
Global evaluation of runoff from ten state-of-the-art hydrological
models
Hylke E. Beck1, Albert I.J.M. van Dijk2, Ad de Roo3, Emanuel Dutra4, Gabriel Fink5, Rene Orth6, and
Jaap Schellekens7

1Princeton University, Civil and Environmental Engineering, Princeton, NJ, United States
2Fenner School of Environment & Society, Australian National University (ANU), Canberra, Australia
3European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra (VA), Italy
4European Centre for Medium-Range Weather Forecasts (ECMWF), Redding, UK
5Center for Environmental Systems Research (CESR), University of Kassel, Kassel, Germany
6Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
7Inland Water Systems Unit, Deltares, Delft, The Netherlands

Correspondence to: Hylke E. Beck (hylke.beck@gmail.com)

Abstract. Observed streamflow data from 966 medium sized catchments (1000–5000 km2) around the globe were used to

comprehensively evaluate the daily runoff estimates (1979–2012) of six global hydrological models (GHMs) and four land

surface models (LSMs) produced as part of Tier-1 of the eartH2Observe project. The models were all driven by the WATCH

Forcing Data ERA-Interim (WFDEI) meteorological dataset, but used different datasets for non-meteorologic inputs and were

run at various spatial and temporal resolutions, although all data were re-sampled to a common 0.5◦ spatial and daily temporal5

resolution. For the evaluation, we used a broad range of performance metrics related to important aspects of the hydrograph.

We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty

in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate change. The un-

calibrated GHMs were found to perform, on average, better than the uncalibrated LSMs in snow-dominated regions, while the

ensemble mean was found to perform only slightly worse than the best (calibrated) model. The inclusion of less reliable models10

did not appreciably degrade the ensemble performance. Overall, we argue that more effort should be devoted on calibrating

and regionalizing the parameters of macro-scale models. We further found that, despite adjustments using gauge observations,

the WFDEI precipitation data still contain substantial biases that propagate into the simulated runoff. The early bias in the

spring snowmelt peak exhibited by most models is probably primarily due to the widespread precipitation underestimation at

high northern latitudes.15

1 Introduction

Hydrological models are indispensable tools for many purposes, including but not limited to, (i) flood and drought forecast-

ing, (ii) water resources assessments, (iii) assessing the hydrological impacts of human activities, and (iv) increasing our

understanding of the hydrological cycle. It is more than 50 years since the first attempts at hydrological modeling (Lins-

ley and Crawford, 1960; Rockwood, 1964; Sugawara, 1967; Freeze and Harlan, 1969). Since then, a plethora of conceptual,20
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physically-based, and stochastic hydrological models has been developed, each with its own assumptions and characteristics

(for non-exhaustive overviews, see Singh, 1995; Singh and Frevert, 2002; Rosbjerg and Madsen, 2006; Trambauer et al., 2013;

Sooda and Smakhtin, 2015; Bierkens et al., 2015; Kauffeldt et al., 2016). Because all hydrological models are inevitably imper-

fect representations of reality, they produce highly uncertain estimates even if we would have access to perfect meteorological

data (Beven, 1989).5

The quantification of these uncertainties using independent data sources is of critical importance to advance model develop-

ment, reject deficient model structures and parameterizations, quantify model credibility, and ultimately bring some order in

the plethora of models (Klemeš, 1986; Wagener, 2003; Döll et al., 2015; Clark et al., 2015). There have been several collabora-

tive research efforts focusing on the intercomparison and verification of hydrological models. The earliest were coordinated by

the World Meteorological Organization (WMO, 1975, 1986, 1992). Other noteworthy initiatives include the Model Parameter10

Estimation Experiment (MOPEX; Duan et al., 2006), the Global Soil Wetness Project (GSWP; Dirmeyer, 2011), the Water

Model Intercomparison Project (WaterMIP; Haddeland et al., 2011), and the Global Energy and Water Exchanges (GEWEX)

LandFlux project (McCabe et al., 2016). These initiatives have led to numerous multi-model evaluation studies focusing on

such hydrological variables as runoff (e.g., Gudmundsson et al., 2012a; Zhou et al., 2012), evaporation (e.g., Schlosser and

Gao, 2010; Jiménez et al., 2011; Miralles et al., 2015), soil moisture (e.g., Guo et al., 2007; Xia et al., 2014), snow cover (e.g.,15

Slater et al., 2001), and total water storage (Güntner, 2008), among others.

One of the most useful variables for hydrological model evaluation is runoff, since it reflects the integrated response of a

host of hydrological processes occurring in a catchment (Fekete et al., 2012) and because observations are readily available

for many catchments across the globe (Hannah et al., 2011). Table 1 lists, to our knowledge, all macro-scale (i.e., continental

to global scale) studies evaluating the runoff estimates of multiple models that have been published so far. Out of these 2020

studies, two focused on the conterminous USA, five focused on Europe, while thirteen had a global scope. However, many

of these studies used observations from a relatively small number (< 100) of large catchments (� 10000 km2). The use of a

small number of basins limits confidence in the results and precludes a spatially detailed assessment, while the large size of

the catchments makes it more difficult to distinguish between deficiencies in the forcing, the (sub-)surface component, or the

river routing component of the modeling chain. Moreover, a large number of the studies only evaluated monthly mean runoff,25

precluding analysis of the shape of individual flow events, or used the Nash and Sutcliffe (1970) efficiency (NSE), which

has been criticized in several previous studies for being overly sensitive to the timing and magnitude of peak flows (Schaefli

and Gupta, 2007; Jain and Sudheer, 2008). Furthermore, many studies considered only a few hydrological models (≤ 5) or

performance metrics (≤ 2), limiting the insights that can be gained.

As part of Tier-1 of the eartH2Observe project (http://www.earth2observe.eu), ten state-of-the-art hydrological models were30

run globally at a daily time step for the period 1979–2012 using the same forcing dataset. Six of the models are global hydro-

logical models (GHMs) while four of the models are land surface models (LSMs). GHMs have traditionally been designed to

simulate (sub-)surface water fluxes and storages, while LSMs have traditionally been designed to simulate the soil-vegetation-

atmosphere interactions within climate models (Haddeland et al., 2011; Bierkens, 2015). GHMs generally represent hydrologi-

cal processes in a more conceptual way, solve only the water balance, commonly operate at daily time steps, and typically have35
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Table 1. Overview of, to the best of our knowledge, all macro-scale (continental to global) studies evaluating the runoff estimates of multiple

models, sorted by region and then publication date. The present study has been added for the sake of completeness.

Study Region Number of Number of catchments (size range) Evaluation time scale(s)

models

Lohmann et al. (2004) Cont. USA 4 1145 (23 to 10 000 km2) Daily, monthly, annual, long term

Xia et al. (2012) Cont. USA 4 969 (23 to 1 353 280 km2) Daily, weekly, monthly, annual, long

term

Prudhomme et al. (2011) Europe 3 579 (< 1000 km2) Daily

Gudmundsson et al. (2012a) Europe 9 426 (< 4000 km2) Daily, annual, long term

Gudmundsson et al. (2012b) Europe 9 426 (< 4000 km2) Annual, long term

Greuell et al. (2015) Europe 5 46 (9948 to 658 340 km2) Daily, monthly, annual, long term

Gudmundsson and Seneviratne (2015) Europe 10 426 (< 4000 km2) Monthly, annual, long term

Milly et al. (2005) Global 12 165 (> 50000 km2) Long term

Decharme and Douville (2006) Global 6 80 (100 000 to 4 758 000 km2) Daily, monthly

Decharme and Douville (2007) Global 6 80 (100 000 to 4 758 000 km2) Monthly

Decharme (2007) Global 2 80 (100 000 to 4 758 000 km2) Monthly

Materia et al. (2010) Global 13 30 (82 000 to 4 677 000 km2) Monthly

Zaitchik et al. (2010) Global 4 66 (19 000 to 4 600 000 km2) Daily, annual

Haddeland et al. (2011) Global 11 8 (650 000 to 4 600 000 km2) Monthly

Zhou et al. (2012) Global 14 150 (not specified; � 10000 km2) Annual

Van Dijk et al. (2013b) Global 5 6192 (10 to 10 000 km2) Monthly

Beck et al. (2015) Global 4 4079 (10 to 10 000 km2) Daily, long term

Yang et al. (2015) Global 7 16 (135757 to 3475000 km2) Monthly, annual

Zhang et al. (2016) Global 4 644 (� 2000 km2) Monthly, annual

Beck et al. (2016a) Global 10 1113 (10 to 10 000 km2) Daily, 5-day, monthly, long term

This study Global 10 966 (1000 to 5000 km2) Daily, 5-day, monthly, annual, long

term

a small number of soil layers (≤ 3 in the current study) and a single snow layer. Conversely, LSMs generally represent hydro-

logical processes in a more physically-based way, solve both the water and energy balances, typically operate at (sub-)hourly

time steps, and tend to have many soil and snow layers (4–11 and 1–12, respectively, in the current study; for more details on

the models, see Table 4.1 of Dutra, 2015). The present study aims to comprehensively evaluate the runoff estimates of these

ten models across the globe in an effort to answer the following pertinent research questions:5

1. How well do the different models simulate runoff?

2. How well do the models perform in terms of long-term runoff trends?

3. How do the results of the GHMs differ, if at all, from those of the LSMs?

4. Are calibration and regionalization important or even essential?

5. What is the impact of the forcing data on the simulated runoff?10

6. How valuable are multi-model ensembles for improving runoff estimates?
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7. Do all models show the early bias in runoff timing in snow-dominated catchments previously documented (e.g., Zaitchik

et al., 2010) and what is the cause?

We use daily streamflow observations during 1979–2012 from a large, highly diverse, quality-controlled set of medium sized

catchments. This leads to more reliable and generalizable conclusions, and allows us to explicitly compare the performance

among different climate types (Andréassian et al., 2007; Stahl et al., 2011; Gupta et al., 2014). Moreover, we use a broad range5

of performance metrics, including runoff signatures (measures that quantify the hydrograph shape such as runoff coefficient

and baseflow index; Olden and Poff, 2003; Monk et al., 2007) that can be related to specific hydrological processes (Yilmaz

et al., 2008).

2 Data

2.1 Forcing10

The models were all driven by the daily 0.5◦ WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset (1979–

2012; Weedon et al., 2014) with the precipitation (P ) data adjusted using the monthly 0.5◦ gauge-based Climate Research

Unit (CRU) TS3.1 dataset (Harris et al., 2013). Although the models all used the same P data, they used potential evaporation

(PET) derived using diverse formulations, ranging from the temperature-based Hamon equation (PCR-GLOBWB) to various

radiation-based approaches (WaterGAP3, SWBM, and HBV-SIMREG), the Penman-Monteith combination equation (HTES-15

SEL, JULES, LISFLOOD, SURFEX, and W3RA), and a surface-energy balance approach (ORCHIDEE). The models also

used different datasets for non-meteorologic inputs. For more details, see Dutra (2015).

2.2 Simulated runoff

Table 2 lists the ten state-of-the-art macro-scale hydrological models of which we evaluated the simulated daily (non-routed)

runoff (mm d−1). The data used in this study have been named Tier-1 and represent an initial run by all participating mod-20

eling groups (Dutra, 2015). All data were acquired through the eartH2Observe Water Cycle Integrator (WCI; http://wci.

earth2observe.eu). Six of the models are GHMs (LISFLOOD, PCR-GLOBWB, SWBM, W3RA, WaterGAP3, and HBV-

SIMREG) and four are LSMs (HTESSEL, JULES, ORCHIDEE, and SURFEX). The GHMs were all run at daily time steps

and the LSMs at hourly and 15-minute time steps. The models were run at a 0.5◦ spatial resolution, with the exception of

LISFLOOD and WaterGAP3, which were run at 0.1◦ and 0.08◦, respectively. For the analysis, however, all model output was25

resampled to a common 0.5◦ spatial and daily temporal resolution. Four of the models were subjected to varying degrees of

calibration to improve their parameters (LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG; see Section 4.4 for specifics).

More details concerning the models can be found in Table 4.1 of Dutra (2015).
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Table 2. Overview of the hydrological models considered in this study. For definitions of the model name acronyms, see Dutra (2015).

Definitions of model-class acronyms: GHM, global hydrological model; and LSM, land surface model.

Model name Data provider(s) Reference(s) Model class

HTESSEL European Centre for Medium-Range Weather Forecasts (ECMWF) Balsamo et al. (2009, 2011) LSM

JULES Natural Environment Research Council (NERC) Best et al. (2011) LSM

LISFLOOD Joint Research Centre (JRC) Burek et al. (2013) GHM

ORCHIDEE Centre National de la Recherche Scientifique (CNRS) Krinner et al. (2005) LSM

PCR-GLOBWB University of Utrecht Van Beek and Bierkens (2009) GHM

SURFEX Météo France Decharme et al. (2011, 2013) LSM

SWBM Eidgenössische Technische Hochschule (ETH) Zürich Orth and Seneviratne (2015) GHM

W3RA Australian National University (ANU) and Commonwealth Scientific and Industrial

Research Organisation (CSIRO)

Van Dijk (2010) GHM

WaterGAP3 University of Kassel Verzano (2009) GHM

HBV-SIMREG JRC Beck et al. (2016a) GHM

2.3 Observed streamflow

Daily and monthly observed streamflow data were used in this study to evaluate the runoff estimates of the models. The

observed streamflow and catchment boundary data used in this study originate from the same three sources as Beck et al.

(2013, 2015, 2016a), namely (i) the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/), (ii) the Geospatial

Attributes of Gages for Evaluating Streamflow (GAGES)-II database (Falcone et al., 2010), and (iii) an Australian streamflow5

data compilation by Peel et al. (2000). The following seven criteria were used to select suitable catchments for our analysis:

1. The streamflow record length was required to be≥ 5 years (not necessarily consecutive) during 1979–2012 (the temporal

span of the simulated runoff data).

2. The catchment area had to be< 5000 km2, to minimize the effects of channel routing delays and to reduce the likelihood

of significant anthropogenic water use. We could not use larger catchments and evaluate routed streamflow estimates10

since three of the models did not not simulate river routing (JULES, SWBM, and HBV-SIMREG).

3. The catchment area had to be > 1000 km2, to prevent catchments unrepresentative of the 0.5◦ grid cells (2182 km2 at

45◦N/S) from confounding the results.

4. To reduce human influences, catchments were required to have< 2 % classified as urban (using the “artificial areas” class

of the GlobCover version 2.3 map; 300-m resolution; Bontemps et al., 2011) and subject to irrigation (using version 5 of15

the Global Map of Irrigation Areas—GMIA; 5-min resolution; Siebert et al., 2005).

5. We used the Global Reservoir and Dam (GRanD) database (v1.1; Lehner et al., 2011) to exclude catchments influenced

by major reservoirs (defined by total reservoir capacity > 10 % of the observed mean annual streamflow).
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6. Catchments with forest gain or loss> 20 % of the catchment area (the threshold at which changes in runoff can generally

be detected; Bosch and Hewlett, 1982) were excluded using version 1.1 of the Landsat-based forest change dataset (30-m

resolution; Hansen et al., 2013).

7. To further reduce the number of disinformative catchments, all streamflow records were visually screened for artifacts

and anthropogenic influences (caused by, for example, diversions and impoundments). Furthermore, USA catchments5

flagged as “non-reference” in the GAGES-II database were discarded, and GRDC catchments for which the catchment

boundaries could not be reliably determined were discarded (Lehner, 2012).

In total 966 catchments (median size 1970 km2; median record length 19 y during 1979–2012) were found to be suitable

for the analysis, of which 641 catchments have daily streamflow data and 325 catchments (mainly located in Russia) have

only monthly streamflow data. The locations of the selected catchments will be shown in the Results section. All observed10

streamflow data were converted to runoff in mm d−1 using the provided catchment areas.

3 Methodology

3.1 Model evaluation

The simulated runoff of the models were evaluated in five ways. First, for each catchment, we calculated the differences D (−)

between simulated and observed values of several runoff signatures. Table 3 lists the six runoff signatures selected including15

their computation from the period with simultaneous simulated and observed runoff. The baseflow index (BFI), square-root

transformed 1st percentile exceedance flow (Q1), and square-root transformed 99th percentile exceedance flow (Q99) require

daily (rather than monthly) flow data. To compute the flow timing (T50) from monthly data, we first computed daily time

series from monthly time series using linear interpolation. The square-root transformed runoff coefficient (RC), square-root

transformed mean annual flow (MAR), Q1, and Q99 values were square-root transformed to give more weight to small values.20

D was computed according to:

Dq =
Yq sim−Yqobs

σq
, (1)

where Y represent the values of the runoff signatures (−), the q subscript denotes the runoff signature, and the ‘sim’ and ‘obs’

subscripts refer to simulated and observed, respectively. The σ values (−) are constants that represent the spatial variability in

the runoff signatures across the landscape and are used to normalize the D values (i.e., to make the D values of the different

signatures intercomparable; see Table 3). The σ values were computed by taking the standard deviation of global-scale signature25

maps from the Global Streamflow Characteristics Dataset (GSCD) v1.9 (Beck et al., 2015; http://water.jrc.ec.europa.eu/GSCD;

see Table 3) taking into account the entire ice-free land surface excluding deserts (defined by an aridity index > 5), with the

exception of the T50 σ, which considers only the snow-dominated ice-free land surface. Next, the mean D value over all

catchments was computed (expressed by D). D and D values closer to zero correspond to better model performance (see

6
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Table 3. The long-term runoff behavioral signatures considered for evaluating the model performance. The signatures were computed, for

each catchment, from the entire record of simultaneous observed and simulated runoff. The σ values represent the spatial variability in the

runoff signatures across the landscape.

Runoff

signature

Units Description Evaluated flow aspect Standard

deviation (σ)

RC − Square-root transformed runoff coefficient, ratio of long-term runoff to P Water balance 0.33

MAR
√

mm yr−1 Square-root transformed long-term mean annual runoff Water balance 11.21

T50 d The day of the water year marking the timing of the center of mass of flow

(Stewart et al., 2005). A water year is defined as the 12-month period from

October to September in the Northern Hemisphere and April to March in the

Southern Hemisphere

Seasonal flow distribution 34.36

BFI − Base flow index, the ratio of long-term baseflow to total runoff; the baseflow

portion of the total runoff was computed following the procedure of Gustard

et al. (1992), which takes the minima at five-day non-overlapping intervals

and subsequently connects the valleys in this series of minima to generate

baseflow

Partitioning between

quickflow and baseflow,

flow peakiness

0.18

Q1
√

mm d−1 Square-root transformed 1st percentile exceedance flow Peak-flow magnitude 1.27

Q99
√

mm d−1 Square-root transformed 99th percentile exceedance flow Low-flow magnitude 0.21

Table 4). It should be noted that, although D provides a valuable estimate of the overall performance, a good D value may

reflect an overestimation in one region that is compensated by an underestimation in another region.

Second, to evaluate the temporal variability of the simulated runoff time series, we computed Pearson linear correlation

coefficients (r) between daily, log-transformed daily, 5-day, monthly, monthly climatic, and annual time series of simulated

and observed runoff (termed rdly, rdly log, r5day, rmon, rmonclim, and ryr, respectively). The rdly, rdly log, and r5day values5

were only computed for catchments with daily observations. If monthly data were not supplied by the data providers, monthly

values were computed by simple averaging of the daily data only if > 25 non-missing values were available. Annual values

were computed by simple averaging of the monthly data (either supplied or computed) only if > 10 non-missing values were

available. We subsequently computed for each model and metric the mean r value over all catchments, expressed by r. The r

and r values range from −1 to 1, with higher values corresponding to better model performance (see Table 4).10

Third, to summarize the overall performance of each model, we computed for each catchment a summary performance

statistic (termed OS) incorporating the previously mentioned metrics, and computed the mean value over all catchments (OS).

The OS consists of two parts, of which the first (OSsig) considers the performance in terms of runoff signatures and is defined

as:

OSsig = 1−mean
[
|DRC|, |DMAR|, |DT50|, |DBFI|, |DQ1|, |DQ99|

]
. (2)

The second part (OSvar) evaluates the performance in terms of temporal variability, and is defined as:15

OSvar =mean
[
rdly, rdly log, r5day, rmon, rmonclim, ryr

]
. (3)
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Table 4. Qualitative descriptions of intervals of the performance metrics to aid in interpreting the results.

|D| r, ρ OS

Excellent [0,0.2) [0.8,1] [0.8,1]

Good [0.2,0.4) [0.6,0.8) [0.6,0.8)

Moderate [0.4,0.6) [0.4,0.6) [0.4,0.6)

Fair [0.6,0.8) [0.2,0.4) [0.2,0.4)

Poor [0.8,+∞] [−1,0.2) [−∞,0.2)

The summary score is subsequently computed following:

OS =
OSsig +OSvar

2
. (4)

The BFI, Q1, and Q99 components of Equation 2 and the rdly and rdly log components of Equation 3 were omitted if daily

observations were unavailable for a particular catchment. Higher OS values correspond to better model performance; the

maximum attainable value is 1 (see Table 4).

Fourth, to evaluate the ability of each model to simulate the variability among the catchments in the six previously men-5

tioned runoff signatures, Spearman rank correlation coefficients (ρ) were computed between simulated and observed values

of the runoff signatures. Spearman rank correlation coefficients rather than Pearson linear correlation coefficients were used

to minimize the influence of outliers. The ρ values range from −1 to 1, with higher values corresponding to better model

performance (see Table 4).

Fifth, we computed trends in simulated and observed mean annual runoff time series (termed MAR trend) using the sim-10

ple non-parametric approach of Sen (1968). We subsequently calculated the ρ between simulated and observed MAR trends

(ρMARtrend), reflecting the agreement in spatial trend patterns.

Sixth and last, we produced density plots of grid cell values of aridity index (AI; ratio of long-term available energy to P )

versus runoff coefficient (RC; ratio of long-term simulated runoff to P ), revealing how the models behave in terms of RC under

different climatic conditions. To estimate the available energy we used PET for four models (ORCHIDEE, PCR-GLOBWB,15

W3RA, and WaterGAP3) and net radiation for three models (HTESSEL, JULES, and SURFEX). For the remaining models

estimates of the available energy were not available. Grid cells > 50◦N/S were excluded for this analysis, as the majority of

the net radiation is converted to sensible heat in cold climates (Kleidon et al., 2014).

For the evaluation, we used for each catchment the simulated runoff time series of the 0.5◦ grid cell with its center located

within the catchment. However, if multiple grid cell centers were located within the catchment, we calculated the mean simu-20

lated runoff time series, and if no grid cell center was located within the catchment, we used the simulated runoff time series

of the grid cell with its center located closest to the catchment centroid.

3.2 Multi-model ensembles

Ensemble modeling—using the outputs from multiple models or from different realizations of the same model—typically

improves predictive accuracy and is widely used in atmospheric, climate, and hydrological sciences (Wandishin et al., 2001;25
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Tebaldi and Knutti, 2007; Breuer et al., 2009; Viney et al., 2009). We tested two ways of combining the runoff estimates

of the individual models into ensembles. First, for each 0.5◦ grid cell and day with non-missing values for all models, the

mean simulated runoff of the ten models was calculated (i.e., equal weights were assigned to the models). The resulting runoff

estimates will be referred to hereafter as “MEAN-All”. Second, we computed the mean based on only the four models that

performed best in terms of OS, to examine the effect of excluding less reliable models. These runoff estimates will be referred5

to hereafter as “MEAN-Best4”.

3.3 Caveats

There are a number of caveats that should be kept in mind when interpreting the results. First, some of the models (notably

the LSMs) were not traditionally developed to estimate daily runoff for such small catchments. Some of the GHMs, on the

other hand, have runoff estimation in small catchments among their primary aims (e.g., LISFLOOD, WaterGAP3, W3RA, and10

HBV-SIMREG), and four GHMs were even explicitly calibrated against observations (LISFLOOD, SWBM, WaterGAP3, and

HBV-SIMREG; see Section 4.4 for specifics). Second, a model performing poorly in one respect may well perform better for

other hydrological variables, climates, catchments, or performance metrics. Third, a poor model performance could simply be

the result of suboptimal parameter values. Fourth, some studies have found that less reliable models may still lead to a better

ensemble mean (Ajami et al., 2006; Viney et al., 2009), although this did not appear to be the case here (see Section 4.6). Fifth15

and finally, we stress that while some models may perform well, they are inherently unsuitable for specific types of impact

assessments. For example, SWBM and HBV-SIMREG do not account for physical differences among land-cover types and

hence cannot be used for studies assessing the hydrological impacts of changes in land cover.

4 Results and discussion

In this section we will answer the questions posed in the introduction.20

4.1 How well do the different models simulate runoff?

Table 5 show, for the uncalibrated models, the calibrated models, and the ensembles, (i) the mean difference between sim-

ulated and observed values of the (normalized) runoff signatures (D), (ii) the mean temporal correlation between simulated

and observed runoff time series (r), and (iii) the mean overall performance in terms of runoff signatures and temporal corre-

lation coefficients (OS). HTESSEL obtained negative D values for the square-root transformed runoff coefficient (RC) and25

the square-root transformed mean annual runoff (MAR), indicating it underestimates runoff. JULES performed moderately in

terms of temporal correlation, as indicated by the low r values. Conversely, LISFLOOD performed good overall, particularly

in terms of temporal correlation, although it tends to overestimate RC and MAR. ORCHIDEE appears to strongly underesti-

mate runoff and performed fairly in terms of temporal correlation, whereas PCR-GLOBWB shows moderate to good scores

for most metrics. Apart from a much too early bias in the flow timing (T50), SURFEX demonstrated moderate to good perfor-30

mance overall. Similar to SURFEX, W3RA exhibits a very early bias in T50, but generally obtained moderate to good scores.
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WaterGAP3 and particularly HBV-SIMREG outperformed the other models in most cases. JULES, ORCHIDEE, SURFEX,

WaterGAP3, and especially SWBM displayed negative D values for the baseflow index (BFI) and the square-root transformed

99th flow percentile (Q99), and a positive D value for the square-root transformed 1st flow percentile (Q1; Table 5), suggest-

ing they consistently overestimate quickflow. Conversely, LISFLOOD and particularly PCR-GLOBWB exhibited positive D

values for BFI and Q99, and a negative D value for Q1, indicating they tend to underestimate quickflow.5

Table 5 also presents, for the ten models and the ensembles, the spatial correlation between simulated and observed values

of the runoff signatures (ρ). HTESSEL, JULES, W3RA, WaterGAP3, and HBV-SIMREG performed good overall, while the

remaining models performed moderately overall. PCR-GLOBWB, SURFEX, and WaterGAP3 performed poorly in terms of

BFI, while SWBM obtained a poor score for Q99. WaterGAP3 performed good to excellent for all signatures except BFI, likely

due to the empirical estimation of groundwater recharge and thus baseflow as a function of landscape characteristics (Döll and10

Flörke, 2005). HBV-SIMREG attained good to excellent ρ values for all signatures. The models generally performed best for

T50 and worst for BFI among the signatures.

Table 5 also shows, for the ten models and the ensembles, OS scores for the major Köppen-Geiger climate types. We used the

newly produced Köppen-Geiger climate map from Beck et al. (2016a) which is based on the high-quality WorldClim climatic

dataset (Hijmans et al., 2005) supplemented with regional climatic datasets for the USA (Daly et al., 1994) and New Zealand15

(Tait et al., 2006). All four LSMs (HTESSEL, JULES, ORCHIDEE, and SURFEX) generally demonstrated fair performance

in cold and polar climates. Conversely, PCR-GLOBWB demonstrated poor performance in tropical and arid climates, likely

due to the overestimation of baseflow. SWBM performed moderately only in arid catchments, probably at least partly due to

the lack of baseflow under these conditions (Pilgrim et al., 1988; Beck et al., 2013). Similarly, Orth et al. (2015) found that

SWBM performs well during dry periods for eight small Swiss catchments (60–392 km2). Only LISFLOOD WaterGAP3 and20

HBV-SIMREG exhibited at least moderate performance for all climates.

Figure 1 presents, for the ten models and the ensembles, maps of simulated minus observed MAR for the catchments,

revealing the data underlying the MAR D and ρ values listed in Table 5. Maps of all other runoff signatures are presented in

Supplementary material Figures S1.2–8. HTESSEL and ORCHIDEE strongly underestimate runoff for most of the catchments,

while LISFLOOD appears to strongly overestimate runoff for most of the globe with the exception of snow-dominated regions.25

All models showed negative MAR biases in snow-dominated regions such as Alaska, the Rocky Mountains, and southern

Russia, while they consistently showed positive MAR biases for the Great Plains (USA) and southern Australia. Figure 2

shows, for the ten models and the ensembles, maps of the correlation between simulated and observed monthly flows (rmon)

for the catchments, showing the data underlying the rmon values presented in Table 5. Maps of all other temporal variability

metrics are presented in Supplementary material Figures S1.9–14. In general, the GHMs obtained good rmon values for most30

catchments, while the LSMs obtained moderate rmon values for most catchments. All LSMs showed poor to fair rmon values

for snow-dominated catchments.

Although the NSE has been widely criticized for being overly sensitive to the magnitude and timing of peak flows (e.g.,

Schaefli and Gupta, 2007; Jain and Sudheer, 2008; Criss and Winston, 2008; Gupta et al., 2009), we did calculate NSE scores

to allow the present results to be put in the context of previous macro-scale studies (see Supplementary material Table S1).35
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(a) HTESSEL (b) JULES

(c) LISFLOOD (d) ORCHIDEE

(e) PCR-GLOBWB (f) SURFEX

(g) SWBM (h) W3RA

(i) WaterGAP3 (j) HBV-SIMREG

(k) MEAN-All (l) MEAN-Best4

Figure 1. Simulated minus observed square-root transformed mean annual runoff (MAR; units
√

mm yr−1) for the catchments. Each data

point represents a catchment centroid (n= 966). Red (blue) indicates an overestimated (underestimated) MAR relative to the observations.
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(a) HTESSEL (b) JULES

(c) LISFLOOD (d) ORCHIDEE

(e) PCR-GLOBWB (f) SURFEX

(g) SWBM (h) W3RA

(i) WaterGAP3 (j) HBV-SIMREG

(k) MEAN-All (l) MEAN-Best4

Figure 2. Correlation coefficients calculated between simulated and observed monthly runoff (rmon; unitless) for the catchments. Each data

point represents a catchment centroid (n= 966).
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For most models negative median NSE scores were obtained, similar to Zhang et al. (2016), who evaluated the monthly and

annual runoff estimates from 14 (uncalibrated) macro-scale models in 644 large Australian catchments (> 2000 km2). Our

scores are, however, slightly lower than those obtained by Lohmann et al. (2004) and Xia et al. (2012), who evaluated the daily

runoff estimates from four (uncalibrated) macro-scale models in about a thousand small-to-medium sized USA catchments

(< 10000 km2), but this is probably attributable to the high quality of the USA forcing data (Wu et al., 2016). They are also5

somewhat lower than those obtained by Decharme and Douville (2007), who evaluated two (uncalibrated) macro-scale models

in 80 large catchments (> 100000 km2) around the globe, but this can be explained by their much larger catchment sizes.

Figure 3 shows, for the seven models with data on energy availability, density plots of grid cell values of aridity index (AI;

ratio of long-term energy availability to P ) versus runoff coefficient (RC; ratio of long-term mean runoff to P ), revealing how

the models respond in terms of RC to different climatic conditions. Also shown are the energy-limit line for which actual10

evaporation equals the available energy, the water-limit line for which runoff equals P , and the Budyko (1974) curve, the most

well-known among several similar empirical relationships describing the competition between runoff and actual evaporation

(Ol’dekop, 1911; Pike, 1964; Zhang et al., 2001; Porporato et al., 2004). We note that given its empirical nature, the Budyko

curve should only be used for visual reference, and not to judge the performance of the different models. Besides the striking

differences in behavior among the models, it can be seen that ORCHIDEE and WaterGAP3 do not adhere to the water and15

energy limits (Figure 3c and 3g, respectively). For WaterGAP3, this may be due to the use of calibration factors, which have

the potential to generate runoff that can go beyond the physical limits in an effort to compensate for errors in the P , PET, or

streamflow data. For ORCHIDEE, this could be indicative of issues with the runoff and/or evaporation routines.

It is generally difficult to gain insight into why a particular model performs as it does due to the large number of interacting

model components, equations, and parameters. Nevertheless, the underestimation of runoff by HTESSEL probably reflects20

the excessive evaporation by HTESSEL previously reported by Haddeland et al. (2011). PCR-GLOBWB most likely suf-

fers from suboptimal baseflow-related parameter values, since its structure is similar to that of LISFLOOD which performs

markedly better. SWBM clearly suffers from the absence of a baseflow routine outside (semi-)arid regions. Although W3RA

and HBV-SIMREG use an identical snow routine, W3RA performs considerably worse in snow-dominated regions, probably

because HBV-SIMREG uses a snowfall gauge undercatch correction factor. The unsatisfactory performance demonstrated by25

the LSMs in snow-dominated regions could be related to deficiencies in the snow routines or the energy balance estimates (see

Section 4.3). WaterGAP3 and particularly HBV-SIMREG performed quite well overall, likely because of their comprehensive

calibration (see Section 4.4). In any case, the pronounced inter-model performance spread found here suggests that model

choice should be regarded as a critical step in any hydrological modeling study. Moreover, it underscores the importance of

hydrological model uncertainty in addition to climate input uncertainty, as also emphasized in several other recent macro-scale30

studies (Haddeland et al., 2011; Schewe et al., 2013; Prudhomme et al., 2014; Mendoza et al., 2015; Giuntoli et al., 2015a).

Currently, the large majority of studies assessing the hydrological impacts of climate change completely neglect hydrological

model uncertainty (Teutschbein and Seibert, 2010).
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(a) HTESSEL (b) JULES (c) ORCHIDEE

(d) PCR-GLOBWB (e) SURFEX (f) W3RA

(g) WaterGAP3

Figure 3. For the seven models with data on the available energy, density plots of grid cell values of aridity index (AI) versus runoff coefficient

(RC). Grid cells > 50◦N/S were excluded from the analysis. The green line represents the energy limit for which actual evaporation equals

PET, the purple line represents the water limit for which runoff equals P , whereas the blue line represents the Budyko (1974) curve.

15



4.2 How well do the models perform in terms of long-term runoff trends?

The models displayed very similar MAR trends (Supplementary material Figure S1.8), meaning they respond similarly to

climate variability, given that none of the models account for land-use or land cover changes, urbanization, reservoir con-

struction, or increasing atmospheric CO2. However, the models obtained rather low spatial (Spearman) correlation coefficients

(ρMARtrend) ranging from 0.32 (SURFEX) to 0.42 (LISFLOOD; Table 5), indicating that the simulated MAR trends corre-5

spond fairly to moderately well to the observed ones. These values are lower than the (Pearson) correlation coefficients ranging

from 0.52 to 0.63 obtained by Stahl et al. (2012), who evaluated MAR trends from seven models using observations from

293 small European catchments (100–1000 km2), presumably due to the better quality of the European meteorological forcing

and observed streamflow data. Milly et al. (2005) evaluated MAR trends from a 12-model ensemble using observations from

165 large catchments (> 50000 km2) around the globe, obtaining a (Pearson) correlation coefficient of 0.34 which is similar10

to ours. These low correlations, which were somewhat unexpected given the relative ease with which MAR can be estimated

(e.g., Westerberg and McMillan, 2015; Beck et al., 2015), may be indicative of changes in non-climatic drivers of hydrological

change or drift errors in the forcing or observed streamflow data. We expect the inter-model variability in trends to be higher

and the agreement with observations to be even lower for seasonal and monthly averages as well as runoff signatures sensitive

to the shape of individual flow events (cf. Bastola et al., 2011; Gosling et al., 2011). Overall, these results suggest that studies15

using global-scale datasets to assess the impacts of climate change on runoff in small-to-medium sized catchments should be

interpreted with considerable caution.

4.3 How do the results of the GHMs differ, if at all, from those of the LSMs?

Similar to Haddeland et al. (2011), the LSMs were found to produce less runoff overall (Table 5 and Figure 1), perhaps due to

their use of physically-based Richards-Darcy type equations which neglect preferential flows. We further found that the GHMs20

perform, on average, worse than the LSMs in rain-dominated regions: the GHMs (excluding the comprehensively calibrated

models—WaterGAP3 and HBV-SIMREG; see Section 4.4) obtained mean OS scores of 0.28, 0.33, and 0.43 for tropical, arid,

and temperate climates, respectively, while the same values for the LSMs are 0.39, 0.47, and 0.47, respectively (Table 5).

However, the lower performance of the GHMs is primarily attributable to PCR-GLOBWB and SWBM. As mentioned before,

PCR-GLOBWB probably suffers from a suboptimal baseflow-related parameterization, while SWBM suffers from the absence25

of a baseflow routine.

The GHMs do appear to perform consistently better than the LSMs in snow-dominated regions: the GHMs (again excluding

WaterGAP3 and HBV-SIMREG) obtained mean OS scores of 0.46 and 0.32 for cold and polar climates, respectively, while the

same values for the LSMs are 0.31 and 0.25, respectively (Table 5). The performance of the LSMs appears to be mainly due to a

very early bias in flow timing, a very low baseflow contribution, and a misrepresentation of the seasonal cycle (Supplementary30

material Figures S1.4, S1.5, and S1.13, respectively). Our results are in agreement with Giuntoli et al. (2015b), who found five

GHMs to outperform, on average, four LSMs using observations from 252 temperate and cold catchments (64 to 1 350 000

km2) located in the central USA, and with Zhang et al. (2016), who found that two LSMs performed considerably worse than
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two GHMs in cold and polar regions using observations from 644 catchments (> 2000 km2, upper limit not reported) around

the globe. The poorer performance obtained by the LSMs is probably indicative of differences between the snow routines used

by GHMs and LSMs. The GHMs use relatively simple conceptual temperature-index snow routines driven by air temperature

which can be estimated with relative ease, whereas the LSMs use more complex physically-based energy balance snow routines

driven by estimates of energy balance components which are subject to considerable uncertainty, particularly in regions with5

complex topography (Ferguson, 1999). Although several previous studies have found that the two types of snow routines yield

comparable performance (e.g., WMO, 1986; Franz et al., 2008; Zeinivand and De Smedt, 2009; Debele et al., 2010), these

studies used a very small number of relatively well-instrumented catchments (six, two, one, and three, respectively) which may

have led to less-generalizable conclusions. Overall, it appears that the energy balance estimates and snow routines used by the

LSMs require re-evaluation (cf. Zhang et al., 2016).10

4.4 Are calibration and regionalization important or even essential?

Calibration is a prerequisite for both conceptual and physically-based hydrological models to provide reliable runoff estimates,

to account for (i) the impossibility of measuring all required model parameters at the model application scale, (ii) lack of

process understanding, (iii) possibly overly simplistic process representations, (iv) the spatio-temporal discretization of highly

heterogeneous rainfall-runoff processes, and (v) errors in the forcing data (Beven, 1989; Blöschl and Sivapalan, 1995; Duan15

et al., 2001, 2006; McDonnell et al., 2007; Nasonova et al., 2009; Rosero et al., 2011; Minville et al., 2014). Yet, despite the

development of numerous calibration techniques over the last 50 years (Dawdy and O’Donnell, 1965; Duan et al., 2004) and

the current widespread availability of streamflow observations (Hannah et al., 2011), macro-scale models generally tend to be

uncalibrated (Sooda and Smakhtin, 2015; Bierkens, 2015; Kauffeldt et al., 2016). This is perhaps mainly due to (i) the sub-

stantial amount of work involved with calibration (e.g., Bock et al., 2015), (ii) the risk of obtaining unrealistic parameters due20

to equifinality and data issues (Andréassian et al., 2012), and (iii) the lack of a commonly accepted regionalization technique

(Beck et al., 2016a). In addition, the modeler may feel that since their model is physically based, it does not require calibration

(Beven, 1989). LSMs in particular are rarely calibrated against runoff, likely because: (i) runoff estimation is generally not

among the primary aims of LSMs; (ii) for water transport in the soil, LSMs typically use Richards-Darcy type equations which

are computationally expensive and require a fine vertical and temporal soil discretization; and (iii) LSMs often do not account25

for river routing, confounding the calibration of large catchments. Instead, the parameters in macro-scale models are usually

based on “expert opinion” and thus founded on the bold assumption that the modeler sufficiently understands the hydrological

processes, feedbacks, and parameter interactions taking place within the model for any location on Earth.

Nevertheless, out of the ten models considered in this study, four use parameters derived by calibration (LISFLOOD, SWBM,

WaterGAP3, and HBV-SIMREG—all GHMs). LISFLOOD was calibrated against observed streamflow for 24 large catch-30

ments (84 230 to 4 680 000 km2) across the globe using the WFDEI forcing and an aggregate objective function incorporating

bias, NSE, and log-transformed NSE computed from daily streamflow data. The calibration might have influenced the present

evaluation; although we used much smaller catchments (1000 to 5000 km2), 47 % of our catchments are located within the

calibration catchments. SWBM uses a spatially-uniform parameter set based on calibration using the E-OBS forcing (Hay-
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lock et al., 2008) against European data on such key hydrologic variables as soil moisture, total water storage, evaporation,

and runoff (Orth and Seneviratne, 2015). For the calibration against runoff, they used observations from 436 small European

catchments (mostly < 1000 km2), and considered daily and monthly correlations as well as bias. The calibrated parameter set

was subsequently applied globally. Besides the addition of a baseflow routine, SWBM would probably benefit from region-

alized parameters that vary according to landscape characteristics. WaterGAP3 has been calibrated using the WFDEI forcing5

in terms of bias for the interstation regions (the catchment of a station excluding the catchments of nested upstream stations)

of 2071 stations (catchment size ranging from 2830 to 966 321 km2) around the globe, some of which have also been used

in the current evaluation. The calibrated parameters were subsequently regionalized to ungauged regions using multiple linear

regression based on six predictors (Döll et al., 2003). The model does indeed perform very well for MAR and thus RC, but this

did not necessarily translate into good performance for BFI (Table 5, and Figures 1 and 2). HBV-SIMREG also uses region-10

alized parameter fields, produced by transferring calibrated parameters from 674 small-to-medium sized “donor” catchments

(10 to 10 000 km2) across the globe to “receptor” grid cells with similar climatic and physiographic characteristics (Beck et al.,

2016a). In their study, Beck et al. (2016a) show that HBV using spatially-uniform parameters performs within the range of the

other models, confirming that the relatively good performance of HBV-SIMREG stems from the regionalization exercise. In

addition, although Beck et al. (2016a) did not use the WFDEI forcing for the calibration, they calibrated against several of the15

performance metrics also used here and used 179 of our catchments as parameter donors, further explaining the relatively good

performance obtained by HBV-SIMREG (Table 5, and Figures 1 and 2).

Overall, it appears that the calibration exercises for WaterGAP3, HBV-SIMREG, and possibly LISFLOOD have resulted in

markedly improved performance. However, WaterGAP3 performed poorly in terms of ρBFI (Table 5), meaning the calibration

of MAR did not translate into better BFI performance. These results underscore the benefits of calibrated parameters over a20

priori parameters (cf. Duan et al., 2006; Hunger and Döll, 2008; Nasonova et al., 2009; Rosero et al., 2011; Greuell et al.,

2015; Zhang et al., 2016) and highlight the importance of using an objective function for the calibration that incorporates a

broad range of metrics related to various important aspects of the hydrograph (cf. Gupta et al., 2008; Vis et al., 2015; Shafii and

Tolson, 2015). These results also emphasize the usefulness of regionalization techniques (Parajka et al., 2013), which typically

enhance performance over the entire model domain and are thus of particular value for macro-scale modeling, given that the25

majority of the land surface is ungauged or pooly gauged (Sivapalan, 2003; Hannah et al., 2011). However, although there

are numerous studies performing regionalization at a regional scale (see reviews by He et al., 2011; Hrachowitz et al., 2013;

Razavi and Coulibaly, 2013; Parajka et al., 2013), only few studies have attempted regionalization at a macro scale (see review

by Beck et al., 2016a). We argue that more effort should be devoted to regionalizing the parameters of macro-scale models (cf.

Bierkens, 2015; Döll et al., 2015).30

4.5 What is the impact of the forcing data on the results?

There are not only strong inter-model differences in the performance patterns but also clear inter-model similarities. Specif-

ically, all models showed negative biases in MAR in snow-dominated regions such as Alaska, the Rocky Mountains, and

southern Russia, while they consistently showed positive biases in MAR for the Great Plains (USA) and southern Australia
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(Figure 1). The high spatial correlation in the performance patterns suggests that these consistent performance patterns may

be due to biases in the WFDEI P data, rather than biases in the streamflow observations which are unlikely to be spatially

correlated.

It is conceivable that biases are present in the WFDEI P data, because: (i) the monthly CRU dataset, which has been used

to correct the WFDEI dataset, is based on only a subset of the available gauges and does not explicitly account for orographic5

effects; (ii) in sparsely gauged regions the correction using CRU is more likely to deteriorate rather than improve the P

estimates; and (iii) the Adam and Lettenmaier (2003) gauge undercatch correction factors are based on interpolation of a very

sparse sample of gauges and thus subject to considerable uncertainty. For the conterminous USA we quantified the biases in

the WFDEI P data using the high-quality Parameter-elevation Relationships on Independent Slopes Model (PRISM) climatic

dataset (Daly et al., 1994), which is based on considerably more gauges than CRU and includes sophisticated corrections for10

orography. Figure 4a shows the bias in mean annual P from WFDEI relative to that from PRISM, suggesting that the WFDEI

P data are indeed subject to large biases. Figure 4b shows the bias in MAR from the MEAN-All ensemble relative to MAR

from the observations, revealing a comparable bias pattern, thus confirming that the biases in the WFDEI P propagate in

the simulated runoff. The correlation coefficient between the MAR and P bias values is 0.58, indicating a moderately strong

relationship. These P biases appear to translate into even more pronounced runoff biases in (semi-)arid regions (notably the15

northern Great Plains; Figures 4b and 4c) due to the highly non-linear response behavior in these environments (Lidén and

Harlin, 2000; Fekete et al., 2004; Van Dijk et al., 2013a). We were unable to quantify the P biases globally since no other

independent, global-scale P dataset exists (the WorldClim and CHPclim datasets are likely to exhibit similar biases as the

CRU TS3.1 dataset, given that they are based on similar sets of gauges). However, we expect the P biases to be at least similar,

if not more severe, outside the well-instrumented conterminous USA (cf. Fekete et al., 2004; Hijmans et al., 2005; Biemans20

et al., 2009; Zhou et al., 2012; Kauffeldt et al., 2013; Greuell et al., 2015). It should be noted that biases in PET are probably

of secondary importance as compared with biases in P (Donohue et al., 2010; Sperna Weiland et al., 2011; Seiller and Anctil,

2015).

The global-scale quantification and reduction of these P biases should be a priority for future research. Satellite-derived P

offers unique opportunities in this regard (e.g., Funk et al., 2015) that extend beyond the tropics with the recent launch of the25

Global Precipitation Measurement (GPM) mission (Smith et al., 2007). Another little-explored way of reducing P uncertainty

is by “doing hydrology backwards”; that is, to use information on other hydrological variables—for example, satellite-derived

surface soil moisture (e.g., Brocca et al., 2014), streamflow observations (e.g., Adam et al., 2006; Beck et al., 2016b), and snow-

depth observations (e.g., Cherry et al., 2005)—to reconstruct P through hydrological modeling. Arguably the most important

obstacles to combining multiple data sources are the inconsistent temporal coverage and scale of different data sources and the30

general lack of error/uncertainty estimates.

Although the models all used the same P data, they used different formulations to compute PET which has likely contributed

to differences in simulated runoff among the models in energy-limited regions (Weiß and Menzel, 2008; Kingston et al., 2009;

Haddeland et al., 2011; Weedon et al., 2011; Sperna Weiland et al., 2011). However, PET data were available for only four

19



(a) Bias in WFDEI mean annual P (b) Bias in MEAN-All MAR

(c) Aridity index

Figure 4. For the conterminuous US, (a) the bias in mean annual P from WFDEI relative to PRISM, (b) the bias in MAR from the MEAN-

All ensemble relative to the observations, and (c) the aridity index, the ratio of mean annual PET (computed from PRISM air temperature

using Hargreaves et al., 1985) to P (PRISM; note the non-linear color scale). Each data point in panel (b) represents a catchment centroid.

The bias in (a) and (b) was computed following B = (X −R)/(X +R), where B is the bias, X the uncertain value, and R the reference

value. B values range from −1 to 1. A 100 % overestimation results in B = 1/3, whereas a 50 % underestimation results in B =−1/3.

models, which is insufficient to examine whether the PET formulation has had a discernible influence on the simulated runoff,

given the numerous other differences in structure and parameterization among the models.

4.6 How valuable are multi-model ensembles?

The multi-model ensemble MEAN-All incorporated all ten models, while MEAN-Best4 incorporated only LISFLOOD, W3RA,

WaterGAP3, and HBV-SIMREG (i.e., the four models that performed best in terms of OS; Table 5). MEAN-All and MEAN-5

Best4 were found to perform better than all individual models (with the exception of HBV-SIMREG, which has been compre-

hensively calibrated; Table 5, and Figures 1 and 2). These results highlight the benefits of multi-model ensembles, in line with

several previous studies (Ajami et al., 2006; Duan et al., 2007; Viney et al., 2009; Materia et al., 2010; Velázquez et al., 2010;

Gudmundsson et al., 2012a; Xia et al., 2012; Yang et al., 2015). The similar OS scores obtained by MEAN-All and MEAN-

Best4 (0.57 and 0.60, respectively; Table 5) suggests that the inclusion of less reliable models has only limited adverse effects.10

It may be worthwhile for future studies to examine the benefits of more sophisticated multi-model combination techniques

involving bias correction or model weighting (e.g., Ajami et al., 2006; Duan et al., 2007; Bohn et al., 2010). These weights can
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subsequently be transferred from gauged to ungauged areas using regionalization techniques typically used for hydrological

model parameters (Blöschl et al., 2013).

HBV-SIMREG differs from the other models because it represents a so-called “multi-parameterization ensemble”, which

means the model was run multiple (ten) times globally using different (regionalized) parameter sets representing different

catchment response behaviors (Beck et al., 2016a). HBV-SIMREG obtained slightly better performance than both MEAN-All5

and MEAN-Best4 overall (Table 5), tentatively suggesting that a multi-parameterization ensemble for a single, sufficiently

flexible model provides performance comparable to a multi-model ensemble (cf. Oudin et al., 2006; Yang et al., 2011; Coxon

et al., 2014). If this is confirmed, it would negate the need to set up, run, and maintain multiple models, and incentivize the

development of a single community hydrological model (cf. Weiler and Beven, 2015) as well as modeling systems allowing

selection of alternative model structures (cf. Bierkens, 2015), such as the Framework for Understanding Structural Errors10

(FUSE; Clark et al., 2008), Noah Multi-Parameterization (Noah-MP; Niu et al., 2011), and SUPERFLEX (Fenicia et al.,

2011).

4.7 Do all models show the early bias in runoff timing in snow-dominated catchments previously documented and

what is the cause?

With the exception of ORCHIDEE and HBV-SIMREG, all models showed early T50 biases in snow-dominated regions (Sup-15

plementary material Figure S1.3), indicating that the models produce the spring snowmelt peak early, as has also been reported

in several previous studies using different models and forcing data (Lohmann et al., 2004; Slater et al., 2007; Decharme and

Douville, 2007; Balsamo et al., 2009; Zaitchik et al., 2010; Beck et al., 2015). The early runoff timing is probably primarily

due to P underestimation which leads to insufficient snow accumulation that subsequently melts too quickly (Hancock et al.,

2014). The fact that HBV-SIMREG performs well in this regard is probably attributable to the snowfall gauge undercatch20

correction factor of the model. Indeed, Figure 5 tentatively shows that catchments in which the models strongly underestimate

runoff (i.e., negative DRC) generally tend to exhibit an early bias in T50 (i.e., negative DT50) and vice versa. The absence or

misrepresentation of certain processes that delay snowmelt runoff in the models may have exacerbated the early runoff timing

problem. Examples of such processes include the isothermal phase change of the snowpack, retainment of meltwater in the

snowpack in pore spaces, infiltration of meltwater into the soil, meltwater refreezing during cold days and nights, and icejams25

in rivers. On the whole, more research is needed to ascertain the exact reasons of the early runoff timing.

5 Conclusions

The runoff estimates from ten state-of-the-art macro-scale hydrological models, all forced with the WFDEI dataset, were

evaluated using observations from 966 medium sized catchments around the globe. With reference to the questions posed in

the introduction, the following was found:30
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Figure 5. Scatterplot of the difference between simulated (MEAN-All) and observed transformed RC (DRC) versus the difference between

simulated (MEAN-All) and observed T50 (DT50) for the catchments (n= 966).

1. The performance differed markedly among models, underscoring the importance of hydrological model uncertainty in

addition to climate input uncertainty, and suggesting that model choice should be regarded as a critical step in any

hydrological modeling study.

2. The models displayed similar MAR trends, although they were in poor agreement with observed trends. Model-based

runoff trends in small-to-medium sized catchments should thus be interpreted with considerable caution.5

3. Considering only the uncalibrated models, the GHMs performed similarly to the LSMs in rainfall-dominated regions

but consistently better than the LSMs in snow-dominated regions, perhaps due to the use of more data-demanding snow

routines or the misrepresentation of frozen-soil and snowmelt processes by the LSMs.

4. The models that have been calibrated obtained higher scores for the performance metrics incorporated in the respective

objective functions used for calibration.10

5. The WFDEI P forcing data still appear to contain substantial biases, despite adjustments using gauge observations. These

P biases translate into biases in the simulated runoff which are amplified in (semi-)arid regions. In snow-dominated

regions there appears to be a consistent underestimation in P and thus simulated runoff.

6. The multi-model ensembles obtained only slightly worse performance than the best (calibrated) model, and the inclusion

of less reliable models did not severely degrade the performance. A multi-parameterization ensemble for a single, suf-15

ficiently flexible model is easier to realize but we speculate may yield the same performance benefits as a multi-model

ensemble.
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7. Most models were indeed found to generate the spring snowmelt peak early, probably due to the previously mentioned

P underestimation and the absence or misrepresentation of certain processes that delay snowmelt runoff in the models.
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