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Abstract. Observed groundwater head and soil moisture profiles are assimilated into an integrated hydrological model. The 9 

study uses the Ensemble Transform Kalman Filter (ETKF) data assimilation method with the MIKE SHE hydrological 10 

model code. The method was firstly tested on synthetic data in a catchment of less complexity (the Karup catchment in 11 

Denmark), and later implemented using data from real observations in a larger and more complex catchment (the 12 

Ahlergaarde catchment in Denmark). In the Karup model, several experiments were designed with respect to different 13 

observation type, ensemble size and localization scheme, to investigate the assimilation performance. The results showed the 14 

necessity to using localization especially when assimilating both groundwater head and soil moisture. The proposed scheme 15 

with both distance localization and variable localization was shown to be more robust and provide better results. Using the 16 

same assimilation scheme in the Ahlergaarde model, groundwater head and soil moisture were successfully assimilated into 17 

the model. The hydrological model with assimilation showed an overall improved performance compared to the model 18 

without assimilation. 19 

  20 
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1 Introduction 1 

Integrated hydrological modelling plays an important role in water resources management to develop sustainable 2 

environmental and economic schemes. Integrated models offer advantages with respect to incorporating different physically-3 

based hydrological processes and providing a consistent prediction of different hydrological variables. Hydrological data 4 

assimilation aims to utilize the information embedded in hydrological observations for improving the performance of 5 

hydrological models. Data assimilation (DA) has the advantage to exploit both imperfect models and limited observations 6 

considering uncertainties on both to provide a more accurate prediction.  7 

Groundwater head and soil moisture are two key variables in hydrological modelling of the saturated and unsaturated zones 8 

respectively. Several applications of assimilating each variable individually in either groundwater models or land surface 9 

models have been reported. For example, Chen and Zhang (2006) presented an application of the Ensemble Kalman Filter 10 

(EnKF) to a groundwater flow model with updating of both groundwater head and hydraulic conductivity. De Lannoy et al. 11 

(2007) applied EnKF for soil moisture state and bias estimation in a small field using the CLM (Community Land Model). 12 

There are also few studies with assimilating both groundwater head and soil moisture. For example, Visser et al. (2006) used 13 

groundwater head and soil moisture data to re-calibrate the SWAP (Soil, Water, Atmosphere and Plant) model on-line using 14 

a simplified form of Newtonian nudging, and showed superior results compared to off-line calibration. Camporese et al. 15 

(2009a) used Newtonian nudging (NN) and the EnKF to assimilate synthetic observations in a coupled surface–subsurface 16 

flow model. 17 

The use of multivariate assimilation in integrated hydrological models provides great potential to deepen our understanding 18 

of the value of different measurement data. Several studies of multivariate assimilation applications in integrated 19 

hydrological models have been reported. Xie and Zhang (2010) applied EnKF to the Soil and Water Assessment Tool 20 

(SWAT), with updating of multiple states and parameters including runoff, soil moisture and evapotranspiration. Camporese 21 

et al. (2009b) used EnKF in the CATHY (CATchment HYdrology) model with coupled surface and subsurface flow, to 22 

assimilate groundwater head and stream discharge. Rasmussen et al. (2015) assimilated the same variables using the 23 

ensemble transform Kalman filter (ETKF) with the MIKE SHE model. Kurtz et al. (2014) jointly assimilated groundwater 24 

heads and groundwater temperatures with EnKF using both synthetic and real-world models. Shi et al. (2014) employed 25 

EnKF to assimilate multivariate hydrological states in a small catchment modelled by the land surface model Flux-PIHM, 26 

with a focus on parameter estimation. Lee et al. (2011) used a variational assimilation approach to assimilate streamflow and 27 

in-situ soil moisture, to correct the soil moisture profiles within the HL-RDHM model. Ridler et al. (2014b)  developed a 28 

generic DA framework that enables coupling hydrological models with the OpenDA library (http://www.openda.org) using 29 

the Open Model Interface OpenMI (Gregersen et al., 2007), and applied it with the MIKE SHE model. Han et al. (2015) 30 

developed an open source multivariate DA framework DasPy for the Community Land Model.  Although many multivariate 31 

DA platforms and applications have been reported, assimilating both soil moisture and groundwater head in an integrated 32 
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hydrological model has not been studied in detail. Representing two important hydrological variables, their observational 1 

values by assimilation in integrated hydrological models are explored in this study. 2 

Meanwhile, techniques have been developed for multivariate DA. The most straightforward approach used in integrated 3 

models is state augmentation, which is commonly applied with EnKF and its variants, with nearly no additional 4 

modifications on algorithms. The observation vector can be extended to accommodate multiple types of observations. 5 

Similarly, the state vector can be augmented to include all relevant state variables, and possibly model parameters. The 6 

covariance matrix is thereby expanded to a block matrix where each block presents the cross-covariance between variables in 7 

the state vector (Montzka et al., 2012). A potential challenge in this respect is that implementing EnKF techniques like 8 

localization no longer becomes straightforward. Commonly used localization techniques usually belong to covariance 9 

localization (Hamill et al., 2001) or local analysis (Anderson, 2003). When updating a single state variable with 10 

corresponding measurements, distance localization is usually used to reduce the impact of long distance sampling errors in 11 

the forecast error covariance due to a limited ensemble size. When there are more than one state variable, the degree of 12 

localization for each variable needs to be appropriately specified. Another incidental fact in multivariate DA is that the 13 

spurious correlation across variables is usually more pronounced leading to deterioration of the model updating. To 14 

overcome this problem, Kang et al. (2011) successfully introduced ‘variable localization’ in addition to distance localization 15 

and tested this with the local ensemble transform Kalman filter (LETKF) in a carbon cycle model.  16 

In this study, we systematically investigate the performance of a filter assimilating soil moisture and groundwater head, with 17 

respect to the assimilated variable type, localization scheme and ensemble size. The assimilation method is based on ETKF 18 

(Bishop et al., 2001), distance localization using local analysis (Sakov and Bertino, 2010), and variable localization (Kang et 19 

al., 2011). The approach is first tested on a catchment of less complexity (the Karup catchment in Denmark) and using 20 

synthetically generated data, and later implemented in a larger and more complex catchment (the Ahlergaarde catchment in 21 

Denmark) using real data. From the methodology point of view, the novelty of this study is the use of advanced multivariate 22 

assimilation methodologies in combination with application of different localization schemes. From the application point of 23 

view, the novelty of this study is to investigate the value of assimilated variables and their impact on other processes through 24 

integrated hydrological modelling in a complex catchment using real data.   25 

The paper is organized as follows: the two study areas and the hydrological modelling processes are introduced in section 2; 26 

the detailed assimilation methodology is described in section 3; section 4 presents the experimental settings and the 27 

assimilation results based on the Karup catchment; section 5 presents the real observations, experimental settings and the 28 

results based on the Ahlergaarde catchment; and finally general discussions and conclusions are given in section 6. 29 
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2 Hydrological Modelling 1 

2.1 Study areas 2 

Two study areas in Denmark are used in this study. The 440 km
2
 Karup catchment is located in the centre of Jutland (left in 3 

Fig. 1). The land use is mainly agriculture, and topographical elevation is between 20 and 100 m. The catchment lies in an 4 

alluvial plain with coarse sandy soils and a strongly groundwater dominated hydrological regime. The Ahlergaarde 5 

catchment is located in one of the most irrigated areas of Denmark (right in Fig. 1). Of the total catchment area of 1044 km
2
, 6 

61% is covered by agricultural crops. The surface geology consists mostly of sand and also in this catchment the streamflow 7 

is dominated by groundwater inflow.  8 

The Karup catchment is a well-studied catchment in terms of model parameterisation and model calibration (Refsgaard, 9 

1997;Madsen, 2003;Zhang et al., 2015). A relatively simple model with fast computation time was developed for this 10 

catchment to test and verify various DA methods. The Ahlergaarde catchment is the research catchment of the Danish 11 

Hydrological Observatory (HOBE) (Jensen and Illangasekare, 2011). This study area is ideal to further test DA methods 12 

using real measurements.  13 

2.2 Hydrological model 14 

The MIKE SHE hydrological modelling system is used for developing models for the above two catchments. As a 15 

physically-based distributed hydrological model, MIKE SHE simulates the major processes in the water cycle including 16 

evapotranspiration, overland flow, unsaturated flow, groundwater flow, river flow and the interactions between them. MIKE 17 

SHE also has the flexibility of modelling each process at given spatial and temporal resolutions with different complexity. 18 

The complexity can be chosen according to the model purpose and data availability (Graham and Butts, 2005).   19 

In the Karup catchment, the modelling is based on the following process descriptions: 2D groundwater flow is assumed and  20 

modelled by one computational layer in the saturated zone, drain flow (pipes/ditches) is described by a simple conceptual 21 

relationship and occurs when the groundwater table exceeds the drain level, 1D unsaturated flow is assumed and based on a 22 

simplified gravity-based flow equation, 1D channel flow is assumed and based on kinematic routing, 2D overland flow 23 

routing is based on the diffusive wave approximation of the Saint Venant equations, evapotranspiration is described 24 

including interception, soil evaporation and transpiration by vegetation (DHI, 2015). The numerical discretization in the 25 

horizontal plane is 1000 x 1000 m
2
 grid size. The model is forced by station-based daily precipitation and uniform daily 26 

values for reference evaporation. In the MIKE SHE model, the temporal resolution is dynamic and differs between the 27 

modules.  For the maximum allowed time step 6 hours is specified for overland flow, 6 hours for unsaturated flow and 12 28 

hours for saturated flow respectively.  29 

For the Ahlergaarde catchment, the same model components are included as for the Karup catchment. For computational 30 

efficiency, and due to the fact that the exact irrigation information in terms of both location and amount is not known, the 31 

irrigation module is not activated in the model. The modelling approaches are the same as for Karup except that 3D 32 
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groundwater flow is considered with six numerical layers defined according to geological stratigraphy. Another main 1 

difference is that the model uses a smaller grid size (200 x 200 m
2
). The finer model discretisation enables the model to 2 

utilize finer resolution system data such as geological stratigraphy, soil type and land use. The model is forced with grid-3 

based daily precipitation, temperature and reference evaporation. In both catchments no-flow boundaries are defined along 4 

the catchment borders. The temporal resolution in the model is constrained by maximum time steps of 2 hours for overland 5 

flow, 2 hours for unsaturated flow and 6 hours for saturated flow respectively. The model parameterisation and model 6 

calibration are introduced in the section 2.3.  7 

The finer model resolution and increased complexity for the Ahlergaarde catchment increases the simulation time 8 

significantly. For example, the average model time step in the groundwater zone decreases from 7.5 hours in the Karup 9 

model to 1.3 hours in the Ahlergaarde model. In consequence one year’s model simulation takes less than one minute for 10 

Karup and around one hour for Ahlergaarde. The differences in model resolution and simulation time for the two catchments 11 

are summarized in Table 1. 12 

2.3 Model calibration 13 

For both catchments, the model parameterisation is kept relatively simple yet able to represent the overall spatial patterns of 14 

key model parameters. When specifying the parameter values for each property class (e.g., geological unit, vegetation types 15 

and soil types), most of the parameters cannot be estimated empirically or directly inferred from data. Thus model calibration 16 

is usually required using an optimization algorithm like AUTOCAL (Madsen, 2003) or PEST (Doherty, 2010).  17 

For the Karup model, the most sensitive parameters describing the hydraulic properties of the river, unsaturated zone, 18 

saturated zone, and river-aquifer interaction are calibrated using AUTOCAL (Zhang et al., 2015). As calibration data we use 19 

35 biweekly groundwater head observations and daily observations of stream discharge for a six year period (1969-1974) 20 

(Fig. 1).  21 

The Ahlergaarde model is calibrated using PEST version 11.8 (Doherty, 2010). The data used in the calibration are 22 

groundwater head observations (466 in total) scattered over the catchment (not shown in Fig. 1) and river discharge 23 

observations from the period of 2006-2009. In most of the groundwater wells only one observation is available for the entire 24 

calibration period and only few wells have time series. Discharge data comprise time series of daily values from five stations 25 

(Fig. 1). Similar to the Karup catchment, the most sensitive parameters (seven parameters) are selected for calibration, with 26 

13 parameters tied to those seven parameters. The calibrated values for those seven parameters are listed in Table 2 (first 27 

seven parameters) together with the confidence intervals obtained from the inversion process. The rest parameters in Table 2 28 

are not included for calibration, but only selected for perturbation with detailed explanation given in section 5. The original 29 

calibrated model uses a simplified two-layer approach to simulate unsaturated flow and evapotranspiration, where the 30 

average soil moisture is calculated for the root zone and the layer below the root zone. In order to assimilate in-situ soil 31 

moisture data at different depths, the gravity flow module is used as a replacement of the two-layer approach in the 32 
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unsaturated zone. By doing so, soil moisture can be calculated at different depths. The overall modelling performance in 1 

terms of water balance and discharge dynamics becomes marginally reduced compared to the original calibration results. 2 

3 Data assimilation 3 

3.1 Ensemble transform Kalman filter 4 

The assimilation algorithm used in this study is the ETKF, which is a popular variation of the EnKF (Evensen, 2003). 5 

Similar to EnKF, ETKF is a Monto Carlo implementation of the Kalman filter, which approximates the posterior probability 6 

distribution conditioned on a series of observations, and is able to deal with nonlinear models. In comparison to EnKF, 7 

ETKF is a deterministic filter as it does not require additional observation perturbations. The ETKF was originally 8 

introduced by (Bishop et al., 2001), and later modified to be unbiased (Wang et al., 2004). As an ensemble-based 9 

deterministic filter, it has the advantage to calculate the forecast error covariance efficiently. It is also computationally faster 10 

than the ensemble square root filter (EnSRF) (Whitaker and Hamill, 2002).   11 

To develop the DA algorithm, a state-space formulation is needed  12 

  𝑋𝑡+1 = 𝑀(𝑋𝑡 , 𝑈𝑡 , 𝜃) ≈ 𝑀𝑑(𝑋𝑡 , 𝑈𝑡̃ , 𝜃̃) (1) 

where 𝑀  is the stochastic model operator based on the numerical solution to the MIKE SHE equations, 𝑀𝑑  is the 13 

deterministic MIKE SHE model operator, 𝑋𝑡 and 𝑈𝑡  are the state vector and model forcing respectively at time step t, 𝜃 14 

stands for the model parameters. 𝑈𝑡̃ and 𝜃̃ are the perturbed forcing and parameters respectively. Note that the stochastic 15 

model operator 𝑀 is approximated by the deterministic MIKE SHE model with taking both model forcing uncertainty and 16 

model parameter uncertainty into account (Zhang et al., 2015). In both models, precipitation and potential evapotranspiration 17 

are perturbed by adding a random Gaussian noise to the actual value. The parameter uncertainty is described mainly using 18 

the covariance estimated from calibration. The selected parameters are assumed to be multivariate normal/lognormal 19 

distributed and perturbed using Latin hypercube sampling based on the associated parameter covariance. Additional post-20 

processing steps are used to ensure that the perturbed parameters are still within realistic parameter ranges.   21 

At time t +1, the observations can be written as, 22 

  𝑌𝑡+1 = 𝐻𝑋𝑡+1 + 𝜀𝑡+1, 𝜀𝑡+1~𝑁(0, 𝑅𝑡+1) (2) 

where 𝑌  denotes the observation vector, and 𝐻  is the linear mapping operator specifying the deterministic relationship 23 

between observations and model state 𝑋. In this study, the observations are either groundwater head, soil moisture or both. 24 

Similarly, the state vector consists of groundwater head, soil moisture, or both. When two variables are assimilated, the state 25 

vector is augmented to accommodate both variables at all computational cells, and the observation operator 𝐻 is revised to 26 

select the correct model equivalent and compare with the corresponding observation. The observation noise is assumed to be 27 

Gaussian, temporally-uncorrelated, spatially-uncorrelated, with zero-mean and a prescribed constant standard deviation 𝜎𝑟 28 
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for each observation type. Therefore, 𝑅𝑡+1 is a diagonal matrix with constant values for each observation along the diagonal 1 

(i.e., 𝑅𝑡+1 = 𝑑𝑖𝑎𝑔(𝜎𝑟1
2 , … , 𝜎𝑟1

2 , 𝜎𝑟2
2 , … , 𝜎𝑟2

2 , … , 𝜎𝑟𝑜
2 , … , 𝜎𝑟𝑜

2 )) for total o observation types. 2 

The forecast state distribution can be estimated by a finite number m of model realisations from Eq.(1) as follows,   3 

  𝑋𝑓 = [𝑥𝑓1, 𝑥𝑓2, … , 𝑥𝑓𝑚] (3) 

where the superscript f stands for ‘forecast’.  4 

The forecast error covariance can be written as  5 

  𝑃𝑓 = 𝑋′𝑓(𝑋′𝑓)𝑇/(𝑚 − 1) (4) 

where 𝑋′𝑓 is the forecast ensemble perturbation  6 

  𝑋′𝑓 = [𝑥𝑓1 − 𝑋𝑓̅̅̅̅ , 𝑥𝑓2 − 𝑋𝑓̅̅̅̅ , … , 𝑥𝑓𝑚 − 𝑋𝑓̅̅̅̅ ] (5) 

and 𝑋𝑓̅̅̅̅  is the ensemble mean. After assimilation, both the analysed state mean and the analysed error covariance can be 7 

calculated:  8 

  𝑋𝑎̅̅ ̅̅ = 𝑋𝑓̅̅̅̅ + 𝐾(𝑌 − 𝐻𝑋𝑓̅̅ ̅̅ ̅̅ ) (6) 

  𝑃𝑎 = (𝐼 − 𝐾𝐻)𝑃𝑓 (7) 

where the superscript a stands for ‘analysed’, and 𝐾 is the Kalman gain defined as 9 

  𝐾 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)−1 (8) 

In practise, 𝑃𝑎 is never explicitly calculated and only the ensemble mean and ensemble anomalies are updated. Based on 10 

factorizing Eq. (7) on both sides the following equation is obtained: 11 

  𝑋′𝑎 = 𝑋′𝑓𝑇 (9) 

where  12 

  𝑇 = [𝐼 + (𝐻𝑋′𝑓)𝑇𝑅−1𝐻𝑋′𝑓/(𝑚 − 1)]−1/2𝑈 (10) 

and 𝑈 is an arbitrary orthonormal matrix 𝑈𝑈𝑇 = 𝐼. 13 

The MIKE SHE model is coupled with a generic DA library that handles the time propagation and update of the model 14 

ensemble based on the ETKF (Ridler et al., 2014b). 15 

3.2 Localization 16 

In ensemble based Kalman filter systems, the forecast state and its associated uncertainty are represented by a limited 17 

ensemble of realizations. The undersampling can lead to filter inbreeding and spurious correlations in the error covariance 18 

matrix, which potentially can lead to filter divergence. Localization is a commonly used technique when applying ensemble 19 

based Kalman filters to overcome this problem. By artificially reducing the impacted spatial domain of observations, the 20 

spurious correlation between two remote locations can be avoided. For each element in the state vector, local analysis (LA, 21 

(Sakov and Bertino, 2010)) is used to approximate the state error covariance within the local window. The ensemble 22 

anomalies outside this local window will be unchanged during the filter updates. However, LA is usually applied to a single 23 

state variable for which certain spatial correlations exists. When the state vector contains two or more variables, specifying 24 
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the localization degree for each variable is not straightforward. More importantly, correlations between variables are not 1 

clear because physical distances between variables may not exist. Similar to the approach by Kang et al. (2011), we 2 

introduced different variable localization schemes based on whether the correction of one variable can impact the update of 3 

other variables. In this section, the distance localization will be introduced first followed by the variable localization.  4 

3.2.1 Distance localization 5 

We formulate the distance-localized ETKF equations with similar notations as in Sakov and Bertino (2010). A variable with 6 

an upper accent ‘i’ means a local variable, which is used to update the i'th element of the state vector. During the updating 7 

with localization, i is looped for each element in the state vector. For example, 𝐾
𝑖

 means the local Kalman gain, 𝑦
𝑖
 denotes the 8 

local observations associated with the i'th element in the state vector. In matrices, the subscript ‘i,:’ refers to the i'th row. To 9 

avoid the occasional sudden changes of analysis from one state vector element to the next one when an observation just 10 

arrives or exits the local window, an ensemble tapering with a distance-based taper function f(.) is used to ensure the impact 11 

of the observation is reduced gradually from the centre to the boundary within the local domain (Sakov and Bertino, 2010).  12 

Therefore, to update the i'th element, the localized-ETKF equations (Eq. (6), (9), (10)) become 13 

 
 𝑋𝑖

𝑎 = 𝑋𝑖
𝑓
+ 𝐾𝑖,:

𝑖

(𝑌
𝑖

− 𝐻
𝑖

𝑋𝑓
𝑖

) 
(11) 

 
 𝐾𝑖,:

𝑖

= 𝑋𝑖,:
′𝑓
𝑆𝑇
𝑖

(𝐼 + 𝑆
𝑖

𝑆𝑇
𝑖

)−1𝑅−1/2
𝑖

/√𝑚 − 1 
(12) 

 
 𝑋𝑖,:

′𝑎 = 𝑋𝑖,:
′𝑓
𝑇
𝑖

 
(13) 

 
 𝑇

𝑖

= (𝐼 + 𝑆
𝑖

𝑆𝑇
𝑖

)−1/2𝑈 
(14) 

 
 𝑆

𝑖

≝ 𝑅−1/2
𝑖

𝐻
𝑖

𝑋′𝑓
𝑖

/√𝑚 − 1 
(15) 

   

During the update, the observation 𝑌 , innovations 𝑌 − 𝐻𝑋𝑓  , observation error variance 𝑅  and ensemble observation 14 

anomalies 𝐻𝑋′𝑓 are tapered in line with the taper function f(.). The LA taper function is usually determined by the distance 15 

between two model points, which decreases from one to zero as the distance increases. Different choices of distance-16 

dependant covariance functions can be used according to dimension and physical property. For example, Sakov and Bertino 17 

(2010) use the Gaspari and Cohnv 1D taper function to compare different localization methods. Ridler et al. (2014a) use a 18 

2D squared exponential covariance function as taper function to localize the soil moisture updating. In this study, due to the 19 

difference in variable type and variable dimension, the taper function is chosen to be case specific based on the 2D squared 20 

exponential covariance function.  21 

For groundwater heads, in both catchments, the LA taper function is chosen to have a radius of 5 km, to include a relatively 22 

large number of observations to correct each node, and also to provide larger spatial influence of the update. For the 23 

Ahlergaarde catchment where the groundwater is modelled in 3D, the LA localization is applied to each layer with the same 24 
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radius. For soil moisture, the measurements usually represent a relatively smaller spatial scale. In both catchments, 1 

localization scales are specified to ensure that the state correction from the assimilated observation is localized. Horizontally, 2 

the taper function is chosen to have a radius of 1 – 5 km at the layer where soil moisture is screened. Because most of the 3 

data are measured in the surface and near-surface soil (5 - 25 cm depth), the water content in the upper layers (e.g., within 1 4 

m or 0.5 m depth) are expected to have a larger correction compared to the water content in deeper layers. Therefore, at 5 

depths below the soil moisture observation, we add a quadratically increasing cut-off value for the covariance function as the 6 

depth increases (Fig. 2).  7 

3.2.2 Variable localization 8 

Variable localization is an option when assimilating both groundwater head and soil moisture. Variable localization 9 

determines whether the information from one variable can be used to update the other. When variable localization is off, no 10 

matter the available observation type (groundwater head, soil moisture or both), all observation data are used to update the 11 

ensemble mean (Eq. (11)) and anomaly (Eq. (13)) for both variables. Therefore the correlation between the variables is kept 12 

during the assimilation. In addition, if distance localization is applied, the correlation exists in localized domains between 13 

variables. When variable localization is applied, each observation type will only be used to update its own type of state 14 

variable. Other variables in the state vector will be unchanged during update. If distance localization is applied, state updates 15 

are spatially localized within its own type of variable.  16 

Practically, the variable localization can be done by slight modifications to Eq. (11-15). The taper function is extended to 17 

have an ‘if/else’ statement prior to the existing distance-based taper function, depending on variable localization is chosen or 18 

not. Here we explain the process of updating one element when variable localization is applied. When looping over the i’th 19 

element in the state vector, the state in the ‘local’ window is selected first by ensuring it has the same variable type as in the 20 

i’th element, then calculating the weight according to the distance from the i’th element. For example, when updating soil 21 

moisture in a grid cell, the ensemble mean and anomaly will be unaffected by soil moisture observations outside the local 22 

window, as well as by groundwater head observations.  23 

4 Study in the Karup catchment 24 

In the Karup catchment experiment, the calibrated model described in section 2.3 is used as the deterministic model. The 25 

calibrated model has relatively good performance in reproducing the observations, with an averaged RMSE of around 1 26 

meter for groundwater head and a Nash Sutcliffe score of 0.4 for discharge at the catchment outlet. In Fig. 3 are shown 27 

examples demonstrating the model performance for a groundwater head station and a discharge station.  28 

The ensemble is generated by adding appropriate model error to the deterministic model. Similarly, given the predefined 29 

model error, a single random model realisation is generated to be the “true” model. Note that the “true” model here is only an 30 

assumption of reality. The model error is defined by perturbing both model forcing (precipitation and potential 31 
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evapotranspiration) and selected model parameters (Zhang et al., 2015). The ensemble is running freely from 1969/12/01 to 1 

1973/01/01 as a warm-up period. During the warm-up period, each ensemble member starts with the same initial condition 2 

but has different model trajectories because of different forcing and parameter values. It is important to generate an ensemble 3 

with a realistically large spread, so that the model uncertainty can be fully represented by the ensemble.  4 

The synthetic observations to be assimilated are generated from the “true” model. Given the true realization, by adding 5 

measurement errors to observed model variables at given time and location, a set of synthetic observations can be produced. 6 

Both groundwater head and soil moisture (depths of 5 cm and 25 cm) are extracted from the same 35 locations as the actual 7 

head observations (Fig. 1). The observation noise for each variable is assumed to be white Gaussian, with homogeneous and 8 

constant standard deviation of 0.15 m for head and 5% for the soil volumetric water content. Due to the fact that 9 

groundwater head has a much slower dynamic compared to the unsaturated flow, we assimilate head with weekly frequency 10 

and soil moisture with daily frequency.  11 

After the warm-up period, the synthetic observations are assimilated over a one year period from 1973/01/01 to 1974/01/01. 12 

Given the fact that the “true” model is known, the deterministic model can be seen as an imperfect model. With the purpose 13 

to combine the imperfect model and the synthetic observations, different experiments are carried out to investigate under 14 

which condition the assimilation result are most similar to the ‘true’ model. These experiments are designed using different 15 

observation variables, localization scheme and ensemble size. The assimilation performance can be assessed by taking the 16 

root mean square error (RMSE) between the model simulation and the true state for selected variables over the entire domain 17 

at all available time steps. As soil moisture measurements are depth-dependent, RMSE is calculated for each depth (each 18 

layer). Here we not only show the results from 5 cm and 25 cm depths where observations are assimilated, but also at 50 cm 19 

depth. In addition, other hydrological responses in the form of evapotranspiration and discharge are evaluated. 20 

4.1 Univariate assimilation 21 

When a single variable is assimilated (groundwater head or soil moisture), the state vector only consists of the corresponding 22 

observed variable at all model grid cells. Therefore, the remaining variables will not be changed directly from the filter. 23 

However, as both the groundwater component and unsaturated zone are fully coupled with surface water and other model 24 

components, the whole model state will be affected from updating a single variable. Different experiments are carried out 25 

using an ensemble size of 60:  26 

 27 

NoDA: deterministic model without DA.  28 

DA_H: assimilating head without localization.  29 

DA_HLoc: assimilating head with horizontal localization radius of 5 km. 30 

DA_SM5: assimilating soil moisture at 5 cm depth without localization. 31 

DA_SM5Loc: assimilating soil moisture at 5 cm depth with localization of 5 km spatial radius within 1 m depth.  32 

DA_SM5LocSmall: assimilating soil moisture at 5 cm depth with localization of 3 km spatial radius within 50 cm depth. 33 
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DA_SMBoth: assimilating soil moisture at both 5 cm and 25 cm depths without localization. 1 

DA_SMBothLoc: assimilating soil moisture at both 5 cm and 25 cm depths with 5 km spatial radius within 1 m depth. 2 

 3 

As the experiment names indicate, H stands for groundwater head and SM stands for soil moisture. Loc indicates that 4 

localization is added to the experiment. 5 

Results from the DA experiments are shown in Fig. 4. When head is assimilated (DA_H), RMSE for head improves 6 

significantly from 0.21 m to 0.08 m. However, soil moistures at the three depths are basically not influenced. When 7 

localization is used (DA_HLoc), the corrections are localized around the head observations and the overall performance is 8 

slightly degraded.  9 

When soil moisture at 5 cm depth is assimilated alone without localization (DA_SM5), the soil moisture profile clearly 10 

improves at all three depths. However, for head the performance is almost the same as in the deterministic model. Different 11 

localization scales have been tested with assimilating soil moisture at 5 cm depth (DA_SM5Loc and DA_SM5LocSmall). 12 

The result indicates that the overall assimilation performance decreases with smaller localization scale. 13 

When soil moisture at both 5 cm and 25 cm depths are assimilated (DA_SMBoth and DA_SMBothLoc), the performances 14 

are similar regardless of localization. Compared to result from DA_SM5, the soil moisture estimate improves at 25 cm while 15 

slightly worsens at 5 cm. Compared to DA_SM5Loc, the results show some improvements at 25 cm and 50 cm. Again, 16 

groundwater head is hardly influenced by assimilating soil moisture. In the following experiments, we include observations 17 

at both 5 cm and 25 cm when soil moisture is assimilated.  18 

As we can see from Fig. 4, univariate assimilation with localization improves the estimate of the assimilated variable albeit 19 

the results are slightly worse compared to the experiment without localization in the case of assimilating head or soil 20 

moisture at 5 cm. This could be explained as follows. Firstly, spatial correlations are affected by the catchment size and the 21 

relatively large grid size used. Pronounced correlations exist even between remote locations, and therefore localization may 22 

cut off true correlations, which leads to a worse result overall. Secondly, there are a relatively large number of observations 23 

compared to the size of the state vector, which reduces the problem of spurious correlation. Study shows that there is a 24 

strong relationship between the significance of spurious correlation and the number of observations (Rasmussen et al., 2015). 25 

Localization is more effective to reduce spurious correlation when the number of observations is relatively small. We also 26 

notice the 50 cm depth soil moisture has overall larger error compared to the surface layer, this is due to the fact the soil 27 

moisture cell saturation in deeper layer is more sensitive to the parameter uncertainty which make is the deeper layer more 28 

difficult to reproduce.    29 

4.2 Multivariate assimilation 30 

In this section, several experiments assimilating both groundwater head and soil moisture are carried out with a focus to test 31 

different localization schemes. The abbreviation D and V indicate distance localization and variable localization 32 

respectively. 33 
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 1 

DA_HSM: assimilating both head and soil moisture (at both 5 cm and 25 cm depths) without localization to any variable. 2 

DA_HSMLoc_DV: assimilating both head and soil moisture (at both 5 cm and 25 cm depths) with variable localization and 3 

with distance localization applied to head (same as DA_HLoc) and soil moisture (same as DA_SMBothLoc). 4 

DA_HSMLoc_D: assimilating both head and soil moisture (at both 5 cm and 25 cm depths) without variable localization, 5 

but with distance localization applied to head (same as DA_HLoc) and soil moisture (same as DA_SMBothLoc). 6 

DA_HSMLoc_V: assimilating both head and soil moisture (at both 5 cm and 25 cm depths) with variable localization, but 7 

without distance localization to any variable. 8 

 9 

Results from the DA experiments are shown in Fig. 5. When neither distance localization nor variable localization are used, 10 

all observations are used to update the state in all grid cells for each variable (DA_HSM). In this case the estimated 11 

correlations between groundwater head and soil moisture are used in the update. The DA results show improved 12 

performance for soil moisture at 5 cm and 25 cm, but much worse performance at 50 cm as well as for groundwater head. In 13 

the current filter settings the full state covariance matrix contains unrealistic, spurious correlations, which eventually degrade 14 

the update in the deeper soil layers.  15 

In experiment DA_HSMLoc_DV, both distance localization and variable localization are used. Therefore, the state updates 16 

are spatially localized for each variable and the correlation between the two variables is neglected. Particularly in this case, 17 

when there is only soil moisture observation assimilated, the updates are limited to the upper 1 m soil moisture profile while 18 

no correction is made for head. When both types of observation are assimilated, the corrections are made for each variable 19 

using its own error information. We can see from Fig.5 that the experiment shows overall improved result.  20 

In experiment DA_HSMLoc_D, distance localization is applied to head and soil moisture but variable localization is not 21 

included. In this case, regardless of observation type, the soil moisture is corrected within 1 m depth together with head. The 22 

result from this experiment shows improved estimate for soil moisture at 5 cm and 25 cm, together with groundwater head. 23 

However, the soil moisture at 50 cm is slightly worsened. This indicates that the correlation between surface soil moisture 24 

and groundwater head estimated from the ensemble is valid and improves the assimilation performance. Compared to 25 

DA_HSM, the result shows that excluding the error information from deeper soils (below 1 m to saturation) reduces spurious 26 

correlations and improves the performance. However, compared to DA_HSMLoc_DV, the result is slightly worse for head 27 

and deeper soil moisture.  28 

In experiment DA_HSMLoc_V, distance localization is off and variable localization is applied. This means that the error 29 

information from one variable is used to update the entire domain of its own variable but does not affect the other variable. 30 

The result indicates worse assimilation performance for soil moisture at 50 cm and for groundwater head. One potential 31 

reason is that the lower layers of the unsaturated zone are usually fully saturated but in this experiment corrected by the 32 

surface soil moisture observation, while the groundwater head is corrected by the head observation. Potential inconsistencies 33 

may exist with these two updates.  34 
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4.3 Different ensemble size 1 

As mentioned in section 3.2, localization allows the ensemble filters to work properly with limited ensemble size. The above 2 

experiments are based on an ensemble size of 60, which is determined by balancing both assimilation performance and 3 

computational time. Some of the experiments are repeated for ensemble sizes of 30 and 90, respectively, to analyse how the 4 

assimilation performance and the choice of localization are affected by the ensemble size. The results are shown in Fig.6.   5 

As can be seen from Fig. 6, in the experiment assimilating head without localization (DA_H), increasing the ensemble size 6 

(from 30 to 90) slightly improves the head estimation. However, the performance difference between ensemble size of 60 7 

and 90 is small. When localization is used, the performances with all ensemble size are very similar (DA_Hloc).  8 

In the experiment assimilating soil moisture at 5 cm depth without localization (DA_SM5), increasing the ensemble size also 9 

improves the soil moisture at deeper depths. This indicates that using only an ensemble size of 30 introduces spurious 10 

correlation between surface soil and deeper soil, which is reduced with larger ensemble sizes. An ensemble size of 30 also 11 

leads to a much worse result for groundwater head compared to ensemble sizes of 60 or 90. When localization is used 12 

(DA_SM5Loc), the assimilation performance is similar using the three ensemble sizes. Compared to the DA_SM5, there is a 13 

large improvement in groundwater head when using ensemble size of 30. 14 

When both soil moisture (at 5 cm and 25 cm depths) and head are assimilated without localization (DA_HSM), the 15 

performance is generally improved when increasing ensemble size. However, increasing the ensemble size to 90 still leads to 16 

a worse performance for soil moisture at 50 cm and groundwater head compared to the deterministic model. When 17 

localization is used (DA_HSMLoc_DV), the soil moisture at 50 cm and the head improves as the ensemble size increases. 18 

Overall, the assimilation performance increases in DA_HSMLoc_DV when increasing the ensemble size.  19 

4.4 Actual evapotranspiration and discharge 20 

Using an integrated model where the various hydrological processes are coupled, assimilation of head and soil moisture may 21 

also affect other model variables. The effects on evapotranspiration and river discharge are examined in this section. For 22 

actual evapotranspiration, we calculated average RMSE with respect to the true model of actural evapotranspiration over all 23 

35 soil moisture observation locations during the DA period and for discharge the performance at the catchment outlet for 24 

the entire assimilation period is evaluated using the Nash–Sutcliffe efficiency score. The results are summarized in Table 3.  25 

The differences in RMSE for actual evapotranspiration among all experiments are small. When H is assimilated alone 26 

(DA_H and DA_H_Loc), actual evapotranspiration is basically unchanged while when soil moisture is assimilated RMSE is 27 

marginally reduced compared to the deterministic model.   28 

The performance of discharge is slightly improved by assimilating head (DA_H and DA_H_Loc). The improvement is 29 

mainly with respect to low flow, which is underestimated by the deterministic model.  This is expected as the baseflow is 30 

corrected by updating groundwater levels. When soil moisture is assimilated with localization (DA_SM5Loc and 31 

DA_SMBothLoc), the discharge is also slightly better. However, when both variables are assimilated without localization 32 
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(DA_HSM), the discharge is significantly worse with unrealistic peak flows during spring. This is a result of the poorer head 1 

estimations in the entire domain. When localization is used for soil moisture and groundwater head (DA_HSMLoc_DV), 2 

discharge is improved significantly and comparable with the deterministic model. This also demonstrates the necessity to use 3 

localization to constrain the spatial updates.  4 

5 Study in the Ahlergaarde catchment 5 

For the Ahlergaarde catchment, we use the calibrated model to simulate a 20-year period from 1990 to 2010 to provide 6 

initial conditions for the experiment used in this study. Starting from 2010-01-01, the experiment is split into two periods: a 7 

warm-up period (2010-01-01 to 2012-11-01) and a DA period (2012-11-01 to 2013-12-31). Grid-based daily precipitation 8 

(10 km), temperature (20 km) and reference evapotranspiration (20 km) from the Danish Meteorological Institute serve as 9 

basic meteorological data. Each ensemble member shares the same initial condition and is subject to perturbed forcing and 10 

parameter values for the warm-up period and the assimilation period. Similar to the Karup catchment experiment, daily time 11 

series of precipitation and reference evapotranspiration are perturbed at every time step using a Gaussian error model with a 12 

relative standard deviation of 0.25 multiplied to the original data. The parameter perturbations are based on the uncertainty 13 

information of 13 parameters listed in Table 2 of which the first seven from the model calibration and the remaining six from 14 

unsaturated zone are empirically defined from literature values. The unsaturated zone uncertainty is introduced by perturbing 15 

the van Genuchten n for the dominant soil type at all three depths with a standard deviation of 0.05 (Ridler et al., 2014a). 16 

Overall, we try to keep the ensemble spread relatively large and model responses physically realistic.  17 

The deterministic model used in this study, although based on a model calibrated against older data at different sites, has 18 

good skills after 2012. The model performance in terms of the hydrograph at the catchment outlet in year 2013 is shown in 19 

Fig. 10 (Obs and NoDA in the top panel), with a Nash–Sutcliffe efficiency of 0.67. From the hydrograph, it can be seen that 20 

the model underestimates low flows and overestimates peak flows.   21 

5.1 Observations 22 

Groundwater head are measured bi-hourly in nine wells (Fig. 1) using Eijkelkamp mini divers. The divers were installed in 23 

these wells in November 2012 and thus the length of the time-series is limited. Moreover, due to occasional instrument 24 

failure the data coverages are further constrained and vary among the wells. In the groundwater model six numerical layers 25 

are defined (layer 1 in the bottom and layer 6 in the top). The nine wells are screened at different depths. Wells M5398, 26 

M5637, M5353, and L8008 are screened in layer 5 while wells M5373, M5647, M5844, M5393 and M5366 are screened in 27 

layer 4. When comparing in-situ head measurements with model predicted equivalents, large level differences usually occur 28 

due to scale disparities, and sometimes also accompanied by dynamic differences. Therefore, we calculated the average 29 

difference between observations and model simulations, and subtracted this difference from the original data. By doing so, 30 



15 

 

we can avoid introducing observation bias in the assimilation system. An example of the processed observations and the 1 

open loop ensemble for well 5737 (2012-11-01 to 2013-12-31) is shown in Fig. 7 (top panel).  2 

Soil moisture is measured at 30 sites across the catchment according to representative combinations of topography, land 3 

cover, and soil type using Decagon 5TE sensors. The dominant land uses are heath, agriculture and forest. At each site, 4 

sensors are installed at three depths 2.5, 22.5 and 52.5 cm corresponding to measurement depth intervals of 0–5, 20–25 and 5 

50–55 cm. Measurements are taken with 30 minutes intervals.  6 

Most of the agriculture sites are irrigated in May and June, and the soil moisture is greatly influenced with several sudden 7 

increases during that period. However, in the model irrigation is not considered because detailed information on irrigation at 8 

the local sites is not available. Therefore, the sites where irrigation is evident from the soil moisture recordings are excluded 9 

for assimilation. In addition, a quality control to correct for systematic biases and to filter out unrealistic values has been 10 

carried out for the remaining sites. Although measurements are carried out at three depths at each site, we only use 11 

measurements at 2.5 cm and 22.5 cm depths for assimilation, as the surface/near-surface moisture is of most importance for 12 

the exchange of water and energy between land and the atmosphere. After processing, 18 out of 30 sites are used for 13 

assimilation (Fig. 1). As an example Fig. 7 (middle and bottom panels) shows the processed soil moisture observations and 14 

the open loop ensemble at site nw1.1 (2012-11-01 to 2013-12-31). 15 

In addition to groundwater and soil moisture observations, discharge observations are available in the Ahlergaarde catchment 16 

at the outlet and at tributaries (right in Fig. 1). Evapotranspiration data based eddy covariance measurements are available 17 

from a flux station (Voulund station) located in the catchment.  18 

5.2 Experiment settings 19 

Similar to the experiment settings in the Karup catchment, the observation noise for each variable is assumed to be white 20 

Gaussian, with homogeneous and constant standard deviation of 0.2 m for head and 5% for soil volumetric water content. 21 

The head and soil moisture data are interpolated to weekly and daily frequencies, respectively, for assimilation. Due to the 22 

larger model domain, more complex process descriptions and finer spatial resolution compared to the Karup catchment 23 

setup, the computational time for the Ahlergaarde catchment is substantial. This implies that a larger ensemble size is 24 

unaffordable. Furthermore, the more frequent data assimilation contributes to longer simulation time. From these 25 

considerations, an ensemble size of 50 is adopted. With a one year assimilation period, the simulation time is around 3-7 26 

days depending on the experiment settings.  27 

With the purpose of assimilating head and soil moisture, different experiments have been carried out to investigate the 28 

assimilation performance. Considering the large model domain and fine grid, localization becomes more important here than 29 

in the previous example. Distance localization is added to both variables separately, and variable localization is used when 30 

both variables are assimilated. For groundwater head, we allow for update in all layers over the vertical. Horizontally, we use 31 

a localization radius of 5 km for all layers. For soil moisture, we use a horizontal localization radius of 1 km and a vertical 32 

localization depth of 0.5m (top eight layers in the unsaturated zone). The following experiments are carried out:  33 
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 1 

NoDA: deterministic model without DA.  2 

DA_HLoc: assimilating groundwater head with distance localization.  3 

DA_SMLoc: assimilating soil moisture (at both 2.5 cm and 22.5 cm depths) with distance localization.   4 

DA_HSMLoc_DV: assimilating both groundwater head and soil moisture (at both 2.5 cm and 22.5 cm depths) with variable 5 

localization and distance localization.  6 

5.3 Groundwater head and soil moisture 7 

The assimilation performance is evaluated by comparing the model output with the observations (18 sites) using average 8 

RMSE over the assimilation period. The result is summarized in Table 4. In the experiment with assimilating head only 9 

(DA_HLoc), RMSE of head reduces from 0.34 m to 0.21 m. However, the soil moisture predictions at both depths do not 10 

improve compared to the deterministic model. In the experiment with assimilating only soil moisture (DA_SMLoc), RMSE 11 

of soil moisture at both depths reduces, especially at depth 22.5cm. The head estimate, however, shows a similar 12 

performance as the deterministic model. When both variables are assimilated (DA_HSMLoc_DV), RMSE of head reduces 13 

from 0.34 m to 0.21 m. RMSE of soil moisture reduces from 0.044 m
3
/m

3
 to 0.040 m

3
/m

3
 at 2.5 cm depth, and from 0.034 14 

m
3
/m

3
 to 0.028 m

3
/m

3
 at 22.5 cm depth.  15 

Figure 8 shows the assimilated results for the same sites as shown in Fig. 7. Clearly, after 2012-11-01 when the DA period 16 

starts, the ensemble mean is approaching the observations, especially for the head and soil moisture at 22.5 cm depth. 17 

Although limited observations are assimilated, corrections are made for a large area within the model domain. Figure 9 18 

shows spatial root mean squared differences (RMSD) of soil moisture and head at corresponding observation layers between 19 

the assimilation result and the deterministic model, which illustrates the corrections made by DA spatially. For each grid 20 

cell, the variables’ time series values from the assimilated model and the deterministic model are used to calculate the 21 

RMSD.  22 

From Fig. 9, we can clearly see the effect of the assimilation in the model domain. For soil moisture relatively large 23 

corrections are made at 22.5 cm depth compared to the surface layer. Compared to groundwater head, however, the soil 24 

moisture corrections are more localized. For both soil moisture and groundwater head, most of the large corrections are made 25 

at places near the locations of observations. For groundwater head in the west and south-east regions where no head 26 

observations are available, the corrections are generally small.  27 

5.4 Actual evapotranspiration and discharge 28 

In this section, the effect of assimilation on actual evapotranspiration and river discharge is evaluated by comparing model 29 

predictions and observations. Figure 10 compares discharge at the catchment outlet and evapotranspiration at the flux station 30 

for the different experiments. The flux station is located in the central-north part of the catchment with several soil moisture 31 
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stations around. In both graphs in Fig. 10, only small differences are seen between different simulations. This is further 1 

substantiated by the performance measures listed in Table 5.  2 

As shown in Table 5 RMSE for actual evapotranspiration is similar in all three assimilation experiments. There is a small 3 

improvement for discharge when head is assimilated (DA_HLoc). The experiment DA_HSMLoc_DV with both variables 4 

being assimilated provides better results overall.  5 

6 Discussions and Conclusions 6 

This study has investigated assimilation of soil moisture and groundwater head in an integrated hydrological model. To the 7 

best of our knowledge, this is the first study using ETKF to assimilate these two variables in an integrated hydrological 8 

model. The method considers both distance and variable localization. The proposed method is first explored for a catchment 9 

with synthetic data, and then applied to a complex model using data from real observations.  10 

The MIKE SHE model is used as the integrated hydrological model throughout this study. In the MIKE SHE model, the 11 

saturated and unsaturated zones are explicitly coupled. This is done to optimize modelling time steps used in the unsaturated 12 

zone (minutes to hours) and saturated zone (hours to days), respectively. The flux between the unsaturated and saturated 13 

zones is calculated by an iterative procedure that conserves mass for the entire column. This means that assimilation of soil 14 

moisture may have an effect on groundwater and vice versa through this explicit coupling. However, this study shows 15 

relatively weak correlations between surface soil moisture and groundwater head in the MIKE SHE model through 16 

assimilation. First, the univariate assimilation improves the state of the variable being assimilated, but does not improve the 17 

other variable. This can be seen from the experiments in both catchments. Second, in multivariate assimilation, when the 18 

complete state error covariance of both variables is used for updating and spurious correlations are not cut off by localization, 19 

the filter failed to provide reasonable result. This indicates the unrealistic inter-variable and cross-variable correlations may 20 

exist in the model ensemble. In a similar study, Camporese et al. (2009b) showed the EnKF-assimilation of surface soil 21 

moisture can actually improve the saturated zone and assimilation of groundwater head can also improve surface soil 22 

moisture, where the saturated and unsaturated zones are based on a solving the 3D Richards’ for the entire subsurface. 23 

In the assimilation setup, a hybrid localization scheme which consists of variable localization and distance localization has 24 

been developed and implemented in the ETKF. Localization does not only provide better results, but also reduce the 25 

computational cost as only a section of the full state is used within the filter. Similar localization approaches have been 26 

reported in hydrological models with discharge involved (Li et al., 2013) as well as in other models (e.g., (Kang et al., 2011)). 27 

Other approaches to deal with the potential inter-variable spurious correlation include for example adaptive localization 28 

(Rasmussen et al., 2015), and using two iterative filters instead of one filter (Gharamti et al., 2013). The method used here 29 

proved to be suitable for assimilating both groundwater head and soil moisture in integrated hydrological models, and have 30 

potential to be generalized to deal with other processes.  31 
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The impact of assimilation on discharge and evapotranspiration is analysed in the Ahlergaarde catchment with real 1 

measurements as reference. Neither the discharge nor evapotranspiration were included in the filter state vector. However, 2 

through integrated hydrological modelling, the discharge is improved when head is assimilated, and evapotranspiration is 3 

improved when soil moisture is assimilated. Although the improvements seem to be marginal, we nevertheless see the 4 

benefits in other modules in MIKE SHE when improving the estimate of groundwater head and soil moisture.  5 

Increasing the ensemble size is beneficial in general, especially for estimating unobserved and un-localized variables. This is 6 

because an increased ensemble size can better describe the true correlation in the state error covariance matrix. The effect of 7 

ensemble size has also been widely reported in previous studies, e.g. (Xie and Zhang, 2010). However, the balance between 8 

the assimilation result and the computational cost is usually considered when choosing the appropriate ensemble size for 9 

heavy models. This is an important issue for the Ahlergaarde model as the computational expenses here become substantial. 10 

Due to the time and resource limitation, the choice of ensemble size for the Ahlergaarde model is not analysed in the study, 11 

but will certainly be essential for real-time applications in future studies. In addition, the multivariable assimilation could be 12 

extended with remote sensing soil moisture and other important hydrological variables (e.g. discharge) that are not included 13 

in this study. 14 
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Table 1 Differences in model resolution and computation time between the two catchments. SZ refers to the saturated zone and UZ to the 1 
unsaturated zone, the symbol # means ‘number of’.  2 

Catchment  Karup Ahlergaarde 

Area 440 km
2
 1044 km

2
 

Grid size 1000 x 1000 m
2
 200 x 200 m

2
 

#Grid cells in each layer in SZ 522 26922 

#Layers in SZ 1 6 

#Total grid cells in SZ 522 161538 

#Grid cells in each layer in UZ 438 26097 

#Layers in UZ 87 21 

#Total grid cells in UZ 38106 548037 

Computational time for 1 year 

simulation  

Less than 1 minute Around 1 hour 

 3 

 4 
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 1 
Table 2 Calibrated and perturbed parameters for the Ahlergaarde catchment. Value represents the estimated value, lower and upper 2 
represent 5% and 95% confidence intervals respectively. Parameters 1-6 are assumed to be lognormal distributed. Parameters 7-13 are 3 
assumed to be normal distributed.  4 

Number Parameter type Description Unit Value Lower  Upper Module 

1 Horizontal hydraulic 

conductivity 

Meltwater sand m s
-1

 2.40E-

04 

1.75E-

04 

3.31E-

04 

Saturated zone 

2 Vertical hydraulic 

conductivity 

Clay m s
-1

 1.03E-

07 

1.15E-

08 

9.31E-

07 

Saturated zone 

3 Horizontal hydraulic 

conductivity 

Quartz sand m s
-1

 2.28E-

04 

1.88E-

04 

2.78E-

04 

Saturated zone 

4 Vertical hydraulic 

conductivity 

Mica clay m s
-1

 9.24E-

08 

6.22E-

08 

1.37E-

07 

Saturated zone 

5 Drain time constant Uniform  s
-1

 4.58E-

08 

2.43E-

08 

8.60E-

08 

Saturated zone 

6 River-groundwater 

conductance 

Uniform m s
-1

 2.35E-

05 

1.98E-

06 

2.79E-

04 

River 

7 Root Depth Wheat soil 1 mm 460 394 538 Unsaturated 

zone/Vegetation 

8 n in van Genuchten 

function 

Coarse sandy soil (JB1) 

at 0-30 cm depth 

 1.32 1.22 1.42 Unsaturated zone 

9 n in van Genuchten 

function 

Coarse sandy soil (JB1) 

at 30-80 cm depth 

 1.45 1.35 1.55 Unsaturated zone 

10 n in van Genuchten 

function 

Coarse sandy soil (JB1) 

at 80-100 cm depth 

 1.58 1.48 1.68 Unsaturated zone 

11 n in van Genuchten 

function 

Clayey sandy soil (JB3) 

at 0-30 cm depth 

 1.23 1.13 1.33 Unsaturated zone 

12 n in van Genuchten 

function 

Clayey sandy soil (JB3) 

at 30-80 cm depth 

 1.27 1.17 1.37 Unsaturated zone 

13 n in van Genuchten 

function 

Clayey sandy soil (JB3) 

at 80-100 cm depth 

 1.26 1.16 1.36 Unsaturated zone 
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Table 3 Impact of assimilation on evapotranspiration (ET) (averaged RMSE with respect to the true model of actual evapotranspiration 2 
over all 35 soil moisture observation locations during the DA period) and discharge (Nash–Sutcliffe efficiency of discharge at catchment 3 
outlet during DA period) for each experiment in Karup catchment. 4 

 Averaged RMSE of  ET (mm/day)  Nash–Sutcliffe efficiency score of 

discharge at outlet 

NoDA 0.376 0.936 

DA_H 0.377 0.953 

DA_H_Loc 0.376 0.955 

DA_SM5 0.367 0.923 

DA_SM5Loc 0.376 0.941 

DA_SMBoth 0.364 0.943 

DA_SMBothLoc 0.364 0.944 

DA_HSM 0.372 0.484 

DA_HSMLoc_DV 0.364 0.932 
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Table 4 Average RMSE of head and soil moisture (2.5 cm and 22.5 cm) at observation locations for each experiment in 2 
Ahlergaarde catchment. 3 

 Average RMSE of head 

(m)  

Average RMSE of soil 

moisture at 2.5 cm 

(m
3
/m

3
) 

Average RMSE of soil 

moisture at 22.5 cm 

(m
3
/m

3
) 

NoDA 0.34 0.044 0.034 

DA_HLoc 0.21 0.045 0.037 

DA_SMLoc 0.34 0.038 0.024 

DA_HSMLoc_DV 0.22 0.040 0.028 

 4 
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Table 5 Quantitative performance measures for evapotranspiration (ET) and discharge for each experiment in Ahlergaarde 2 
catchment. 3 

 RMSE of  

ET (mm/day) 

Nash–

Sutcliffe 

score of 

discharge at 

outlet 

NoDA 0.879 0.673 

DA_HLoc 0.919 0.690 

DA_SMLoc 0.853 0.677 

DA_HSMLoc_DV 0.850 0.691 

 4 
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 2 

Figure 1 Left: Karup catchment, Right: Ahlergaarde catchment. ‘Obs Q’, ‘Obs Head’ and ‘Obs SM’ represent discharge, groundwater 3 
head and soil moisture observations respectively used for assimilation.  4 
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 2 

Figure 2 Sketch of localization scheme for soil moisture at a site where soil moisture is measured at 0–5 cm and 20-25 cm (marked by 3 
filled black circles). The depths at right represent the numerical layers. The dotted-line ovals indicate the localization areas for each layer, 4 
where the cut-off values of covariance function increase quadratically from depth 20 - 25 cm downward.  5 
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Figure 3 Observed and simulated water table at well 12(top panel) and hydrograph at station 20.05 (bottom panel) in Karup catchment. 2 
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 3 

 4 

Figure 4 Spatially and temporally averaged RMSE of groundwater head and soil moisture at different depths for each univariate 5 
assimilation experiment in Karup catchment. Left axis represents soil moisture and right axis head.   6 
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Figure 5 Spatially and temporally averaged RMSE of groundwater head and soil moisture at different depths for each multivariate 3 
assimilation experiment in Karup catchment. Left axis represents for soil moisture and right axis head.   4 
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 1 

Figure 6 Results from different experiments in Karup catchment. From top to bottom, 1st panel shows the average spatial RMSE of 2 
groundwater head, 2nd, 3rd and 4th panels are the average spatial RMSE of soil moisture at 5 cm, 25 cm and 50 cm depths respectively. 3 
From left to right, the experiment names are indicated as the horizontal axis label from the bottom panel. For each experiment except 4 
NoDA, the results of three ensemble sizes (30,60 and 90) are represented using different colours as shown in legends.   5 
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Figure 7 Top: Groundwater head at well M5373. Middle: soil moisture at 2.5cm at site nw1.1. Bottom: soil moisture at 22.5cm depth at 3 
site nw1.1. The light grey lines (not marked in the legend) are the open-loop ensemble prediction. ’Mean’ (single gray line) is the 4 
ensemble average. ’Deter’ (dark line) is the deterministic model. ’Obs’ (cross mark) are the observations. 5 
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Figure 8 Top: groundwater head at well M5373. Middle: soil moisture at 2.5 cm at site nw1.1. Bottom: soil moisture at 22.5 cm depth at 3 
site nw1.1. The light grey lines (not in the legend) are ensemble predictions. ’Mean’ (single gray line) is the ensemble average. ’Deter’ 4 
(dark line) is the deterministic model. ’Obs’ (cross mark) are the observations. Note the assimilation starts from 2012-11-01.  5 
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Figure 9 Spatial RMSD between assimilated and deterministic model in Ahlergaarde catchment : soil moisture at 2.5cm depth (upper left) 3 
and 22.5cm depth (upper right), groundwater head at layer 4 (lower left) and layer 5(lower right).  The observation locations at each layer 4 
are marked with violet crosses.  5 
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 3 

Figure 10 Top: discharge at Ahlergaarde catchment outlet (station 250082) for each experiment and observed discharge.  Bottom: Actual 4 
evapotranspiration in each experiment and observed evapotranspiration at the observed station (Voulund) at Ahlergaarde catchment. 5 
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