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Abstract

This study investigates the utilization of hydrological information in Regional Flood Frequency Analysis (RFFA)
to enforce desired properties for a group of gauged stations. Neighborhoods are a particular type of regions that are centered
on target locations. A challenge for using neighborhoods in RFFA is that hydrological information is not available at target
locations and it cannot be completely replaced by the available physiographical information. Instead of using known site
characteristics (not hydrological) to define the center of a target location, this study proposes to introduce estimates of
(hydrological) reference variables to ensure better homogeneity. These reference variables represent nonlinear relations with
the site characteristics obtained by projection pursuit regression; a nonparametric regression method. The resulting
neighborhoods are investigated in combination with common regional models: the index-flood model and the regression-
based models. The complete approach is illustrated on a real-world case study with gauged sites located in Southern
Quebec, Canada, and is compared with the traditional approaches “Region of Influence” and “Canonical Correlation
Analysis”. The evaluation focuses on the neighborhood properties as well as prediction performances, with special attention

to problematic stations. Results show clear improvements in neighborhood definitions and quantile estimates.

Keywords: Index-flood model, Regional frequency analysis, Ungauged site, Region of influence, Projection pursuit

regression, Canonical Correlation Analysis.
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1. Introduction

Accurate estimates of the risk of occurrence of extreme hydrological events are necessary for the minimization of
the impacts of these events and for the optimal design and management of water resource systems. However, necessary
information is not always available at the sites of interest. Hence, it is necessary to develop procedures to transfer, or to
regionalize, the information available at existing gauged sites to the ungauged ones. Regional Flood Frequency Analysis
(RFFA) represents a large class of techniques commonly used in water sciences to evaluate the risk of occurrence of
extreme hydrological phenomena of rare magnitudes at ungauged locations (Haddad and Rahman, 2012; Hosking and
Wallis, 1997; Laio et al., 2011; Pandey, 1998; Reis et al., 2005).

RFFA methods are usually composed of two main steps. The first step is the formation of homogenous regions.
This step aims at pooling together sites that are approximately similar according to homogenous criteria. Inside these
homogenous regions, it is assumed that hydrological information can be reasonably transferred from gauged to ungauged
locations (Cunnane, 1988). The second step, the estimation of flood quantiles, consists in the calibration of a regional model
that characterizes the interrelation between hydrological variables of interest and explanatory physio-meteorological
variables corresponding to known site characteristics. Consequently, RFFA is used to study unobserved hydrological

behaviour from available hydrological and physio-meteorological information.

Neighborhoods are specific forms of regions inside which gauged sites are not classified into fixed regions, but are
composed of gauged sites that are the most similar to a given target. Hence, two distinct target locations have their own
neighborhoods that may overlap. Comparative studies showed that neighborhoods lead to better regional estimates than
fixed regions (Burn, 1990; Ouarda et al., 2008; Tasker et al., 1996). To identify the most similar gauged sites in terms of
hydrological properties, a notion of distance is needed to evaluate the proximity, or relevance, of each gauged site to the
target location and identify the most hydrologically similar gauged sites. However, when the target location is ungauged,
this distance cannot be directly calculated due to the missing hydrological information. Physio-meteorological information
is hence used for similarity evaluation. The traditional approach, based on the distance between site characteristics, is
commonly referred to as the Region of Influence (ROI) model (Burn, 1990), which received a particular attention in the
hydrological literature. The focus was mainly on the estimation of the model parameters, where for instance generalized
least-squares were used to account for unequal variability in the at-site estimations (e.g. Griffis and Stedinger, 2007,

Stedinger and Tasker, 1985) and to deal with the presence of spatial correlation (e.g. Kjeldsen and Jones, 2009).

Alternatively, Ouarda et al. (2001) used Canonical Correlation Analysis (CCA) to build neighborhoods from a
canonical distance that accounts for the interrelation between flood quantiles and site characteristics. For this method,
neighborhoods are formed by gauged sites that are the most similar to the target location, according to the distance between
vectors of flood quantiles corresponding to different return periods. Due to the missing hydrological information, the CCA
method in RFFA estimates the unavailable hydrological variables as linear combinations of site characteristics.
Consequently, the available site characteristics are transformed into more meaningful “hydrological” quantities for the
purpose of delineating neighborhoods. However, the CCA method suffers from some limitations, such as linearity and

normality assumptions (He et al., 2011). Subsequent studies aimed to improve the CCA method by improving the CCA
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technique itself (Chebana and Ouarda, 2008; Ouali et al., 2015). However, little attention has been paid to the importance of
properly choosing the hydrological quantities in the delineation step whereas much effort has been devoted to the modeling
step. Indeed, Chebana and Ouarda (2008) employed an iterative linear procedure to estimate neighborhood centers and they

showed that the quality of these centers’ estimates is the crucial element to improve the final model performance.

This study aims to provide a general framework with more flexibility regarding the linearity and normality
assumptions. This is achieved by replacing CCA in the prior analysis of hydrological variables by Projection Pursuit
Regression (PPR), a nonparametric regression method recently considered as an estimation model in RFFA (Durocher et al.,
2015). The present study is also interested in validating the advantages of employing hydrological variables other than the
at-site flood quantiles in prior modeling as well as considering a combination of these hydrological variables with site

characteristics.

L-moments have already been used in RFFA to test the homogeneity of fixed regions when the target site is gauged
(Chebana and Ouarda, 2007; Hosking and Wallis, 1997). In the present study, the prediction of the L-moments at ungauged
sites is also considered to improve the delineation of the neighborhoods by reducing uncertainties. Moreover, a conceptual
advantage of using L-moments conversely to at-site flood quantiles is that the L-moments do not depend on the subjective

selection of at-site distributions.

The present paper is organized as follows. Section 2 presents the background for the techniques commonly used in
RFFA. Section 3 elaborates on the prior analysis of hydrological variables and their integration with the techniques
presented in Section 2 to form a complete procedure. Section 3 suggests criteria for the evaluation of the predictive
performances and the neighborhood properties. Section 4 illustrates the application of the method on a case study.
Traditional ROl and CCA methods serve as references in order to evaluate the relative performance of the investigated

method. Finally, concluding remarks are provided in the last section.

2. Background
2.1 Delineation of neighborhoods

In RFFA, neighborhoods are used to identify gauged sites from which information is transferred to the target
location. A neighborhood is characterized by a center and a radius that delimits an area (not necessary in the geographical

sense). Gauged sites inside the area delineate a region that includes relevant sites to the target location. At each site
i=1...,n, p characteristics X; :()(i,l"" ,Xi’p) are available. Typically, the ROl method forms neighborhoods

according to a radius based on a metric d :

P (X, —X. )?
(o) =3l - i) ®
k=1 Kk

where o, is the standard deviation of {Xi’k }in:l the kth site characteristic (Eng et al., 2005).
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Alternatively, CCA is a multivariate technique used to unveil the interrelation between two groups of variables. Let
Y and X be normally distributed random vectors with zero means. The CCA method defines canonical pairs (Uk ,Vk) as

linear combinations of the original random variables:

U, =a X .

V, =hY ©)

where the correlations pk:corr(Uk,Vk) are sequentially maximal for k=1,...,K under the conditions

corr (U,,U,)=corr (V,,V,) =0 for k =1 . Only the canonical pairs (U, ,V, ) with unit variances are considered.

To delineate neighborhoods, the CCA approach considers the canonical scores U; :(ai,...,ar)'x. and

I
vV, = (bl, b, )'yi that are respectively linear combinations of site characteristics X; and flood quantiles corresponding
to different return periods Y, for site i. Due to the missing hydrological information at the ungauged location denoted
I =0, the flood quantiles Yy, and the corresponding linear combination V, are unknown. Nevertheless, CCA provides a

linear estimate V, = Au,, where A =diag(p,,..., o). Accordingly, a neighborhood is delineated in the canonical

space according to the distance:
d(v;, Au,) = (v; —Aug )'(1 —Az)fl(vi—Auo) )

More details on the CCA approach in RFFA can be obtained in Ouarda et al. (2001).

2.2 Multiple regression

In RFFA, two types of regional models are often considered to predict flood quantiles corresponding to given
return periods: the index-flood model and the regression-based model (Ouarda et al., 2008). The index-flood model predicts
a target distribution by assuming that all distributions inside a region are proportional to a regional distribution, up to a scale
factor called index-flood. The flood quantile of interest at a target location is then calculated from the regional distribution
based on the predicted index-flood (e.g., Chebana and Ouarda, 2009; Dalrymple, 1960; Stedinger and Lu, 1995).
Conversely, the regression-based model considers directly the at-site estimates of the desired flood quantiles for prediction.
Flood quantiles are then predicted at their target locations by the regression equations estimated within the neighborhoods
(Pandey and Nguyen, 1999).

Even though they proceed differently, both the index-flood model and the regression-based model may use the

same multiple regression techniques to transfer information to an ungauged location. For the sake of simplicity, the term

hydrological variables is used to designate the corresponding output variables Z; of these models at location i=1...,n.

Consequently, for the index-flood model, Z; is the index flood, while for a regression-based model the hydrological
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variable Z; is the flood quantile of interest.

Multiple regression models assume linear interrelation between the hydrological variable Z; and the site
characteristics X;. Consequently, in several cases, transformations are necessary to meet this assumption. For instance, the

power law form is frequently used to model flood quantiles:

zi=eﬁ°xxi,1”1><...xxi ﬂpxgi )

P

where f'= (ﬂo,ﬂl, ...,ﬂp) are parameters and &, is an error term. Applying a logarithmic transformation is sufficient

to cast Eq. (5) into a linear model. In general, a proper transformation is assumed for the hydrological variables

Y; = 9(Z;) being linearly related to the sites characteristics.

According to previous notations, let Yy z(yl, ceny yn) be the hydrological variables, X be the design matrix of the site

characteristics X; i with intercept, and & = (51, ...,gn) be the error term. Hence in matrix notation, a multiple regression

model has the form:
y=XpB+¢ (6)

and according to the least-squares theory, the estimates of the parameters are:

B=(X'X)" Xy @)

2.3 Projection pursuit regression

Some methods predict hydrological variables without the formation of regions, such as physiographical kriging
(Castiglioni et al., 2009; Chokmani and Ouarda, 2004), generalized additive models (Chebana et al., 2014) and artificial
neural networks (Dawson et al., 2006; Ouarda and Shu, 2009). More recently, Projection Pursuit Regression (PPR) was
introduced to provide a flexible nonparametric regression approach to describe the nonlinearity that is present in the
relationship between hydrological variables and site characteristics. PPR was used in the RFFA context by Durocher et al.

(2015) to directly predict flood quantiles without delineation.

The basic elements of a PPR model are K =1,...,m functions fk called terms and defined as:

f,(X) =g, (@X) (®)
where directions ¢, are vectors of coefficients and g, are smooth functions. The directions ¢, are coefficients that

respect |a| =1 and determine a predictor a,;X as relevant linear combinations of the site characteristics X . The terms

are then combined into a regression model:
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y=pu+> f(X)+e ©)

k=1
where ¢ is the global mean and ¢ is a term of error. Notice that the orthogonality between directions ¢, is not imposed,

hence the predictors al:X and a,'X for K =1 may be correlated. Consequently, PPR allows for interaction between site

characteristics, which leads to a large variety of regression models (Hastie et al., 2009).

The components ¢, and g, of the model in (9) are estimated by the least-squares approach (Friedman et al.,

1983). For a unique direction (m=1), PPR can be estimated by standard nonlinear algorithms (Yu and Ruppert, 2002), but
in general a stagewise algorithm is adopted to find a proper solution (Friedman and Tukey, 1974). Comparative studies
show that PPR has a similar predictive performance to artificial neural networks (Bishop, 1995; Hwang et al., 1994).
However, Durocher et al. (2015) indicated that in RFFA, PPR reduces to more parsimonious models than artificial neural

networks, which provides an explicit expression of the regression equations.

3 Methodology

This study deals with neighborhood delineation and more precisely it focuses on the identification of reliable
estimates of the hydrological centers of these neighborhoods. For simplicity, the variables forming these centers will be
referred to as reference variables, because they represent the reference to evaluate the similarity between a target location
and the gauged sites. Reference variables can take different forms, such as site characteristics, hydrological variables or a
combination of both. Their nature is important, because it determines the properties that are deemed to be important
between close sites. The particularity of the present method is that PPR can be used to predict these neighborhood centers
(prior to the RFFA modeling step) when some of the reference variables are unknown hydrological variables. Accordingly,

the proposed method will be referred to as RVN for Reference Variable Neighborhoods.

3.1 Estimation of the reference variables

The general procedure can be described by the steps below:
1. Select the reference variables
2. If necessary, predict the reference variables that are not available at the target site
3. Calculate the distance between the reference variables
4. Form the neighborhood based on the previous distance
5. Fit aregional model on the neighborhood
6. Predict the target site

In step 1, the selection of a set of the reference variables can be subjective and depends on the problem at hand. In the

present study, backward stepwise selection procedure is considered to remove from an initial set of references variables

6
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those that are not contributing to the prediction power of the model. This selection procedure is more objective and depends

on performance criteria that will be described in section 3.2.

Step 2 is required only if some reference variables are unknown at the target sites, otherwise, if a target location

designated by i =0, the radius of the neighborhood used in step 3 can be computed as h =d (ti,to) where d is a

metric and T I:(ti,l""’ti,q) are the reference variables of the ith site. For simplicity, the Euclidian metric d is

considered throughout the present study, but other metrics or dissimilarity measures could be employed as well. In

particular, the Mahalanobis distance, the weighted distance and the depth function could be considered (Chebana and
Ouarda, 2008; Cunderlik and Burn, 2006; Ouarda et al., 2000).

If some hydrological information is unavailable at the target location, the estimation of the hydrological reference

variables is necessary to produce an estimate T, = f (XO) in step 2 from site characteristics X, at the target location. This
substitution leads in step 3 to the distance hy, =d[t;, f(X,)], which may be seen as an approximation of the true

distance hi . This study considers PPR models in order to fit every hydrological reference variable as described in section

2.3. The motivations for adopting PPR are that it does not require a prior delineation of regions, it accounts for nonlinear

relationships, it has good predictive performances and it leads to a straightforward interpretation of the reference variables

when a few directions ¢, are necessary (Durocher et al., 2015).

If the hydrological variables t;, were known at the target location, the distance hi would be available and the
neighborhood that truly regroups the most hydrologically similar sites to the target location can be identified. However, in
practice this true neighborhood is unknown. Using instead the estimate f(Xo) has the effect that some sites are falsely

suggested as more hydrologically similar than other sites. Figure 1 illustrates a region with several sites where two
neighborhoods are resulting from the RVN method with different predicted centers. The target site is illustrated as a green
filled circle and neighborhood is formed of the 10 nearest sites indicated by small empty circles. The other sites are
designated by crosses. The red and blue neighborhoods are delineated by circles where the radius is selected to include the
10 nearest sites. The predicted center of the red neighborhood is closer to the target site. Consequently, it can be seen that
except from one site, the same sites as the target neighborhood are included (empty circles). On the other hand, the blue
neighborhood has a predicted center further to the target site and hence a lower proportion of the sites truly closer to the
target are found. It shows the importance of correctly predicting the neighborhood centers in order to identify sites that are

truly similar to the target site.

The errors related to prediction of the hydrological reference variables suggest that the RVN method may include
an additional source of uncertainty, which is not accurate. Indeed, the same source of uncertainty is present among the sites
of a neighborhood delineated on the basis of the site characteristics (i.e that the average of the hydrological variables in the
neighborhood is not a perfect predictor). This could be seen as an advantage of the RVN method since it directly assesses

this source of uncertainty and tries to reduce it.

Step (1-3) are the particularity of the RVN method, while the other steps are common in RFFA and are explained
7
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in section 2. In the remainder of this study, step (4) uses a specific type of neighborhoods that is composed of a fixed
number of the nearest sites (Eng et al., 2005; Tasker et al., 1996), but could also be constrained to the degree of the

homogeneity of the neighborhoods (Ouarda et al., 2001). Consequently, the selected gauged sites can be obtained by sorting
h(i) and keeping the desired number of sites. Notice that even though h(i) does not exactly approximate hi , both distances

will lead to the same neighborhoods if they preserve the ranks. Finally, step (5) consists in the estimation of the flood

quantiles using either the index-flood or the regression-based model.

Notice that the RVN method may be seen as a generalization of the ROl and the CCA methods in RFFA. Indeed,
the ROI method corresponds to the RVN method for which all the reference variables are site characteristics. In that case,

t, = f(X,) is known and PPR is not necessary in step (2). Similarly, the CCA approach may be seen as the special case

for which the reference variables are the canonical pairs in Eq. (4) and CCA is used, instead of PPR, to predict them in step

).

3.2 Evaluation criteria

For the RVN method presented above, the neighborhood sizes must be calibrated according to an objective

criterion. In this regards, the leave-one-out cross-validation approach is a general strategy to assess the performance of the
predicted hydrological variables z; at site 1 =1,...,N. In turn, each gauged site i is considered as an ungauged target
location. From the remaining gauged sites, predicted values Z;, can be obtained without using the hydrological information
at the target location. Discrepancies between the sampled and the predicted values are used to define evaluation criteria.
Notice that the hydrological variables are transformed Y, = ¢ (Zi). Hence, if Y is the sample mean of the Y, then an

appropriate global performance measure is the Nash-Sutcliffe criterion:

Zn:[)’i - Y(i)]2

NHS=1-=— — (10)

é[yi_y]z

Additionally, the predictive performance is examined at the original scale by the relative root mean square error:

2

n Z.

RRMSE = %Z{l—%} (11)
i=1 i

The choice of the reference variables is an important aspect and a set of reference variables should be chosen in order to
enforce the desired properties. For instance, with the index-flood model the assumption of a regional distribution suggests
that, apart from the index-flood, the at-site distributions must be proportional to a regional distribution. A heterogeneity

measure based on the dispersion of the L-coefficient of variation (LCV) is shown to be a proper way to ensure that the LCV

is relatively constant (Viglione et al., 2007). Accordingly, let |j be the set of indices for the N nearest gauged sites to the

8
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target location | during the cross-validation process. The regional LCV G(j) is calculated as the average:

A 1
O =ﬁ26’i (12)

Ielj

of the at-site LCV 6, inside the jth region. The heterogeneity measure is defined as:

2
a :Z(é’i _‘9(1')) (13)
ielj
In their procedure, Hosking and Wallis (1997) used this heterogeneity measure to test the homogeneity of a region,
which implies that the regional LCV can be considered constant. Hence, the result of this test allows deciding if a region
must be divided into smaller and more homogenous sub-regions. In the present study the size of the neighborhoods is the
same for every neighborhood. Hence, if a homogeneity test is performed with a given neighborhood size, some of the

neighborhoods will be considered homogenous, while the others will be considered heterogeneous (Das and Cunnane,

2010). However, the heterogeneity measure in Eq. (13) remains a useful indicator of dispersion for the regional LCV é( i)

A

inside a neighborhood. Consequently, a smaller H(j) suggests that the regional LCV H(j) is measured with less
uncertainty.

To facilitate the interpretation of the results and to ensure the comparability between neighborhoods, the

heterogeneity measure H( i / N is considered instead. The measure represents the sample variance of the LCV for the jth

target location. This heterogeneity measure is standardized by H / N, where H is the heterogeneity measure in Eq. (13)

calculated on all N available gauged sites. The resulting ratio corresponds to a scale-free heterogeneity measure, where a
value under one provides evidence of a less heterogeneous neighborhood in comparison to the whole dataset. Therefore, the
Average Heterogeneity Measure (AHM) criterion below is defined as the average of every neighborhood considered in the
cross-validation process:
1 n
AHM =——3"H_, (14)
N . H ; (1)
This criterion is not specific to a given target location, but represents the global level of heterogeneity resulting from a given
delineation method, such as ROI, CCA or RVN. In particular, a delineation method with a smaller AHM suggests that on

average a more precise regional LCV is used to predict flood quantiles.

Another desired property for a neighborhood is to lead to estimation models with less uncertainty. For the index-
flood model, this implies in particular less uncertainty in the prediction of the index-flood, while for regression-based
models, it implies less uncertainty in the prediction of flood quantiles. For a multiple regression model, the uncertainty can

be quantified by the residual variance:
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1 2
2 [ —
=N Z(ei,(n) (15)
Ielj
where & (i) is the residual at the ith gauged site, when predicting the jth target location in the cross-validation process.

Notice that a regression model fitted on two different neighborhoods (for the same target location) can obtain an identical
values, but lead to different levels of uncertainty. In this study, a neighborhood with a smaller residual variance than another

one is said to be relatively more efficient.

During the cross-validation process, the sample variance of the regression models can be calculated for every site, which
leads to the Average Relative Efficiency (ARE) criterion defined by:

ARE = iz > st (16)
ns® =

where the residual variance S° is calculated from the multiple regression model on the whole dataset. This criterion is

similar to the AHM criterion as it is standardized to a scale-free measure. This criterion can be used to identify the
delineation method which achieved on average the smallest residual variances for each neighborhood. The ARE and the
AHM criteria are used in the present study, along with the NHS and RRMSE to access the performances of the various
models.

4. Applications
4.1 Data

To validate the RVN method on a practical situation, RFFA is carried out in a real-world case study using both the
index-flood model and the regression-based model. The hydrological variables of interest are the flood quantiles
corresponding to a return period of 100 years, denoted Q100. The analysis is performed on 151 sites located in Southern
Quebec, Canada, which are presented in Figure 2. Each site has at least 15 years of data available, with an average length of
31 years. Furthermore, the usual hypotheses of stationarity, homogeneity and independence are verified. Only a brief
description of the data and the at-site frequency analysis is provided since the elements were already presented in details in
previous studies (e.g., Chokmani and Ouarda, 2004).

The at-site distributions are selected among several families including: generalized extreme values (GEV), Pearson
type 111 (P3), generalized logistic (GLO) and log-normal with 3 parameters (LN3). In general, the estimation of the at-site
distribution was achieved by maximum likelihood and the final choices of distributions are based on the Akaike information
criterion. Recent studies on the same dataset have identified 4 relevant site characteristics (Chebana et al., 2014; Durocher et
al., 2015), which are used in the present analysis: the drainage area or BV (km?), the fraction of the basin area occupied by
lakes or PLAC (%), the annual mean liquid precipitation or PLMA (mm) and the longitude or LON. Proper transformations
are applied on these site characteristics in order to obtain approximately standard normal distributions (Chokmani and
Ouarda, 2004).

10
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4.2 Determination of the neighborhood centers

The step 1-2 of the RVN method is the selection of the reference variables and, if necessary, the estimation of the
hydrological reference variables at the target locations. Two initial groups of reference variables are considered. The first
group is based on L-moments only and the second is based on the combination of L-moments and site-characteristics. The
acronym LM for L-moment and HYB for Hybrid are used to identify the two groups. More precisely, the L-moments
considered for both groups are the sample average (L1), the LCV, the L-coefficient of skewness (LSK) and the L-
coefficient of kurtosis (LKT). These reference variables are transformed and standardized to obtain zero mean and unit
variance. More precisely, the transformation for L1 and LCV is the logarithm and for LSK and LKT, the transformation is

log(x—m, +1) , where m,_ is the minimum of the reference variables. Moreover, a specific implementation of PPR is

assumed, which considers the smooth functions g, in Eq. (8) as cubic spline polynomials with 5 equally spaced knots. The

number of knots is validated by cross-validation using the NHS criterion. Notice that for the fitting of LSK, one site has a
very low standardized residual of approximately -6. Consequently, this site is considered as an outlier and removed from the
estimation of the reference variables. In previous studies (e.g., Chokmani and Ouarda, 2004), this site was identified as one
of a few problematic sites that are difficult to predict due to an underestimated drainage area or overevaluated percentage of
area covered by lakes. Nevertheless, in the present study, this site is only removed only during the prediction of the

reference variables and all sites are included in the rest of the analysis.

Figure 3 shows the fitting of the four reference variables by the PPR models. Cross-validation has selected PPR
models with a unique direction ¢ for all reference variables. The PPR equations that describe the relation between the

reference variables and the site characteristics are explicit, for instance, the regression equation for the LCV has the form:

log(LCV) = -1.80+0.26 x f[-0.67 xlog(BV) —0.09x~/PLAC
+1.27xlog(PLMA) +0.06 x LON —1.32] a7)

Notice the constant term -1.32 and the norm of direction |a| #1 inside the function f in Eq. (17). The difference in (17)

in comparison to the general form of the PPR model in Eq. (9) is the consequence of transformations on the explanatory
variables. Indeed, during the optimization procedure of a PPR model, it is suggested to scale the explanatory variables in

order to avoid the scale effect in the coefficients of the direction a (Hastie et al., 2009). Nevertheless, notice that the

formula inside the function f corresponds to a linear model.

Figure 3a shows a strong linear relationship between L1 and the predictor ¢'X. Conversely, Figures 3b,c,d show
mild nonlinearity and hence indicate the need for more flexible models, such as PPR. The predictive performances of the
reference variables are evaluated by the NHS criterion with values 91.5%, 33.3%, 6.7% and 55.7% respectively for L1,
LCV, LSK and LKT. These results show that L1 is accurately predicted by the site characteristics, while a poor fit is
associated to LSK. Indeed, Figure 3c suggests that apart from a few sites on the right of the curve, LSK appears not highly
related to the predictor &"X. In comparison, linear models applied on the same reference variables lead to NHS criterion:
90.9%, 28.2%, 7.8% and 48.1% respectively. Remark that NHS criterion is calculated by cross-validation, consequently

even though the improved performances by the PPR method appear moderate this represent true fitting improvements.
11
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Due to its poor fit, LSK may not be a proper reference variable for the delineation step. To validate this
assumption, the neighborhoods are formed with and without using LSK and the rest of the analysis is carried out for both
scenarios. Based on the RRMSE criterion, LSK must be maintained as it is associated to better predictive performances.
Similarly, the same procedure is applied to validate in turn the usefulness of each reference variable, which leads to
discarding LKT and to maintaining L1, LCV and LSK.

The second group of reference variables contains both the L-moments and the site characteristics. As with the first
group, the complete analysis is performed with and without each of the reference variables. The final reference variables
that are kept are: BV, PLAC, LCV and LSK. In order to distinguish the two groups of reference variables, RVN-LM will
designate the first group with the L-moments only and RVN-HYB will designate the second group with both the L-
moments and the site characteristics.

4.3 Results of the index-flood model

At this point, the steps 1-4 of the RVN methodology are performed and the neighborhoods are identified. Notice
that for the RVN-LM method, the reference variables include the first three L-moments, which could be used as a moment
estimator to deduce the target distribution. This approach is, however, not generally applicable to the present methodology
as the reference variables are selected by a stepwise procedure. Moreover, it is necessary to identify a proper family of
distributions from regional information, which is achieved here by analyzing the distribution of the gauged sites inside the
neighborhoods. The index-flood model and the L-moments algorithm were proven to lead to a reliable procedure to identify

a regional distribution and to estimate its parameter (Hosking and Wallis, 1997). In this model, the regional quantile
Q.(r) = 1Q(r) corresponding to a return period r at a target location i, where £ is the index-flood. In the present

study, the index-flood is taken to be the means of the at-site distributions and is predicted at the target location by multiple
regression.

The index-flood model is fitted inside the neighborhoods obtained by each one of the four methods: ROI, CCA,
RVN-LM and RVN-HYB. For CCA, two canonical pairs are calculated as described in section 2.1 using flood quantiles
corresponding to the 10- and 100-year return periods as hydrological variables. The choice of the regional distribution is

made between the four common families of distributions that were mentioned earlier: GEV, GLO, LN3 and P3. The
parameters of the regional quantile function Q(r) are calculated from the regional LCV and the regional LSK as the

respective averages (see Eq. (12)). Figure 4a shows the L-moment ratio diagram for the regional LSK and LKT with RVN-
LM. For each neighborhood, the distribution family is selected as the one having the nearest regional LKT to the theoretical
value, given the regional LSK. RVN-HYB is omitted in Figure 4 for the clarity of the graphics, but has similar behaviour to
RVN_LM.

Figures 4b,c,d present the L-moment ratio diagrams of the at-site LCV and LSK for three given target locations as
an illustration of the gauged sites found in the respective neighborhoods. In these diagrams, the nearest gauged sites selected
for RVN-LM, CCA and ROI are highlighted. Figure 4b shows that RVN_LM has a denser cluster of gauged sites in terms
of LCV and is approximately centered on the true target. Conversely, Figures 4c and 4d show situations where the true

targets do not correspond to the predicted target. Although, all the reference variables are known at the target location for
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the ROI method, Figures 4b and 4c show that the selected sites are also not located around the true target. This finding is
coherent with the results of (GREHYS, 1996a, 1996b) which indicates that delineation according to physiographical
similarity can lead to substantially different regions than according to hydrological similarity.

Results of cross-validation are presented in Figure 5. The evaluation criteria are calculated for every neighborhood
with size superior to 15 in order to calibrate the model. The tendency illustrated in this figure helps to visualize the
evolution of these criteria with better perspective. The comparison of Figures 5a and 5b indicates that the optimal
neighborhood sizes for RRMSE and NHS are not always in agreement. In particular, the best RRMSE for the RVN-HYB
method is with 24 sites, while the best NHS is with nearly 80 sites. Nevertheless, the optimal values for the three other
methods are obtained with approximately 30 sites for both criteria. Figure 5b indicates that all methods have relatively
stable NHS between 86% and 87%, but the best NHS is obtained by RVN-LM. Conversely, Figure 5a shows clearer
improvements of the calibration in terms of the RRMSE criterion. Hence, the calibrated models are set according to the
RRMSE criterion and are represented by circles in Figure 5 and are summarized in Table 1. RVN-HYB, with a RRMSE of
40.1% outperforms the other methods. In particular, a difference of 6.1% and 5.3% is observed respectively with the
traditional ROI and CCA methods.

Figures 5c,d present respectively the AHM and the ARE criteria obtained from the considered methods. The AHM
criterion indicates that the ROI and the CCA methods have in general lower heterogeneity than the whole dataset, but are
outperformed by the RVN-LM and RVN-HYB methods especially for smaller neighborhoods. This quantifies the intuitive
assumption that the regional LCV is calculated with less uncertainty when the L-moments are directly considered instead of
other reference variables. In particular, the AHM of the ROl method is 72.8% with the optimal neighborhood size of 30. In
comparison, the AHM of the RVN-LM method is 14.5% with the optimal neighborhood size of 29 sites, which is
considerably lower. Figure 5¢ shows that the AHM criterion of the RVM-LM method does not reach a similar level to the
ROI method until using as much as 120 sites. These results indicate that even for relatively small neighborhoods, the ROI
method identifies regions that are only slightly less hydrologically heterogeneous than all sites pooled together. This
suggests that, in the present case study, the ROl method has difficulties identifying sites that are similar to the target site in
terms of LCV.

As mentioned in section 4.2, previous studies have identified few problematic stations in the considered dataset.
Figure 6 presents the residuals between different methods. As it may be difficult to see small improvements by uniquely

observing points around the Y = X lines, the visualization of Figure 6 is helped by adding a flexible fit of the point cloud,

using a standard smoothing spline approach. The resulting red lines indicate if close to X the residuals are lower in average
for one of the two methods. In general, the points associated to the largest relative discrepancies are close to the Yy = X

line, which indicates that the sites that are difficult to predict are essentially the same for all methods. However, Figures
6a,b show that the RVN-HYB specifically improves the prediction of the sites with the lowest and largest relative

discrepancies as the red line is clearly located under the Yy = X lines, which explains the improved RRMSE in Table 1. On

the other hand, Figures 6¢,d demonstrate that at the logarithmic scale, the RVN-LM method achieved predicted values that
are mostly similar to the ROl and CCA methods, which explains the similarity of the NHS criteria for all the compared
methods.

The present case study is an example of a region where some sites are problematic for likely any methods. In practice,

the residuals are not known, consequently we do not know if the target sites of interest will be “problematic” or not.
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Globally, what Figure 6a indicates is that the RVN-HYB model is more robust (in a certain way), because for the sites that
are well predicted by simpler models, such ROI, RVN-HYB will perform in average similarly. However, if the target site is
predicted less accurately, the RVN-HYB model will (in average) be better in terms of RRMSE. Consequently, the overall
gain may seem of moderate magnitude, but for some problematic stations the gain could be more substantial. In particular,
the red lines in the left part of Figure 6a appears mostly influenced by two points, but the two improvements are of 77.2%

and 68.5%, which is considerable.

4.4 Results of the regression-based model

Prediction of Q100 at the target location is also performed by the regression-based model using the same
delineation methods as with the index-flood model, but with potentially different calibration values for the neighborhood
sizes. Consequently, the description of steps 1-4 (in section 3.1) are identical to those of the index-flood approach and are

not repeated here.

The fit of the regression-based model is graphically assessed in Figure 7 by Quantile-Quantile plots. It is showed
that for all delineation approach the regression-based models correctly predict the flood quantile Q100 at target. Cross-
validation criteria for the regression-based model are presented in Figures 8 and summarized in Table 1. As with the index-
flood model, Table 1 reveals that the RVN-HYB method leads to the best performance in terms of the RRMSE. Although
all methods differ by less than 2% in terms of NHS, results indicate that NHS values corresponding to CCA and RVN-HYB

are inferior to those corresponding to the regression model applied on all gauged sites, which corresponds to N =150 in
Figure 8b. However, CCA leads to the best relative efficiency as indicated by the ARE criterion in Table 1. Hence, CCA
corresponds to the regression models with, on average, the lowest uncertainties. This indicates that flood quantiles may be
better reference variables for the regression-based model than for the index-flood model and suggests that in general
different reference variables may be more appropriate for different situations. Nevertheless, the two close lines in Figure 8d
reveal that for the same neighborhood size the RVN-LM has similar ARE values to CCA. In terms of AHM, Figure 8c is

identical to Figure 5c except that new neighborhood sizes are indicated in circles.

Table 1 provides also a comparison between the performance of the index-flood and the regression-based model. In
terms of RRMSE and NHS criterion, the two approaches lead to very similar results, which is coherent with what it is
reported in other studies (GREHYS, 1996a, 1996b; Haddad and Rahman, 2012). Therefore, similar conclusions can be draw

from the two approaches. For instance, in both cases, the RVN-HYB leads to the best results in terms of RRMSE.

5. Conclusions

A general methodology was investigated to improve homogenous properties of neighborhoods in RFFA. A procedure to

calculate relevant reference variables at a target location prior to the RFFA was proposed to improve neighborhood

properties and to reduce uncertainties. The predicted values of reference variables represent the unknown centers of

neighborhoods delineated according to a distance of gauged sites with respect to the centers. The proposed method

represents a generalization of both ROl and CCA methods in RFFA. The proposed RVN method has the advantages of

accepting various groups of reference variables, of considering nonlinear interrelations and of being more objective since L-
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moments are used instead of estimated flood quantiles from at-site analysis.

In this study, the reference variables correspond to transformed L-moments. The resulting RVN-LM and RVN-
HYB methods were applied on sites located in Southern Quebec, Canada, to predict flood quantiles corresponding to the
100 year return period by both index-flood and regression-based models. The prediction of the reference variables at target
locations showed that after proper transformations, L1 can be linearly related to the site characteristics, but no proper
transformations are found for the other L-moments. This justifies the consideration of the PPR method to account for the
nonlinearity in the prediction of the reference variables. In general, other models, such as generalized additive models or
artificial neural networks, could be considered instead of PPR to account for the nonlinearity. Nevertheless, the PPR

approach unveils direction vectors that provide explicit, parsimonious and meaningful regression equations.

Although none of the methods performed best for all criteria, cross-validation showed that the proposed RVN
method performs well in comparison to the traditional ROl and CCA methods. In both the index-flood and the regression-
based model the best RRMSE is obtained by RVN_HYB and the best NHS is obtained by RVN_LM. In particular, the
favorable RRMSE values obtained by RVN-HYB are due to more robust estimation of problematic sites. However,
RVN_LM has the best balance, because it achieves the best or the second best values for all criteria. Most importantly, the
utilization of hydrological reference variables with the CCA and RVN methods has reduced the uncertainty on the regional
LCV, the index-flood and the predicted flood quantiles, in comparison to ROI. Consequently, prior modeling of

hydrological reference variables was shown to be advantageous to the delineation of neighborhoods in RFFA.

The present study has made specific assumptions in order to investigate the RVN method in well-defined
conditions. Nevertheless, the rational of predicting hydrological reference variables in a priori analysis remains a valid
approach when other choices of regression models, neighborhood forms and metrics are considered. Hence, more
comparative studies should be carried out to evaluate alternatives to fixed size neighborhoods and Euclidian distances in the

specific context of the RVN framework.

The L-coefficient of skewness is commonly used in RFFA to describe the shape of a distribution. Consequently, to
improve the result of the RVN method, further research efforts could focus on improving the prediction of this crucial
reference variable. One way to improve the prior analysis of the hydrological reference variables is the consideration of the
unequal sampling error. This aspect is often considered in the estimation of flood quantiles in RFFA, but may also play an

important role in the prior analysis of the RVN method.
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Table 1: Evaluation criteria for the RVN method for optimal neighborhood sizes.

Model Size. RRMSE NHS AHM ARE
Index-Flood

ROI 30 46.2 865 728 57.3

CCA 28 454 86.2 417 429

RVN-LM 29 450 871 145 36.9

RVN-HYB 24 40.1 86.2 165 43.1
Regression-based

ROI 30 449 869 728 64.7

CCA 28 435 86.1 417 30.6

RVN-LM 39 417 876 179 398

RVN-HYB 24 395 86.2 165 425

Best criteria in bold
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