Dear Editor,

We are hereby submitting a revision of our m/s. We are grateful for your handling of the
manuscript, and would like to extend our appreciation to the three reviewers as their comments
helped to improve the m/s.

Key changes to our revised m/s include:

1.

Added a table with qualitative interpretations of intervals of the performance metrics
(Table 4) and changed the text accordingly.

Introduced a discrete coloring of the results table that reflects the qualitative
interpretations (Table 5).

Merged the two results tables (Tables 5 and 6 in the original m/s) to save space (Table 5
in the revised m/s).

Added three more studies to Table 1.

Explained why the WFDEI data are likely to contain biases (P19L4-8).

Produced Budyko density plots for three additional models using net radiation to
compute the aridity index (see Figure 3).

Added a color scale to the Budyko density plots (see Figure 3).

Added NSE scores to the Supplementary information and discussed them in the revised
m/s (P13L33-P14L7).

Added some text to put the results of Beck et al. (2016) in the context of the present
results (P18L13-14).

Below in green a point-by-point response to each of the comments.

Yours truly,
Hylke Beck (on behalf of all co-authors)



Editor Decision: Reconsider after major revisions (06 Sep 2016) by Stan Schymanski
Comments to the Author:
Dear authors,

The two reviewers made a number of valid points, for which | am very thankful. Unfortunately,
the third reviewer did not find time to review the paper. It appears that the paper is of interest,
but has a general deficiency that motivated a few of the points of critique raised by the
reviewers. This is the lack of clarity about what is considered satisfactory model performance
and what the data actually says, independently of the authors' opinion. Reviewer #1 criticised
that hard facts are not sufficiently separated from opinions, whereas Reviewer #2 disagreed on
several occasions with the authors on what may be considered satisfactory model performance.
I concur with both reviewers and | believe that the paper is only publishable in HESS if these
points are clarified, if facts are clearly separated from opinions and if all conclusions are
supported by verifiable facts. | suggest to either separate the discussion from the results
section, or to more clearly separate opinions and recommendations from the presentation of the
results and hard facts in the "Results and discussion" section. In addition, | suggest for the
conclusions section to limit the list of conclusions to those that are directly supported by the
evidence presented in this paper, which may be followed by a paragraph of a more speculative
character, clearly indicating that this reflects the authors' opinion.

We have made additional efforts to separate opinion from fact throughout the m/s. For example,
we deleted the statements “suggesting that a broad range of performance metrics should be
incorporated in the objective function” and “more effort should be devoted to calibrating and
regionalizing the parameters of macro-scale models” from the Conclusion section, and used
words like “tentatively” and “speculate” in the m/s to highlight the uncertain nature of some
statements (P21L6 and P22L16). We also added “we argue that’ to a statement in the Abstract
to emphasize that it represents our opinion (P1L11).

The revised m/s provides a table with qualitative interpretations of intervals of the performance
metrics (see Table 4 of the revised m/s). The text has been changed accordingly.

We felt that for the present m/s a very strict separation between the Results and Discussion
section would mean we would have to address the seven research questions derived from the
main objective in the Results section and again in the Discussion section, which would
deteriorate readability (since the reader would have to go back and forth between the Results
and Discussion sections for each question). By making the distinction between discussion and
conclusions more clear in the text itself we have removed any doubt whether we speculate or
draw a conclusion.

| see a great value in confronting model simulations with independent observations to assess
model skill and credibility, and in particular to identify model weaknesses and room for
improvement. Therefore | think that the analysis presented here has potential to become a
valuable addition to the scientific literature, after properly considering the reviewer comments



and some additional points of my own, as explained above and below. Since this requires a
major revision of the manuscript, | may have to send the revised paper out for another round of
reviews.

We thank the editor for the positive and constructive comments.

Below, | listed some of my own thoughts about your responses to Reviewer #1 and #2, followed
by a list of comments | had when re-reading your manuscript in the light of the reviewer
comments. Please submit, along with the revised manuscript, point-by-point responses, linked
to a list of changes in the revised manuscript. The latter can also be a tracked-changes version
of the revised manuscript. Thank you for your contribution to HESS and for your willingness to
produce the best possible outcome for the scientific community.

Re: REVIEWER #1

Specific Comment 1: | found a range of other statements of opinion that were not clearly
separated from facts. | hope you will clear out those, too.

See response before. We have more clearly separated opinions from facts in revising the m/s.

Specific Comment 2: | appreciate the authors' willingness to conduct additional analysis and
look forward to seeing the results. | would propose to also add a discussion in the paper of the
expectation that the data should scatter around the Budyko curve and present the data points
used in the present study within the Budyko graphs to support this claim. This may also reveal
any bias in precipitation or net radiation forcing, as dots outside of the Budyko envelope indicate
violation of the mass or energy balance, as long as changes in storage are excluded (therefore
long-term averages!).

Thank you for the useful comment. We have added Budyko density plots for three models
without potential evaporation data but with net radiation data (HTESSEL, JULES, and SURFEX;
see Figure 3). However, to add these models we had to exclude northern regions (>50°N/S)
from the analysis since the majority of the net radiation is converted to sensible heat in these
northern regions (see Kleidon et al., 2014). We have changed the m/s text accordingly (see
P14L8-18). In addition, we have removed the statement that the models should scatter around
the Budyko curve, since we agree with the reviewer that this does not necessarily have to be

the case, given the empirical nature of the Budyko curve. However, we still plot the Budyko
curve in the density plots, but explicitly mention in the text that the curve merely serves as visual
reference and should not be used to judge the quality of the models.

We also produced a Budyko plot using the observations. However, after much consideration we
opted not to include it in the m/s because it would require us to produce many of these plots
given that each model employs a different method to compute the available energy for
evaporation. Although these plots would certainly reveal if a particular catchment exceeds the



water limit and thus underestimates precipitation, this information is already available in Figure
1.

Kleidon, A., Renner, M., and Porada, P.: Estimates of the climatological land surface energy and water
balance derived from maximum convective power, Hydrol. Earth Syst. Sci., 18, 2201-2218,
doi:10.5194/hess-18-2201-2014, 2014.

P5L10: Please add the explanation to the paper and also explain what the different performance
metrics mean in a practical sense. See also my comment below, wrt. P6L30.

We assume the Editor refers to P6L10 rather than P5L10. We refer to Table 3 for the calculation
and meaning of the runoff signatures.

P6L10: | did not realise that sigma values were calculated based on a gridded data set, rather
than the catchment data. | do not understand your rationale for this. Why use an
observation-based model as reference here, if you claim in the introduction that the models
were evaluated using observations from 966 catchments as reference? Please modify your
analysis for consistency or add a compelling explanation to the text. The explanation given in
your response seems to undermine your original rationale for using the catchment data.

We appreciate the comment. The sigma values are constant among the catchments and are
merely used to make the values of the different signatures more comparable (i.e., to “normalize”
the values of the signatures). The relative differences in scores among the models are still
completely determined by the observations. We use the observation-based GSCD rather than
the observations for determining the sigma values because the GSCD provides a more globally
representative picture of the spatial variability of the signatures than an unevenly distributed set
of observations would. We could have used the observations to determine the sigma values but
this probably would not have changed the results.

We realize that our explanation of the sigma values was not sufficiently clear in the original m/s
and we have therefore improved the explanation (see P6L23-28).

Tables 4 & 5: | do appreciate the detailed information, but | also agree that it is hard to read and
interpret. Instead of the apparently continous colour scale, | would suggest three colours
consistent with what you consider "unsatisfactory", "satisfactory" and "good" performance, or
something along these lines. If this is more illustrative, you could also consider moving the table
into the Sl and provide bar charts instead, with a bar for each model and the different

performance measures on the horizontal axis. Just an idea, not sure if it would help.

Thank you. We have changed the colors of the tables to reflect the qualitative interpretations
(i.e., the continuous color scale has been replaced with a discrete one; see Table 5). We feel
that in this way the tables are sufficiently clear, eliminating the need for bar plots.



Re: REVIEWER #2

General comment: Please add a discussion of the reviewer's concerns about what is considered
"poor" or "satisfactory" performance to the paper and justify your own criteria up front, before
discussion the results. Please also make very clear what are the main insights to be gained
from your analysis, also in the context of your 2016 WRR paper.

We have added qualitative descriptions for values of the different performance metrics (see
Table 4), and added some text to put the results of Beck et al. (2016) in the context of the
present results (see P18L13-14).

Specific comments:

1) I think the reviewer made a very good suggestion here, and | do not see a reason to stick to
the eartH2Observe collection, if additional insights could be gained by adding one more model
realisation. However, if this addition would not add new insights or change the conclusions, you
may as well just discuss this issue in the paper and not "contaminate" your analysis with an
additional simulation data set.

We appreciate the suggestion, but Table 7 of Beck et al. (2016) shows that HBV with
spatially-uniform parameters performs overall worse than two models but better than seven
models. Thus, while HBV with spatially-uniform parameters performs indeed quite well among
the models, it certainly did not perform beyond the range of other models. Accordingly, the fact
that HBV-SIMREG outperforms the other models is really mainly attributable to the calibration
and regionalization, and our conclusions and insights would not change if we were to include
HBV with spatially-uniform parameters in the current analysis. We now discuss this in the
revised m/s (P18L13-14): “In their study, Beck et al. (2016) show that HBV using
spatially-uniform parameters performs within the range of the other models, confirming that the
relatively good performance of HBV-SIMREG stems from the regionalization exercise.”

2) Please include a discussion of the reviewer's points in the context of your previous paper in
the current manuscript. Please also refer to my comment below wrt. P17L.22-, and add a table
as suggested by the reviewer, or point to the exact table in Dutra et al. (2015), if such a table
exists. | have not found it. You may put this table in the Sl, if you feel that it would disrupt the
flow of the paper, but please discuss it in the manuscript. Your response about the scope of the
models wrt. representing reality at scales <5000 km2 and implications for the verifiability of the
models is also worth including in the discussion, in my opinion.

Text was added to the revised m/s to put the results of Beck et al. (2016) in the context of the
present results (see the preceding comment). Furthermore, we now explicitly point to Table 4.1
of Dutra et al (2015) in the Introduction and Simulated runoff sections of the revised m/s, and in
the Caveats section of the Methodology we now mention that some of the GHMs have been
explicitly designed to estimate runoff in small catchments (lines P9L8-12): “... some of the



models (notably the LSMs) were not traditionally developed to estimate daily runoff for such
small catchments. Some of the GHMSs, on the other hand, have runoff estimation in small
catchments among their primary aims (e.g., LISFLOOD, WaterGAP3, W3RA, and
HBV-SIMREG), and four GHMs were even explicitly calibrated against observations
(LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG; see Section 4.4 for specifics).*

3) Please add NSE values as suggested and a discussion of their meaning to the manuscript.
The current blunt dismissal of NSE in the manuscript is not very helpful.

We have added NSE scores to the Supplementary information and added the following text to
the revised m/s (P10L33-P11L7): “Although the NSE has been widely criticized for being overly
sensitive to the magnitude and timing of peak flows (e.g., Schaefli and Gupta, 2007; Jain and
Sudheer, 2008; Criss and Winston, 2008; Gupta et al., 2009), we did calculate NSE scores to
allow the present results to be put in the context of previous continental- and global-scale
studies (see Supplementary material Table S1). For most models slightly negative median NSE
scores were obtained, similar to Zhang et al. (2016), who evaluated the monthly and annual
runoff estimates from 14 (uncalibrated) macro-scale models in 644 large Australian catchments
(>2000 km?). Our scores are, however, slightly lower than those obtained by Lohmann et al.
(2004) and Xia et al. (2012), who evaluated the daily runoff estimates from four (uncalibrated)
macro-scale models in about a thousand small-to-medium sized USA catchments (<10000 km?),
but this is probably attributable to the high quality of the USA forcing data. They are also
somewhat lower than those obtained by Decharme and Douville (2007), who evaluated two
(uncalibrated) models in 80 large catchments (>100000 km?) around the globe, but this can be
explained by the much larger catchment sizes.”

P6L14: If | am not mistaken, the reviewer is worried that the mean difference may obscure
differences in timing, meaning that a value of 0 may be considered a very good result, whereas
in reality over-estimation in one period is compensated by under-estimation in another. If adding
Stdev is not justified because of deviations from normality, please at least discuss the meaning
of the D values and explain how they should be interpreted in the context of other metrics. You
could also think of providing some combined index that combines different metrics to produce a
model-data correspondence between 0 and 1.

The OS metric (Equation 4) can be considered a “combined index” since it combines the
performance in terms of signatures and temporal variability. We have added the following text
regarding D: “It should be noted that, although D provides a valuable estimate of the overall
performance, a good D value may reflect an overestimation in one region that is compensated
by an underestimation in another region.”

P17L34: Does this mean that the procedure was not sufficiently documented? Please explain in
the text.



We are not sure which procedure is referred to here. P17L34 refers to the fact that the
parameters of macro-scale models in general tend to be based on “expert opinion”.

EDITOR's COMMENTS:

In addition to the reviewers' points, | would like to see clear statements about the expected
model skills and the associated performance metrics and what would be considered satisfactory
model performance. Just to grab an example, what do values of spatial correlation in the runoff
coefficient between 0.3 and 0.67 mean and what values would be considered satisfactory? If the
expected model skill is to predict trends in mean annual runoff, then neither of the models
discussed in this paper appears to be useful, as they do not reproduce the trends. In this
context, the mention of "studies assessing the hydrological impacts of climate change" in the
abstract warrants a discussion of the suitability of these models for this purpose.

Thank you. We have added qualitative descriptions for values of the different performance
metrics (see Table 4 of the revised m/s).

P2L17: Really all studies?

We have added “to our knowledge” and added three additional studies.

P2L24: In Table 1, most studies include the daily time scale, whereas in your study, you also
included monthly runoff data in the evaluation. Could you clarify what you mean and give

examples for the additional insights gained. This could then be moved to the discussion.

In the Introduction we have added a sentence that using only monthly data precludes analysis
of the shape of individual flow events (P2L26).

P2L28: What are the new insights gained by including more models?

Each hydrological model behaves in a unique way. By using more models we sample a larger
part of the behavioral space, which may lead to more generalizable insights relevant to a wider
audience.

P3L5: Need to discuss what is meant by "well". Reproduction of a time series?

Essentially, we want to know how well the different models mimic reality, whereby the
observations are assumed to reflect reality.

P3L13: Really daily? On P4L25 you state that daily and monthly observed data was used, and
on P6L2 you clarify that 325 catchments (i.e. 30%) had only monthly data.



Thank you for bringing this to our attention. This should have been both daily and monthly. We
have corrected the m/s.

P3L14: More reliabale conclusions than previous studies? In how far?

Correct, more reliable compared to previous studies. We are not sure what is meant by the
second part.

P15L9: Could you provide a clearer analysis illustrating the similarity in the produced trends?
Fig. S1.8 contains the data, but it is hard to tell in how far the colours are similar between
models for the same catchments.

The main message we wanted to convey is that the results are very similar among models and
as the Editor points out the figure conveys that. Although we appreciate the suggestion to add a
figure showing the standard deviation among models for each station, we are not sure if this is
of interest to a wide enough audience, and the m/s is already quite lengthy.

P6L17: Do you mean spatial variability or variance? How was it calculated?

We appreciate the comment. We mean the spatial variability as expressed by the standard
deviation (not the variance) calculated from the GSCD signature values of the catchments. In
the revised m/s we have improved the explanation of the sigma values (see P6L23-28).

P6L30: A value of 0 for Pearson's r means no relationship, negative values imply a negative
relationship. Clearly, one would not say that 0 is better than -0.2, so your statement here needs
to be more specific. Please specify what values would be considered satisfactory.

We have added qualitative interpretations of the correlation classes (see Table 4 of the revised
m/s). Based on this classification, correlations of 0 and -0.2 are both considered to be “poor”.

P12L34: Was the performance satisfactory in other regions? How do you define satisfactory
performance?

Please see Table 4 of the revised m/s.

P17L4-7: Calibration does not compensate for lack of process understanding or other model
deficiencies, it just reduces their effect for data similar to the calibration data. This is precisely
what your results reflect. The more similar the calibration data and the metrics used in the
calibration to your validation data, the better the perceived model performance. What can you
tell about the degradation of the model performance under climate change? | would argue that a
well-calibrated model is more likely to create a false sense of accuracy in prediction mode than
an uncalibrated model.



Thank you for your comment, we partially agree in that good performance in the past does not
guarantee good performance under future conditions. On the other hand, we would argue poor
performance in the past all but guarantees poor performance in future. We do accept that
(over-)calibration can give rise to overconfidence, however, and have replaced “compensate”
with “account” (see P17L13).

P17L22-: Earlier in the manuscript, you refer to this section for details about the calibrations
performed. The details given here are insufficient, as they do not contain any information about
what kind of parameters were calibrated. Were these only parameters relating to physical
catchment properties, or also related to e.g. vegetation properties, land cover etc.? What were
the objective functions and how exactly do the objective functions and calibration data sets
overlap with those used in the performance analysis presented here? Perhaps a table would be
helpful here.

For WaterGAP3, SWBM, and HBV-SIMREG more details can be found in the provided
references (the reference for WaterGAP3 has been added in the revised m/s). It is difficult to
pinpoint for each parameter which process or physical property it is related to, since many of the
parameters in the GHMs and LSMs are conceptual in nature and integrate several processes
within a catchment (e.g., the BETA parameter of LISFLOOD and HBV-SIMREG).

The original m/s described the objective functions used for calibrating each model
(P17L29-P18L17 in the revised m/s).

P18L29-: What evidence can be presented to claim that WFDEI precipitation is more biased
than PRISM precipitation? In order to support your claim that bias in MAR is due to bias in
WFDEI precipitation, you could use PRISM precipitation as input and see if the bias goes away.
Otherwise, this seems like speculation.

We used PRISM as reference because, compared to PRISM, WFDEI incorporates considerably
less gauges and less sophisticated orographic corrections. The following text has been added to
the revised m/s: “It is conceivable that biases are present in the WFDEI P data, because: (i) the
monthly CRU dataset, which has been used to correct the WFDEI dataset, is based on only a
subset of the available gauges and does not explicitly account for orographic effects; (ii) in
sparsely gauged regions the correction using CRU is more likely to deteriorate rather than
improve the estimates; and (iii) the Adam and Lettenmaier (2003) gauge undercatch correction
factors are based on interpolation of a very sparse sample of gauges and thus subject to
considerable uncertainty.”

Besides the comparison between PRISM and WFDEI, another strong line of evidence indicating
that WFDEI contains biases is the consistent bias patterns among the models (e.g., all models
generally underestimate flows in mountainous regions).



PRISM data are only available at a monthly resolution which is insufficient to drive any of the
models considered in our study.

P18L34: Please provide a quantitative analysis supporting "comparable bias pattern". At first
eye shot, Panels a and b may look similar, but this is hardly a defendable analysis and the
conclusion that the P bias propagates into MAR bias is hence not clearly supported by
evidence.

Thank you for the comment. The correlation between the precipitation and MAR bias values is
0.58, suggesting there is a moderately strong relationship (correlations between 0.4 and 0.6 are
considered “moderate”, see Table 4 of the revised m/s). We mention the correlation coefficient in
the revised m/s (P19L14).

P20L24: What is a "multi-parameterization ensemble"?

This is explained in the preceding sentence (P20L21-23 in the original m/s): “HBV-SIMREG
differs from the other models because it represents a so-called ‘multi-parameterization
ensemble’, which means the model was run multiple (ten) times globally using different
(regionalized) parameter sets representing different catchment response behaviors (Beck et al.,
2016).”

Conclusions:

4.: Clearly, if a model is calibrated to maximise the performance metrics ("performance metrics
incorporated in the respective objective functions"), it will "perform" better than if it is not
calibrated or calibrated to maximise some other metrics. Therefore, this line of argument is
circular and the resulting recommendations (statements starting with "should be") potentially
flawed. | consider both statements starting with "should be" as controversial and clearly the
authors' opinion, not necessarily a result of the data presented. Please re-word or put your
opinions in a separate paragraph, clearly identifiable as opinions.

Thank you, agreed. We removed both statements containing “should” from conclusion (4).
Although we appreciate the suggestion, we did not change conclusion (5) because the uncertain
nature of this conclusion is already highlighted by using the words “we speculate”.

5.: The statement in this form is not supported by the evidence presented. The evidence merely
shows that the WFDEI P deviates from PRISM P, apparently in similar locations where

simulated MAR also deviates from the observed. See my comments above, with respect to P18.

We refer to our response to P18L29.
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Abstract. Observed runeff-streamflow data from 966 medium sized catchments (+806-t6-5606-1000-5000 km?) around the
globe were used to comprehensively evaluate the daily runoff estimates (1979-2012) of six global hydrological models (GHMs)
and four land surface models (LSMs) produced as part of Tier-1 of the eartH2Observe project. The models were all driven by
the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset, but used different datasets for non-meteorologic
inputs and were run at various spatial and temporal resolutions, although all data were re-sampled to a common 0.5° spatial
and daily temporal resolution. For the evaluation, we used a broad range of performance metrics related to important aspects
of the hydrograph. We found pronounced inter-model performance differences, underscoring the importance of hydrological
model uncertainty in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate
change. The tunealibrated-uncalibrated GHMs were found to perform, on average, better than the tunealibrated--uncalibrated
LSMs in snow-dominated regions, while the ensemble mean was found to perform only slightly worse than the best (calibrated)
model. The inclusion of less reliable models did not appreciably degrade the ensemble performance. Overall, we argue that
more effort should be devoted on calibrating and regionalizing the parameters of macro-scale models. We further found that,
despite adjustments using gauge observations, the WFDEI precipitation data still contain substantial biases that propagate into
the simulated runoff. The early bias in the spring snowmelt peak exhibited by most models is probably primarily due to the

widespread precipitation underestimation at high northern latitudes.

1 Introduction

Hydrological models are indispensable tools for many purposes, including but not limited to, (i) flood and drought forecast-
ing, (ii) water resources assessments, (iii) assessing the hydrological impacts of human activities, and (iv) increasing our
understanding of the hydrological cycle. It is more than 50 years since the first attempts at hydrological modeling (Lins-

ley and Crawford, 1960; Rockwood, 1964; Sugawara, 1967; Freeze and Harlan, 1969). Since then, a plethora of conceptual,
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physically-based, and stochastic hydrological models has been developed, each with its own assumptions and characteristics
(for non-exhaustive overviews, see Singh, 1995; Singh and Frevert, 2002; Rosbjerg and Madsen, 2006; Trambauer et al., 2013;
Sooda and Smakhtin, 2015; Bierkens et al., 2015; Kauffeldt et al., 2016). Because all hydrological models are inevitably imper-
fect representations of reality, they produce highly uncertain estimates even if we would have access to perfect meteorological
data (Beven, 1989).

The quantification of these uncertainties using independent data sources is of critical importance to advance model develop-
ment, reject deficient model structures and parameterizations, quantify model credibility, and ultimately bring some order in
the plethora of models (Klemes, 1986; Wagener, 2003; Doll et al., 2015; Clark et al., 2015). There have been several collabora-
tive research efforts focusing on the intercomparison and verification of hydrological models. The earliest were coordinated by
the World Meteorological Organization (WMO, 1975, 1986, 1992). Other noteworthy initiatives include the Model Parameter
Estimation Experiment (MOPEX; Duan et al., 2006), the Global Soil Wetness Project (GSWP; Dirmeyer, 2011), the Water
Model Intercomparison Project (WaterMIP; Haddeland et al., 2011), and the Global Energy and Water Exchanges (GEWEX)
LandFlux project (McCabe et al., 2016). These initiatives have led to numerous multi-model evaluation studies focusing on
such hydrological variables as runoff (e.g., Gudmundsson et al., 2012a; Zhou et al., 2012), evaporation (e.g., Schlosser and
Gao, 2010; Jiménez et al., 2011; Miralles et al., 2015), soil moisture (e.g., Guo et al., 2007; Xia et al., 2014), snow cover (e.g.,
Slater et al., 2001), and total water storage (Giintner, 2008), among others.

One of the most useful variables for hydrological model evaluation is runoff, since it reflects the integrated response of a host
of hydrological processes occurring in a catchment (Fekete et al., 2012) and because observations are readily available for many
catchments across the globe (Hannah et al., 2011). Table 1 lists, to our knowledge, all macro-scale (i.e., continental to global
scale) studies evaluating the runoff estimates of multiple models that have been published so far. Out of these +7-20 studies,
two focused on the conterminous USA, three-five focused on Europe, while twelve-thirteen had a global scope. However, many
of these studies used runoffobservations from a relatively small number (< 100) of large catchments (> 10000 km?). The use
of a small number of basins limits confidence in the results and precludes a spatially detailed assessment, while the large size
of the catchments makes it more difficult to distinguish between deficiencies in the forcing, the (sub-)surface component, or the
river routing component of the modeling chain. Moreover, a large number of the studies only evaluated monthly mean runoff,

negleeting-the-important-daily-vartability-in-runoffprecluding analysis of the shape of individual flow events, or used the Nash
and Sutcliffe (1970) efficiency (NSE), which s+

criticized in several previous studies for being overly sensitive to the timing and magnitude of peak flows (Schaefli and Gupta,
2007; Jain and Sudheer, 2008). Furthermore, many studies considered only a few hydrological models (< 5) or performance

metrics (< 2), limiting the insights that the-evaluation-might-effercan be gained.
As part of Tier-1 of the eartH2Observe project (http://www.earth2observe.eu), ten state-of-the-art hydrological models were

ehas been

run globally at a daily time step for the period 1979-2012 using the same forcing dataset(Putra;2615). Six of the models
are global hydrological models (GHMs) while four of the models are land surface models (LSMs). GHMs have traditionally
been designed to simulate (sub-)surface water fluxes and storages, while LSMs have traditionally been designed to simulate

the soil-vegetation-atmosphere interactions within climate models (Haddeland et al., 2011; Bierkens, 2015). GHMs generally


http://www.earth2observe.eu

10

Table 1. Overview of, to the best of our knowledge, all macro-scale (continental to global) studies evaluating the runoff estimates of multiple

models, sorted by region and then publication date. The present study has been added for the sake of completeness.

Study Region Number of Number of catchments (size range) Evaluation time scale(s)
models
Lohmann et al. (2004) Cont. USA 4 1145 (23 to 10000 km?) Daily, monthly, annual, long term
Xiaetal. (2012) Cont. USA 4 969 (23 to 1353280 km?) Daily, weekly, monthly, annual, long
term
Prudhomme et al. (2011) Europe 3 579 (< 1000 km?) Daily
Gudmundsson et al. (2012a) Europe 9 426 (< 4000 km?) Daily, annual, long term
Greuell et al. (2015) Europe 5 46 (9948 to 658 340 km2) Daily, monthly, annual, long term
Milly et al. (2005) Global 12 165 (> 50000 km2) Long term
Decharme and Douville (2006) Global 6 80 (100000 to 4758 000 km2) Daily, monthly
Decharme and Douville (2007) Global 6 80 (100000 to 4 758 000 km2) Monthly
Decharme (2007) Global 2 80 (100000 to 4 758 000 km?) Monthly
Materia et al. (2010) Global 13 30 (82000 to 4 677 000 km?) Monthly
Zaitchik et al. (2010) Global 4 66 (19 000 to 4 600 000 km?) Daily, annual
Haddeland et al. (2011) Global 11 8 (650 000 to 4 600 000 km?) Monthly
Zhou et al. (2012) Global 14 150 (not specified; > 10000 km2) Annual
Van Dijk et al. (2013b) Global 5 6192 (10 to 10000 km?) Monthly
Beck et al. (2015) Global 4 4079 (10 to 10000 km2) Daily, long term
Yang et al. (2015) Global 7 16 (135757 to 3475000 kmz) Monthly, annual
Zhang et al. (2016) Global 4 644 (> 2000 km2) Monthly, annual
This study Global 10 966 (1000 to 5000 km?) Daily, 5-day, monthly, annual, long

term

represent hydrological processes in a more conceptual way, solve only the water balance, commonly operate at daily time
steps, and typically have a small number of soil layers (< 3 in the current study) and a single snow layer. Conversely, LSMs
generally represent hydrological processes in a more physically-based way, solve both the water and energy balances, typically
operate at (sub-)hourly time steps, and tend to have many soil and snow layers (4—11 and 1-12, respectively, in the current

study; for more details on the models, see Table 4.1 of Dutra, 2015). The present study aims to comprehensively evaluate the

runoff estimates of these ten models across the globe in an effort to answer the following pertinent research questions:
1. How well do the different models simulate runoff?
2. How well do the models perform in terms of long-term runoff trends?
3. How do the results of the GHMs differ, if at all, from those of the LSMs?
4. Are calibration and regionalization important or even essential?

5. What is the impact of the forcing data on the simulated runoff?
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6. How valuable are multi-model ensembles for improving runoff estimates?

7. Do all models show the early bias in runoff timing in snow-dominated catchments previously documented (e.g., Zaitchik

et al., 2010) and what is the cause?

We use daily runeff-streamflow observations during 1979-2012 from a large, highly diverse, quality-controlled set of medium
sized catchments. This leads to more reliable and generalizable conclusions, and allows us to explicitly compare the perfor-
mance among different climate types (Andréassian et al., 2007; Stahl et al., 2011; Gupta et al., 2014). Moreover, we use a
broad range of performance metrics, including runoff signatures (measures that quantify the hydrograph shape such as runoff
coefficient and baseflow index; Olden and Poff, 2003; Monk et al., 2007) that can be related to specific hydrological processes
(Yilmaz et al., 2008).

2 Data
2.1 Forcing

The models were all driven by the daily 0.5° WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset (1979-2012;
Weedon et al., 2014) with the precipitation (P) data adjusted using the monthly 0.5° gauge-based Climate Research Unit (CRU)
TS3.1 dataset (Harris et al., 2013). Although the models all used the same P data, they used potential evaporation (PET) derived
using diverse formulations, ranging from the temperature-based Hamon equation (PCR-GLOBWB) to various radiation-based
approaches (WaterGAP3, SWBM, and HBV-SIMREG), the combination-Penman-Monteith combination equation (HTESSEL,
JULES, LISFLOOD, SURFEX, and W3RA), and a surface-energy balance approach (ORCHIDEE). The models also used

different datasets for non-meteorologic inputs. For more details, see Dutra (2015).
2.2 Simulated runoff

Table 2 lists the ten state-of-the-art macro-scale hydrological models of which we evaluated the simulated daily (non-routed)
runoff (mm d~!). The data used in this study have been named Tier-1 and represent an initial run by all participating mod-
eling groups (Dutra, 2015). All data were acquired through the eartH2Observe Water Cycle Integrator (WCI; http://wci.
earth2observe.eu). Six of the models are GHMs (LISFLOOD, PCR-GLOBWB, SWBM, W3RA, WaterGAP3, and HBV-
SIMREG) and four are LSMs (HTESSEL, JULES, ORCHIDEE, and SURFEX). The GHMs were all run at daily time steps
and the LSMs at hourly and 15-minute time steps. The models were run at a 0.5° spatial resolution, with the exception of
LISFLOOD and WaterGAP3, which were run at 0.1° and 0.08°, respectively. For the analysis, however, all model output was
resampled to a common 0.5° spatial and daily temporal resolution. Four of the models were subjected to varying degrees of
calibration to improve their parameters (LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG; see Section 4.4 for specifics).
Details-More details concerning the models can be found in Table 4.1 of Dutra (2015).


http://wci.earth2observe.eu
http://wci.earth2observe.eu
http://wci.earth2observe.eu

Table 2. Overview of the hydrological models considered in this study. For definitions of the model name acronyms, see Dutra (2015).

Definitions of model-class acronyms: GHM, global hydrological model; and LSM, land surface model.

Model name Data provider(s) Reference(s) Model class
HTESSEL European Centre for Medium-Range Weather Forecasts (ECMWF) Balsamo et al. (2009, 2011) LSM
JULES Natural Environment Research Council (NERC) Best et al. (2011) LSM
LISFLOOD Joint Research Centre (JRC) Burek et al. (2013) GHM
ORCHIDEE Centre National de la Recherche Scientifique (CNRS) Krinner et al. (2005) LSM
PCR-GLOBWB  University of Utrecht Van Beek and Bierkens (2009) GHM
SURFEX Météo France Decharme et al. (2011, 2013) LSM
SWBM Eidgendossische Technische Hochschule (ETH) Ziirich Orth and Seneviratne (2015) GHM
W3RA Australian National University (ANU) and Commonwealth Scientific and Industrial ~ Van Dijk (2010) GHM
Research Organisation (CSIRO)
WaterGAP3 University of Kassel Verzano (2009) GHM
HBV-SIMREG JRC Beck et al. (2016a) GHM

2.3 Observed runeffstreamflow

Daily and monthly observed runeff-streamflow data were used in this study to evaluate the runoff estimates of the models. The
observed runoff-streamflow and catchment boundary data used in this study originate from the same three sources as Beck
etal. (2013, 2015, 2016a), namely (i) the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/), (ii) the Geospatial
Attributes of Gages for Evaluating Streamflow (GAGES)-II database (Falcone et al., 2010), and (iii) an Australian runoff
streamflow data compilation by Peel et al. (2000). The following seven criteria were used to select suitable catchments for our

analysis:

1. The runeff-streamflow record length was required to be > 5 years (not necessarily consecutive) during 1979-2012 (the

temporal span of the simulated runoff data).

2. The catchment area had to be < 5000 km?2, to minimize the effects of channel routing delays and to reduce the likeli-
hood of significant anthropogenic water use. We could not use larger catchments and evaluate routed runoff-streamflow
estimates since three of the models did not not simulate river routing (JULES, SWBM, and HBV-SIMREG).

3. The catchment area had to be > 1000 km?, to prevent catchments unrepresentative of the 0.5° grid cells (2182 km? at

45°N/S) from confounding the results.

4. To reduce human influences, catchments were required to have < 2 % classified as urban (using the “artificial areas” class
of the GlobCover version 2.3 map; 300-m resolution; Bontemps et al., 2011) and subject to irrigation (using version 5 of

the Global Map of Irrigation Areas—GMIA; 5-min resolution; Siebert et al., 2005).


http://www.bafg.de/GRDC/
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5. We used the Global Reservoir and Dam (GRanD) database (v1.1; Lehner et al., 2011) to exclude catchments influ-
enced by major reservoirs (defined by total reservoir capacity > 10 % of the mean-annual-runeffobserved mean annual

streamflow).

6. Catchments with forest gain or loss > 20 % of the catchment area (the threshold at which changes in runoff can generally
be detected; Bosch and Hewlett, 1982) were excluded using version 1.1 of the Landsat-based forest change dataset (30-m

resolution; Hansen et al., 2013).

7. To further reduce the number of disinformative catchments, all runeff-streamflow records were visually screened for ar-
tifacts and anthropogenic influences (caused by, for example, diversions and impoundments). Furthermore, USA catch-
ments flagged as “non-reference” in the GAGES-II database were discarded, and GRDC catchments for which the

catchment boundaries could not be reliably determined were discarded (Lehner, 2012).

In total 966 catchments (median size 1970 km?; median record length 19 y during 1979-2012) were found to be suitable for the
analysis, of which 641 catchments have daily rureff-streamflow data and 325 catchments (mainly located in Russia) have only
monthly runoff-streamflow data. The locations of the selected catchments will be shown in the Results section. All observed

runoff-streamflow data were converted to runoff in mm d~" using the provided catchment areas.

3 Methodology
3.1 Model evaluation

The simulated runoff of the models were evaluated in five ways. First, for each catchment, we calculated the differences D (—)
between simulated and observed values of several runoff signatures. Table 3 lists the six runoff signatures selected including
their computation from the period with simultaneous simulated and observed runoff. The baseflow index (BFI), square-root
transformed 1st flow-pereentite-percentile exceedance flow (Q1), and square-root transformed 99th floew-percentile-percentile
exceedance flow (Q99) require daily (rather than monthly) flow data. To compute the flow timing (T50) from monthly data,
we first computed daily time series from monthly time series using linear interpolation. The square-root transformed runoff
coefficient (RC), square-root transformed mean annual flow (MAR), Q1, and Q99 values were square-root transformed to give

more weight to small values. D was computed according to:

Ysim_Yos
D, = e, (1)

Oq

where Y represent the values of the runoff signatures (—), o—the-standard-deviations-of-the-transformed-runoff-signatures(—);
the-the ¢ subscript denotes the runoff signature, while-and the ‘sim’ and ‘obs’ subscripts refer to simulated and observed,
respectively. The o values in-Equation+-(—) are constants that represent the spatial variability in the runoff signatures across
the landscape and are used to normalize the D values —Fhey-were-derived-(i.¢., to make the D values of the different signatures
intercomparable; see Table 3). The o values were computed by taking the standard deviation of global-scale signature maps
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Table 3. The long-term runoff behavioral signatures considered for evaluating the model performance.
signatures were computed, for each catchment, from the entire record of simultaneous observed and simulated runoff. The o values represent

the spatial variability in the runoff signatures across the landscape.

Runoff Units Description Evaluated flow aspect Standard
signature deviation (o)
RC = Square-root transformed runoff coefficient, ratio of long-term runoff to P —  Water balance 0.33
MAR M Square-root transformed long-term mean annual runoff - Water balance 11.21
T50 d The day of the water year marking the timing of the center of mass of flow  Seasonal flow distribution 34.36

(Stewart et al., 2005). A water year is defined as the 12-month period from
October to September in the Northern Hemisphere and April to March in
the Southern Hemisphere-
BFI — Base flow index, the ratio of long-term baseflow to total runoff—Fhe—; the  Partitioning between 0.18
baseflow portion of the total runoff was computed following the proce-  quickflow and baseflow,
dure of Gustard et al. (1992), which takes the minima at five-day non-  flow peakiness
overlapping intervals and subsequently connects the valleys in this series

of minima to generate baseflow —

Ql w\/n\ernAc/l:N1 Square-root transformed 1st percentile exceedance flow — Peak-flow magnitude 1.27
Q99 W\N\N\N\/Inlncf1 Square-root transformed 99th percentile exceedance flow — Low-flow magnitude 0.21

from the Global Streamflow Characteristics Dataset (GSCD) v1.9 (Beck et al., 2015; http://water.jrc.ec.europa.eu/GSCD; see
Table 3) taking into account the entire ice-free land surface excluding deserts (defined by an aridity index > 5), with the
exception of the T50 o, which considers only the snow-dominated ice-free land surface. Next, the mean D value over all

catchments was computed (expressed by D). D and D values closer to zero correspond to better model performance —(see

Table 4). It should be noted that, although D provides a valuable estimate of the overall performance, a cood D value ma
reflect an overestimation in one region that is compensated by an underestimation in another region.

Second, to evaluate the temporal variability of the simulated runoff time series, we computed Pearson linear correlation
coefficients (r) between daily, log-transformed daily, 5-day, monthly, monthly climatic, and annual time series of simulated
and observed runoff (termed 7qiy, Tdlylogs T5days Tmons Tmonclim, and 7y, respectively). The 741y, Tdiylog, and 754ay values
were only computed for catchments with daily ebserved-runoff-dataobservations. If monthly data were not supplied by the data
providers, monthly values were computed by simple averaging of the daily data only if > 25 non-missing values were available.
Annual values were computed by simple averaging of the monthly data (either supplied or computed) only if > 10 non-missing
values were available. We subsequently computed for each model and metric the mean r value over all catchments, expressed
by 7. The r and T values range from —1 to 1, with higher values corresponding to better model performance (see Table 4).

Third, to summarize the overall performance of each model, we computed for each catchment a summary performance
statistic (termed OS) incorporating the previously mentioned metrics, and computed the mean value over all catchments (OS).

The OS consists of two parts, of which the first (OSgig) considers the performance in terms of runoff signatures and is defined
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as:

OSgig = 1 —mean [|DRC|a |Dymarl|, | Drsol, | Deril, [ Dqil, |DQ99|} : (@)

The second part (OSy,;) evaluates the performance in terms of temporal variability, and is defined as:

var — ’ 0og» ays "mony monclim;Tyr |-
0OS mean {ley Tdlylog, T5days T r lim, Ty ] 3)

The summary score is subsequently computed following:

_ OSeig + OSyar

(O] 5

“)

The BFI, Q1, and Q99 components of Equation 2 and the rq;, and 7q1y10¢ components of Equation 3 were omitted if daily
observed-runoff-data-observations were unavailable for a particular catchment. Higher OS values correspond to better model
performance; the maximum attainable value is 1 (see Table 4).

Fourth, to evaluate the ability of each model to simulate the spatial-variability-variability among the catchments in the
six previously mentioned runoff signatures, Spearman rank correlation coefficients (p) were computed between simulated
and observed values of the runoff signatures. Spearman rank correlation coefficients rather than Pearson linear correlation
coefficients were used to minimize the influence of outliers. The p values range from —1 to 1, with higher values corresponding
to better model performance (see Table 4).

Fifth, we computed trends in simulated and observed mean annual runoff time series (termed MAR trend) using the sim-
ple non-parametric approach of Sen (1968). We subsequently calculated the p between simulated and observed MAR trends
(PMARtrend ), reflecting the agreement in spatial trend patterns.

Sixth and last, we produced

and-WaterGAP3)-density plots of grid cell values of aridity index (AI; ratio of long-term PET-available energy to P) versus

runoff coefficient (RC; ratio of long-term simulated runoff to P), revealing how the models behave in terms of RC under

different climatic conditions. To estimate the available energy we used PET for four models (ORCHIDEE, PCR-GLOBWB,
W3RA, and WaterGAP3) and net radiation for three models (HTESSEL, JULES, and SURFEX). For the remaining models
estimates of the available energy were not available. Grid cells > 50°N/S were excluded for this analysis, as the majority of
the net radiation is converted to sensible heatin cold climates (Kleidon et al.. 2014).

For the evaluation, we used for each catchment the simulated runoff time series of the 0.5° grid cell with its center located
within the catchment. However, if multiple grid cell centers were located within the catchment, we calculated the mean simu-
lated runoff time series, and if no grid cell center was located within the catchment, we used the simulated runoff time series

of the grid cell with its center located closest to the catchment centroid.
3.2 Multi-model ensembles

Ensemble modeling—using the outputs from multiple models or from different realizations of the same model—typically

improves predictive accuracy and is widely used in atmospheric, climate, and hydrological sciences (Wandishin et al., 2001;
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Table 4. Qualitative descriptions of intervals of the performance metrics to aid in interpreting the results.

12 P 08

Tebaldi and Knutti, 2007; Breuer et al., 2009; Viney et al., 2009). We tested two ways of combining the runoff estimates
of the individual models into ensembles. First, for each 0.5° grid cell and day with non-missing values for all models, the
mean simulated runoff of the ten models was calculated (i.e., equal weights were assigned to the models). The resulting runoff
estimates will be referred to hereafter as “MEAN-AII”. Second, we computed the mean based on only the four models that
performed best in terms of OS, to examine the effect of excluding less reliable models. These runoff estimates will be referred

to hereafter as “MEAN-Best4”.
3.3 Caveats

There are a number of caveats that should be kept in mind when interpreting the results. First, some of the models (notably

the LSMs) were not traditionally developed to estimate daily runoff for such small catchments. Mest-Some of the GHMs,
on the other hand, were-speeifically-designed-with-have runoff estimation in mind;-and-four-small catchments among their

rimary aims (e.g., LISFLOOD, WaterGAP3, W3RA, and HBV-SIMREG), and four GHMs were even explicitly calibrated
against raneff-observations (LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG; see Section 4.4 for specifics). Second,

a model performing poorly in one respect may well perform better for other hydrological variables, climates, catchments, or
performance metrics. Third, a poor model performance could simply be the result of suboptimal parameter values. Fourth,
some studies have found that less reliable models may still lead to a better ensemble mean (Ajami et al., 2006; Viney et al.,
2009), although this did not appear to be the case here (see Section 4.6). Fifth and finally, we stress that while some models
may perform well, they are inherently unsuitable for specific types of impact assessments. For example, SWBM and HB V-
SIMREG do not account for physical differences among land-cover types and hence cannot be used for studies assessing the

hydrological impacts of changes in land cover.

4 Results and discussion

In this section we will answer the questions posed in the introduction.
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4.1 How well do the different models simulate runoff?

Fables-22-and-22-Table 5 show, for the uncalibrated models, the calibrated models, and the ensembles, (i) the mean difference
between simulated and observed values of the (normalized) runoff signatures (D), (ii) the mean temporal correlation between
simulated and observed runoff time series (7), and (iii) the mean overall performance in terms of runoff signatures and temporal
correlation coefficients (OS). HTESSEL obtained negative D values for the square-root transformed runoff coefficient (RC)
and the square-root transformed mean annual runoff (MAR), indicating it underestimates runoff. JULES performed relatively
poerky-moderately in terms of temporal correlation, as indicated by the low r values. Conversely, LISFLOOD performed
well-good overall, particularly in terms of temporal correlation, although it tends to overestimate RC and MAR. ORCHIDEE
appears to strongly underestimate runoff and performed peerty-fairly in terms of temporal correlation, whereas PCR-GLOBWB
shows moderate seores—for-al-to good scores for most metrics. Apart from a much too early bias in the flow timing (T50),
SURFEX demonstrated fair-moderate to good performance overall. Similar to SURFEX, W3RA exhibits a very early bias
in T50, but generally obtained moderate to good scores. WaterGAP3 and particularly HBV-SIMREG performed-wel-for-all
metriesoutperformed the other models in most cases. JULES, ORCHIDEE, SURFEX, WaterGAP3, and especially SWBM
displayed negative D values for the baseflow index (BFI) and the square-root transformed 99th flow percentile (Q99), and a

positive D value for the square-root transformed 1st flow percentile (Q1; Fables-22-and-2?Table 5), suggesting they consistently
overestimate quickflow. Conversely, LISFLOOD and particularly PCR-GLOBWB exhibited positive D values for BFI and
Q99, and a negative D value for Q1¢Fables-22-and-2?), indicating they tend to underestimate quickflow.

Tables22-and-2?-alse-presentTable 5 also presents, for the ten models and the ensembles, the spatial correlation between
simulated and observed values of the runoff signatures (p). HTESSEL, JULES, EISFEOOD;-and-W3RAebtained-mederate

GLOBWB, SURFEX, and WaterGAP3 performed poorly in terms of F56;BFE-and-Q1—SURFEX-showed-particularly-poeor
scoresfor BHland-the-trend-in-mean-annualrunof-(MAR-trend);-BF], while SWBM obtained a poor score for Q99. WaterGAP3
performed wel-for-al-runoff-signatures-with-the-exception-ef-good to excellent for all signatures except BFI, likely due to the
empirical estimation of groundwater recharge and thus baseflow as a function of landscape characteristics (D61l and Florke,
2005). HBV-SIMREG attained high-good to excellent p values for all runoff-signatares—signatures. The models generally

erformed best for TS50 and worst for BFI among the signatures.
Tables—22-and-2?-also-showTable 5 also shows, for the ten models and the ensembles, OS scores for the major Koppen-

Geiger climate types. We used the newly produced Koppen-Geiger climate map from Beck et al. (2016a) which is based on
the high-quality WorldClim climatic dataset (Hijmans et al., 2005) supplemented with regional climatic datasets for the USA
(Daly et al., 1994) -the-Andes{2);-and New Zealand (Tait et al., 2006). All four LSMs (HTESSEL, JULES, ORCHIDEE, and
SURFEX) demeonstrated-poorgenerally demonstrated fair performance in cold and polar climates. Conversely, PCR-GLOBWB
demonstrated poor performance in tropical ;-arid;-and-temperate-and arid climates, likely due to the overestimation of baseflow.
SWBM performed wel-moderately only in arid catchments, probably at least partly due to the lack of baseflow under these
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conditions (Pilgrim et al., 1988; Beck et al., 2013). Similarly, Orth et al. (2015) found that SWBM performs well during dry
periods for eight small Swiss catchments (66-t6-39260-392 km?). EISFEOOD-W3RA;-Only LISFLOOD WaterGAP3 -and
HBV-SIMREG showed-moderate-to-good-exhibited at least moderate performance for all climates.

Figure 1 presents, for the ten models and the ensembles, maps of simulated minus observed MAR for the catchments,
revealing the data underlying the MAR D and p values listed in Fables-22-and-22Table 5. Maps of all other runoff signatures
are presented in Supplementary material Figures S1.2-8. HTESSEL and ORCHIDEE strongly underestimate runoff for most
of the catchments, while LISFLOOD appears to strongly overestimate runoff for most of the globe with the exception of snow-
dominated regions. All models showed negative MAR biases in snow-dominated regions such as Alaska, the Rocky Mountains,
and southern Russia, while they consistently showed positive MAR biases for the Great Plains (USA) and southern Australia.
Figure 2 shows, for the ten models and the ensembles, maps of the correlation between simulated and observed monthly
flows (rmon) for the catchments, showing the data underlying the 7,0, values presented in Fables-??-and-2?Table 5. Maps of
all other temporal variability metrics are presented in Supplementary material Figures S1.9-14. In general, EISFEOOD-and
HBV-SIMREG-obtained-high-the GHMs obtained good 7,0, values for most catchments, while JUEES;-ORCHIDEE and
SURFEX-obtained-relativelytow-the LSMs obtained moderate 7,0, values for most catchments. All fourlSMs-showed-low
LSMs showed poor to fair 7o, values for snow-dominated catchments.

Although the NSE has been widely criticized for being overly sensitive to the magnitude and timing of peak flows (e.g.
Schaefli and Gupta, 2007; Jain and Sudheer, 2008; Criss and Winston, 2008; Gupta et al., 2009), we did calculate NSE scores

to allow the present results to be put in the context of previous macro-scale studies (see Supplementary material Table S1).

For most models negative median NSE scores were obtained, similar to Zhang et al. (2016), who evaluated the monthly and

annual runoff estimates from 14 (uncalibrated) macro-scale models in 644 large Australian catchments (> 2000 km?). Our
runoff estimates from four (uncalibrated) macro-scale models in about a thousand
somewhat lower than those obtained by Decharme and Douville (2007), who evaluated two (uncalibrated) macro-scale models

in 80 large catchments (> 100000 km?) around the globe, but this can be explained by their much larger catchment sizes.
Figure 3 shows, for the feurmodelsforwhich-PET-data-were-availableseven models with data on energy availability, density

small-to-medium sized USA catchments

plots of grid cell values of aridity index (Al; ratio of long-term PET-energy availability to P) versus runoff coefficient (RC;
ratio of long-term MAR-mean runoff to P), revealing how the models behave-respond in terms of RC under-to_different
climatic conditions. Also shown are the energy-limit line for which actual evaporation equals PET-the available energy, the
water-limit line for which runoff equals P, and the Budyko (1974) curve, the most well-known among several similar empirical

relationships describing the competition between runoff and actual evaporation (Ol’dekop, 1911; Pike, 1964; Zhang et al.,

12
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Figure 1. Simulated minus observed square-root transformed mean annual runoff (MAR; unittessunits /mm ir—l) for the catchments.
Each data point represents a catchment centroid (n = 966). Red (blue) indicates an overestimated (underestimated) MAR relative to the

observations. 13
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Figure 2. Correlation coefficients calculated between simulated and observed monthly runoff (rmon; unitless) for the catchments. Each data
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point represents a catchment centroid (n = 966).
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tor;-should only be used for visual reference, and not

to judge the performance of the different models. Besides the striking differences in behavior among the models, it can be seen
that ORCHIDEE and WaterGAP3 td-ee H eH-b he-energy-Hmittine(Fie

need-to-be-re-evaluated. For WaterGAP3exhibits-a—particularly-strong-seatter—perhaps—, this may be due to the ealibration

compensating-use of calibration factors, which have the potential to generate runoff that can go beyond the physical limits in
an effort to compensate for errors in the P, PET, or runoff-data-streamflow data. For ORCHIDEE, this could be indicative of

issues with the runoff and/or evaporation routines.

It is generally difficult to gain insight into why a particular model performs as it does due to the large number of interacting

model components, equations, and parameters. Nevertheless, the underestimation of runoff by HTESSEL probably reflects
the excessive evaporation by HTESSEL previously reported by Haddeland et al. (2011). PCR-GLOBWB most likely suf-
fers from suboptimal baseflow-related parameter values, since its structure is similar to that of LISFLOOD which performs
markedly better. SWBM clearly suffers from the absence of a baseflow routine outside (semi-)arid regions. Although W3RA
and HBV-SIMREG use an identical snow routine, W3RA performs considerably worse in snow-dominated regions, probably
because HBV-SIMREG uses a snowfall gauge undercatch correction factor. The unsatisfactory performance demonstrated by
the LSMs in snow-dominated regions could be related to deficiencies in the snow routines or the energy balance estimates (see
Section 4.3). WaterGAP3 and particularly HBV-SIMREG performed quite well overall, likely because of their comprehensive
calibration (see Section 4.4). In any case, the pronounced inter-model performance spread found here suggests that model
choice should be regarded as a critical step in any hydrological modeling study. Moreover, it underscores the importance of
hydrological model uncertainty in addition to climate input uncertainty, as also emphasized in several other recent macro-scale
studies (Haddeland et al., 2011; Schewe et al., 2013; Prudhomme et al., 2014; Mendoza et al., 2015; Giuntoli et al., 2015a).
Currently, the large majority of studies assessing the hydrological impacts of climate change completely neglect hydrological

model uncertainty (Teutschbein and Seibert, 2010).
4.2 How well do the models perform in terms of long-term runoff trends?

The models displayed eensistent-yery similar MAR trends (Supplementary material Figure S1.8), meaning they respond sim-
ilarly to climate variability, given that none of the models account for land-use or land cover changes, urbanization, reservoir
construction, or increasing atmospheric CO5. However, the models obtained rather low spatial (Spearman) correlation coeffi-
cients (PMAR trend) ranging from 0.32 (SURFEX) to 0.42 (LISFLOOD; Fables-22-and-22Table 5), indicating that the simulated
MAR trends correspond peerty-te-fairly to moderately well to the observed ones. These values are lower than the (Pearson)
correlation coefficients ranging from 0.52 to 0.63 obtained by Stahl et al. (2012), who evaluated MAR trends from seven mod-
els using ebserved runeff-observations from 293 small European catchments (+86-t0-+606-100-1000 km?), presumably due to
the better quality of the European meteorological forcing and observed runeff-streamflow data. Milly et al. (2005) evaluated
MAR trends from a 12-model ensemble using ebserved-runeff-observations from 165 large catchments (> 50000 km?) around
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Figure 3. For the fourseven models for-which-PEF-with data were-on the available energy, density plots of grid cell values of aridity index
(AI) versus runoff coefficient (RC). The-bluetinerepresents-Grid cells > 50°N/S were excluded from the Budyke-(1974)-eurve-whereas-the

analysis. The green line represents the energy limit for which actual evaporation equals PET, the purple line represents the water limit for
which runoff equals P, whereas the blue line represents the Budyko (1974) curve.
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the globe, obtaining a (Pearson) correlation coefficient of 0.34 which is similar to ours. These low correlations, which were
somewhat unexpected given the relative ease with which MAR can be estimated (e.g., Westerberg and McMillan, 2015; Beck
et al., 2015), may be indicative of changes in non-climatic drivers of hydrological change or drift errors in the forcing or ob-
served runoff-streamflow data. We expect the inter-model variability in trends to be higher and the agreement with observations
to be even lower for seasonal and monthly averages as well as runoff signatures sensitive to the shape of individual flow events
(cf. Bastola et al., 2011; Gosling et al., 2011). Overall, these results suggest that studies assessing-using global-scale datasets to
assess the impacts of climate change on runoff in small-to-medium sized catchments should be interpreted with considerable

caution.
4.3 How do the results of the GHMs differ, if at all, from those of the LSMs?

Similar to Haddeland et al. (2011), the LSMs were found to produce less runoff overall (Fables-??-and-2?;-and-Table 5 and
Figure 1), perhaps due to their use of physically-based Richards-Darcy type equations which neglect preferential flows. We
further found that the GHMs perform, on average, worse than the LSMs in rain-dominated regions: the GHMs (excluding
the comprehensively calibrated models—WaterGAP3 and HBV-SIMREG; see Section 4.4) obtained mean OS scores of 0.28,
0.33, and 0.43 for tropical, arid, and temperate climates, respectively, while the same values for the LSMs are 0.39, 0.47, and
0.47, respectively (Fables—2??-and-2?Table 5). However, the poor-lower performance of the GHMs is primarily attributable
to PCR-GLOBWB and SWBM. As mentioned before, PCR-GLOBWB probably suffers from a suboptimal baseflow-related
parameterization, while SWBM suffers from the absence of a baseflow routine.

The GHMs do appear to perform consistently better than the LSMs in snow-dominated regions: the GHMs (again excluding
WaterGAP3 and HBV-SIMREG) obtained mean OS scores of 0.46 and 0.32 for cold and polar climates, respectively, while
the same values for the LSMs are 0.31 and 0.25, respectively (fables—??-and—2?Table 5). The performance of the LSMs
appears to be mainly due to a very early bias in flow timing, a very low baseflow contribution, and a misrepresentation of
the seasonal cycle (Supplementary material Figures S1.4, S1.5, and S1.13, respectively). Our results are in agreement with
Giuntoli et al. (2015b), who found five GHMs to outperform, on average, four LSMs using raneff-observations from 252
temperate and cold catchments (64 to 1350000 km?) located in the central USA, and with Zhang et al. (2016), who found
that two LSMs performed considerably worse than two GHMs in cold and polar regions using rureff-observations from 644
catchments (> 2000 km?, upper limit not reported) around the globe. The poorer performance obtained by the LSMs is probably
indicative of differences between the snow routines used by GHMs and LSMs. The GHMs use relatively simple conceptual
temperature-index snow routines driven by air temperature which can be estimated with relative ease, whereas the LSMs
use more complex physically-based energy balance snow routines driven by estimates of energy balance components which
are subject to considerable uncertainty, particularly in regions with complex topography (Ferguson, 1999). Although several
previous studies have found that the two types of snow routines yield comparable performance (e.g., WMO, 1986; Franz
et al., 2008; Zeinivand and De Smedt, 2009; Debele et al., 2010), these studies used a very small number of relatively well-
instrumented catchments (six, two, one, and three, respectively) which may have led to nen-generalizable-less-generalizable
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conclusions. Overall, it appears that the energy balance estimates and snow routines used by the LSMs need-to-bere-evalaated
require re-evaluation (cf. Zhang et al., 2016).

4.4 Are calibration and regionalization important or even essential?

Calibration is a prerequisite for both conceptual and physically-based hydrological models to provide reliable runoff estimates,
to eompensate-account for (i) the impossibility of measuring all required model parameters at the model application scale,
(ii) lack of process understanding, (iii) possibly overly simplistic process representations, (iv) the spatio-temporal discretization
of highly heterogeneous rainfall-runoff processes, and (v) errors in the forcing data (Beven, 1989; Bloschl and Sivapalan,
1995; Duan et al., 2001, 2006; McDonnell et al., 2007; Nasonova et al., 2009; Rosero et al., 2011; Minville et al., 2014).
Yet, despite the development of numerous calibration techniques over the last 50 years (Dawdy and O’Donnell, 1965; Duan
et al., 2004) and the current widespread availability of runoff-streamflow observations (Hannah et al., 2011), macro-scale
models generally tend to be uncalibrated (Sooda and Smakhtin, 2015; Bierkens, 2015; Kauffeldt et al., 2016). This is perhaps
mainly due to (i) the substantial amount of work involved with calibration (e.g., Bock et al., 2015), (ii) the risk of obtaining
unrealistic parameters due to equifinality and data issues (Andréassian et al., 2012), and (iii) the lack of a commonly accepted
regionalization technique (Beck et al., 2016a). In addition, the modeler may feel that since their model is physically based, it
does not require calibration (Beven, 1989). LSMs in particular are rarely calibrated against runoff, likely because: (i) runoff
estimation is generally not among the primary aims of LSMs; (ii) for water transport in the soil, LSMs typically use Richards-
Darcy type equations which are computationally expensive and require a fine vertical and temporal soil discretization; and
(iii) LSMs often do not account for river routing, whieh-timits-confounding the calibration of large catchmentsto-longer-time
seales. Instead, the parameters in macro-scale models are usually based on “expert opinion” and thus founded on the bold
assumption that the modeler sufficiently understands the hydrological processes, feedbacks, and parameter interactions taking
place within the model for any location on Earth.

Nevertheless, out of the ten models considered in this study, four use parameters derived by calibration (LISFLOOD, SWBM,
WaterGAP3, and HBV-SIMREG—all GHMs). LISFLOOD was calibrated against observed runoff-streamflow for 24 large
catchments (84230 to 4 680 000 km?) across the globe using the WFDEI forcing and an aggregate objective function incorpo-
rating bias, NSE, and log-transformed NSE computed from daily runeff-streamflow data. The calibration might have influenced
the present evaluation; although we used much smaller catchments (1000 to 5000 km?), 47 % of our catchments are located
within the calibration catchments. SWBM uses a spatially-uniform parameter set based on calibration using the E-OBS forcing
(Haylock et al., 2008) against European data on such key hydrologic variables as soil moisture, total water storage, evaporation,
and runoff (Orth and Seneviratne, 2015). For the calibration against runoff, they used observations from 436 small European
catchments (mostly < 1000 km?), and considered daily and monthly correlations as well as bias. The calibrated parameter set
was subsequently applied globally. Besides the addition of a baseflow routine, SWBM would probably benefit from region-
alized parameters that vary according to landscape characteristics. WaterGAP3 has been calibrated using the WFDEI forcing
in terms of bias for the interstation regions (the catchment of a station excluding the catchments of nested upstream stations)

of 2071 stations (catchment size ranging from 2830 to 966 321 km?) around the globe, some of which have also been used
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in the current evaluation. The calibrated parameters were subsequently regionalized to ungauged regions using multiple linear
regression based on six predictors (DOl et al., 2003). The model does indeed perform very well for MAR and thus RC, but this
did not necessarily translate into good performance for BFI (Table 22?3, and Figures 1 and 2). HBV-SIMREG also uses region-
alized parameter fields, produced by transferring calibrated parameters from 674 small-to-medium sized “donor” catchments

(10 to 10 000 km?) across the globe to “receptor” grid cells with similar climatic and physiographic characteristics (Beck et al.,

2016a). Adtheugh-they-In their study, Beck et al. (2016a) show that HBV using spatially-uniform parameters performs within

the range of the other models, confirming that the relatively good performance of HBV-SIMREG stems from the regionalization
exercise. In addition, although Beck et al. (2016a) did not use the WFDEI forcing for the calibration, they calibrated against

several of the performance metrics also used here and used 179 of our catchments as parameter donors, explaining-the-very
further explaining the relatively good performance obtained by HBV-SIMREG (Table 2?3, and Figures 1 and 2).

Overall, it appears that the calibration exercises for WaterGAP3, HBV-SIMREG, and possibly LISFLOOD have resulted in
markedly improved performance. However, WaterGAP3 performed poorly in terms of pgry (Table 225), meaning the calibra-
tion of MAR did not translate into better BFI performance. These results underscore the benefits of calibrated parameters over
a priori parameters (cf. Duan et al., 2006; Hunger and Doll, 2008; Nasonova et al., 2009; Rosero et al., 2011; Greuell et al.,
2015; Zhang et al., 2016) and highlight the importance of using an objective function for the calibration that incorporates a
broad range of metrics related to various important aspects of the hydrograph (cf. Gupta et al., 2008; Vis et al., 2015; Shafii and
Tolson, 2015). These results also emphasize the usefulness of regionalization techniques (Parajka et al., 2013), which typically
enhance performance over the entire model domain and are thus of particular value for macro-scale modeling, given that the
majority of the land surface is ungauged or pooly gauged (Sivapalan, 2003; Hannah et al., 2011). However, although there
are numerous studies performing regionalization at a regional scale (see reviews by He et al., 2011; Hrachowitz et al., 2013;
Razavi and Coulibaly, 2013; Parajka et al., 2013), only few studies have attempted regionalization at a macro scale (see review
by Beck et al., 2016a). We argue that more effort should be devoted to regionalizing the parameters of macro-scale models (cf.
Bierkens, 2015; Doll et al., 2015).

4.5 What is the impact of the forcing data on the results?

There are not only strong inter-model differences in the performance patterns but also clear inter-model similarities. Specif-
ically, all models showed negative biases in MAR in snow-dominated regions such as Alaska, the Rocky Mountains, and
southern Russia, while they consistently showed positive biases in MAR for the Great Plains (USA) and southern Australia
(Figure 1). The high spatial correlation in the performance patterns suggests that these consistent performance patterns may be
due to biases in the WFDEI P data, rather than biases in the ebservedrunoff-data-streamflow observations which are unlikely

to be spatially correlated.

It is conceivable that biases are present in the WFDEI P data, since-the-adjustment-using-thegauge-based-CRU-datasetis
hybecause: (i) the monthly CRU dataset, which
has been used to correct the WFDEI dataset, is based on only a subset of the available gauges and does not explicitly account

for orographic effects; (ii) in sparsely gauged regions the correction using CRU is more likely to deteriorate rather than improve
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the P estimates; and (iii) the Adam and Lettenmaier (2003) gauge undercatch correction factors are based on interpolation of

a very sparse sample of gauges and thus subject to considerable uncertainty. For the conterminous USA we quantified the
biases in the WFDEI P data using the high-quality Parameter-elevation Relationships on Independent Slopes Model (PRISM)

climatic dataset (Daly et al., 1994), which is based on gatiges-considerably more gauges than CRU and includes sophisticated
corrections for undereateh—and-orography. Figure 4a shows the bias in mean annual P from WFDEI relative to that from
PRISM, suggesting that the WFDEI P data are indeed subject to large biases. Figure 4b shows the bias in MAR from the
MEAN-AII ensemble relative to MAR from the observations, revealing a comparable bias pattern, thus confirming that the
biases in the WFDEI P propagate in the simulated runoff. The correlation coefficient between the MAR and P bias values
is 0.58, indicating a moderately strong relationship. These P biases appear to translate into even more pronounced runoff biases
in (semi-)arid regions (notably the northern Great Plains; Figures 4b and 4c) due to the highly non-linear response behavior
in these environments (Lidén and Harlin, 2000; Fekete et al., 2004; Van Dijk et al., 2013a). We were unable to quantify the P
biases globally since no other independent, global-scale P dataset exists (the WorldClim and CHPclim datasets are likely to
exhibit similar biases as the CRU TS3.1 dataset, given that they are based on similar sets of gauges). However, we expect the
P biases to be at least similar, if not more severe, outside the well-instrumented conterminous USA (cf. Fekete et al., 2004;
Hijmans et al., 2005; Biemans et al., 2009; Zhou et al., 2012; Kauffeldt et al., 2013; Greuell et al., 2015). It should be noted
that biases in PET are probably of secondary importance as compared with biases in P (Donohue et al., 2010; Sperna Weiland
et al., 2011; Seiller and Anctil, 2015).

The global-scale quantification and reduction of these P biases should be a priority for future research. Satellite-derived P
offers unique opportunities in this regard (e.g., Funk et al., 2015) that extend beyond the tropics with the recent launch of the
Global Precipitation Measurement (GPM) mission (Smith et al., 2007). Another little-explored way of reducing P uncertainty
is by “doing hydrology backwards”; that is, to use information on other hydrological variables—for example, satellite-derived
surface soil moisture (e.g., Brocca et al., 2014), runeff-streamflow observations (e.g., Adam et al., 2006; Beck et al., 2016b),
and snow-depth observations (e.g., Cherry et al., 2005)—to reconstruct P through hydrological modeling. Arguably the most
important obstacles to combining multiple data sources are the inconsistent temporal coverage and scale of different data
sources and the general lack of error/uncertainty estimates.

Although the models all used the same P data, they used different formulations to compute PET which has likely contributed
to differences in simulated runoff among the models in energy-limited regions (Weifl and Menzel, 2008; Kingston et al., 2009;
Haddeland et al., 2011; Weedon et al., 2011; Sperna Weiland et al., 2011). However, PET data were available for only four
models, which is insufficient to examine whether the PET formulation has had a discernible influence on the simulated runoff,

given the numerous other differences in structure and parameterization among the models.
4.6 How valuable are multi-model ensembles?

The multi-model ensemble MEAN-ALIl incorporated all ten models, while MEAN-Best4 incorporated only LISFLOOD, W3RA,
WaterGAP3, and HBV-SIMREG (i.e., the four models that performed best in terms of OS; Fables-22-and-22Table 5). MEAN-
All and MEAN-Best4 were found to perform better than all individual models (with the exception of HBV-SIMREG, which
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Figure 4. For the conterminuous US, (a) the bias in mean annual P from WFDEI relative to PRISM, (b) the bias in MAR from the MEAN-
All ensemble relative to the observations, and (c) the aridity index, the ratio of mean annual PET (computed from PRISM air temperature
using Hargreaves et al., 1985) to P (PRISM; note the non-linear color scale). Each data point in panel (b) represents a catchment centroid.
The bias in (a) and (b) was computed following B = (X — R)/(X + R), where B is the bias, X the uncertain value, and R the reference

value. B values range from —1 to 1. A 100 % overestimation results in B = 1/3, whereas a 50 % underestimation results in B = —1/3.

has been comprehensively calibrated; Fables-??-and-??Table 5, and Figures 1 and 2). These results highlight the benefits of
multi-model ensembles, in line with several previous studies (Ajami et al., 2006; Duan et al., 2007; Viney et al., 2009; Materia
et al., 2010; Velazquez et al., 2010; Gudmundsson et al., 2012a; Xia et al., 2012; Yang et al., 2015). The similar OS scores
obtained by MEAN-AIl and MEAN-Best4 (0.57 and 0.60, respectively; Table 225) suggests that the inclusion of less reliable
models has only limited adverse effects. It may be worthwhile for future studies to examine the benefits of more sophisti-
cated multi-model combination techniques involving bias correction or model weighting (e.g., Ajami et al., 2006; Duan et al.,
2007; Bohn et al., 2010). These weights can subsequently be transferred from gauged to ungauged areas using regionalization
techniques typically used for hydrological model parameters (Bloschl et al., 2013).

HBV-SIMREG differs from the other models because it represents a so-called “multi-parameterization ensemble”, which
means the model was run multiple (ten) times globally using different (regionalized) parameter sets representing different
catchment response behaviors (Beck et al., 2016a). HBV-SIMREG obtained slightly better performance than both MEAN-AII
and MEAN-Best4 overall (Table 225), tentatively suggesting that a multi-parameterization ensemble for a single, sufficiently
flexible model provides performance comparable to a multi-model ensemble (cf. Oudin et al., 2006; Yang et al., 2011; Coxon

et al., 2014). If this is confirmed, it would negate the need to set up, run, and maintain multiple models, and incentivize the
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Figure 5. Scatterplot of the difference between simulated (MEAN-AII) and observed transformed RC (Dgrc) versus the difference between
simulated (MEAN-AII) and observed T50 (Ds50) for the catchments (n = 966).

development of a single community hydrological model (cf. Weiler and Beven, 2015) as well as modeling systems allowing
selection of alternative model structures (cf. Bierkens, 2015), such as the Framework for Understanding Structural Errors
(FUSE; Clark et al., 2008), Noah Multi-Parameterization (Noah-MP; Niu et al., 2011), and SUPERFLEX (Fenicia et al.,
2011).

4.7 Do all models show the early bias in runoff timing in snow-dominated catchments previously documented and

what is the cause?

With the exception of ORCHIDEE and HBV-SIMREG, all models showed early T50 biases in snow-dominated regions (Sup-
plementary material Figure S1.3), indicating that the models produce the spring snowmelt peak early, as has also been reported
in several previous studies using different models and forcing data (Lohmann et al., 2004; Slater et al., 2007; Decharme and
Douville, 2007; Balsamo et al., 2009; Zaitchik et al., 2010; Beck et al., 2015). The early runoff timing is probably primarily
due to P underestimation which leads to insufficient snow accumulation that subsequently melts too quickly (Hancock et al.,
2014). The fact that HBV-SIMREG performs well in this regard is probably attributable to the snowfall gauge undercatch
correction factor of the model. Indeed, Figure 5 tentatively shows that catchments in which the models strongly underestimate
runoff (i.e., negative Dgc) generally tend to exhibit an early bias in T50 (i.e., negative Drsp) and vice versa. The absence or
misrepresentation of certain processes that delay snowmelt runoff in the models may have exacerbated the early runoff timing
problem. Examples of such processes include the isothermal phase change of the snowpack, retainment of meltwater in the
snowpack in pore spaces, infiltration of meltwater into the soil, meltwater refreezing during cold days and nights, and icejams

in rivers. On the whole, more research is needed to ascertain the exact reasons of the early runoff timing.

22



10

15

20

25

5 Conclusions

The runoff estimates from ten state-of-the-art macro-scale hydrological models, all forced with the WFDEI dataset, were
evaluated using runeff-observations from 966 medium sized catchments around the globe. With reference to the questions

posed in the introduction, the following was found:

1. The performance differed markedly among models, underscoring the importance of hydrological model uncertainty in
addition to climate input uncertainty, and suggesting that model choice should be regarded as a critical step in any

hydrological modeling study.

2. The models displayed similar MAR trends, although they were in poor agreement with observed trends. Model-based

runoff trends in small-to-medium sized catchments should thus be interpreted with considerable caution.

3. Considering only the uncalibrated models, the GHMs performed similarly to the LSMs in rainfall-dominated regions
but consistently better than the LSMs in snow-dominated regions, perhaps due to the use of more data-demanding snow

routines or the misrepresentation of frozen-soil and snowmelt processes by the LSMs.

4. The models that have been calibrated obtained higher scores for the performance metrics incorporated in the respective

objective functions used for calibration;—s

5. The WFDEI P forcing data still appear to contain substantial biases, despite adjustments using gauge observations. These
P biases translate into biases in the simulated runoff which are amplified in (semi-)arid regions. In snow-dominated

regions there appears to be a consistent underestimation in P and thus simulated runoff.

6. The multi-model ensembles obtained only slightly worse performance than the best (calibrated) model, and the inclusion
of less reliable models did not severely degrade the performance. A multi-parameterization ensemble for a single, suf-
ficiently flexible model is easier to realize but we speculate may yield the same performance benefits as a multi-model

ensemble.

7. Most models were indeed found to generate the spring snowmelt peak early, probably due to the previously mentioned

P underestimation and the absence or misrepresentation of certain processes that delay snowmelt runoff in the models.
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