (RHFA) is needed to estimate extreme hydrological events when no hydrological 25 

data are available at a target site or to improve at-site estimates especially for short data records (e.g. Burn and Goel, 2000; 

Requena et al., 2016). This is usually done by transferring information from hydrologically similar gauged sites. Delineation 

of regions formed by hydrologically similar gauged sites is a basic step for the application of a number of regional 

procedures such as the well-known index-flood method (Dalrymple, 1960; Chebana and Ouarda, 2009). Such a method 

employs information from sites within a given “homogeneous” region to estimate the magnitude of extreme events related to 30 
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a given probability (or return period) at a target site, which are called quantiles. Regional homogeneity is often defined as the 

condition that floods at all sites in a given region have the same probability distribution except for a scale factor (e.g. 

Cunnane, 1988). The present paper focuses on the heterogeneity concept in hydrology derived from this ‘regional 

homogeneity’, which is different from the heterogeneity concept considered in other fields, such as ecology, geology and 

information sciences (e.g. Li and Reynolds, 1995; Mays et al., 2002; Wu et al., 2008).   5 

In order to delineate homogeneous regions, numerous studies have proposed and compared similarity measures entailing 

climatic (e.g. mean annual rainfall), hydrologic (e.g. mean daily flow), physiographic (e.g. drainage area) and combined 

descriptors (see Ali et al., 2012 and references herein) to be used as input to statistical tools for grouping sites. The selection 

of these descriptors is carried out by stepwise regression, principal components or canonical correlation, among others (e.g. 

Brath et al., 2001; Ouarda et al., 2001; Ilorme and Griffis, 2013). Traditional statistical tools, such as cluster analysis, or new 10 

approaches, such as the affinity propagation algorithm, are considered to form homogeneous regions based on the previously 

identified similarity measures (e.g. Burn, 1989; Ouarda and Shu, 2009; Ali et al., 2012; Wazneh et al., 2015). For further 

references on regional flood frequency analysis, please see Ouarda (2013), Salinas et al. (2013) and references herein. 

Moreover, many tests have been introduced and compared throughout the literature to decide whether a given delineated 

region can be considered as homogenous (e.g. Dalrymple, 1960; Wiltshire, 1986; Scholz and Stephens, 1987; Chowdhury et 15 

al., 1991; Fill and Stedinger, 1995; Viglione et al., 2007). The homogeneity test proposed by Hosking and Wallis (1993) is 

usually utilised. In this test the statistic H is related to the variability of the at-site L-variation coefficient (L-CV) over a 

region (e.g. Alila, 1999; Burn and Goel, 2000; Castellarin et al., 2001; Shu and Burn, 2004; Smith et al., 2015; Ouarda, 

2016).  

In practice, apart from determining if a region can be considered as homogeneous by making a yes/no binary decision (e.g. 20 

Warner, 2008) generally based on a significance test, the quantification of the degree of heterogeneity is also necessary. 

Heterogeneity measures are required for such a task. Two approaches can be considered in this regard: (i) the use of 

heterogeneity measures for determining the effect of the departure from the homogeneous region assumption on quantile 

estimation; and (ii) the use of heterogeneity measures for ranking regions according to their degree of heterogeneity. 

Regarding the former, quantifying the degree of heterogeneity provides a notion of the inaccuracy incurred through the 25 

estimation of quantiles by a regional method, for which homogeneous regions are assumed but a ‘non-perfect’ homogeneous 

region is used. This approach has already been studied, being closely related to the homogeneity test notion (e.g. Hosking 

and Wallis, 1997; Wright et al., 2014), which is further explained below.  

The second approach corresponds to the focus of the present paper. Through this second approach, different regional 

delineation methods can be properly compared to identify the best one. This will be the method delineating the ‘most 30 

homogeneous region’. Also, heterogeneity measures can be helpful in ranking potential homogeneous regions formed by 

removing discordant sites. By analogy with distribution selection (e.g. Laio et al., 2009), the concept of heterogeneity 

measure considered here plays the role of a ‘model selection criterion’, such as the Akaike Information Criterion (Akaike , 

1973); whereas the homogeneity test plays the role of a ‘goodness-of-fit test’. The former ranks delineated regions by 
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providing unambiguous results to identify the best one in terms of heterogeneity; whereas the latter indicates if the given 

region can be considered as homogeneous or not.  

In relation to the use of heterogeneity measures as a proxy for quantile error (approach (i)), the test statistic H is indeed 

considered by Hosking and Wallis (1993) as a heterogeneity measure for which given thresholds are established. These 

thresholds are obtained as a trade-off between quantile error due to regional heterogeneity and gain obtained by considering 5 

the whole regional information instead of that of a sub-region or at-site data. Therefore, instead of providing a binary 

decision based on a given significance level (α), e.g. reject the region as homogenous when H > 1.64 for α = 5%; as a more 

general guideline the region is considered as ‘acceptably homogeneous’ if 1H , ‘possibly heterogeneous’ if 21  H  

or ‘definitely heterogeneous’ if 2H . Recently, Wright et al. (2015) compared the performance of five statistics in this 

regard: the three L-moment-based statistics of Hosking and Wallis (1993) and two non-parametric statistics, the Anderson-10 

Darling and the Durbin-Knott test statistic.  

A number of studies have proposed and compared methods in which different combinations of similarity measures and/or 

statistical tools are considered for delineating regions (references below). These studies usually consider measures based 

either on H or on errors from the quantile estimation step. The reason is the non-availability of a well-justified heterogeneity 

measure for comparison purposes (approach (ii)). Shu and Burn (2004) utilised the percentage of (initially) homogeneous 15 

regions and the mean of H over regions obtained by each considered method for distinguishing the best one. Farsadnia et al. 

(2014) identified the best grouping method among those analysed as that leading to the lowest number of ‘possibly 

homogeneous’ and ‘heterogeneous’ regions according to H.  Ilorme and Griffis (2013) used an H weighted average 

regarding the data length of each region to compare regions obtained by removing discordant sites based on different criteria.  

However, H is not well-defined for ranking regions according to their heterogeneity degree, as it possesses several 20 

drawbacks. First, it is originally built as a significance test. Thus, its value depends on specific assumptions that may not be 

fulfilled in practice, such as assuming a regional kappa distribution that even though flexible may not characterise the data. 

Second, it may entail negative values for particular situations, which may distort results making difficult the suitable ranking 

of regions. Third, it is affected by the number of sites in the region, tending to obtain small heterogeneity values for small 

regions even if they are not homogeneous (Hosking and Wallis, 1997, page 66-67). This tends to complicate comparison 25 

among regions with different sizes. 

Instead of using measures based on H, other studies quantified the performance of different delineating methods by 

comparing quantile errors (e.g. Castellarin et al., 2001; Ouali et al., 2016). However, comparing quantile errors implies 

performing the last step of a regional analysis (i.e. quantile estimation) when dealing with an initial step (i.e. region 

delineation); which involves additional calculations, uncertainty due to the assumption of a given parent distribution for the 30 

data and a non direct assessment of the delineation method. A different approach was recently proposed by Viglione (2010) 

and Das and Cunnane (2011) regarding the use of the confidence intervals for L-CV to assess heterogeneity, for which 

details are given in Sect. 3.  
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Therefore, a general framework is needed to allow defining and assessing desirable properties of a heterogeneity measure in 

the regional hydrological context in order to properly identify a suitable measure. Such a measure should overcome the 

aforementioned drawbacks: it should be free of assumptions, positive and not affected by region size. Furthermore, the use 

of a heterogeneity measure should allow direct comparison of the heterogeneity of regions delineated by different methods. 

Indeed, it should allow ranking the heterogeneity degree of several regions to identify ‘the most homogeneous region’ or to 5 

assess the effect of some sites on the ‘heterogeneity degree’ of the region. In the present paper, such a framework is 

proposed under an evaluation of the heterogeneity measures based on Monte Carlo simulations. Several measures extracted 

from literature in hydrology and other fields are presented and/or adapted to be assessed as well-justified heterogeneity 

measures. The present paper is organised as follows. The procedure for the assessment of a heterogeneity measure is 

presented in Sect. 2. The heterogeneity measures considered to be checked by the proposed procedure are introduced in Sect. 10 

3. Results of the assessment are illustrated in Sect. 4. Discussion of results is presented in Sect. 5. An illustrative application 

is shown in Sect. 6 and conclusions are summarised in Sect. 7.  

2 Assessment of a heterogeneity measure  

A simulation-based procedure consisting of four steps is proposed to study the behaviour of a given heterogeneity measure 

(generically denoted Z) regarding its desirable properties in the regional hydrological context. The steps of the procedure are: 15 

(i) sensitivity analyses of varying factors involved in the definition of a region; (ii) success rate in identifying the most 

heterogeneous region; (iii) evolution of the variability for the Z average with respect to the degree of regional heterogeneity; 

and (iv) effect of discordant sites. The first step is applied to all the studied heterogeneity measures (presented in Sect. 3) and 

may be considered as preliminary, while the remaining steps are applied to those not entailing unacceptable results from the 

first step. Some elements of the procedure are inspired and adapted from studies where different aims were sought (e.g. 20 

Hosking and Wallis, 1997; Viglione et al., 2007; Chebana and Ouarda, 2007; Castellarin et al., 2008; Wright et al., 2015). 

2.1. Synthetic regions   

Before further describing the aforementioned steps and desirable properties, elements of the framework needed for 

performing the assessment procedure are presented. The procedure is based on synthetic regions with flood data samples 

generated through Monte Carlo simulations from a representative flood parent probability distribution commonly used in 25 

frequency analysis, the Generalised Extreme Value (GEV) distribution. A region is defined by its number of gauging sites 

(N), at-site data length (n), regional average L-CV (�), regional average L-skewness coefficient (�) and a unit regional 

sample mean. The heterogeneity of a given region may be due to differences in any feature of the at-site frequency 

distribution among sites. In particular the L-CV, which is a dimensionless measure of the dispersion of the distribution that is 

also related to the slope of the associated flood frequency curve, has been considered as representative of such differences 30 

(e.g. Stedinger and Lu, 1995; Viglione, 2010). In the present study, heterogeneous regions are simulated using the 
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heterogeneity rate , defined as  = max � − min � /�� (e.g. Hosking and Wallis, 1997; Das and Cunnane, 2012)
.
, 

where   is the L-CV at site i with i = 1, …, N. Since in practice large values of the L-skewness coefficient ( ) are related to 

large values of the L-CV , and based on studies in the literature (e.g. see Hosking and Wallis, 1997, page 68 and Table 4.1; 

Viglione et al., 2007, Figure 1), the same heterogeneity rate of  is considered for  . A region is defined as homogeneous for 

 = 0%, implying that   and   are the same for all the sites in the region (i.e.  = �  
and  = �). The heterogeneity of a 5 

given region increases as  increases from 0% to 100%. This implies that i
 and   vary linearly. We then have for the first 

site  = � − � �⁄  and for the last site  = � + � �⁄ . The same can be written for  . Note that this relation is 

commonly used in other studies (e.g. Hosking and Wallis, 1997; Wright et al., 2015) as a plausible way of simulating 

varying conditions over a region. 

Finally, a given region consists of at-site data generated from a GEV distribution with parameters obtained through at-site L-10 

moments. At-site data are standardised by their sample mean to frame them in the regional context (e.g. Bocchiola et al., 

2003; Requena et al., 2016). Note that heterogeneity measures directly based on L-moments lead to the same results for 

standardised or non-standardised data. A region with N = 15, n = 30, �  
= 0.2 and   � = 0.2 is considered as a reference for the 

simulation study. Hereafter, the value of   is (usually) omitted, as   is considered to have the same value as  (e.g. Hosking 

and Wallis, 1997). The number of simulations NS of a given region is taken to be equal to 500, which is considered large 15 

enough to obtain robust results. These fixed values of the factors, as well as their varying values used below, are selected 

according to the literature and with the aim of providing a general view of the behaviour of the measures without excessively 

complicating the simulation study.  

It is important to highlight that the use of simulated data in the assessment of new techniques in regional frequency analysis 

is a well-established approach and it has been used in a number of publications (e.g. Hosking and Wallis, 1997; Seidou et al., 20 

2006; Chebana and Ouarda, 2007).  

2.2. Sensitivity analyses   

The first step of the assessment of a heterogeneity measure Z is the analysis of the effect of varying factors involved in the 

definition of a region. This step is performed through sensitivity analysis to identify if the behaviour of Z is acceptable in 

relation to what is ideally expected from a heterogeneity measure.  25 

Effect of the heterogeneity rate: The degree of heterogeneity of a region is the aimed value to be quantified by Z. A 

surrogate of such a degree of regional heterogeneity is the heterogeneity rate , which is used to initially define the 

heterogeneity of the simulated region to be evaluated by Z. Hence, Z should increase with . This analysis is performed by 

obtaining Z for  = 0%, 10% ,…, 90%, 100% over NS = 500, keeping the remaining values of the reference region (i.e. N = 

15; n = 30; � = 0.2).  30 

Effect of the number of sites: The size of a region, represented by the number of sites N, is a relevant factor to the degree of 

its heterogeneity. A large N is required to properly estimate quantiles associated with high return periods, as more data are 
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available; yet homogeneous regions are more difficult to obtain for large N due to more potential dissimilarities between 

sites (Ouarda et al., 2001; Chebana and Ouarda, 2007). Nevertheless, by definition Z should not be affected by N, as it 

should provide the same results for regions with a different size but the same degree of heterogeneity. Therefore, the smaller 

is the influence of N on Z the better Z is. This analysis is performed by obtaining Z for N = 5, 10, 15, 20, 25, 30, 40, 50, 60, 

70 over NS = 500, keeping the remaining values of the reference region (i.e. n = 30; � = 0.2). Two different values of the 5 

heterogeneity rate ( = 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of 

heterogeneity. 

Effect of the regional average L-moment ratios: Z should ideally provide similar results for regions entailing the same 

degree of heterogeneity, regardless of the values of �  
and   � , in order to provide an appropriate comparison and ranking of 

the regions. For instance, two regions with sites generated from a different �  value but considering the same value  = 0% 10 

should entail similar Z values, as both are ‘perfectly’ homogeneous. However, such an output may not be easy to obtain due 

to the fact that �  is associated with a measure of dispersion. Thus, the smaller the influence of � and   �  on Z the better Z 

will be. This analysis is performed by comparing the results of � = 0.2, which is related to the reference region, with those 

obtained by � = 0.4. It is done by varying the heterogeneity rate  and by varying the number of sites N. Recall that   �  is 

considered to have the same value as � . 15 

Effect of the record length: The amount of available at-site information, represented by the data length n, is associated with 

the accuracy of the value of Z. The longer n is the better will be the information provided by each site to determine the 

regional degree of heterogeneity. Therefore, the analysis of the effect of n should be focused on identifying the minimum n 

required to obtain reliable values of Z. This analysis is performed by obtaining Z for n = 10, 20,…, 90, 100 over NS = 500, 

keeping the remaining values of the reference region (i.e. N = 15; � = 0.2). Two different values of the heterogeneity rate ( 20 

= 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of heterogeneity. 

2.3. Success rate 

The second step in the assessment of Z is the evaluation of its success rate (SR) for identifying the most heterogeneous 

region. Note that the SR notion is commonly used in a number of fields such as biology (e.g. Canaves et al., 2004). Without 

loss of generality, such an evaluation is performed on two regions A and B. For  A < B,  SR is defined as the ratio of the 25 

number of samples simulated from a given region A and a given region B, for which Z correctly identifies B as the most 

heterogeneous region, to the total number of simulated samples. Thus, the larger SR is the better Z will be. The aim is to 

verify the ability of Z to compare regions with different degrees of heterogeneity, when entailing or not different 

characteristics (i.e.,   ≠   or   =  , and NA ≠ NB or NA = NB). A large set of 48 cases is considered to obtain a wide 

view of the behaviour of Z, as combination of the following factor values: A = 0%, 30%, 50%, 70% with B = A+10%, 30 

A+20%, A+30%; NA = NB, NA ≠ NB (for N = 10, 25);  =  ,   ≠   (for � = 0.1, 0.2, 0.3, 0.4) over NS = 500, keeping 

the remaining values of the reference region (i.e. n = 30).  
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2.4. Evolution of the variability for the Z average with respect to the degree of regional heterogeneity 

The third step of the assessment of Z is the analysis of the evolution of the variability of the average value of Z as a function 

of the degree of regional heterogeneity. The aim is to determine the capability of Z to accurately rank regions according to 

their degree of heterogeneity when it is summarised as an average of the Z values obtained for several (sub)regions that are 

obtained by a given delineation method. This provides an assessment of its capability to compare results from several 5 

delineation methods. This is a twofold analysis. Firstly, a monotonic relation should exist between the average Z and the 

degree of heterogeneity, as explained in Sect. 2.2. Secondly, the variability of the average Z along such a monotonic relation 

should be small enough to not affect a proper ranking of the regions.  

We consider two regions A and B, without loss of generality. The idea is that (sub)regions delineated by a given method 

should theoretically entail different  � values (  ≠  ), having similar or different values of other characteristics (i.e. NA ≠ 10 

NB or NA = NB). In order to be able to evaluate the behaviour of the Z average, the same degree of heterogeneity is considered 

for both regions (A = B = ), as under this assumption Z values should be similar. The procedure is the following: NS = 500 

simulated regions A and B with A = B =  and given values NA,   and NB,   are generated, obtaining for each simulation 

the average of Z over the two regions. These averages are aggregated into their mean value over Ns as representative value. 

The representative value is obtained for 22 cases as a result of combining: NA = 10, 25; NB = 10, 25; and R
 = 0.1, 0.2, 0.3, 15 

0.4 with  ≠  , keeping the remaining values of the reference region (i.e. n = 30). Then, the variability of the set of 

representative values of the Z average is analysed through a boxplot for the given . The aforementioned procedure is 

performed for each  = 0%, 10%,…, 90%, 100%, obtaining a boxplot for each  value. For a given , Z is better as the 

variability of the corresponding set of representative values is smaller, since similar values of Z should be expected due to A 

= B. Then, Z is better as the interquantile range is shorter, where the interquantile range is the box of the boxplot. For 20 

varying , Z is better as it does not imply overlapping of the interquantile ranges for different  values, which leads to a more 

appropriate ranking of the regions. 

2.5. Effect of discordant sites 

The fourth step of the assessment of Z is the analysis of the effect of discordant sites in a region. The aim is to check the 

capability of Z to show a progressive variation of its value as a consequence of a progressive change in the degree of regional 25 

heterogeneity, induced here by replacing given ‘homogeneous’ sites by given ‘discordant’ sites in a region. Both the effect of 

the ‘nature’ of the discordant sites, characterised by the L-CV  � and L-skewness coefficient �  of their parent distribution, 

and the effect of the number of such discordant sites (k) are considered.  

The procedure is described below. Note that the values of the factors used in this section are selected to facilitate the 

graphical representation. Thus, a homogeneous region (i.e.  = 0%) with N  = 20,  �  = 0.25 and n = 30 is considered as the 30 

initial region. Then, k of its sites (with k = 1,…, N/2) are replaced by k discordant sites belonging to a parent distribution 

characterised by  �, with d = 0% within the group of discordant sites. The analysis is performed for  �= 0.1, 0.2, 0.25, 0.3, 
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0.4. Remark that  � = 0.25 is considered for the homogeneous region so that the discordant sites are not ‘discordant’ at the 

midpoint of the range used for  � (i.e. at  � =  � = 0.25). The procedure is repeated for NS = 500 simulations of the initial 

homogeneous region, estimating a mean value of Z over Ns for each ( �, k) pair. For the region formed by ‘homogenous’ and 

‘discordant’ sites, named as mixed region, Z is expected to be larger for larger k values. Indeed, a larger number of 

discordant sites in the region should increase the degree of regional heterogeneity. Also, Z is expected to be larger as the 5 

difference between  � and   �  gets larger, since the addition of sites with a ‘larger discordance’ should increase the degree of 

regional heterogeneity. On the other hand, for the sub-region formed by the sites belonging to the initial homogeneous 

region, Z is expected to keep the same values regardless of the value of k, which in this case is the number of initial sites 

removed. The degree of regional heterogeneity should be relatively constant in this case, since all the sites belong to the 

same initial homogeneous region. Note that a mixed region can be seen as a sort of bimodal region used in other studies (e.g. 10 

Chebana and Ouarda, 2007). 

3 Heterogeneity measures 

The aim of this section is to present and develop heterogeneity measures based on different approaches to be assessed by the 

procedure proposed in Sect. 2. Heterogeneity measures are selected as a result of a general and comprehensive literature 

review in a number of fields including hydrology. We can distinguish three types of measures: (a) known in RHFA; (b) 15 

derived from recent approaches in RHFA; and (c) used in other fields and adapted here to the regional hydrological context. 

Therefore, a total of eight measures are considered.  

3.1. Measures known in RHFA 

The first group consists of the well-known statistics H, V, H2 and V2 (Hosking, 2015), as well as the k-sample Anderson-

Darling (AD) statistic (Scholz and Stephens, 1987; Scholz and Zhu, 2015).  20 

Even though H is not properly defined as a heterogeneity measure for ranking the degree of heterogeneity of several regions 

(see Sect. 1), it is considered in this study because it is commonly adopted in regional analysis. As the aim of this study is to 

provide a general heterogeneity measure, its associated distribution-free statistic V is also considered. Specifically, V is a 

statistic of the dispersion of the sample L-CV t in a region, expressed as: 

� = √∑ � − ��= ∑ = , (1) 

with  25 

�� = ∑ �=∑ = ,     (2) 
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where �  is the sample L-CV at site i and �� is its associated regional average. H is a measure of the variability of t in the 

region compared with that expected for simulated homogeneous regions. It is built by normalising V by its mean �� and 

standard deviation ��: = � − ���� ,        (3) 

where �� and ��  are obtained from NH = 500 simulated homogeneous regions with the same n and N as the given region, 

generated from a kappa distribution fitted to the regional average L-moment ratios. 5 

The extensions of V and H by considering not only t but also the sample L-skewness coefficient � , traditionally known as �  

and , are also included in this study. Their inclusion is motivated by recent results regarding the usefulness of H2 for 

testing homogeneity when considering different thresholds from those of H (Wright et al., 2014): 

� = ∑ √ � − �� + (� − ��)= ∑ = , (4) 

= � − ��2��2 , (5) 

where �  is the sample L-skewness coefficient at site i and �� is its associated regional average. �� is defined analogous to �� 

in Eq. (2). In order to avoid results conditioned on the given value of  � � and ��, � and �  are standardised here by their 10 

regional values, defining �′ and �′
 respectively as: 

�′ = √∑ (� − ���� )= ∑ =  
(6) 

�′ = ∑ √(� − ���� ) +  � − ����= ∑ =  

(7) 

The AD statistic, which is a rank-based statistic based on comparing the at-site empirical distributions with the pooled 

empirical distribution of the data, is also included in this first group: 

� = ∑= ∑ ( − )−−
= , (8) 

where = ∑ =  and  is the number of observations in the i
th

 sample not greater than , where < <  is the 

pooled ordered sample of the data, which in the regional context entails considering the data of each site first divided by i ts 15 

corresponding mean and then ordered. The AD statistic has already been considered in several studies. Viglione et al. (2007) 

assessed its behaviour as a homogeneity test statistic, recommending its use when �� > 0.23. Wright et al. (2015) evaluated 
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its performance as a heterogeneity measure regarding its ability to be a surrogate of the quantile error, yet obtaining a weak 

performance partially attributed to a possible influence of the procedure used for estimating errors.  

3.2. Measures derived from recent approaches in RHFA 

The second group is represented by a measure derived from a relatively novel approach in which the confidence interval for 

the at-site L-CV �  (with i: 1,…N) is estimated and compared with ��. The focus is to evaluate how often the latter is 5 

included in such confidence intervals in order to assess if differences between �  and �� can be attributed to sample 

variability or to regional heterogeneity.  

Viglione (2010) proposed a procedure for obtaining the confidence interval for L-CV without considering a given parent 

distribution of the data, applying it to a didactic illustration for comparing several regional approaches. The procedure is 

summarised below: the variance of the sample L-CV t, var(t), is estimated according to Elamir and Seheult (2004) which is 10 

implemented in Viglione (2014); simple empirical corrections are applied on t and var(t) based on the values of �  and n; and 

the confidence interval for t is then obtained from a log-Student’s distribution considering corrected values of t and var(t). 

For instance, for a 90% confidence interval, a region is considered as heterogeneous if 100 – (P05 + P95)  90%, where P05 

(P95) is the percentage of sites for which � � is below (above) the confidence interval for � . The larger (P05 + P95) is, the 

larger the regional heterogeneity will be. Das and Cunnane (2011) obtained such a confidence interval based on simulations 15 

from a GEV distribution, with the aim of evaluating if a usual method to select catchment descriptors for delineating regions 

in Ireland provided homogeneous regions. The number of sites for which � � is outside the �  confidence intervals is 

considered as a measure of heterogeneity, also expressed as a percentage of sites.  

In the present study, the heterogeneity measure considered regarding this approach is named as PCI and defined as the total 

percentage of sites in the region for which � � is outside the 90% confidence interval for � . As the parent distribution of the 20 

data is unknown in practice, such a confidence interval is estimated following the aforementioned distribution-free approach.  

3.3. Measures used in other fields and adapted here to the regional hydrological context 

The last group consists of the Gini index (GI) (Gini, 1912; Ceriani and Verme, 2012), which is a measure of inequality of 

incomes in a population commonly used in economics; and of a measure based on the entropy-based Kullback-Leibler (KL) 

divergence (Kullback and Leibler, 1951), which estimates the distance between two probability distributions and is used for 25 

different purposes in a number of fields including hydrology (e.g. Weijs et al., 2010).  

The definition of the GI is usually given according to the Lorenz curve (Gastwirth, 1972), but it can be expressed in other 

ways. Specifically, the sample GI: = ∑ ∑ | − |== � , (9) 

corrected for short sample sizes can be defined as (Glasser, 1962; Zeileis, 2014): 
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= ∑ − − := − � , (10) 

where :  are the sample order statistics and � is their mean. Theoretically, GI ranges from zero to one. The former is 

obtained when all the  values are equal, and the latter is given when all but one value equals zero (in an infinite 

population). Note that although GI has not been directly applied to hydrology, it is connected with the well-known L-

moments which do. Both are based on sample order statistics. Indeed, = / � (for � > , where GMD is the Gini’s 

mean difference statistic (Yitzhaki and Schechtman, 2012); and = , where l2 is the second sample L-moment 5 

(Hosking and Wallis, 1997). Hence, GI corrected for short samples corresponds to the sample L-CV t (Hosking, 1990), 

which implies that if GI is applied on the flood observations at site i, the result is � . Then, in order to adapt GI to the 

regional hydrological context, in this study GI is applied on �  over sites. This provides a value of the inequality or 

variability of the at-site L-CV �  in the region, and hence it can be seen as a measure of the heterogeneity of the region. 

Therefore, the measure considered in this study is � , = , … , :  10 = ∑ − − � := − �̅ , (11) 

where � :  are the sample order statistics, �̅ is their mean, and the number of sites N corresponds to the data length of �. Note 

that � , = , … ,  is equivalent to � � , = , … , . Also, note that this is somehow analogous to the approach based 

on moments used in early studies (e.g. Stedinger and Lu, 1995), where the coefficient of variation ( � = � �⁄ ) of the 

coefficient of variation of the data (i.e. � � , = , … , ) was used for building simulated regions; defining 

homogeneous regions for � � =  and extremely heterogeneous regions for � � ≥ .4.  15 

The KL divergence (so-called relative entropy) of the probability distribution P with respect to Q is defined as: || = ∫ ln[ / ] �  (12) 

where p and q are the density functions. The expression related to the discrete case is the following (e.g. Hausser and 

Strimmer, 2009) || = ∑ ln ( ) (13) 

for which nonparametric versions of the probabilities P and Q may be considered, such as a kernel density function, in order 

to avoid subjectivity in selecting a given parametric probability distribution.  can then be defined as the KL divergence 20 

of the probability distribution at site i with respect to the probability distribution at site j, where ≠  . The 

dissimilarity matrix of the region is obtained by computing the KL divergence between sites as:  
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=  ……  (14) 

The degree of regional heterogeneity is then evaluated by ‖ ‖, which in this study is considered as the absolute column 

sum normalized norm: ‖ ‖ =  � ∑ | |
 (15) 

4 Results 

Simulation results obtained by the application of the proposed assessment procedure (Sect. 2) to the considered 

heterogeneity measures (Sect. 3) are presented in this section. Note that a summary of the results obtained from each step is 5 

presented in Table 1.  

4.1. Sensitivity analyses   

Results of the effect of varying factors defining a region (Sect. 2.2) are presented through boxplots and mean values of the 

heterogeneity measure over Ns = 500 simulations of the corresponding region, in order to show complete information. 

Results for R 
= 0.2 refer to those related to the reference region. Figure 1 shows that all considered measures seem to be 10 

positively correlated with an increasing heterogeneity rate . This means that their behaviour is appropriate as they may 

indicate heterogeneity. This dependence is less pronounced for  and  �′, which are the measures that depend on both t and � ; and for AD and ‖ ‖, which are based on the whole information. 

The effect of N on the considered measures is shown for R 
= 0.2 when  = 0% (i.e. ‘perfect’ homogeneous regions) and  = 

50% in Figs. 2 and 3, respectively. In both cases, it is found that �′, �′, PCI and GI are not affected by N, although they show 15 

some departure from their constant Z mean value and a larger variability (i.e. larger box) when N ≤ 10. In this regard, Das 

and Cunnane (2012) also found an effect for N < 10 on quantile error measures (considering n = 35). In general this effect is 

less marked for GI when  = 0% (Fig. 2c,d) and for �′and �′ when  = 50% (Fig. 3a,b).  

It is also found that results for H, and to a lower degree for , change depending on the value of . These measures do not 

depend on N for   = 0% (Fig. 2a,b); yet they do for  = 50% (Fig. 3a,b). This is likely due to the nature of H and  as 20 

homogeneity test statistics. Note that this undesirable effect increases as  increases (e.g. Fig. 4). ‖ ‖ is affected by N for 

both  = 0% and  = 50%. The same holds for AD, for which such dependence is higher.  
The influence of varying regional average L-moments is shown by comparing the Z mean values for R 

= 0.4 with those 

previously obtained for R 
= 0.2. Z mean values varying  are displayed in Fig. 1b,d. In this regard, �′ and AD fail to 

compare regions with the same  but different R
, as results for R 

= 0.2 and R 
= 0.4 are far from each other. Regarding H and 25 
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, this effect is worse for higher degrees of regional heterogeneity than for smaller ones; whereas �′, GI and ‖ ‖ show 

the opposite behaviour with an overall better performance of �′ and GI. PCI is better able to compare regions with either 

small or high . Results for Z mean values varying N are displayed for  = 0% in Fig. 2b,d; and for  = 50% in Fig. 3b,d. In 

both cases �′ and AD fail to compare regions with the same  but different N. A suitable performance is found for �′, PCI 

and GI for  = 50%; whereas a worse performance is found for H,  and ‖ ‖ (Fig. 3b,d). This performance of H,  and 5 ‖ ‖ is also shown for  = 0% (Fig. 2b,d), for which the remaining measures also present similar results. In this regard, it is 

important to remark that no ‘perfect’ homogeneous regions exist in reality (Stedinger and Lu, 1995). And that according to 

the practical threshold H < 2, commonly used for considering a region as homogeneous enough to perform a regional 

analysis, even regions with  = 50% may be taken as homogenous in practice (see values of H for  in Fig. 1a). Hence, for 

the purpose of the assessment of the regional heterogeneity degree, the behaviour of the measures for  = 50% is more 10 

relevant than for  = 0%. 

Finally, the effect of varying the record length n for  = 0% and  = 50% is shown in Fig. 5. Recall that it is expected that 

increasing n affects Z, as more information of the at-site distributions is available in such a case. In this regard, it is found 

that the measures H, , AD and PCI are not (or slightly) affected by n when  = 0%, but they highly increase their values as 

n increases when  = 50%. Whereas �′, �′, GI and ‖ ‖ are affected by n when  = 0%; becoming less affected when  = 15 

50%, by decreasing less their values as n increases. As a result, �′and GI are the only measures that become relatively stable 

for a given data length. Such a data length is around n = 30, which is a value usually considered in practice (e.g. Hosking 

and Wallis, 1997, page 134; Chebana and Ouarda, 2009). It can be mentioned that for a very small data length (n = 10), the 

approximation used in PCI for estimating var(t) was not reliable. Nevertheless, this issue is not relevant since such a data 

length is too short to be considered in practice, and such values do not affect the overall interpretation of the results.   20 

As a result of the aforementioned qualitative sensitivity analysis results (see Table 1 for a summary), �′, PCI and GI are 

considered as potentially suitable heterogeneity measures. Thus, the following steps of the assessment procedure are only 

applied to these measures. Results of H are also included for comparison purposes. 

4.2. Success rate 

The ability of the measures to identify the most heterogeneous region between two regions A and B is shown via the success 25 

rate SR (Sect. 2.3). A summary of the results obtained for   =   and   ≠   (with A < B), when considering several 

values of N and  for each region is displayed in Table 2 to facilitate their interpretation. Note that each combination    vs. 

  corresponds to a total of 48 cases obtained by varying N and . Results for a small difference between  �  values, 

characterised by    = 0.2 ≠   = 0.3 and vice versa; and for a large difference, characterised by    = 0.1 ≠   = 0.4 and 

vice versa, are displayed as representative of the behaviour of the measures. Note that the summarised information reflects 30 

the main conclusions extracted from the partial results.  
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The SR average is shown as a notion of the overall behaviour of the measures. Recall that the larger SR is, the better Z will 

be. When   =   the SR average of H, �′ and GI are comparable, with �′ and GI leading to the largest values; while PCI 

leads to the lowest ones. When  <    the largest SR average is obtained for �′ and is very closely followed by GI. Yet, in 

this case H presents a worse behaviour, which is similar to that of PCI. When  >   the situation changes, with H leading 

to the largest values. Yet, the difference between the values obtained by �′ (or GI) and H is less marked than when  <  . 5 

Note that the larger the difference between   and   is, the larger the difference between the SR average of H and �′ (or GI) 

is; whereas the value of PCI remains almost constant. Therefore, although PCI does not obtain the greatest values in any case, 

it outperforms H or GI (and �′) when    or when   , respectively, i.e. for high differences between   and  . 

The best results for the total SR average are obtained by GI, followed by �′.  
The SR minimum and SR maximum are displayed as a notion of the variability of the SR results (Table 2). Results related to 10 

the SR minimum are analogous to those obtained by the SR average; giving H an overall worse behaviour. This highlights 

the low ability of H to identify the most heterogeneous region in certain circumstances. Note that the overall behaviour of H 

regarding SR is partially due to existing trends regarding N and  �. H obtains larger heterogeneity values as N increases and 

as  � decreases (as shown in Fig. 3b), entailing an ‘unfounded’ better behaviour when  >   and NA < NB, and vice versa. 

Also note that all measures have difficulties obtaining a large SR minimum when  >  . This includes H also, even though 15 

it obtained a good SR average in such a situation. This arises from the fact that, in such a case, the region with the lowest 

degree of heterogeneity (region A) is associated with a larger  � entailing a larger sample variability, and complicating its 

identification as the less heterogeneous region. SR maximum values show that even though the maximum difference between 

A and B considered in the analysis is 30%, all measures obtain (in certain circumstances) a SR equal or close to 100%. In 

summary, GI obtains the best results for the SR analysis followed by �′. 20 

4.3. Evolution of the variability of the Z average with respect to the degree of regional heterogeneity 

The variability of the heterogeneity measures as a function of the degree of regional heterogeneity, represented by , is 

shown in Fig. 6. The boxplot of the 22 representative (mean over Ns = 500) values of Z obtained from cases in which a given 

region A and a given region B with the same  but different characteristics are considered is shown for varying values of  in 

the x-axis (see Sect. 2.4). As expected from the results of Fig. 1, heterogeneity measures in Fig. 6 increase with , showing a 25 

monotonic positive dependence. Regarding their variability along such a monotonic relation, H presents a different 

behaviour from the rest of the measures. It shows a strong increasing variability as  increases. Then, in this case, H overlaps 

its interquantile ranges from  = 70% to 100%. This behaviour may imply an unappropriated ranking of the regions with 

these high values of the heterogeneity rate . Indeed, overlapped values cannot be considered significantly different, whereas 

they correspond to two different  values. Such behaviour is not seen for the other considered measures. In this regard, an 30 

overall favorable larger distance between interquantile ranges is found for �′, followed by PCI and then GI. However, the 

four considered measures present an overlapping for  = 0% and 10%. This may imply an unappropriated ranking of the 
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regions related to these very small values of , yet those regions are less common in practice. In summary, �′ obtains the best 

performance for the variability evolution analysis. It presents a small variability for a given  value; and it almost presents no 

overlapping between interquantile ranges for varying . 
4.4. Effect of discordant sites 

The effect of discordant sites (Sect. 2.5) is shown in Fig. 7. The mean values of the heterogeneity measures over Ns = 500 5 

are obtained when replacing k sites (with k = 1,…, 10) in an initially homogeneous region (with N = 20) by k discordant sites 

belonging to a given parent distribution defined by � . Note that unlike Fig. 1, where the heterogeneity value of two kinds of 

regions with the same degree of heterogeneity but different regional L-CV may be compared; in Fig. 7 progressive changes 

in the heterogeneity of a single homogeneous region are assessed. For the mixed region formed by sites from both  � and  �, 

the overall results confirm that the considered measures involve larger values of Z for larger k values, as a result of replacing 10 

a larger number of discordant sites in the region; and larger values of Z as the difference between  � and  �  increases, as a 

result of replacing sites with a larger discordance (Fig. 7a).  

However, when   � >  � (Fig. 7b) the measures face some difficulties in ranking the degree of heterogeneity for high values 

of k. This is due to the larger sample variability entailed by the discordant sites in such a case, which makes the whole mixed 

region seem less heterogeneous. Note that this is also the reason of the lack of asymmetry of the results regarding the vertical 15 

line at the midpoint of the x-axis (i.e.  �  = 0.25 =  �). Nevertheless, not all measures are equally affected by this issue. GI 

obtains the best results, as for instance it is able to differentiate the degree of heterogeneity for k ≤ 8 when  �  = 0.35 and 0.4. 

It is followed by PCI, which behaves properly for k ≤ 8 when  �  = 0.35 and for k ≤ 7 when  �  = 0.4; and by �′, which obtains 

adequate results for k ≤ 7 when  �  = 0.35 and k ≤ 6 when  �  = 0.4. The worst results are obtained by H, which only behaves 

properly for k ≤ 6 when  �  = 0.35 and k ≤ 4 when  �  = 0.4. Results for the sub-region formed by the remaining (N - k) sites 20 

of the initial homogeneous region (Fig. 7a) support the results in Fig. 2, as H and GI are practically not affected by the 

number of sites of the homogeneous region, while �′ and PCI present a slight decrease in their heterogeneity values as the 

number of sites (N - k) decreases. In summary, GI presents the best results for the analysis of discordant sites.  

5 Discussion 

Overall, GI can be considered as the best heterogeneity measure among all the evaluated measures, closely followed by �′ 25 

(see a summary in Table 1). However, as expected, none of the measures are perfect, due to their inability to perfectly fulfill 

all the desirable properties in practice. GI presents the advantage of being computed as a measure of the standardised mean 

distance between pairs of �  values. Hence, it does not depend on any assumptions concerning parameters or parent 

distributions. �′ is similar but it specifically depends on the estimate of the regional average ��, as it compares it to each �  
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value. Thus, due to the similar but slightly better results obtained by GI and its widely accepted use in other fields, the use of 

GI would be preferable in practice.  

H is by nature the statistic of a homogeneity test. Hence, it is defined to identify whether a given region can be considered as 

homogeneous or not, not to compare the heterogeneity degree of several regions. Note that this is also valid for other test 

statistics (e.g. AD). As a consequence of the intrinsic disadvantages of H (see Sect. 1) and the obtained results, the use of H 5 

as a heterogeneity measure for ranking regions is not recommended. The unsatisfactory results obtained for �′ and  could 

be related to the way in which t and �  are combined (see Sect. 3), which may not be appropriate for assessing the degree of 

regional heterogeneity. The unsuitable results associated with ‖ ‖ could be related to considering the whole information 

of the data, which may mask the effect of factors favouring heterogeneity. It should be noted that other norms aside from the 

one in Eq. (15) were considered, but they did not lead to better performances. Further research should focus on the 10 

development of a better adaptation of the entropy-based measures to estimate the degree of regional heterogeneity.   

The PCI measure is obtained without assuming a given parent distribution of the data; although it considers a log-Student 

distribution for estimating the L-CV confidence interval. Also, even though it depends partially on the selected confidence 

level, mean PCI values over Ns = 500 for different confidence levels (90% and 95%) were found to be highly correlated (not 

shown). This fact removes subjectivity from the use of PCI as a heterogeneity measure, as for such a purpose only the ranking 15 

of values is needed. It is also important to highlight the stable performance of PCI regardless of the value of  �. This makes 

PCI outperform GI and �′ for identifying the most heterogeneous region when such a region has a much lower  � than others 

to be compared with (see Table 2). As a consequence, PCI and GI could be used together in practice as two different and 

complementary criteria. This is common in other applications; for instance several criteria are commonly applied when 

ranking candidate distributions (e.g. the Akaike information criterion and the Bayesian information criterion). It is important 20 

to mention that the use of PCI as a homogeneity test in practice may lead to the false rejection of homogeneous regions. 

Indeed, even when a region is ‘perfectly’ homogeneous ( = 0%) the mean value of PCI may indicate slight heterogeneity 

(e.g. it is slightly larger than 10% in Fig. 1).  

As indicated in Sect. 1, the heterogeneity measures selected in this study may be used for the assessment of the degree of 

heterogeneity of regions obtained through the use of different delineation methods. When a region is divided into several 25 

sub-regions by a given delineation method, the GI (or PCI) value can be evaluated at each sub-region. Then, the average 

value can be used to compare several delineation methods applied on the given region. The best delineation method will be 

the one with the lowest GI (or PCI) value for the region of study (see Sect. 6 for an illustrative application). It is important to 

note that a heterogeneity measure should not be used as a decision variable for the delineation of regions, as it would imply 

using redundant information at different steps of the regional analysis. The heterogeneity measure can also be used for 30 

evaluating the heterogeneity of a given region when particular sites are removed, with the aim of helping in the identification 

of homogeneous regions. For instance, if a region is found as heterogeneous by using a given test and by entailing a number 

of discordant sites, the heterogeneity measure can help in the identification of the ‘most homogeneous region’ as a result of 

removing different combinations of sites. However, it is important to highlight that physical reasoning has to be provided for 
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removing a given (discordant) site. Thus the heterogeneity measure serves only as a facilitator for the identification of the 

site(s) to be further analysed (e.g. Viglione, 2010; Ilorme and Griffis, 2013).  

6 Illustrative application 

An illustrative application on observed data is presented for didactical purposes. The considered case study consists of 44 

sites from the hydrometric station network of the southern part of the province of Quebec, Canada (for more description of 5 

the data and the region see Chokmani and Ouarda, 2004). The flow data are managed by the Ministry of the Environment of 

Quebec Services. Descriptors and at-site spring flood quantiles are available for the considered sites (Kouider et al., 2002). A 

summary of the statistics associated with spring maximum peak flow data, relevant descriptors for flood frequency analysis 

(e.g. Shu and Ouarda, 2007) and at-site spring flood quantiles is shown in Table 3. Note that due to the data used in this 

application are observed instead of simulated, the real degree of heterogeneity of the regions, as well as the real parent 10 

distribution of the data are unknown. Thus, it is not possible to truly compare the performance of the different heterogeneity 

measures. In this regard, it is important to remark that the purpose of this illustrative application is then to show that 

commonly used criteria for identifying the best method for delineating regions may be subjective, as well as to guide 

practitioners in the use of heterogeneity measures.  

The heterogeneity of the whole study region is evaluated by using a homogeneity test (Hosking and Wallis, 1997), resulting 15 

in a heterogeneous region (H > 2, see Table 4). Hence, the region is then divided into sub-regions by using cluster analysis 

(e.g. Burn, 1989) with the Ward’s method, as it is one of the most applied in hydrology (e.g. Hosking and Wallis , 1997; 

Mishra et al., 2008). Because of the illustrative character of this application, three simple clustering settings are considered 

as the different delineation methods. Clustering A consists in applying cluster analysis based on catchment area, annual 

mean total precipitation and annual mean degree-days below 0°C (see Table 3). Clustering B applies it only based on 20 

catchment mean slope; and Clustering C applies it based on catchment slope and fraction of the catchment controlled by 

lakes (see Table 3).  

The results obtained by applying the best heterogeneity measure found in the present study, the GI, are shown in Table 4. For 

comparison purposes, the results obtained by applying commonly used criteria for identifying the best delineation method 

are also shown. They are H, and the quantile error calculated as the relative root mean square error (RRMSE) (see Sect. 1). 25 

No more results are shown for space reasons and simplicity. Remind that the lower the heterogeneity measure or RRMSE 

value is, the better the delineation method will be. Note that in this case study, identifying the best delineation method 

implies identifying the best clustering setting. Two distributions commonly used in regional flood frequency analysis are 

considered when applying the index-flood method (Dalrymple, 1960) for estimating the quantiles to be evaluated through the 

RRMSE. These distributions are the GEV and the generalised logistic (GLO) distribution; and the quantiles to be evaluated 30 

are the 10- and 100-year return period (T) spring flood quantile. RRMSE results related to a given distribution are only 
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shown in Table 4 if the regional distribution is accepted by a goodness-of-fit measure (Hosking, 2015). For comparison 

purposes, RRMSE results are obtained even if the given region is not “homogeneous” according to the homogeneity test.  

According to the results in Table 4, H average identifies Clustering B as the best delineation method. Nevertheless, due to H 

is based on simulations, the H value for the sub-regions slightly change if the procedure is repeated. In this particular case 

study, this implies that in some cases H average in Clustering B becomes larger than H average in Clustering A, and then 5 

Clustering A may be selected as the best one. Moreover, although not happening in this case study, it may occur that H has 

negative values which may also complicate the evaluation of its average.  

RRMSE average for T = 100 identifies Clustering A as the best delineation method. However, RRMSE average for T = 10 

identifies Clustering C as the best one. Hence, a different decision is taken depending on the quantile considered for the 

assessment. Besides, it is also relevant to indicate that the selection of the best delineation method based on RRMSE may 10 

also depend on the regional distribution used. For instance, different distributions could be accepted for a given sub-region, 

resulting in different RRMSE values which could affect the final decision. In this regard, it is important to remark that when 

observed data are used, it is not possible to know neither the real regional parent distribution of the data, nor the real parent 

distribution to be used in obtaining the at-site quantiles used for evaluating RRMSE.   

In the present application, the GI identifies Clustering A as the best delineation method. The GI seems to be a more objective 15 

criterion for identifying the heterogeneity of a region than criteria commonly used in practice. Besides, its use as 

heterogeneity measure is supported by the four-step simulation-based assessment procedure performed in the present paper. 

It is worth mentioning that Clustering A could be ideally assumed to be the best setting for forming sub-regions, as it is 

based on relevant descriptors for flood frequency analysis. However, this would just be an assumption that cannot be verified 

due to the use of observed data. 20 

7  Conclusions 

Delineation of homogeneous regions is required for the application of regional frequency analysis methods such as the index 

flood procedure. The availability of an estimate of the degree of heterogeneity of these delineated regions is necessary in 

order to compare the performances of different delineation methods or to evaluate the impact of including particular sites. 

Due to the unavailability of a well-justified and generally recognised measure for performing such comparisons, a number of 25 

studies have relied on measures that are not well-defined or approaches that involve additional steps during the delineation 

stage of regional frequency analysis. 

In the present paper, a simulation-based general framework is presented for assessing the performance of potential 

heterogeneity measures in the field of regional hydrological frequency analysis (RHFA), according to a number of desirable 

properties. The proposed four-step assessment procedure consists of: sensitivity analysis by varying the factors of a region; 30 

evaluation of the success rate for identification of the most heterogeneous region; estimation of the evolution of the 

variability for the heterogeneity measure average with respect to the degree of regional heterogeneity; and study of the effect 
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of discordant sites. The procedure is applied on a set of measures including commonly used ones, measures that are derived 

from recent approaches, and measures that are adapted from other fields to the regional hydrological context. The 

assumption-free Gini Index (GI) frequently considered in economics and applied here on the L-variation coefficient (L-CV) 

of the regional sites obtained the best results. A lower performance was obtained for the measure of the percentage of sites 

(PCI) for which the regional L-CV is outside the confidence interval for the at-site L-CV. However, this measure was 5 

considered relevant because of its stable behaviour regardless of the regional value of L-CV. The application of both 

measures may be recommended in practice. The use of different criteria to determine the degree of regional heterogeneity 

can help adequately identify the sites to be further analysed for obtaining homogeneous regions. Further research efforts are 

necessary to develop robust and general heterogeneity measures in the field of RHFA. In this study, an illustrative 

application is also included for didactical purposes. The subjectivity related to commonly used criteria in assessing the 10 

performance of different delineation methods is underlined through it. In this regard, further research may also focus on the 

application of heterogeneity measures to a variety of case studies in order to analyse practical aspects.  
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Table 1. Summary of the results of the studied measures for the four-step assessment procedure. The behaviour of a 

given measure for each sensitivity analysis in step (i) is graded as: good (G), acceptable (A), bad (B) or unacceptable 

(U). Measures entailing an ‘unacceptable (U)’ behaviour are not assessed by the rest of steps; yet a complete 

assessment of H is performed for comparison purposes. For steps (ii), (iii) and (iv) considered measures are ranked 

from the best results (1
st
) to the worst results (4

th
).  5 

Measures 

(i) Sensitivity analyses 

(ii) Success 

rate (SR) 

(iii) Variability 

evolution 

(iv) Effect of 

discordant sites  N  �  n 

 = 0%  = 50% 

H G G U B B 3
rd

 * 4
th

 *** 4
th

 

 A G U B B - - - �′ G A G A A 2
nd

 1
st
 3

rd
 �′ A A G U B - - - 

AD A U U U B - - - 

PCI G A A A B 4
th

 ** 2
nd

 2
nd

 

GI G G A A A 1
st
 3

rd
 1

st
 ‖ ‖ A U U B B - - - 

 

(*) High limitations for given circumstances; (**) Favorable stable values regardless of  � ; (***) Unacceptable results. 
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Table 2. Summary of the success rate (SR) minimum, average and maximum of the considered measures (H, �′, PCI 

and GI), expressed in percentage, when comparing the heterogeneity of two regions A and B. For a given    and  , 

such values are computed as the minimum, average and maximum of SR over 48 cases, respectively. For each case, 

SR is obtained as the mean over Ns = 500 simulations of two regions with n = 30 and given NA, NB, A and B. Values in 

bold indicate the measure obtaining the largest SR minimum, SR average and SR maximum, respectively.  5 

   vs.         
Minimum Average Maximum 

H �′ PCI GI H �′ PCI GI H �′ PCI GI 

  =   
0.2 0.2 33 47 40 50 74.5 77.9 67.3 77.7 99 99 91 100 

0.3 0.3 36 46 34 51 72.2 74.4 65.1 75.2 98 94 87 98 

  <   
0.1 0.4 7 69 36 57 58.8 86.4 61.4 85.7 87 98 83 98 

0.2 0.3 24 59 40 62 68.1 81.0 64.1 80.8 96 97 88 98 

  >   
0.3 0.2 47 34 33 34 77.3 70.4 67.6 71.8 100 96 92 97 

0.4 0.1 33 14 26 15 80.5 61.0 69.1 63.3 100 94 95 99 

Total average: 30 45 35 45 71.9 75.2 65.8 75.7 97 96 89 98 
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Table 3. Summary of the statistics of descriptors, spring maximum peak flow series, and available at-site quantiles for 

the 44 sites considered in the illustrative application. 

Variables Unit Min Mean Max Std. 

Descriptors 

Catchment area km
2
 208 1062 5820 1075 

Catchment mean slope % 0.99 2.67 6.81 1.29 

Fraction of the catchment controlled by 

lakes 
% 0.1 1.63 5 1.38 

Annual mean total precipitation mm 932 1057 1195 62 

Annual men degree-days below 0°C 
degree-

day 
8589 11769 14158 1432 

Spring 

maximum 

peak flow 

series 

Data length years 15 36 80 16.7 

At-site mean m
3
s

-1
 46.7 235.1 1137.4 209.7 

At-site L-CV (t)  0.145 0.199 0.319 0.036 

At-site L-skewness (t3)  -0.032 0.139 0.404 0.098 

At-site 

quantiles 

10-  year spring flood quantile m
3
s

-1
 70.8 342.49 1616.08 298.93 

100-year spring flood quantile m
3
s

-1
 107.8 469.11 2006.38 375.52 
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Table 4. Results of the illustrative application: heterogeneity measures H and GI, and RRMSE. RRMSE values are 

associated with the GLO regional distribution; RRMSE values within parenthesis are associated with the GEV 

regional distribution. Bold values indicate the best result for each criterion.  

Clustering 
Sub-

region 

Nbr 

sites 

H   GI   RRMSE (%) 

Value Average  Value Average  
T = 100   T = 10 

    Value Average   Value Average 

Whole region 44 2.21 2.21   0.092 0.092   17.81 17.81   5.81 5.81 

A 
A1 31 2.06 

1.23 
  0.101 

0.087 
  18.03 

14.94 
 6.26 

5.64 
A2 13 0.4   0.074   (11.85)  (5.01) 

B 
B1 25 0.49 

1.21 
  0.077 

0.094 
  16.34 

18.26 
 5.22 

5.93 
B2 19 1.93   0.111   20.18  6.63 

C 
C1 26 2.05 

1.39 
 0.100 

0.091 
 18.46 

16.92 
 6.22 

5.48 
C2 18 0.73  0.082  (15.38)  (4.74) 
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Formatted Table

Deleted: ¶
Weighted average

Deleted: ¶
2.21

Deleted: ¶20 
1.57

Deleted: ¶

1.11

Deleted: ¶
1.5125 
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Fig. 1. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15, 

n = 30 and � = 0.2) varying the heterogeneity rate ; and (b) (d) comparison of the corresponding mean with the one obtained by 

considering � = 0.4. 
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Fig. 2. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and � = 0.2), with a heterogeneity rate  = 0%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering � = 0.4. 
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Fig. 3. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and � = 0.2), with a heterogeneity rate  = 50%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering � = 0.4. 

 5 

 

Fig. 4. Sensitivity analysis: mean of H and �� over Ns = 500 simulations of the reference region (n = 30 and � = 0.2) for a 

heterogeneity rate  = 100%, varying the number of sites N. 
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Fig. 5. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15 

and � = 0.2), for a heterogeneity rate  = 0% and  = 50%, varying the data length n; and (b) (d) comparison of the corresponding 

mean for  = 0% and  = 50%. 
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Fig. 6. Boxplots of representative values of the heterogeneity measure average obtained for 22 cases, varying the heterogeneity rate  in the x-axis. For each case, such a representative value is obtained as the average between a given region A and a given region B 

over Ns = 500 simulations of the given regions, entailing the same  (i.e. A = B) but different characteristics (i.e. NA ≠ NB or NA = 

NB with   ≠  ).  5 
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(a) 

 

(b) 

Fig. 7. Mean values of the heterogeneity measures over Ns = 500 simulations of a given homogeneous region with N = 20 sites, n = 5 
30 and �= 0.25, for which k sites are replaced by k discordant sites generated by a GEV with L-Cv �, varying � in the x-axis: (a) 

full plot; and (b) zoom to the right part of the x-axis. 

 


