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Abstract 15 

 This study investigates the utilization of hydrological information in Regional Flood Frequency Analysis (RFFA) 

to enforce desired properties for a group of gauged stations. Neighborhoods are a particular type of regions that are centered 

on target locations. A challenge for using neighborhoods in RFFA is that hydrological information is not available at target 

locations and it cannot be completely replaced by the available physiographical information. Instead of using known site 

characteristics (not hydrological) to define the center of a target location, this study proposes to introduce estimates of 20 

(hydrological) reference variables to ensure better homogeneity. These reference variables represent nonlinear relations with 

the site characteristics obtained by projection pursuit regression; a nonparametric regression method. The resulting 

neighborhoods are investigated in combination with common regional models: the index-flood model and the regression-

based models. The complete approach is illustrated on a real-world case study with gauged sites located in Southern 

Quebec, Canada, and is compared with the traditional approaches “Region of Influence” and “Canonical Correlation 25 

Analysis”. The evaluation focuses on the neighborhood properties as well as prediction performances, with special attention 

to problematic stations. Results show clear improvements in neighborhood definitions and quantile estimates.   

 

Keywords:  Index-flood model, Regional frequency analysis, Ungauged site, Region of influence, Projection pursuit 

regression, Canonical Correlation Analysis. 30 
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1. Introduction 

 Accurate estimates of the risk of occurrence of extreme hydrological events are necessary for the minimization of 

the impacts of these events and for the optimal design and management of water resource systems. However, necessary 

information is not always available at the sites of interest. Hence, it is necessary to develop procedures to transfer, or to 

regionalize, the information available at existing gauged sites to the ungauged ones. Regional Flood Frequency Analysis 5 

(RFFA) represents a large class of techniques commonly used in water sciences to evaluate the risk of occurrence of 

extreme hydrological phenomena of rare magnitudes at ungauged locations (Haddad and Rahman, 2012; Hosking and 

Wallis, 1997; Laio et al., 2011; Pandey, 1998; Reis et al., 2005).  

 RFFA methods are usually composed of two main steps. The first step is the formation of homogenous regions. 

This step aims at pooling together sites that are approximately similar according to homogenous criteria. Inside these 10 

homogenous regions, it is assumed that hydrological information can be reasonably transferred from gauged to ungauged 

locations (Cunnane, 1988). The second step, the estimation of flood quantiles, consists in the calibration of a regional model 

that characterizes the interrelation between hydrological variables of interest and explanatory physio-meteorological 

variables corresponding to known site characteristics. Consequently, RFFA is used to study unobserved hydrological 

behaviour from available hydrological and physio-meteorological information.  15 

 Neighborhoods are specific forms of regions inside which gauged sites are not classified into fixed regions, but are 

composed of gauged sites that are the most similar to a given target. Hence, two distinct target locations have their own 

neighborhoods that may overlap. Comparative studies showed that neighborhoods lead to better regional estimates than 

fixed regions (Burn, 1990; Ouarda et al., 2008; Tasker et al., 1996). To identify the most similar gauged sites in terms of 

hydrological properties, a notion of distance is needed to evaluate the proximity, or relevance, of each gauged site to the 20 

target location and identify the most hydrologically similar gauged sites. However, when the target location is ungauged, 

this distance cannot be directly calculated due to the missing hydrological information. Physio-meteorological information 

is hence used for similarity evaluation. The traditional approach, based on the distance between site characteristics, is 

commonly referred to as the Region of Influence (ROI) model (Burn, 1990), which received a particular attention in the 

hydrological literature. The focus was mainly on the estimation of the model parameters, where for instance generalized 25 

least-squares were used to account for unequal variability in the at-site estimations (e.g. Griffis and Stedinger, 2007; 

Stedinger and Tasker, 1985) and to deal with the presence of spatial correlation (e.g. Kjeldsen and Jones, 2009).   

 Alternatively, Ouarda et al. (2001) used Canonical Correlation Analysis (CCA) to build neighborhoods from a 

canonical distance that accounts for the interrelation between flood quantiles and site characteristics. For this method, 

neighborhoods are formed by gauged sites that are the most similar to the target location, according to the distance between 30 

vectors of flood quantiles corresponding to different return periods. Due to the missing hydrological information, the CCA 

method in RFFA estimates the unavailable hydrological variables as linear combinations of site characteristics. 

Consequently, the available site characteristics are transformed into more meaningful “hydrological” quantities for the 

purpose of delineating neighborhoods. However, the CCA method suffers from some limitations, such as linearity and 

normality assumptions (He et al., 2011). Subsequent studies aimed to improve the CCA method by improving the CCA 35 
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technique itself (Chebana and Ouarda, 2008; Ouali et al., 2015). However, little attention has been paid to the importance of 

properly choosing the hydrological quantities in the delineation step whereas much effort has been devoted to the modeling 

step. Indeed, Chebana and Ouarda (2008) employed an iterative linear procedure to estimate neighborhood centers and they 

showed that the quality of these centers’ estimates is the crucial element to improve the final model performance. 

 This study aims to provide a general framework with more flexibility regarding the linearity and normality 5 

assumptions. This is achieved by replacing CCA in the prior analysis of hydrological variables by Projection Pursuit 

Regression (PPR), a nonparametric regression method recently considered as an estimation model in RFFA (Durocher et al., 

2015). The present study is also interested in validating the advantages of employing hydrological variables other than the 

at-site flood quantiles in prior modeling as well as considering a combination of these hydrological variables with site 

characteristics.  10 

L-moments have already been used in RFFA to test the homogeneity of fixed regions when the target site is gauged 

(Chebana and Ouarda, 2007; Hosking and Wallis, 1997). In the present study, the prediction of the L-moments at ungauged 

sites is also considered to improve the delineation of the neighborhoods by reducing uncertainties. Moreover, a conceptual 

advantage of using L-moments conversely to at-site flood quantiles is that the L-moments do not depend on the subjective 

selection of at-site distributions.  15 

 The present paper is organized as follows. Section 2 presents the background for the techniques commonly used in 

RFFA. Section 3 elaborates on the prior analysis of hydrological variables and their integration with the techniques 

presented in Section 2 to form a complete procedure. Section 3 suggests criteria for the evaluation of the predictive 

performances and the neighborhood properties. Section 4 illustrates the application of the method on a case study. 

Traditional ROI and CCA methods serve as references in order to evaluate the relative performance of the investigated 20 

method. Finally, concluding remarks are provided in the last section. 

2. Background 

2.1 Delineation of neighborhoods 

 In RFFA, neighborhoods are used to identify gauged sites from which information is transferred to the target 

location. A neighborhood is characterized by a center and a radius that delimits an area (not necessary in the geographical 25 

sense). Gauged sites inside the area delineate a region that includes relevant sites to the target location. At each site 

1, ,i n , p  characteristics  ,1 ,, ,i i i px xx  are available. Typically, the ROI method forms neighborhoods 

according to a radius based on a metric d : 
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 Alternatively, CCA is a multivariate technique used to unveil the interrelation between two groups of variables. Let 

Y  and X  be normally distributed random vectors with zero means. The CCA method defines canonical pairs  ,k kU V  as 

linear combinations of the original random variables: 

  k kU a X
  (2) 

 k kV b Y  (3) 5 

where the correlations  ,k k kcorr U V   are sequentially maximal for 1, ,k K  under the conditions 

   , , 0k l k lcorr U U corr V V   for k l . Only the canonical pairs  ,k kU V  with unit variances are considered.  

 To delineate neighborhoods, the CCA approach considers the canonical scores  1, , 'i r ia au x   and 

 1, , 'i r ib bv y  that are respectively linear combinations of site characteristics ix  and flood quantiles corresponding 

to different return periods iy  for site i. Due to the missing hydrological information at the ungauged location denoted 10 

0i  , the flood quantiles 0y  and the corresponding linear combination 0v  are unknown. Nevertheless, CCA provides a 

linear estimate 0 0 v u , where 1diag( , , )K   . Accordingly, a neighborhood is delineated in the canonical 

space according to the distance: 

      
1

2

0 0 0( , ) 'i i id I


    v u v u v u  (4) 

More details on the CCA approach in RFFA can be obtained in Ouarda et al. (2001). 15 

2.2 Multiple regression  

 In RFFA, two types of regional models are often considered to predict flood quantiles corresponding to given 

return periods: the index-flood model and the regression-based model (Ouarda et al., 2008). The index-flood model predicts 

a target distribution by assuming that all distributions inside a region are proportional to a regional distribution, up to a scale 

factor called index-flood. The flood quantile of interest at a target location is then calculated from the regional distribution 20 

based on the predicted index-flood (e.g., Chebana and Ouarda, 2009; Dalrymple, 1960; Stedinger and Lu, 1995). 

Conversely, the regression-based model considers directly the at-site estimates of the desired flood quantiles for prediction. 

Flood quantiles are then predicted at their target locations by the regression equations estimated within the neighborhoods 

(Pandey and Nguyen, 1999). 

 Even though they proceed differently, both the index-flood model and the regression-based model may use the 25 

same multiple regression techniques to transfer information to an ungauged location. For the sake of simplicity, the term 

hydrological variables is used to designate the corresponding output variables iz  of these models at location 1, ,i n . 

Consequently, for the index-flood model, iz  is the index flood, while for a regression-based model the hydrological 
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variable iz  is the flood quantile of interest.  

 Multiple regression models assume linear interrelation between the hydrological variable iz  and the site 

characteristics ix . Consequently, in several cases, transformations are necessary to meet this assumption. For instance, the 

power law form is frequently used to model flood quantiles:  

 0 1

,1 ,
p

i i i p iz e x x
        (5) 5 

where  0 1' , , , p     are parameters and i  is an error term. Applying a logarithmic transformation is sufficient 

to cast Eq. (5) into a linear model. In general, a proper transformation is assumed for the hydrological variables 

 i iy g z  being linearly related to the sites characteristics. 

According to previous notations, let  1, , ny yy  be the hydrological variables, X  be the design matrix of the site 

characteristics 
,i jx  with intercept, and  1, , n    be the error term. Hence in matrix notation, a multiple regression 10 

model has the form: 

   y X  (6) 

and according to the least-squares theory, the estimates of the parameters are: 

  
1ˆ ' '


 X X X y   (7) 

2.3 Projection pursuit regression 15 

 Some methods predict hydrological variables without the formation of regions, such as physiographical kriging 

(Castiglioni et al., 2009; Chokmani and Ouarda, 2004), generalized additive models (Chebana et al., 2014) and artificial 

neural networks (Dawson et al., 2006; Ouarda and Shu, 2009). More recently, Projection Pursuit Regression (PPR) was 

introduced to provide a flexible nonparametric regression approach to describe the nonlinearity that is present in the 

relationship between hydrological variables and site characteristics. PPR was used in the RFFA context by  Durocher et al. 20 

(2015) to directly predict flood quantiles without delineation. 

 The basic elements of a PPR model are 1, ,k m  functions kf   called terms and defined as: 

    k k kf g X X  (8) 

where directions k  are vectors of coefficients and kg  are smooth functions. The directions k  are coefficients that 

respect 1   and determine a predictor kX  as relevant linear combinations of the site characteristics X .  The terms 25 

are then combined into a regression model: 
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where   is the global mean and   is a term of error. Notice that the orthogonality between directions k  is not imposed, 

hence the predictors kX  and lX  for k l  may be correlated. Consequently, PPR allows for interaction between site 

characteristics, which leads to a large variety of regression models (Hastie et al., 2009).  

 The components k  and kg  of the model in (9) are estimated by the least-squares approach (Friedman et al., 5 

1983). For a unique direction ( 1m ), PPR can be estimated by standard nonlinear algorithms (Yu and Ruppert, 2002), but 

in general a stagewise algorithm is adopted to find a proper solution (Friedman and Tukey, 1974). Comparative studies 

show that PPR has a similar predictive performance to artificial neural networks (Bishop, 1995; Hwang et al., 1994). 

However, Durocher et al. (2015) indicated that in RFFA, PPR reduces to more parsimonious models than artificial neural 

networks, which provides an explicit expression of the regression equations. 10 

3  Methodology 

 This study deals with neighborhood delineation and more precisely it focuses on the identification of reliable 

estimates of the hydrological centers of these neighborhoods. For simplicity, the variables forming these centers will be 

referred to as reference variables, because they represent the reference to evaluate the similarity between a target location 

and the gauged sites. Reference variables can take different forms, such as site characteristics, hydrological variables or a 15 

combination of both. Their nature is important, because it determines the properties that are deemed to be important 

between close sites. The particularity of the present method is that PPR can be used to predict these neighborhood centers 

(prior to the RFFA modeling step) when some of the reference variables are unknown hydrological variables. Accordingly, 

the proposed method will be referred to as RVN for Reference Variable Neighborhoods.  

3.1 Estimation of the reference variables 20 

The general procedure can be described by the steps below: 

1. Select the reference variables  

2. If necessary, predict the reference variables that are not available at the target site 

3. Calculate the distance between sites 

4. Form the neighborhood based on the previous distance 25 

5. Fit a regional model on the neighborhood 

6. Predict the target site and evaluate a performance criterion 

In step 1, the selection of a set of the reference variables can be subjective and depends on the problem at hand. In the 

present study, backward stepwise selection procedure is considered to remove from an initial set of references variables 
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those that are not contributing to the prediction power of the model. This selection procedure is more objective and depends 

on a performance criterion. In the present study the RRMSE criterion is chosen and will be described in section 3.2. The 

backward stepwise selection is illustrated in Figure 1 and consists to remove in turn each reference variable temporarily 

from the model and to perform the remaining steps (2-6) in order to compute the RRMSE. Therefore, the reference variable 

whose removing leads to the best RRMSE, is permanently removed. The process is repeated until all reference variables 5 

cannot be removed without altering the RRMSE.  

Step 2 is required only if some reference variables are unknown at the target sites, otherwise, if a target location 

designated by 0i  , the radius of the neighborhood used in step 3 can be computed as  0,i ih d t t  where d  is a 

metric and  ,1 ,' , ,i i i qt tt  are the reference variables of the ith site. For simplicity, the Euclidian metric d  is 

considered throughout the present study, but other metrics or dissimilarity measures could be employed as well. In 10 

particular, the Mahalanobis distance, the weighted distance and the depth function could be considered (Chebana and 

Ouarda, 2008; Cunderlik and Burn, 2006; Ouarda et al., 2000).  

 If some hydrological information is unavailable at the target location, the estimation of the hydrological reference 

variables is necessary to produce an estimate 0 0( )ft x  in step 2 from site characteristics 0x  at the target location. This 

substitution leads in step 3 to the distance  ( ) 0, ( )i ih d f t x , which may be seen as an approximation of the true 15 

distance ih . This study considers PPR models in order to fit every hydrological reference variable as described in section 

2.3. The motivations for adopting PPR are that it does not require a prior delineation of regions, it accounts for nonlinear 

relationships, it has good predictive performances and it leads to a straightforward interpretation of the reference variables 

when a few directions k  are necessary (Durocher et al., 2015).  

 If the hydrological variables 0t  were known at the target location, the distance ih  would be available and the 20 

neighborhood that truly regroups the most hydrologically similar sites to the target location can be identified. However, in 

practice this true neighborhood is unknown. Using instead the estimate 0( )f x  has the effect that some sites are falsely 

suggested as more hydrologically similar than other sites. Figure 2 illustrates a region with several sites where two 

neighborhoods are resulting from the RVN method with different predicted centers. The target site is illustrated as a green 

filled circle and neighborhood is formed of the 10 nearest sites indicated by small empty circles. The other sites are 25 

designated by crosses. The red and blue neighborhoods are delineated by circles where the radius is selected to include the 

10 nearest sites. The predicted center of the red neighborhood is closer to the target site. Consequently, it can be seen that 

except from one site, the same sites as the target neighborhood are included (empty circles). On the other hand, the blue 

neighborhood has a predicted center further to the target site and hence a lower proportion of the sites truly closer to the 

target are found. It shows the importance of correctly predicting the neighborhood centers in order to identify sites that are 30 

truly similar to the target site.   

The errors related to prediction of the hydrological reference variables suggest that the RVN method may include 

an additional source of uncertainty, which is not accurate. Indeed, the same source of uncertainty is present among the sites 
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of a neighborhood delineated on the basis of the site characteristics (i.e that the average of the hydrological variables in the 

neighborhood is not a perfect predictor). This could be seen as an advantage of the RVN method since it directly assesses 

this source of uncertainty and tries to reduce it.        

 Step (1-3) are the particularity of the RVN method, while the other steps are common in RFFA and are explained 

in section 2. In the remainder of this study, step (4) uses a specific type of neighborhoods that is composed of a fixed 5 

number of the nearest sites (Eng et al., 2005; Tasker et al., 1996), but could also be constrained to the degree of the 

homogeneity of the neighborhoods (Ouarda et al., 2001). Consequently, the selected gauged sites can be obtained by sorting 

( )ih  and keeping the desired number of sites. Notice that even though ( )ih  does not exactly approximate ih , both distances 

will lead to the same neighborhoods if they preserve the ranks. Finally, step (5) consists in the estimation of the flood 

quantiles using either the index-flood or the regression-based model.  10 

 Notice that the RVN method may be seen as a generalization of the ROI and the CCA methods in RFFA. Indeed, 

the ROI method corresponds to the RVN method for which all the reference variables are site characteristics. In that case, 

0 0( )ft x  is known and PPR is not necessary in step (2). Similarly, the CCA approach may be seen as the special case 

for which the reference variables are the canonical pairs in Eq. (4) and CCA is used, instead of PPR, to predict them in step 

(2).  15 

3.2 Evaluation criteria  

 For the RVN method presented above, the neighborhood sizes must be calibrated according to an objective 

criterion. In this regards, the leave-one-out cross-validation approach is a general strategy to assess the performance of the 

predicted hydrological variables iz  at site 1, ,i n . In turn, each gauged site i  is considered as an ungauged target 

location. From the remaining gauged sites, predicted values ( )iz  can be obtained without using the hydrological information 20 

at the target location. Discrepancies between the sampled and the predicted values are used to define evaluation criteria. 

Notice that the hydrological variables are transformed  i iy g z . Hence, if y  is the sample mean of the iy , then an 

appropriate global performance measure is the Nash-Sutcliffe criterion:   
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  (10) 

Additionally, the predictive performance is examined at the original scale by the relative root mean square error: 25 
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The choice of the reference variables is an important aspect and a set of reference variables should be chosen in order to 
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enforce the desired properties. For instance, with the index-flood model the assumption of a regional distribution suggests 

that, apart from the index-flood, the at-site distributions must be proportional to a regional distribution. A heterogeneity 

measure based on the dispersion of the L-coefficient of variation (LCV) is shown to be a proper way to ensure that the LCV 

is relatively constant (Viglione et al., 2007). Accordingly, let jI  be the set of indices for the N  nearest gauged sites to the 

target location j  during the cross-validation process. The regional LCV ( )
ˆ

j  is calculated as the average:  5 

 ( )

1ˆ

j

j i

i IN
 



    (12) 

of the at-site LCV i  inside the jth region. The heterogeneity measure is defined as: 

  
2

( ) ( )
ˆ

j

j i j

i I

H  


   (13) 

 In their procedure, Hosking and Wallis (1997) used this heterogeneity measure to test the homogeneity of a region, 

which implies that the regional LCV can be considered constant. Hence, the result of this test allows deciding if a region 10 

must be divided into smaller and more homogenous sub-regions. In the present study the size of the neighborhoods is the 

same for every neighborhood. Hence, if a homogeneity test is performed with a given neighborhood size, some of the 

neighborhoods will be considered homogenous, while the others will be considered heterogeneous (Das and Cunnane, 

2010). However, the heterogeneity measure in Eq. (13) remains a useful indicator of dispersion for the regional LCV ( )
ˆ

j  

inside a neighborhood. Consequently, a smaller ( )jH  suggests that the regional LCV ( )
ˆ

j  is measured with less 15 

uncertainty.     

 To facilitate the interpretation of the results and to ensure the comparability between neighborhoods, the 

heterogeneity measure 
( )jH N  is considered instead. The measure represents the sample variance of the LCV for the jth 

target location. This heterogeneity measure is standardized by H n , where H  is the heterogeneity measure in Eq. (13) 

calculated on all n  available gauged sites. The resulting ratio corresponds to a scale-free heterogeneity measure, where a 20 

value under one provides evidence of a less heterogeneous neighborhood in comparison to the whole dataset. Therefore, the 

Average Heterogeneity Measure (AHM) criterion below is defined as the average of every neighborhood considered in the 

cross-validation process:  

 ( )

1

1
AHM

n

j

j

H
N H 



  (14) 

This criterion is not specific to a given target location, but represents the global level of heterogeneity resulting from a given 25 

delineation method, such as ROI, CCA or RVN. In particular, a delineation method with a smaller AHM suggests that on 

average a more precise regional LCV is used to predict flood quantiles.      

 Another desired property for a neighborhood is to lead to estimation models with less uncertainty. For the index-
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flood model, this implies in particular less uncertainty in the prediction of the index-flood, while for regression-based 

models, it implies less uncertainty in the prediction of flood quantiles. For a multiple regression model, the uncertainty can 

be quantified by the residual variance:   

  
2

2

( ) ,( )

1

j

j i j

i I

s e
N 

   (15) 

where ,( )i je  is the residual at the ith gauged site, when predicting the jth target location in the cross-validation process. 5 

Notice that a regression model fitted on two different neighborhoods (for the same target location) can obtain an identical 

values, but lead to different levels of uncertainty. In this study, a neighborhood with a smaller residual variance than another 

one is said to be relatively more efficient.  

During the cross-validation process, the sample variance of the regression models can be calculated for every site, which 

leads to the Average Relative Efficiency (ARE) criterion defined by:  10 

 
2

( )2
1

1
ARE

n

j

j

s
ns 

   (16) 

where the residual variance 
2s  is calculated from the multiple regression model on the whole dataset. This criterion is 

similar to the AHM criterion as it is standardized to a scale-free measure. This criterion can be used to identify the 

delineation method which achieved on average the smallest residual variances for each neighborhood. The ARE and the 

AHM criteria are used in the present study, along with the NHS and RRMSE to access the performances of the various 15 

models.    

4. Applications 

4.1 Data  

 To validate the RVN method on a practical situation, RFFA is carried out in a real-world case study using both the 

index-flood model and the regression-based model. The hydrological variables of interest are the flood quantiles 20 

corresponding to a return period of 100 years, denoted Q100. The analysis is performed on 151 sites located in Southern 

Quebec, Canada, which are presented in Figure 3. Each site has at least 15 years of data available, with an average length of 

31 years. Furthermore, the usual hypotheses of stationarity, homogeneity and independence are verified. Only a brief 

description of the data and the at-site frequency analysis is provided since the elements were already presented in details in 

previous studies (e.g., Chokmani and Ouarda, 2004).  25 

 The at-site distributions are selected among several families including: generalized extreme values (GEV), Pearson 

type III (P3), generalized logistic (GLO) and log-normal with 3 parameters (LN3). In general, the estimation of the at-site 

distribution was achieved by maximum likelihood and the final choices of distributions are based on the Akaike information 

criterion. Recent studies on the same dataset have identified 4 relevant site characteristics (Chebana et al., 2014; Durocher et 

al., 2015), which are used in the present analysis: the drainage area or BV (km2), the fraction of the basin area occupied by 30 
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lakes or PLAC (%), the annual mean liquid precipitation or PLMA (mm) and the longitude or LON. Proper transformations 

are applied on these site characteristics in order to obtain approximately standard normal distributions (Chokmani and 

Ouarda, 2004).   

4.2 Determination of the neighborhood centers 

The step 1-2 of the RVN method is the selection of the reference variables and, if necessary, the estimation of the 5 

hydrological reference variables at the target locations. Two initial groups of reference variables are considered and updated 

by backward stepwise selection. The first group is based on L-moments only and the second is based on the combination of 

L-moments and site-characteristics. The acronym LM for L-moment and HYB for Hybrid are used to identify the two 

groups. More precisely, the L-moments considered for both groups are the sample average (L1), the LCV, the L-coefficient 

of skewness (LSK) and the L-coefficient of kurtosis (LKT). These reference variables are transformed and standardized to 10 

obtain zero mean and unit variance. More precisely, the transformation for L1 and LCV is the logarithm and for LSK and 

LKT, the transformation is log( 1)xx m  , where 
xm  is the minimum of the reference variables. Moreover, a specific 

implementation of PPR is assumed, which considers the smooth functions kg  in Eq. (8) as cubic spline polynomials with 5 

equally spaced knots. The number of knots is validated by cross-validation using the NHS criterion. Notice that for the 

fitting of LSK, one site has a very low standardized residual of approximately -6. Consequently, this site is considered as an 15 

outlier and removed from the estimation of the reference variables. In previous studies (e.g., Chokmani and Ouarda, 2004), 

this site was identified as one of a few problematic sites that are difficult to predict due to an underestimated drainage area 

or overevaluated percentage of area covered by lakes. Nevertheless, in the present study, this site is only removed only 

during the prediction of the reference variables and all sites are included in the rest of the analysis.  

Figure 4 shows the fitting of the four reference variables by the PPR models. Cross-validation has selected PPR 20 

models with a unique direction   for all reference variables. The PPR equations that describe the relation between the 

reference variables and the site characteristics are explicit, for instance, the regression equation for the LCV has the form: 

   

log(LCV) 1.80 0.26 0.67 log(BV) 0.09

1.27 log(PLMA) 0.06 LON 1.32

- [

]

f PLAC      

       (17) 

Notice the constant term -1.32 and the norm of direction 1   inside the function f  in Eq. (17). The difference in (17) 

in comparison to the general form of the PPR model in Eq. (9) is the consequence of transformations on the explanatory 25 

variables. Indeed, during the optimization procedure of a PPR model, it is suggested to scale the explanatory variables in 

order to avoid the scale effect in the coefficients of the direction   (Hastie et al., 2009). Nevertheless, notice that the 

formula inside the function f  corresponds to a linear model.  

Figure 4a shows a strong linear relationship between L1 and the predictor X . Conversely, Figures 4b,c,d show 

mild nonlinearity and hence indicate the need for more flexible models, such as PPR. The predictive performances of the 30 

reference variables are evaluated by the NHS criterion with values 91.5%, 33.3%, 6.7% and 55.7% respectively for L1, 

LCV, LSK and LKT. These results show that L1 is accurately predicted by the site characteristics, while a poor fit is 
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associated to LSK. Indeed, Figure 4c suggests that apart from a few sites on the right of the curve, LSK appears not highly 

related to the predictor X . In comparison, linear models applied on the same reference variables lead to NHS criterion: 

90.9%, 28.2%, 7.8% and 48.1% respectively. Remark that NHS criterion is calculated by cross-validation, consequently 

even though the improved performances by the PPR method appear moderate this represent true fitting improvements. 

 Due to its poor fit, LSK may not be a proper reference variable for the delineation step. To validate this 5 

assumption, the neighborhoods are formed with and without using LSK and the rest of the analysis is carried out for both 

scenarios. Based on the RRMSE criterion, LSK must be maintained as it is associated to better predictive performances. 

This strategy is part of the backward stepwise selection procedure as described in section 3.1. Overall, it leads to discarding 

LKT and to maintaining L1, LCV and LSK. The second group of reference variables contains both the L-moments and the 

site characteristics. As with the first group, backward stepwise selection is performed and the final reference variables are: 10 

BV, PLAC, LCV and LSK. In order to distinguish the two groups of reference variables, RVN-LM will designate the first 

group with the L-moments only and RVN-HYB will designate the second group with both the L-moments and the site 

characteristics. 

4.3  Results of the index-flood model 

 At this point, the steps 1-4 of the RVN methodology are performed and the neighborhoods are identified. Notice 15 

that for the RVN-LM method, the reference variables include the first three L-moments, which could be used as a moment 

estimator to deduce the target distribution. This approach is, however, not generally applicable to the present methodology 

as the reference variables are selected by a stepwise procedure. Moreover, it is necessary to identify a proper family of 

distributions from regional information, which is achieved here by analyzing the distribution of the gauged sites inside the 

neighborhoods. The index-flood model and the L-moments algorithm were proven to lead to a reliable procedure to identify 20 

a regional distribution and to estimate its parameter (Hosking and Wallis, 1997). In this model, the regional quantile 

( ) ( )i iQ r Q r  corresponding to a return period r  at a target location i , where i  is the index-flood. In the present 

study, the index-flood is taken to be the means of the at-site distributions and is predicted at the target location by multiple 

regression.  

 The index-flood model is fitted inside the neighborhoods obtained by each one of the four methods: ROI, CCA, 25 

RVN-LM and RVN-HYB. For CCA, two canonical pairs are calculated as described in section 2.1 using flood quantiles 

corresponding to the 10- and 100-year return periods as hydrological variables. The choice of the regional distribution is 

made between the four common families of distributions that were mentioned earlier: GEV, GLO, LN3 and P3. The 

parameters of the regional quantile function  Q r  are calculated from the regional LCV and the regional LSK as the 

respective averages (see Eq. (12)). Figure 5a shows the L-moment ratio diagram for the regional LSK and LKT with RVN-30 

LM. For each neighborhood, the distribution family is selected as the one having the nearest regional LKT to the theoretical 

value, given the regional LSK. RVN-HYB is omitted in Figure 5 for the clarity of the graphics, but has similar behaviour to 

RVN_LM.  

  Figures 5b,c,d present the L-moment ratio diagrams of the at-site LCV and LSK for three given target locations as 

an illustration of the gauged sites found in the respective neighborhoods. In these diagrams, the nearest gauged sites selected 35 
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for RVN-LM, CCA and ROI are highlighted. Figure 5b shows that RVN_LM has a denser cluster of gauged sites in terms 

of LCV and is approximately centered on the true target. Conversely, Figures 5c and 5d show situations where the true 

targets do not correspond to the predicted target. Although, all the reference variables are known at the target location for 

the ROI method, Figures 5b and 5c show that the selected sites are also not located around the true target. This finding is 

coherent with the results of (GREHYS, 1996a, 1996b) which indicates that delineation according to physiographical 5 

similarity can lead to substantially different regions than according to hydrological similarity.  

 Results of cross-validation are presented in Figure 6. The evaluation criteria are calculated for every neighborhood 

with size superior to 15 in order to calibrate the model. The tendency illustrated in this figure helps to visualize the 

evolution of these criteria with better perspective. The comparison of Figures 6a and 6b indicates that the optimal 

neighborhood sizes for RRMSE and NHS are not always in agreement. In particular, the best RRMSE for the RVN-HYB 10 

method is with 24 sites, while the best NHS is with nearly 80 sites. Nevertheless, the optimal values for the three other 

methods are obtained with approximately 30 sites for both criteria. Figure 6b indicates that all methods have relatively 

stable NHS between 86% and 87%, but the best NHS is obtained by RVN-LM. Conversely, Figure 6a shows clearer 

improvements of the calibration in terms of the RRMSE criterion. Hence, the calibrated models are set according to the 

RRMSE criterion and are represented by circles in Figure 6 and are summarized in Table 1. RVN-HYB, with a RRMSE of 15 

40.1% outperforms the other methods. In particular, a difference of 6.1% and 5.3% is observed respectively with the 

traditional ROI and CCA methods.  

 Figures 6c,d present respectively the AHM and the ARE criteria obtained from the considered methods. The AHM 

criterion indicates that the ROI and the CCA methods have in general lower heterogeneity than the whole dataset, but are 

largely outperformed by the RVN-LM and RVN-HYB methods especially for smaller neighborhoods. This is not surprising 20 

as the RVN-LM and RVN-HYB pool together sites with similar L-moments, but this quantifies the intuitive assumption that 

the regional LCV is calculated with less uncertainty when the L-moments are directly considered instead of other reference 

variables. In particular, the AHM of the ROI method is 72.8% with the optimal neighborhood size of 30. In comparison, the 

AHM of the RVN-LM method is 14.5% with the optimal neighborhood size of 29 sites, which is considerably lower. Figure 

6c shows that the AHM criterion of the RVM-LM method does not reach a similar level to the ROI method until using as 25 

much as 120 sites. These results indicate that even for relatively small neighborhoods, the ROI method identifies regions 

that are only slightly less hydrologically heterogeneous than all sites pooled together. This suggests that, in the present case 

study, the ROI method has difficulties identifying sites that are similar to the target site in terms of LCV.  

 As mentioned in section 4.2, previous studies have identified few problematic stations in the considered dataset. 

Figure 7 presents the residuals between different methods. As it may be difficult to see small improvements by uniquely 30 

observing points around the y x  lines, the visualization of Figure 7 is helped by adding a flexible fit of the point cloud, 

using a standard smoothing spline approach. The resulting red lines indicate if close to x  the residuals are lower in average 

for one of the two methods.  In general, the points associated to the largest relative discrepancies are close to the y x  

line, which indicates that the sites that are difficult to predict are essentially the same for all methods. However, Figures 

7a,b show that the RVN-HYB specifically improves the prediction of the sites with the lowest and largest relative 35 

discrepancies as the red line is clearly located under the y x  lines, which explains the improved RRMSE in Table 1. On 

the other hand, Figures 7c,d demonstrate that at the logarithmic scale, the RVN-LM method achieved predicted values that 

are mostly similar to the ROI and CCA methods, which explains the similarity of the NHS criteria for all the compared 
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methods.     

The present case study is an example of a region where some sites are problematic for likely any methods. In practice, 

the residuals are not known, consequently we do not know if the target sites of interest will be “problematic” or not. 

Globally, what Figure 7a indicates is that the RVN-HYB model is more robust (in a certain way), because for the sites that 

are well predicted by simpler models, such ROI, RVN-HYB will perform in average similarly. However, if the target site is 5 

predicted less accurately, the RVN-HYB model will (in average) be better in terms of RRMSE. Consequently, the overall 

gain may seem of moderate magnitude, but for some problematic stations the gain could be more substantial. In particular, 

the red lines in the left part of Figure 7a appears mostly influenced by two points, but the two improvements are of 77.2% 

and 68.5%, which is considerable. 

4.4 Results of the regression-based model 10 

 Prediction of Q100 at the target location is also performed by the regression-based model using the same 

delineation methods as with the index-flood model, but with potentially different calibration values for the neighborhood 

sizes. Consequently, the description of steps 1-4 (in section 3.1) are identical to those of the index-flood approach and are 

not repeated here.  

Cross-validation criteria for the regression-based model are presented in Figures 8 and summarized in Table 1. As 15 

with the index-flood model, Table 1 reveals that the RVN-HYB method leads to the best performance in terms of the 

RRMSE. Although all methods differ by less than 2% in terms of NHS, results indicate that NHS values corresponding to 

CCA and RVN-HYB are inferior to those corresponding to the regression model applied on all gauged sites, which 

corresponds to 150n   in Figure 8b. However, CCA leads to the best relative efficiency as indicated by the ARE criterion 

in Table 1. Hence, CCA corresponds to the regression models with, on average, the lowest uncertainties. This indicates that 20 

flood quantiles may be better reference variables for the regression-based model than for the index-flood model and 

suggests that in general different reference variables may be more appropriate for different situations. Nevertheless, the two 

close lines in Figure 8d reveal that for the same neighborhood size the RVN-LM has similar ARE values to CCA. In terms 

of AHM, Figure 8c is identical to Figure 5c except that new neighborhood sizes are indicated in circles.  

The fit of the regression-based model is graphically assessed in Figure 9 by Quantile-Quantile plots. It is shown 25 

that for all delineation approach the regression-based models correctly predict the flood quantile Q100 at targets as it 

correctly follows the y x  line. However, the comparison between the methods ROI and RVN-HYB shown in Figures 

8a,c and the methods CCA and RVN-LM shown in Figures 8b,d do not illustrate clearly their differences. A more precise 

comparison would be obtained by comparing the residuals instead, as it is done in Figure 7. However, the predictions of the 

regression-based models are very similar to those of the index-flood models and they lead to very similar graphics, which 30 

are not reported here. Table 1 provides also a comparison between the performance of the index-flood and the regression-

based model. In terms of RRMSE and NHS criterion, the two approaches lead to very similar results, which is coherent with 

what it is reported in other studies (GREHYS, 1996a, 1996b; Haddad and Rahman, 2012). Therefore, similar conclusions 

can be draw from the two approaches. For instance, in both cases, the RVN-HYB leads to the best results in terms of 

RRMSE.    35 
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5. Conclusions 

A general methodology was investigated to improve homogenous properties of neighborhoods in RFFA. A procedure to 

calculate relevant reference variables at a target location prior to the RFFA was proposed to improve neighborhood 

properties and to reduce uncertainties. The predicted values of reference variables represent the unknown centers of 

neighborhoods delineated according to a distance of gauged sites with respect to the centers. The proposed method 5 

represents a generalization of both ROI and CCA methods in RFFA. The proposed RVN method has the advantages of 

accepting various groups of reference variables, of considering nonlinear interrelations and of being more objective since L-

moments are used instead of estimated flood quantiles from at-site analysis. 

 In this study, the reference variables correspond to transformed L-moments. The resulting RVN-LM and RVN-

HYB methods were applied on sites located in Southern Quebec, Canada, to predict flood quantiles corresponding to the 10 

100 year return period by both index-flood and regression-based models. The prediction of the reference variables at target 

locations showed that after proper transformations, L1 can be linearly related to the site characteristics, but no proper 

transformations are found for the other L-moments. This justifies the consideration of the PPR method to account for the 

nonlinearity in the prediction of the reference variables. In general, other models, such as generalized additive models or 

artificial neural networks, could be considered instead of PPR to account for the nonlinearity. Nevertheless, the PPR 15 

approach unveils direction vectors that provide explicit, parsimonious and meaningful regression equations.         

 Although none of the methods performed best for all criteria, cross-validation showed that the proposed RVN 

method performs well in comparison to the traditional ROI and CCA methods. In both the index-flood and the regression-

based model the best RRMSE is obtained by RVN_HYB and the best NHS is obtained by RVN_LM. In particular, the 

favorable RRMSE values obtained by RVN-HYB are due to a more robust estimation of problematic sites. However, 20 

RVN_LM has the best balance, because it achieves the best or the second best values for all criteria. Most importantly, the 

utilization of hydrological reference variables with the CCA and RVN methods has reduced the uncertainty on the regional 

LCV, the index-flood and the predicted flood quantiles, in comparison to ROI. Consequently, prior modeling of 

hydrological reference variables was shown to be advantageous to the delineation of neighborhoods in RFFA.   

 The present study has made specific assumptions in order to investigate the RVN method in well-defined 25 

conditions. Nevertheless, the rational of predicting hydrological reference variables in a priori analysis remains a valid 

approach when other choices of regression models, neighborhood forms and metrics are considered. Hence, more 

comparative studies should be carried out to evaluate alternatives to fixed size neighborhoods and Euclidian distances in the 

specific context of the RVN framework.  

 The L-coefficient of skewness is commonly used in RFFA to describe the shape of a distribution. Consequently, to 30 

improve the result of the RVN method, further research efforts could focus on improving the prediction of this crucial 

reference variable. One way to improve the prior analysis of the hydrological reference variables is the consideration of the 

unequal sampling error. This aspect is often considered in the estimation of flood quantiles in RFFA, but may also play an 

important role in the prior analysis of the RVN method. 

 35 
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Table 1: Evaluation criteria for the RVN method for optimal neighborhood sizes. 

 Model Size RRMSE NHS AHM ARE 

Index-Flood       

 ROI 30 46.2 86.5 72.8 57.3 

 CCA 28 45.4 86.2 41.7 42.9 

 RVN-LM 29 45.0 87.1 14.5 36.9 

 RVN-HYB 24 40.1 86.2 16.5 43.1 

Regression-based       

 ROI 30 44.9 86.9 72.8 64.7 

 CCA 28 43.5 86.1 41.7 30.6 

 RVN-LM 39 41.7 87.6 17.9 39.8 

 RVN-HYB 24 39.5 86.2 16.5 42.5 
Best criteria in bold 



20 

List of Figures 

Figure 1: Diagram of the RVN method using backward stepwise selection. 

Figure 2: Illustration of the neighborhoods obtained by the RVN method. 

Figure 3: Location of the 151 hydrometric stations in Southern Quebec, Canada. 

Figure 4: Residuals of the reference variables by PPR methods 5 

Figure 5: L-moments ratio diagram for index-flood model. (a) Regional L-moments for RVN-LM with 29 gauged sites. 

(b),(c) and (d) Regional L-moments based on the 15 nearest gauged sites for 3 selected target locations.  

Figure 6: Evaluation criteria for the index-flood model. Calibrated models are represented by circles. 

Figure 7: Comparison of the cross-validation residuals for Q100 between different methods. The black line is the unitary 

slope and the red line is a smooth fitting of the residuals. 10 

Figure 8: Evaluation criteria for the regression-based model. Calibrated models are represented by circles. 

Figure 9: Quantile-Quantile plot of Q100 for the RVN method with regression-based model.  

 



21 

 

 Figure 1: Diagram of the RVN method using backward stepwise selection. 
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Figure 2: Illustration of the neighborhoods obtained by the RVN method. 
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Figure 3: Location of the 151 hydrometric stations in Southern Quebec, Canada. 
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Figure 4: Residuals of the reference variables by PPR methods. 
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Figure 5: L-moments ratio diagram for index-flood model. (a) Regional L-moments for RVN-

LM with 29 gauged sites. (b),(c) and (d) Regional L-moments based on the 15 nearest gauged 

sites for 3 selected target locations.  
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Figure 6: Evaluation criteria for the index-flood model. Calibrated models are represented by circles. 
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Figure 7: Comparison of the cross-validation residuals for Q100 between different methods. The black line is the 

unitary slope and the red line is a smooth fitting of the residuals.
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Figure 8: Evaluation criteria for the regression-based model. Calibrated models are represented by circles. 
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Figure 9: Quantile-Quantile plot of Q100 for the RVN method with regression-based model.  

 


