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Reply to Editor comment

I confess that, even if you clarified many points, | still find the presentation cumbersome and the
procedure difficult to follow and not described very clearly, as demonstrated also by the last doubts
raised by Ref#2 in his major comment (it is not clear the use of the indexes presented in section 3.2,
where both RRMSE and heterogeneity are presented, even if it is said that only RRMSE is used for
calibrating the neighbourhood size...). It is now probably difficult to re-structure it completely (and after
all, none of the Referees asked you to do so in their last reviews), but you should try to clarify such
doubts (if the Referee - who has carefully read the paper more than once - still find some points dubious,
it will be certainly worse for a ‘regular’ reader ...). Therefore, | do hope you may find a way to further
clarify the procedure; | would suggest adding a flow-diagram with all the steps and the variables and
indexes used in the different phases.

Answer: The authors are grateful to the editor for its comment. The suggestion of the diagram is
incorporated to the manuscript. Further details of modification are provided in the answer of the reviewer
2 comments

Reply to Reviewer 2 comments

The authors provide hereafter the answers to the reviewer’s comments.

General comments

(1.1) The original comment: Since, homogeneity tests (e.g. Hosking and Wallis 1997) are generally based
on hydrological variables (e.g., L1, LCV), these variables should not be used in delineating homogeneous
regions. In other words, the same information should not be used for both delineating the
homogeneous regions and testing the homogeneity of such regions.

Authors: the present methodology does not perform any homogeneity test. The criteria used for
selecting the size of the neighborhood is the RRMSE and is based on cross- validation, which tends to
optimize the prediction corresponding to a specific return period. Consequently, the L-moments are not
the variables used in the calibration of the neighborhood.

The authors replied to this comment that “the present methodology does not perform any homogeneity
test”. However, the comparative study in their manuscript based on four criteria including the AHM
which depends on the heterogeneity measure (H). Hence, the proposed comparative methodology
assesses the considered methods based on the homogeneity of the resulted delineated regions.”

Answer: The authors apology if their response has not completely answered the previous comments. By
its nature, the AHM criterion is, of course, biased in favor of the RVN method, which is made clearer in
the revised manuscript:

P13 L18: “The AHM criterion indicates that the ROl and the CCA methods have in general lower
heterogeneity than the whole dataset, but are largely outperformed by the RVN-LM and RVN-HYB
methods especially for smaller neighborhoods. This is not surprising as the RVN-LM and RVN-HYB pool



together sites with similar L-moments, but this quantifies the intuitive assumption that the regional LCV
is calculated with less uncertainty when the L-moments are directly considered instead of other reference
variables.”

The AHM criterion is used here simply as a general description of the global level of heterogeneity among
all neighborhoods. The author agrees a comparison based uniquely on the AHM would be unfair. On the
other hand, the RRMSE criterion is objective and for this reason it is used in the calibration. Although, the
RFFA of the present case study could have been performed completely without reporting the AHM
criterion, the authors believe that this criterion provides an interesting indication that the neighborhoods
delineated using ROI do not lead to the level of hydrological similarity that one may expect. The sentences
below are already part of the manuscript and show the poor level hydrological similarity among
neighborhoods resulting from the ROl method:

P13 L23 :“In particular, the AHM of the ROl method is 72.8% with the optimal neighborhood size of 30. In
comparison, the AHM of the RVN-LM method is 14.5% with the optimal neighborhood size of 29 sites,
which is considerably lower. Figure 6¢c shows that the AHM criterion of the RVM-LM method does not
reach a similar level to the ROl method until using as much as 120 sites. These results indicate that even
for relatively small neighborhoods, the ROl method identifies regions that are only slightly less
hydrologically heterogeneous than all sites pooled together. This suggests that, in the present case study,
the ROl method has difficulties identifying sites that are similar to the target site in terms of LCV.”

(1.2) Surprisingly, the authors replied here that “the L-moments are not the variables used in the
calibration of the neighborhood”. Nevertheless, the proposed method (RVN) based on reference
variables which mainly include the L-moments. Review P11 L3 “Two initial groups of reference variables
are considered. The first group is based on L-moments only and the second is based on the combination
of L-moments and site-characteristics.

Answer: By the previous reply, the authors simply meant that the calibration is made according to the
RRMSE, which is computed from the flood quantile and not the L-moments. As suggested by the editor,
a diagram of the whole procedure is added in Figure 1 to clarify the process of selecting the reference
variables. This diagram provides a better understanding of the backward stepwise selection procedure
and the following explanations are also added.

P7 L1: “This selection procedure is more objective and depends on a performance criterion. In the present
study the RRMSE criterion is chosen and will be described in section 3.2. The backward stepwise selection
isillustrated in Figure 1 and consists to remove in turn each reference variable temporarily from the model
and to perform the remaining steps (2-6) in order to compute the RRMSE. Therefore, the reference
variable whose removing leads to the best RRMSE, is permanently removed. The process is repeated until
all reference variables cannot be removed without altering the RRMSE.”

The following sentences are also modified in the revised version of the manuscript and in particular to
respond to the reviewer comment:

P11 L6 “Two initial groups of reference variables are considered and updated by backward stepwise
selection. The first group is based on L-moments only and the second is based on the combination of L-
moments and site-characteristics.”



P12 L5: “Due to its poor fit, LSK may not be a proper reference variable for the delineation step. To validate
this assumption, the neighborhoods are formed with and without using LSK and the rest of the analysis is
carried out for both scenarios. Based on the RRMSE criterion, LSK must be maintained as it is associated
to better predictive performances. This strategy is part of the backward stepwise selection procedure as
described in section 3.1. Overall, it leads to discarding LKT and to maintaining L1, LCV and LSK. The second
group of reference variables contains both the L-moments and the site characteristics. As with the first
group, backward stepwise selection is performed and the final reference variables are: BV, PLAC, LCV and
LSK. In order to distinguish the two groups of reference variables, RVN-LM will designate the first group
with the L-moments only and RVN-HYB will designate the second group with both the L-moments and the
site characteristics.”

Specific comments

(1) P6 L21. “Calculate the distance between the reference variables”. Again, the distance is between
locations not between variables. The authors have already agreed that the formulation needs to be
changed and distances remain between locations not between variables

Answer: The authors agree to rewrite the sentence.

P6 L24 : “Calculate the distance between sites”

(2) Figure 2. |1 would like to thank the authors for their respond to my recommendation of drawing a
map of Quebec showing the location of the selected stations. However, the map should include more
labels (e.g., Quebec, Atlantic Ocean, Hudson Bay....). Also, the style of the map looks very old (we should
take advantage of the recent technology in map drawing).

Answer: The authors have added the labels to the map to improve its understanding as suggested by the
reviewer. The authors can assure the reviewer that the map in Figure 2 is produce in R using the authors
own codes and that the information presented is up to date. Although this approach does not use the
most recent GIS tools, it does provide a clear representation of the studied region.

(3) Figure 7. Thanks again for accepting my suggestion of using the Q-Q plot. However, | have
recommended the Q-Q plot in order to compare the considered methods regarding the estimation of
regional flood quantile, not to draw the Q-Q plot for every method separately which does not make
sense in assessing the different methods.

Answer: The authors have made the changes in the QQ-plot as suggested by the reviewer for the
comparison of pairs of methods. The result is provided in Figure 9 of the revised manuscript, with the
following explanations:

P14 L25: “The fit of the regression-based model is graphically assessed in Figure 9 by Quantile-Quantile
plots. It is shown that for all delineation approach the regression-based models correctly predict the flood
guantile Q100 at targets as it correctly follows the y=x line. However, the comparison between the
methods ROl and RVN-HYB shown in Figures 8a,c and the methods CCA and RVN-LM shown in Figures
8b,d do not illustrate clearly their differences. A more precise comparison would be obtained by



comparing the residuals instead, as it is done in Figure 7. However, the predictions of the regression-based
models are very similar to those of the index-flood models and they lead to very similar graphics that are
note reported here.”
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Abstract

This study investigates the utilization of hydrological informatioiRegional Flood Frequency Analy§RFFA)
to enforce desired properties for a group of gauged stations. Néiglooisrare a particular type of regions tacentered
on target locationsA challenge for using neighborhoods in RFFA is that hydrologidatimation is not available at target
locations and it cannot be completely replaced by the available physimaiaipformation. Instead of using known site
characteristics (not hydrological) to define the center of a target locationtutis groposedo introduce estimates of
(hydrological) reference variablesérsure better homogeneity. Tdereference variables represent nonlinear relations with
the site characteristics obtained by projection pursuit regressiorgnparametric regression method. The resulting
neighborhoods are investigated in combination with common regional méuel®dex-flood model and the regression-
based models. The complete approach is illustrated aalavorld case study with gaugesites located in Southern
Quebec¢ Canada, and is compared with the traditioapproacks “Region of Influencg and “Canonical Correlation
Analysis’. The evaluation focuses on the neighborhood properties as wedidistipn performances, with special attention

to problematic stations. Results show clear improvements in neighboréfioitiahs and quantile estimates.

Keywords: Index-flood model, Regional frequency analysis, Ungauged site, Regiorfleence, Projection pursuit

regression, Canonical Correlation Analysis.
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1. Introduction

Accurate estimates difie risk of occurrence of extreme hydrological events are necessahge forinimization of
the impacts of these events and for the optimal design and managefmeater resource systems. However, necessary
information is not always available at the sites of intetdence, it is necessary to develop proceduresransfer, or to
regionalize, the information available at existing gauged sites to the ungangedRegional Flood Frequency Analysis
(RFFA) represents a large clasktechniques commonly used in water scisnto evaluate the risk of occurrenog
extreme hydrological phenomena of rare magnitudes at ungauged loqataidad and Rahman, 2012; Hosking and
Wallis, 1997; Laio et al., 2011; Pandey, 1998; Reis et al., 2005).

RFFA methodsare usually composed of two main steps. The first step is the formatibomogenous regions.
This step aimsat pooling together sites that are approximately similar according to homogeritr&acinside these
homogenous regions, it is assumed that hydrological information candmmably transferred from gaugeslungauged
locations (Cunnane, 1988). The second step, the estimation of flood quantisists in the calibration of a regional model
that characterizes the interrelation between hydrological variables of intexdséxalanatory physio-meteorological
variables corresponding to known site characterist@mnsequently RFFA is used to study unobserved hydrological

behaviour from available hydrological and physio-meteorological infoomati

Neighborhoods are specific forms of regions inside which gauged sitestatassified into fixed regions, bate
composedof gauged sites that are the most similar to a given target. Hence, timstdisrget locations have their own
neighborhoods that may overlap. Comparative studies eshtivat neighborhoods lead to better regional estimates than
fixed regions (Burn, 1990; Ouarda et al., 2008; Tasker et al., 198@G}entify the most similar gauged sites in terms of
hydrological properties, a notion of distance is needed to evaluate thmipypwer relevance, of each gauged site to the
target location and identify the most hydrologically similar gauged sites. Howekien the target location is ungauged,
this distance cannot be directly calculatagedb the missing hydrologicahformation. Physio-meteorological information
is hence used for similarity evaluation. The traditional approach, baséuk afistancebetween site characteristics
commonly referred to as the Region of Influence (ROI) model (Bur@Q)19vhich received particular attention in the
hydrological literature. The focus was maimly the estimation of the model parameters, where for instance generalized
least-squares were uséo account for unequal variability in the at-site estimations (e.g. Gefiis Stedinger, 2007;

Stedinger and Tasker, 1985) and to deal with the presence of spatial correlation (e.gni§jetddones, 2009).

Alternatively, Ouarda et al. (2001jsal Canonical Correlation Analysis (CCA) to build neighborhoods from a
canonical distance that accounts for the interrelation between flood quantilesteamtharacteristics. For this method,
neighborhoods are formed by gauged sites that are the most similartéogbt location, according to the distance between
vectors of flood quantiles corresponding to different return periods. Dile tmissing hydrological informatipthe CCA
method in RFFA estimates thenavailable hydrological variables as linear combinations of site characteristics
Consequently, the available site characteristics are transformed into moreghéafhydrological” quantities for the
purpose of delineating neighborhoods. However, the CCA methfidrs from some limitations, such as linearity and

normality assumptions (He et al., 2011). Subsequent studies &mmprove the CCA method by improving the CCA
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technique itself (Chebana and Ouarda, 2008; Ouali et al., 2015). However, little attestieertpad to the importancef
properly choosing the hydrological quantities in the delineation step wheredseffort has been devoted to the modeling
step. Indeed, Chebana and Ouarda (2008) employed an iterative linear prdoezhiimate neighborhood censtand they

showed that the quality of these centessimates is the crucial element to improve the final model performance.

This study aimsto provide a general framework with more flexibility regarding the lingamitd normality
assumptions. This is achieved by replacing CCA in the prior analfdiydological variablesy Projection Pursuit
Regression (PPR), a nonparametric regression method recently considered asatinrestimael in RFFA (Durocher et al.,
2015) The present study is also interested in validating the advantages lof/empydrological variables other than the
atsite flood gquantiles in prior modeling as well as considesrgpmbination of these hydrological variables with site

characteristics.

L-moments have already been used in RFFA to test the homogeneity afefiieds when the target site is gauged
(Chebana and Ouarda, 2007; Hosking and Wallis, 198he present study, the prediction of the L-momantsigauged
sites is also considered to improve the delineation of the neighborhgpaedducing uncertainties. Moreover, a conceptual
advantage of using L-moments conversely to at-site flood quantilbatishe L-moments do not depend on the subjective

selection of at-site distributions.

The present paper is organized as folldection 2 presents the background for the techniques comunalyn
RFFA. Section 3 elaborates on the prior analysis of hydrological variablesheindintegration with the techniques
presented in Section 2 to form a complete procedure. Section 3 suggesis foitehe evaluation of the predictive
performances and the neighborhood propert@ection 4illustrates the application of the method a case study
Traditional ROI and CCA methods serve as references in order to evaluate the reldbraaper of the investigated

method. Finally, concluding remarks are provided in the last section.

2. Background
2.1 Delineation of neighborhoods

In RFFA neighborhoodsare used to identify gauged sites from which information is traredfeto the target
location A neighborhood is characterized by a center and a radius that delinsiteagnot necessary in the geographical

sense) Gauged sites inside thereadelineate a region that includes relevant sites to the target location. At each site

i=1...,n, p characteristicsX; =()§v1,... ’)ﬁ,p) are available Typically, the ROl method forms neighborhoods

according taaradius based on a metr :

(€]

the kth site characteristic (Eng et al., 2005).

n
i=

where g, is the standard deviation e}bgvk} ,
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Alternatively, CCA is a multivariate technique used to unveil the interrelatiorebattwo groups of variables. Let
Y and X be normally distributed random vectors with zero means. The CCA metfinesiednonical pairU, ,V, ) as

linear combinations of the original random variables:

Ue=axX @

V, =hY 3

where the correlations p, = COrr (Uk,Vk) are sequentially maximal fork=1,...,K under the conditions

corr (U,,U, ) =corr (V,,V, ) = 0 for k=1 . Only the canonical pairfU,,V, ) with unit variances are considered.

To delineate neighborhoods, the CCA approach considers the canonices l;lg:():(al,...,{:lr)'xi and
vV, = (bl, b ) 'y; that are respectively linear combinations of site characterixtiaand flood quantiles corresponding
to different return periodsy; for sitei. Due to the missing hydrological information at the ungauged location denote
i =0, the flood quantilesy, and the corresponding linear combinatigy areunknown. Nevertheless, CCA providas

linear estimatev, =~ Au,, where A =diag(p, .... ,0, ). Accordingly, a neighborhood is delineated in the canonical

space according to the distance:
d(v,, AU) = (v, —Au,) (1 =A%) (v, ~ Auy) @

More details on the CCA approach in RFFA can be obtameiiarda et al.2001)

2.2 Multipleregression

In RFFA, two types of regional modeése often considered to predict flood quantiles corresponding to given
return periods: thindex-flood model and the regression-based model (Ouarda et al., 2008)d&kélaod model predicts
a target distribution by assuming that all distributions inside a regeproportional to a regional distribution, up to a scale
factor called index-flood. The flood quantile of interesa gdrget location is then calculated from the regional distribution
based on the predicted index-flood (e.g., Chebana and Ouarda, 2009; DsIr®@0; Stedinger and Lu, 1995)
Conversely, the regression-based model considers directly the at-sitatestof the desired flood quantiles for prediction
Flood quantiles are then predictetither target locations by the regression equations estimated within the n#igbts
(Pandey and Nguyen, 1999).

Even though they proceed differently, both the index-flood maddlthe regression-based model may use the

same multiple regression techniques to transfer information to an ungaggédn. For the sake of simplicity, the term

hydrological variables is used to designate the corresponding output varZalbéshese models at locatidn=1,...,Nn.

Consequently, for the index-flood modeZ, is the index flood, while fol regression-based model the hydrological
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variable Z is the flood quantile of interest

Multiple regression models assume linear interrelation between the hydablegriable Z and the site
characteristicsx; . Consequently, in several cases, transformatwasecessary to meet this assumption. For instance, the

power law form is frequently used to model flood quantiles:

;:eﬁ"x)gvlﬁlx...x)gvpﬁ“xgi (5)

where ' =(,Bo,ﬂ1,... ,,Bp) are parameters ang is an error term. Applying a logarithientransformation is sufficient
to castEq. (5) into a linear model. In generah proper transformation is assumed for the hydrological variables

Y, = g(; ) being linearly related to the sites characteristics.

According to previous notations, |at :(yl, ...,yn) be the hydrological variables{ be the design matrix of the site

characteristis X, with intercept, ands = (51, ,gn) be the error term. Hence in matrix notatiamultiple regression

model has the form:
y=Xp+e (6)

and according to the least-squares theory, the estimates of the paraneeters

B=(X"X)" X"y @

2.3 Projection pursuit regression

Some methods predict hydrological variables without the formation a@fnggsuch as physiographical kriging
(Castiglioni et al., 2009; Chokmani and Ouarda, 2004), generalized additivdsnf@thebana et al., 2014) and artificial
neural networks (Dawson et al., 2006; Ouarda and Shu, 2P@®¥ recently, Projection Pursuit Regression (PPR) was
introduced to provide a flexible nonparametric regression apprmadescribe the nonlinearity that is present in the
relationship between hydrological variables and site characteristics. PPR was tme&FFA contexby Durocher et al.

(2015) to directly predict flood quantiles without delineation.

The basic elements of a PPR maate K =1,...,m functions fk called terms and defined as:
fi (X) =g, (e X) (8)

where directionse, are vectors of coefficients and), are smooth functions. The directions, are coefficients that

respect‘a‘ =1 and determine a predicttulLX as relevant linear combinations of the site characterigfics The terms

are then combined into a regression model:
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y=u+y f(X)+e ©
k=1

where 1 isthe global mean ane is a term of erroNotice that the orthogonality between directiamg is not imposed,
hence the predictorer, X and ¢/ X for k| may be correlated. Consequently, PPR allows for interaction betiteen s
characteristics, which leads to a large variety of regression models (Hastie et®l., 200

The componentsy, and g, of the modelin (9) are estimated by the least-squares approach (Friedman et al.,

1983). For a unique directiomi=1), PPR can be estimated by standard nonlinear algorithms (Yu and Ruppeyt 2002
in general a stagewise algorithm is adopted to &mfoper solution (Friedman and Tukey, 1974). Comparative studie
show that PPR haa similar predictive performance to artificial neural networks (Bisho@51%Hwang et al., 1994)
However, Durocher et a{2015) indicated that in RFFA, PPR redudesmore parsimonious models than artificial neural

networks, which provides an explicit expression of the regression equations

3 Methodology

This study deals with neighborhood delineation and more precisebgltet on the identification of reliable
estimaes of the hydrological centers of these neighborhoods. For simpliciyyahables forming ttse centers will be
referred to as reference variables, because they represent the reference to evaluate thebsitviteit a target location
and the gauged sites. Reference variables can take different forms, sitehcharacteristics, hydrological variables or a
combination of bothTheir natureis important, becausé determines the properties thate deened to be important
between close sites. The particularity of the present method iBRftan be used to predict 8eneighborhood centers
(prior to the RFFA modeling step) when some of the reference les&@te unknown hydrological variables. Accordingly,
the proposed method will be referred to as RVN for Reference Variable Neighbls.

3.1 Estimation of thereference variables

The general procedure can be described by the steps below:
1. Select the reference variables
2. If necessary, predict the reference variables that are not available at the target site
3. Calculate the distance betwestes
4. Form the neighborhood based on the previous distance
5. Fit a regional model on the neighborhood

6. Predict the target sitend evaluate performance criterion

In step 1, the selection of a set of the reference variables can be subjectdepands on the problem at hand. In the
present study, backward stepwise selection procedure is considered te feomo an initial set of references variables
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those that are not contributing to the prediction power of the models@&leistion procedure is more objective and depends

on a performance critedn. In the present study the RRMSE criterion is chosen and will be desanilsedtion 3.2The

backward stepwise selection is illustrated in Figure 1 and consists to remove egatlr reference variable temporarily

from the model antb perform the remaining steps 624n order to compute the RRMSE. Therefore, the reference variable

whose removing leads to the best RRMSE, is permanently removeghrddess is repeated until all reference variables

cannot be removed without altering the RRMSE.

Step 2 is required only if some reference variablesunknown at the target sites, otherwise, if a target location

designated byi =0, the radius of the neighborhoadel in step 3 can be computes h :d('[i ,to) where d is a

metric and t; ':(ti,l""’ti ,q) are the reference variables of thith site For simplicity, the Euclidian metricd is

considered throughout the present study, but other metrics or dissimiteeiigures could be employed as well. In
particular, the Mahalanobis distance, the weighted distance and the depth funcirbe considered (Chebana and
Ouarda, 2008; Cunderlik and Burn, 2006; Ouarda et al., 2000)

If some hydrological information is unavailable at the target locatienestimatiorof the hydrological reference

variablesis necessaryo produce an estimatt, = f (X,) in step 2 from site characteristiag atthe target location. This
substitution leads in step 3 to the distarfgg =d[ti, f (XO)]. which may be seen as an approximation of the true

distanceh . This study considers PPR models in order to fit every hydrologiéerence variable as described in section

2.3. The motivationsor adopting PPR are that it does not require a prior delineafioegions,it accounts for nonlinear

relationships, it has good predictive performancesitlehds toa straightforward interpretation of the reference variable

when a few direction «, arenecessary (Durocher et al., 2015).

If the hydrological variabled, were known at the target location, the distadrpa/vould be available and the
neighborhood that truly regroups the most hydrologically similar sitésetéarget location can be identified. However, in
practice this true neighborhood is unknown. Using instead the estfr(mgé has the effect that some sites are falsely

suggested as more hydrologically similar than othersskgure 2 illustrates a region with several sites where two

neighborhoods are resulting from the RVN method with different predicted sefter target site is illustrated as a green
filled circle and neighborhood is formed of the 10 nearest sites indicgtesinall empty circles. The other sites are
designated by crosses. The red and blue neighborhoods are delinecitetebywhere the radius is selected to include the
10 nearest sites. The predicted center of the red neighborhood is cldeettdoget site. Consequently, it can be seen that
except from one site, the same sites as the target neighborhood are inemaggddircles). On the other hand, the blue
neighborhood has a predicted center further to the target site and hence a Ipegiopref the sites truly closer to the
target are found. It shows the importance of correctly predicting thebwetgiod centers in order to identify sites that are
truly similar to the target site

The errors related to prediction of the hydrological reference variablgsstutat the RVN method may include

an additional source of uncertainty, which is not accurate. Indeed, tleessamce of uncertainty is present among the sites

7

| Deleted: 1




10

15

20

25

of a neighborhood delineated on the basis of the site characteiistit&{( the average of the hydrological variabiethe
neighborhood is not a perfect predictdrlis could be seen as an advantage of the RVN method since it dirsetheas
this source of uncertainty and tries to reduce it.

Step (1-3 arethe particularity of the RVN method, while the other steps are commoRR#A Rnd are explained
in section 2In the remainder of this studgtep (4) uses a specific type of neighborhoods that is composetixefia
number of the nearest sites (Eng et al., 2005; Tasker et al., 1996)oudtalso be constrained to the degree of the
homogeneity of the neighborhoods (Ouarda et al., 2001). Consequkattelected gauged sites can be obtained by sorting

h(i) and keeping the desired number of sites. Notice that even tHQHgﬂoes not exactly approximatg, both distances

will lead to the same neighborhoods if they preserve the ranks. Finally(53tepnsists in the estimation of the flood

quantiles using either the index-flood or the regression-based model.

Notice that the RVN method may be seen as a generalization of the R@lea@E€A methods in RFFA. Indeed,

the ROI method corresponds to the RVN method for which all the refenaariables are site characteristics. In that case,
t, = f(X,) is known and PPR is not necessary in step (2). Similarly, the COAagipmay be seen as the special case

for which the reference variables are the canonical pairs in Eq. (4) and @Sédisinstead of PPR, to predict them in step

@).

3.2 Evaluation criteria

For the RVN method presented abotlee neighborhood sizes must be calibrated according to an objective

criterion. In this regards, the leave-one-out cross-validation approaceseral stratedy assess the performancethe
prediced hydrological variablesz at sitei =1,...,Nn. In turn, each gauged site is considered as an ungauged target
location. From the remaining gauged sites, predicted vatyesan be obtained without using the hydrological information
at the target location. Discrepancies between the sampled and the predistsdare used to define evaluation criteria.
Notice that the hydrological variables are transformgd= g(zi ) Hence, if y is the sample mean of thy,, then &
appropriate global performance measarihe Nash-Sutcliffe criterion:

2

(%= Yo

[y -]

M=

NHS=1-- (10)

I
5 =

i=1

Additionally, the predictive performané@examined at the original scale by the relative root mean square error:

(11)

The choice of the reference variables is an importarecagpd a set of reference variables should be chosen in order to
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enforce the desired properties. For instance, with the index-flood model timpéiss of a regional distribution suggests
that, apart from the index-flood, the at-site distributions megprbportional to a regional distribution. A heterogeneity
measure based on the dispersion of the L-coefficient of variation (IS33own to be a proper way to ensure that the LCV

is relatively constant (Viglione et al., 2007). Accordingly, I?t be the set of indices for thAl nearest gauged sites to the

target locationj during the cross-validation process. The regional L@}{ is calculated as the average:

A 1
i =N29i 12)

iel;
of theatsite LCV @, inside the jth region. Ale heterogeneity measuiedefined as:

2
He) :Z(@i _9(1)) 13)
isli
In their procedure, Hosking and Wal{ils997)used this heterogeneity measure to test the homogeneity of a, region
which implies that the regional LCV can be considered condtarice, the result of this test allows deciding if a region
must be dividednto smaller and more homogenous sub-regions. In the presenttsaudize of the neighborhoods is the
same for every neighborhooHence, if a homogeneity test is performed with a given neighbdrkize, some of the

neighborhoods will be considered homogenous, while the othdrdevconsidered heterogeneous (Das and Cunnane,

2010). However, the heterogeneity measure in Eq. (13) remairesia imslicatorof dispersion for the regional LC@(J)

inside a neighborhoodConsequently, a smaIIeH(J) suggests that the regional LC@“) is measured with less
uncertainty.

To facilitate the interpretation of the results andetsure the comparability between neighborhoote

heterogeneity measur’el(j)/N is considered instead. The measure represents the sample vafidre&CV for the jth

target location. This heterogeneity measisrstandardized b)H/n, where H is the heterogeneity measure in EtB)

calculatedon all n available gauged sites. The resulting ratio corresponds to a scale-fregdméy measure, where a
value under one provides evidenceadéss heterogeneous neighborhood in comparison to the whole datasetorEhéne
Average Heterogeneity Measure (AHM) criterion below is defined as the avafragery neighborhood considered in the

cross-validation process:

1 n
AHM =——%"H,, 14)
N . H ; (i)
This criterion is not specific tagiven target location, but represents the global level of heterogeneity resudtmgdiven
delineation method, such as ROI, CGARVN. In particular, a delineation method with a smaller AHM suggests that on
averagea more precise regional LCV is used to predict flood quantiles

Another desired property for a neighborhood is to lead to estimaiialels with less uncertainty. For the index-
9
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flood model, this implies in particular less uncertainty in the predictfothe index-flood, while for regression-based
models, it implies less uncertainty in the prediction of flood glesntFora multiple regression model, the uncertainty can

be quantified by the residual variance:

1 2
2 [
=N Z(q(n) (15)
iell
where € () is the residual at the ith gauged site, when predicting the jth target locatibe cross-validation process.

Notice that a regression model fitted on two different neighbosh@iod the same target locatiocdn obtain an identical
values, but lead to different levels of uncertainty. In this stadgighborhood with a smaller residual variance than another

oneis said to be relatively more efficient.

During the cross-validation process, the sample variance of the regressiefs can be calculated for every site, which
leads to the Average Relative Efficiency (ARE) criterion defined by:

1 n
ARE=§;S@) (16)

where the residual variance® is calculated from the multiple regression model on the whole dataset. Thimrige

similar to the AHM criterion ast is standardizedo a scale-free measure. This criterion can be used to identify the
delineation method which achieved on average the smallest residual variances foeighbbrhood. The ARE and the
AHM criteria are used in the present study, along with the NHS and RRMSE to acgssftimances of the various
models.

4. Applications
4.1 Data

To validate the RVN method anpractical situationRFFA is carried out imareatworld case study using both the
index-flood model and the regression-based model. The hydrological var@blegerest are the flood quantiles
corresponding to a return period B#0 years, denoted Q100. The analysis is performed on 151 sites located in Southern

Quebec, Canada, which are presented in FiguEachsite has at least 15 years of data available, with an average length o( Deleted: 2

31 years. Furthermore, the usual hypotheses of stationarity, eoritgand independence are verified. Oaljprief
description of the data and thésite frequency analysis is provided since the elements were apezsnted in detaiis
previous studies (e.g., Chokmani and Ouarda, 2004)

Theatsite distributions are selected among several families including: genemtizethe values (GEV), Pearson
type 1l (P3), generalized logistic (GLO) and log-normal with 3 paters (LN3). In general, the estimation of the at-site
distribution was achieved by maximum likelihood and the final choices of distrisatiebased on the Akaike information
criterion. Recent studies on the same datasetidentified 4 relevant site characteristics (Chebana et al., 2014; Durocher et

al., 2015), which are used in the present analyisesdrainage arear BV (km?), the fraction of the basiareaoccupied by
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lakesor PLAC (%), the annual mean liquid precipitationPLMA (mm) and the longituder LON. Proper transformations
are applied on these site characteristics in order to obtain approximatetiarsi normal distributions (Chokmani and
QOuarda, 2004)

4.2 Determination of the neighborhood centers

The step 1-2of the RVN method is the selection of the reference variables and, if necessaegtithation of the
hydrological reference variables at the target locatiows initial groupsof reference variables are considesed updated

by backward stepwise selecticFhe first group is based on L-moments only and the secorésiton the combination of

L-moments and site-characteristics. The acronym LM for L-moraedt HYB for Hybrid are used to identify the two
groups. More precisely, the L-moments considered for bothpgarethe sample average (L1), the LCV, the L-coefficient
of skewness (LSK) and the L-coefficient of kurtosis (LKT). These eefsr variables are transformed and standardized to
obtainzeromean and unit variance. More precisely, the transformation f@and1LCV is the logarithm and for LSK and

LKT, the transformatioris log(x—m,+1), where m, is the minimum of the reference variables. Moreover, a specific

implementation of PPR is assumed, which considers the smooth fngjoim Eq. (8) as cubic spline polynomials with 5

equally spaced knots. The number of knots is validated by cedisiatvon using the NS criterion. Notice that for the
fitting of LSK, one site has a very low standardized residual of appabely -6. Consequently, this site is considered as an
outlier and removed from the estimation of the reference variables. In prettidiesge.g., Chokmani and Ouarda02y))

this site was identified as one @few problematic sites thaire difficult to predict due to an underestimated drainage area
or overevaluated percentage of area covered by lakes. Nevertheless, in the prégetitistsite is only removed only

during the prediction of the reference variables and all aitgiscludedin the rest of the analysis.

Figure 4 shows the fitting of the four reference variables by the PPR modelss-Gabidation has selett PPR
models with a unique directior for all reference variables. The PPR equations that describe the relati@eiehe

reference variables and the site characteristics are explicit, for instance, the regressiom fequlé LCV has the form:

log(LCV) =-1.80+ 0.26¢ f[- 0.6% log(BV} 0.09+/PLAC
+1.27x log(PLMA)+ 0.06c LON- 1.3p a7

Notice the constant term -1.32 and the norm of diradﬁd #1 inside the functionf in Eq. (17). The difference in (17)

in comparison to the general form of the PPR model in Eq. (9) is tieegoence of transformations on the explanatory
variables. Indeed, during the optimization procedure of a PPR modekuggested to scale the explanatory variables in

order to avoid the scale effect in the coefficients of the direatior{Hastie et al., 2009). Nevertheless, notice that the

formula inside the functionf corresponds to a linear model

Figure4a shows a strong linear relationship between L1 and the predit¥r. Conversely, Figuregp,c,d show

[ Deleted: 3

[ Deleted: 3

mild nonlinearity and hence indicate the need for more flexible modelk, as PPR. The predictive performances of the
reference variables are evaluated by the NHS criterion with values 91.5%, 33.3%, 6.7%78&hdespectively for L1,

LCV, LSK and LKT. These results show that L1 is accurately predictedhdsite characteristics, while a poor fit is
11

[ Deleted: 3




associated to LSK. Indeed, Figute suggests that apart from a few sites on the right of the curveapfé&ars not highly [Deleted: 3 ]

related to the predictoer’ X . In comparison, linear models applied on the same reference variablés NE®S criterion:
90.9%, 28.2%, 7.8% and 48.1% respectiv®lgmark that NHS criterion is calculated by cross-validation, consequently
even though the improved performances by the PPR method appear moderatestfestréqpe fitting improvements.

5 Due to its poor fit, LSK may not be a proper reference variable fordéieeation step. To validate this
assumptionthe neighborhoodare formed with and without using LSK and the rest of the analysis is carriefboimoth
scenarios. Based on the RRMSE criterion, LSK must be maintained as it is assoclatéér predictive performances

| This strateqgy is part of the backward stepwise selection procedure as destabetion 3.1. Overall, leads to discarding

LKT and to maintaining L1, LCV and LSKrhe second group of reference variables contains both the L-momeriteeand

| 10 site characteristics. As with the first grolgackward stepwise selection is performed tefinal reference variablegre: {Deleted: the complete analysis is performed with and Withtm:he}
of the reference variables

BV, PLAC, LCV and LSK. In order to distinguighe two groups of reference variables, RVN-LM will designate the first

[ Deleted: that are kept J

group with the L-moments only and RMNYB will designate the second group with both the L-moments and the site
characteristics.

4.3 Results of the index-flood model

15 At this point, the steps 1-4 of the RVN methodology are perforameldthe neighborhoods are identified. Notice
that for the RVN-LM method, the reference variables include the first three Lentepwhich could be used as a moment
estimator to deduce the target distribution. This approach is, however, eotljeapplicable to the present methodology
as the reference variables are selected by a stepwise procedure. Moreover, it isynecedsatify a proper family of
distributions from regional information, which is acheéehhere by analyzing the distribution of the gauged sites insele th

20 neighborhoods. fieindex-flood model and the L-moments algorithm were proven to leaddtiable procedure to identify
a regional distribution and to estimate its parameter (Hosking and Wallis,. 189Ris model, the regional quantile

Q(r)=1Q(r) corresponding t@ return periodr ata target locationi , where £ is the index-flood. In the present

study, the index-flood is taken to be the means of the atlisitgbutions and is predicted at the target location by multiple
regression

25 The index-flood model is fitted inside the neighborhoods obtaineehbli one of the four methods: ROI, CCA,
RVN-LM and RVN-HYB. For CCA, two canonical pairs are calculated as described in sectiosirgyflood quantiles
corresponding to th&0- and 100-year return periods as hydrological variables. The choice oédlonal distribution is

made between the four common families of distributions that were mentearédr GEV, GLO, LN3 andP3 The

parameters of the regional quantile functiQ(r) are calculated from the regional LCV and the regidiSK as the

| 30 respective averages (see Eq. (1E)jure5a shows the L-moment ratio diagram for the regional LSK and LKT with RVN [Deleted: 4 ]
LM. For each neighborhoodhedistribution family is selected as the one having the nearest regi§fiab the theoretical

| value, given the regional3K. RVN-HYB is omitted in Figuré, for the clarity of the graphics, but has similar behaviour to [Deleted: 4 ]
RVN_LM.

| Figuresip,c,d present the L-moment ratio diagrams of the at-site LCV and LSK for tlezetgrget locations as [Deleted: 4 ]

35 anillustration of the gauged sites found in the respective neighborhoodsséndiagrams, the nearest gauged sites selected
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for RVN-LM, CCA and ROI are highlighted. Figufp shows that RVN_LM has a denser cluster of gauged sites in terms| Deleted:

EN

of LCV and is approximately centeresh the true target. Conversely, Figurgsand 5d show situations where the true

Deleted:

IS

EN

the ROI methodFigures5b and 5¢ show that the selected sites are also not located around the true targéndifgsis

Deleted:

N

targets do not correspond to the predicted target. Although, all the refesiatgles are known at the target location for [Delemd:

coherent with the resultef (GREHYS, 1996a, 1996b) which indicates that delineation according to presiacal

Deleted:
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) W JL

similarity can lead to substantially different regions than according to hydrolsgiuédrity.

Results of cross-validation are presented in Figuighe evaluation criteria are calculated for every neighborhood [Deleted:

with size superior to 15 in order to calibrate the model. The tendensyraied in this figure helps to visualize the

evolution of these criteria with better perspective. The comparison of Figaremndgp indicates that the optimal [Deleted:

o

neighborhood sizes for RRMSE and NHS are not always in agreeimguatticular, the best RRMSE for the RVN-HYB [De|e'53d=

&)

method is with 24 siteswhile the best NS is with nealy 80 sites Nevertheless, the optimal values for the three other

methods are obtained with approximately 30 sites for both criteigare 6b indicates that all methods have relatively [Deleted:

stableNHS between 86% and 87%, but the bestSNis obtained by RVN-M. Conversely Figure 6a shows clearer [Deleted:

improvements of the calibration in terro the RRMSE criterion. Hence, the calibrated modetsset according to the

RRMSE criterion and are represented by circles in FiGuared are summarized in TableRVN-HYB, with a RRMSE of [Deleted:

40.1% outperforms the other methods. In particular, a difference of 6.1% and 5@%eived respectively with the
traditional ROl and CCA methods.

FiguresGe,d present respectively the AHM and the ARE criteria obtafired the considered methods. The AHM [Deleted:

criterion indicates that the ROI and the CCA methods haveriergl lower heterogeneity than the whole dataset, but are

largelyoutperformed by the RVN-LM and RVN-HYB methods especialtysimaller neighborhoodhis is not surprising

as the ’/N-LM and RVN-HYB pool together sites with similar L-moments, Jhi$ guantifies the intuitive assumption that [Deleted:

the regional LCV is calculated with less uncertainty when the L-mtsrae directly considered instead of other reference
variables. In particular, the AHM of the ROI method is 72.8% withoptimal neighborhood size of 30. In comparison, the
AHM of the RVN-LM method is 14.5% with the optimal neighborhasazk of 29 sites, which is considerably lower. Figure

6¢ shows that the AHM criterion of the RVM-LM method does match a similar level to the ROI method until using as [Deleted:

much as 120 sites. These results indicate that even for rblagivall neighborhoods, the ROI method identifies regions
that are only slightly less hydrologically heterogeneous #tflasites pooled togethefhis suggests that, in the present case
study, the ROI method has difficulties identifying sites that are simildaettarget site in terms of LCV

As mentioned in section 4.2, previous studies have identified few problertzitms in the considered dataset

Figure/ presents the residuals between different methods. As it may be diffi@getemall improvements by uniquely [Deleted:

observing points around thg = X lines the visualization of Figlevz is helped by adding flexible fit of the point cloud, [Deleted:

using a standard smoothing spline approach. The resulting red lines infdatase to X the residuals are lower in average
for one of the two methods. In general, the points associatie fargest relative discrepancies are close toythe X

line, which indicates that the sites that are difficult to predict are edBettia same for all methods. However, Figures

7a,b show that the RVN-HYB specifically improves the predictionhef sites with the lowest and largest relative [Deleted:

discrepancies as the red line is clearly located undeltheX lines, which explains the improved RRMSE in Table 1. On

the other hand, Figuré&,d demonstrate that at the logarithmic scale, the RVN-LM method achieved predictedtiatues [Deleted:

are mostly similar to the ROl and CCA methods, which explains thiasity of the NHS criteria for all the compared
13
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methods.
The present case study is an example of a region where some sites aregtiobderiikely any methods. In practice,

the residuals are not known, consequently we do not know if the target sites of interest will be “problematic” or not.

Globally, what Figur&Za indicates is that the RVN-HYB model is more robust (in a certai),vbecause for the sites that [Deleted: 6 ]

are well predicted by simpler models, such ROI, RVN-HYB will perforraviarage similarly. However, if the target site is
predicted less accurately, the RVN-HYB model will (in average) be better in terRRMBE. Consequently, the overall

gain may seem of moderate magnitude, but for some problematic sthiogain could be more substantial. In particular,

the red lines in the left part of Figyra appears mostly influenced by two points, but the two impremsareof 77.2% [Deleted: 6 ]

and 68.5%, which is considerable.

4.4 Results of theregression-based model

Prediction of Q100 at the target locati@ also performedby the regression-based model usiig same
delineation methods as with the index-flood model, but with potenti#figrent calibration values for the neighborhood
sizes. Consequently, the description of ste@dg(ib-section 3.1) are identical to those of the index-flood approach and are
not repeated here

Cross-validation criteria for theegression-based modafe presented in Figures 8 and summarized in Table 1. As | Deleted: The fit of the regression-based model is graphically

. . . assessed in Figure 7 by Quantile-Quantile plots. hasved that for
with the index-flood model, Table 1 reveals that the RVN-HYB metleads to the best performance in terofighe all delineation gppmacﬁfﬁe regregsion_basid modrsatly

RRMSE. Although all methods diffday less than 2% in terms of NHS, results indicate that NHS values corresptmding predict the flood quantile Q100 at target.

CCA and RVNHYB are inferior to those correspondirig the regression model applied on all gauged sites, which
correspondso N=150 in Figure 8b However, CCA leads to the best relative efficiency as indicated by the AREocrite

in Table 1. Hence, CCA corresponds to the regression modelsowidverage, the lowest uncertainties. This indicates that
flood quantiles may be better reference variables for the regression-baset theod for the index-flood model and
suggests that in general different reference variables may be more &iprfprdifferent situations. Nevertheless, the two
close lines in Figure 8d reveal that for the same neighborhoochsi®MNLM has similar ARE value® CCA. In terms

of AHM, Figure 8c is identical to Figure 5c except that new neighborhoodasieislicated in circles.

The fit of the regression-based model is graphically assessed in Figur®@ahtile-Quantile plots. It is shown

that for all delineation approach the regression-based models correctly phedftiod quantile Q100 at targets as it

correctly follows they = X _line. However, the comparison between the methods ROl and RVN-HYB shokigures

8a,c and the methods CCA and RVN-LM shown in Figures 8b,d dilusitate clearly their differences. A more precise

comparison would be obtained by comparing the residuals instead, asneigdeéigure 7. However, the predictions of the

regression-based modelse very similar to those of the index-flood models and they leagty similar graphics, which

are not reported her@able 1 provides also a comparison between the performance of theflowiand the regression-

based model. In terms of RRMSE and NHS criterion, the two approaches lead tanilanyresults, which is coherent with

whatit is reported in other studies (GREHYS, 1996a, 1996b; Haddad and Rahman, 2@&t®2fore, similar conclusions

can be draw from the two approaches. For instance, in both casé®ythelYB leads to the best results in terms of
RRMSE.
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5. Conclusions

A general methodology was investigated to improve homogenopernties of neighborhoods iRFFA. A procedure to
calculate relevant reference variablesaatiarget location prior to the RFFA was propogedimprove neighborhood
properties and to reduce uncertainties. The predicted values of reference vagpbésent the unknown centes

5 neighborhoods delineated according to a distance of gauged sitesesgictr to the centers. The proposed method
represents a generalization of both ROl and CCA methods in RFFA. ThespcbRVN method has the advantages of
accepting various groups of reference variables, of considering nariliteraelations and of being more objective since L-
moments are used instead of estimated flood quantiles from at-site analysis.

In this study, the reference variableorrespond to transformed L-moments. The resulting RWNand RVN-

10 HYB methods were applied on sites located in Southern Quebec, Canada, to pratliguéiotles corresponding to the
100 year return periody both index-flood and regression-based models. The prediction déférernice variables at tatge
locations showed that after proper transformations, L1 can be linedalgdrto the site characteristics, bob proper
transformations are found for the other L-momefhtss justifiesthe consideration of the PPR method to account for the
nonlinearity in the prediction of the reference variablesgeneral, other models, such as generalized additive models or

15 artificial neural networks, could be consideredtead of PPR to account for the nonlinearity. Nevertheless, the PPR

approach unveils direction vectors that provide explicit, parsimonioumaadingful regression equations.

Although none of the methods performed best for all criteria, -w@gtation showd that the proposed RVN
method performs well in comparisém the traditional ROl and CCA methods. In both the index-flood and the segres
based model the best RRMSE is obtained by RVN_HYB and the best NHS is oligif/N_LM. In particular, the

20 favorable RRMSE values obtained by R\HN‘B are due toa more robust estimation of problematic sites. However,
RVN_LM has the best balance, because it achieves the best or the second best vallug#téoa. Most importantly, the
utilization of hydrological reference variableith the CCA and RVN methods hasducel the uncertainty on the regional
LCV, the index-flood and the predicted flood quantiles, in comparisofR@b. Consequently, prior modeling of
hydrological reference variables was shown to be advantageous to the deliokaéimhborhoods in RFFA.

25 The present study has made specific assumptions in order to investigaRV/kth method in well-defined
conditions. Nevertheless, the rational of predicting hydrological reference variatdegriori analysis remains a valid
approach when other choices of regression models, neighborhood &mansnetrics are considered. Hence, more
comparative studies should be carried out to evaluate alternatives to fixedigtdgonhoods and Euclidian distances in the
specific context of the RVN framewark

30 The L-coefficient of skewness is commonly used in RFFA to desthib shape of a distribution. Consequently, to
improve the result of the RVN method, further research effontitdcimcus on improving the prediction of this crucial
reference variabléOne way to improve the prior analysis of the hydrological reference lesigbthe consideration of the
unequal sampling error. This aspect is often considered in the estimffload quantiles in RFFA, but may also play an

important role in the prior analysis of the RVN method.

35
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Table 1: Evaluation criteriafor the RVN method for optimal neighborhood sizes.

M odel Size RRMSE NHS AHM ARE
Index-Flood

ROI 30 46.2 865 72.8 57.3

CCA 28 454 86.2 417 429

RVN-LM 29 450 871 145 369

RVN-HYB 24 40.1 86.2 165 431
Regr ession-based

ROI 30 449 869 728 647

CCA 28 435 86.1 41.7 306

RVN-LM 39 417 876 179 39.8

RVN-HYB 24 395 86.2 165 425

Best criteria in bold
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Figure 1: Diagram of the RVN method using backwar d stepwise selection.
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