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Abstract. Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. 7 

Assessing the space-time distribution of this contamination, as well as understanding the factors that explain this 8 

contamination is important to manage sustainable drinking water at the regional scale. This study aims to assess the 9 

variables that contribute to nitrate pollution in groundwater at the African scale by statistical modeling. We compiled a 10 

literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of 11 

physical attributes such as soil, geology, climate, hydrogeology and anthropogenic data for statistical model 12 

development. The maximum, medium and minimum observed nitrate concentrations were analysed. In total, 13 13 

explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate 14 

concentration, 4 variables are retained in the statistical explanatory model: (1) Depth to groundwater (shallow 15 

groundwater, typically <50m); (2) Recharge rate; (3) Aquifer type; and (4) Population density. The former three 16 

variables represent intrinsic vulnerability of groundwater systems towards pollution while the latter variable is a proxy 17 

for anthropogenic pollution pressure. The model explains 65% of the variation of mean nitrate contamination in 18 

groundwater at the African scale. Using the same proxy information, we could develop a statistical model for the 19 

maximum nitrate concentrations that explains 42% of the nitrate variation. For the maximum concentrations, other 20 

environmental attributes such as soil type, slope, rainfall, climate class and region type improve the prediction of 21 

maximum nitrate concentrations at the African scale. As to minimal nitrate concentrations, in the absence of normal 22 

distribution assumptions of the dataset, we do not develop a statistical model for these data. The data based statistical 23 

model presented here represents an important step toward developing tools that will allow us to accurately predict nitrate 24 

distribution at the African scale and thus may support groundwater monitoring and water management that aims to 25 

protect groundwater systems. Yet they should be further refined and validated when more detailed and harmonized data 26 

becomes available and/or combined with more conceptual descriptions of the fate of nutrients in the hydro system.   27 

 28 

  29 
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1 Introduction 30 

 31 

Nitrate contamination of groundwater is a common problem in many parts of the world. Elevated nitrate concentrations 32 

in drinking water can cause methemoglobinemia in infants and stomach cancer in adults (Yang et al., 1998; Knobeloch 33 

et al., 2000; Hall et al., 2001). As such, the World Health Organization (WHO) has established a maximum contaminant 34 

level (MCL) of 50 mg/L NO3 (WHO, 2004). Nitrate in groundwater is generally from the anthropogenic origin and 35 

associated with leaching of nitrogen from agriculture plots or from waste and sewage sanitation systems. The heavy use 36 

of nitrogenous fertilizers in cropping system is the largest contributor to anthropogenic nitrogen in groundwater 37 

worldwide (Suthar et al., 2009). In particular, shallow aquifers in agricultural fields are highly vulnerable to nitrate 38 

contamination (Böhlke, 2002; Kyoung-Ho et al, 2009). According to Spalding and Exner (1993), nitrate may be the 39 

most widespread contaminant of groundwater. 40 

 41 

In Africa, groundwater is recognized as playing a very important role in the development agenda. According to Xu and 42 

Usher, (2006), degradation of groundwater is the most serious water resources problem in Africa. The two main threats 43 

are overexploitation and contamination (MacDonald et al., 2013). Indeed, based on a review of 29 papers from 16 44 

countries, Xu and Usher (2006), have identified major groundwater pollution issues in Africa, considering the following 45 

order of importance as follows: (1) nitrate pollution, (2) pathogenic agents, (3) organic pollution, (4) salinization, and 46 

(5) acid mine drainage. These authors have identified that the major sources of groundwater contamination are related 47 

to on-site sanitation, to the presence of solid waste dumpsites, including household waste pits, to infiltration of  surface 48 

water, to agricultural activities, to the presence of  petrol service stations (underground storage tanks), and to the 49 

mismanagement of wellfields. Nitrate contamination of groundwater is a problem that commonly occurs in Africa, as 50 

illustrated in the studies for  Algeria (Rouabhia et al., 2010; Messameh et al., 2014), Tunisia (Hamza et al., 2007; Anane 51 

et al., 2014), Morocco (Bricha et al., 2007; Fetouani et al., 2008; Benabbou et al., 2014), Senegal (Sall and Vanclooster, 52 

2009; Diédhiou et al., 2012),  Ivory Coast (Loko et al., 2013; Eblin et al., 2014), Ghana (Tay and Kortatsi, 2008; Fianko 53 

et al., 2009 ), Nigeria (Wakida and Lerner, 2005; Akoteyon and Soladoye, 2011; Obinna et al., 2014), South Africa 54 

(Maherry et al., 2009; Musekiwa and Majola, 2013), Ethiopia (BGS, 2001; Bonetto et al., 2005) and Zambia (Wakida 55 

and Lerner, 2005). Several of these studies showed that pollution from anthropogenic activities is the main source of 56 

high and variable nitrate levels. For example, Comte et al., (2012) illustrate that the groundwater situated in the 57 

Quaternary sandy aquifer of the peninsula of Dakar is under strong anthropogenic pressure from the city of Dakar, 58 

resulting in important nitrate loadings. Such contamination problems are often retrieved in many metropoles in Africa. 59 

Notwithstanding the availability of all these studies at the local, regional or country level, no comprehensive synthesis 60 

of nitrate contamination of groundwater at the scale of the African continent has been presented in the literature. 61 

Assessing large-scale groundwater contamination with nitrates is important for the planning of the large-scale 62 

groundwater exploitation programs and for designing transboundary water management policies. It yields also important 63 

baseline information for monitoring progress in the implementation of the United Nations Sustainable Development 64 

Goals (UN SDGs) for water. According to Saruchera and Lautze, (2015), transboundary water cooperation has emerged 65 

as an important issue in the post-2015 United Nations (UN) Sustainable Development Goals (SDGs). This study will 66 

increase awareness of citizens, international agencies and authorities (e.g., FAO, UNEP, and OECD, Water Sanitation 67 

for Africa (WSA)) on the environmental factors likely to be significant to groundwater contamination. However, making 68 

an appropriate African scale synthesis of nitrate contamination of groundwater remains a scientific and technical 69 

challenge, given the heterogeneity of the nitrate monitoring programmes and the absence of administrative and 70 
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institutional capacity to collect and diffuse the data at the African scale.  A concept that partially helps to solve this 71 

urgent data management problem is the concept of groundwater vulnerability. Groundwater vulnerability for nitrate 72 

contamination is an expression of the likelihood that a given groundwater body will be negatively affected by nitrate 73 

contamination. Given that the vulnerability is a likelihood, it is only an expression of the potential degradation of 74 

groundwater and hence a proxy of groundwater contamination by nitrates.  Groundwater vulnerability can be assessed 75 

based on available generic data. It does therefore not depend on a strong and operational Africa groundwater quality 76 

monitoring capacity. In this paper, we propose and implement a methodology for assessing the vulnerability of 77 

groundwater contamination by nitrates at the African scale.  We further consider nitrate in this study as a proxy for 78 

overall groundwater pollution, which is consistent with the view of the US EPA (EPA, 1996).  79 

 80 

In general, there are three categories of models for the assessment of groundwater vulnerability: (1) index methods or 81 

subjective rating methods, (2) statistical methods and (3) process-based modelling methods.  Index-and-overlay methods 82 

are one set of subjective rating methods that utilize the intersection of regional attributes with the qualitative 83 

interpretation of data by indexing parameters and assigning a weighting scheme. The most widely used index method 84 

is DRASTIC (Aller et al., 1985). Unfortunately, index methods are based on subjective rating methods (Focazio et al., 85 

2002) and should preferably be calibrated using measured proxies of vulnerability (Kihumba et al., 2015; Ouedraogo et 86 

al., 2015). When a groundwater monitoring dataset is available, formal statistical methods can be used to integrate 87 

groundwater contamination data directly in the vulnerability assessment. Finally, process-based methods refer to 88 

approaches that explicitly simulate the physical, chemical and biological processes that affect contaminant behaviour in 89 

the environment. They comprise the use of deterministic or stochastic process-simulation models, eventually linked to 90 

physically based field observations (e.g., Coplen et al., 2000). Physically process-based methods are typically applied 91 

at small scales, mostly to define well protection zones, rather than to assess groundwater vulnerability at broader scales 92 

(Frind et al., 2006). A well-known example is the use of a physical based groundwater model (e.g. MODFLOW,  93 

Harbaugh et al., 2000) that solve the governing equations of groundwater flow and solute transport. Such models have 94 

explicit time steps and are often used to determine the time scales of contaminant transport to wells and streams, in 95 

addition to the effects of pumping. However, they also have many parameters that require estimation.  In this paper, we 96 

use statistical models to assess the vulnerability of groundwater systems towards nitrate pollution.  97 

 98 

Formal statistical methods have often be deployed to assess the vulnerability of groundwater at national and regional 99 

scales. They are also often used to discriminate contaminant sources and to identify factors contributing to 100 

contamination (Kolpin, 1997; Nolan and Hitt, 2006). Many authors used multiple linear regression (MLR) techniques. 101 

For example, Bauder et al., (1993) investigated the major controlling factors for nitrate contamination of groundwater 102 

in agricultural areas using MLR of land uses, climate, soil characteristics, and cultivations types. MLR was also used to 103 

relate pesticide concentrations in groundwater to the age of the well, land use around the well, and the distance to the 104 

closest possible source of pesticide contamination (Steichen, et al., 1988). Boy-Roura et al., (2013) used MLR to assess 105 

nitrate pollution in the Osona region (NE Spain). Amini et al., (2008a) and Amini et al., (2008b) used MLR and Adaptive 106 

Neuro-Fuzzy Inference System (ANFIS), a general non-linear regression technique, to study the global geogenic 107 

fluoride contamination in groundwater and the global geogenic arsenic contamination in groundwater respectively. 108 

MLR has the strong advantage that regression coefficients can directly be interpreted in terms of the importance of 109 

explaining factors. Many studies linking nitrate occurrence in groundwater to spatial variables have employed logistic 110 

regression (Hosmer and Lameshow, 1989; Eckardt and Stackkelberg, 1995; Tesoriero and Voss, 1997; Gardner and 111 
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Vogel,  2005; Winkel et al.,  2008; and Mair and El-kadi, 2013). According to Kleinbaum. (1994), MLR is conceptually 112 

similar to logistic regression. Other authors have used more sophisticated approaches such as Bayesian methods 113 

(Worrall and Besien, 2005; Mattern et al., 2012) and, more recently, classification and regression tree modelling 114 

approaches (Burow et al., 2010; Mattern et al., 2012).  Yet, according to our knowledge, a statistical model of 115 

groundwater nitrate contamination at the African scale does not exist yet.  116 

In the present study, we used MLR techniques to assess the vulnerability of nitrate groundwater pollution at the African 117 

scale. To this end, we compiled at the African scale groundwater pollution database from the literature and combined it 118 

with environmental attributes inferred from a generic data basis. The generic data basis was developed in a former study 119 

to assess vulnerability using the DRASTIC index method (Ouedraogo et al., 2016). MLR models were subsequently 120 

identified to explain quantitatively the log transformed observed nitrate contamination in terms of generic environmental 121 

attributes and finally, the regression models were interpreted in terms of characteristics of contaminants sources and 122 

hydrogeology of the African continent.  123 

 124 

2 Study area 125 

 126 

We studied the vulnerability of groundwater systems for nitrate contamination at the scale of the African continent. 127 

Groundwater is Africa’s most precious natural resource, providing reliable water supplies to at least a third of the 128 

continent’s population (MacDonald, 2010). However, the African continent is not blessed by a large quantity of 129 

groundwater resources, because it is the World's second-driest continent after Australia and water resources are limited. 130 

MacDonald et al., (2012) have estimated the volume of groundwater resource in Africa at 0.66 million km3.  131 

 132 

Africa has a vast array of drainage networks, the most important ones are the Nile River, which drains northeast and 133 

empties into the Mediterranean Sea. The Congo River drains much of central Africa and empties into the Atlantic Ocean. 134 

The Niger River is the principal river of western Africa; it is the third-longest river after the Nile and the Congo River 135 

and empties into the Atlantic Ocean. Southern Africa is drained by the Zambezi River. Lake Chad constitutes one of 136 

the largest inland drainage areas of the continent. Other major lakes located in the east of Africa include Lake 137 

Tanganyika and Lake Victoria.  138 

 139 

The elevation of Africa varies from below sea level to 5825 m above sea level. The average elevation is approximately 140 

651 m (Ateawung, 2010). The geology of the African continent contains 13 lithological classes (Fig.1) with varying 141 

coverages: evaporites (0.6%), metamorphic rocks (27.6%), acid plutonic rocks (1.1%), basic plutonic rocks (0.2%), 142 

intermediate plutonic rocks (0.1%), carbonates sedimentary rocks (9.4%), mixed sedimentary rocks (6.4%), siliciclastic 143 

sedimentary rocks (16.4%), unconsolidated sediments (35.1%), acid volcanic rocks (0.1%), basic volcanic rocks (3.3%), 144 

intermediate volcanic rocks (0.6%) and water bodies (0.9%) (Hartmann and Moosdorf, 2012). The lithology describes 145 

the geochemical, mineralogical and physical properties of rocks.  146 

 147 
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3 Data and methods 148 

3.1 Nitrate contamination data 149 
 150 

For a large part of Africa there is very little, or no systematic monitoring of groundwater. In the absence of data 151 

systematic monitoring program, we compiled nitrate pollution data at the African scale from different literature sources. 152 

We considered approximately 250 published papers on nitrate contamination of groundwater in Africa. We consulted 153 

the web of sciences (ScopusTM, Sciences DirectTM, GoogleTM, and Google ScholarTM) and available books. Fig. 2 shows 154 

the spatial distribution of the considered field studies. Table 1 outlines criteria used in the web search.  155 

 156 

3.2 Data quality evaluation 157 
 158 

We used the following additional criteria to select the study: 159 

i. the publication should explicitly report on nitrate concentrations in groundwater; and 160 

ii. the publication should be published after 1999. 161 

Also, when many articles have been published on the same field site, we used only the most recent study. We excluded 162 

older studies before 1999 since the intensity of human activities is expected to be significantly different after 1999. We 163 

eliminated thirty-seven articles because no quantitative data on nitrate concentration were reported. For the considered 164 

data set, 206 studies report on the maximum concentration of nitrate, 187 studies on the minimum concentration of 165 

nitrate, and 94 studies on the mean concentration of nitrate. Out of the 94 datasets for which mean values were reported, 166 

12 field sites have nitrate concentration smaller than 1 mg/L. We present the locations and references of the considered 167 

field studies in Table 2. In case spatial coordinates were not reported in the selected paper, we allocated the coordinates 168 

of the field study in Google Earth using the www.gps-coordintes.net and www.mapcoordinates.net applications. As an 169 

example, we present in Fig. 3 the identified locations and reported maximum nitrate values of the selected studies. The 170 

absence of exact spatial coordinates in many studies will, therefore, generate a positioning error in the analysis. 171 

However, given the extent of the study, i.e. the African continent, we consider that this positioning error will not have 172 

significant effects on the overall results.  The groundwater pollution risk in Fig. 3 corresponds to the potential of a 173 

groundwater body for undergoing groundwater contamination (Farjad et al., 2012). The risk of pollution is determined 174 

both by the intrinsic vulnerability of the aquifer, which is relatively static, and the existence of potentially polluting 175 

activities at the soil surface. These latter activities are time dynamic and can be controlled (Saidi et al, 2010). We 176 

generated the groundwater pollution risk map by combining the intrinsic groundwater vulnerability map with the land 177 

use map, using the additive model of Secunda et al. (1998).  Details of these procedures are given by Ouedraogo et al. 178 

(2016). 179 

3.3 Determination of spatial explanatory variables 180 
 181 

Table 3, list the environmental attributes and data sources that we considered for explaining the observed nitrate 182 

contamination. These variables represent both anthropogenic and natural factors and were derived from multiple sources 183 

of information. The attributes are related to recharge, geology, hydrogeology, soil texture, land use, topography and 184 

pollution pressure and were partially inspired by the DRASTIC vulnerability mapping approach. We compiled all 185 

explanatory variables in a common GIS environment (ArcGIS 10.3TM), using a common projection and resolution (15 186 

http://www.gps-coordintes.net/
http://www.mapcoordinates.net/
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km x 15 km) at the 1:60.000.000 scale. This spatial resolution was chosen because, we have considered that she was a 187 

reasonable compromise between different resolutions of the different datasets, computing constraints and regional 188 

extent. Indeed, this grid cell dimension has been used to map the vulnerability and risk pollution maps at the African 189 

scale (Ouedraogo et al., 2016). Generic variables at the grid scale were extracted to build our explanatory variables in 190 

this study. Most of these variables were categorical, but some were continuous. 191 

 192 

Groundwater recharge is considered as a primary explaining variable because recharge is the primary vehicle by which 193 

a contaminant is transported from the ground surface to groundwater. Groundwater recharge to an unconfined aquifer 194 

is a function of precipitation, runoff, and evapotranspiration. The latter is related to vegetation and/or soil type. 195 

Groundwater recharge to a confined aquifer is generally more complex, as consideration must be given to the location 196 

of the recharge zone and the influence of any confining layers, vertical gradients, and groundwater pumping (Todd and 197 

Kennedy, 2010). In this study, we derived the African recharge map from the global-scale groundwater recharge model 198 

of Döll et al. (2008). We also considered independent climate data as alternative proxies of recharge.  Hence, we 199 

considered the climate and region type data class as defined by Trambauer et al. (2014). We also considered the rainfall 200 

map as generated from the UNEP/FAO World and Africa GIS Data Base. The spatial resolution of this latter dataset is 201 

approximately 3.7 kilometers. 202 

 203 

Subsequently, we selected a set of environmental attributes related to aquifer type, groundwater position and the 204 

substrate that protects the aquifer.  The depth to groundwater represents the distance that a contaminant must travel 205 

through the unsaturated zone before reaching the water table or to the first screen. We mapped the depth to water based 206 

on the data presented by Bonsor et al. (2011). The slope of the land surface is important with respect to groundwater 207 

vulnerability because it determines the potential of a contaminant to infiltrate into the groundwater or be transported 208 

horizontally as runoff.  We inferred the slope from the 90-meter Shuttle Radar Topography Mission (SRTM90) 209 

topographic map, using the Spatial Analyst software of ArcGIS10.2TM. We derived the aquifer type and the impact of 210 

vadose zone material from the high resolution global lithological database (GliM) of Hartmann and Moosdorf (2012). 211 

We determined aquifer type and unsaturated lithological zone for each of the five hydro-lithological and lithological 212 

categories as defined by Gleeson et al., (2014). These categories are: unconsolidated sediments, siliciclastic sediments, 213 

carbonate rocks, crystalline rocks, and volcanic rocks (Gleeson et al., 2014). We constructed the soil type map from the 214 

1 km resolution soil grid database developed by Hengl et al. (2012). We determined the hydraulic conductivity of 215 

aquifers from the Global Hydrogeology MaPS (GHYMPS) dataset (Gleeson et al., 2014). For the determination of the 216 

land use at the African scale, we used the high-resolution land cover/land use map from the GlobCoverdataset (Defourny 217 

et al.,2014). There are twenty-two (22) classes of land cover that represents Africa in this dataset. We aggregated these 218 

22 classes into 6 similar classes (water bodies, bare area, grassland/shrubland, forest, urban, croplands) as represented 219 

in the Fig. 4 and then regrouped them in 5 groups (water bodies, forest/bare area, grassland/shrubland, croplands, urban 220 

area).  221 

 222 

Finally, we considered a set of variables related to possible pollution pressure. We considered the application of fertilizer 223 

in the agricultural sector as a possible explanatory variable. We generated the nitrogen fertilizer application map from 224 

the Potter and Ramankutty (2010) dataset. The values shown on this map represent an average application rate for all 225 

crops over a 0.5° resolution grid cell. Following this study, the highest N fertilizer application rate (i.e. 220 kg / ha) is 226 
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found in Egypt’s Nile Delta. We further considered population density as a proxy of pollution source.  We considered 227 

the population density map for the year 2000, as produced by Nelson (2004).  228 

 229 

3.4 Statistical model description 230 

We used Multiple Linear Regression (MLR) as the statistical method for identifying the relationship between the 231 

observed nitrate concentrations in groundwater and the set of independent variables given in Table 3. MLR is based on 232 

least squares, which means that the model is fitted such that the sum of squares of differences of predicted and measured 233 

values is minimized (Koklu et al., 2009; Helsel and Hirsh. (1992)). The MLR model is denoted as by Eq. (1):  234 

yi = β0 + ∑ βjxij + εi
n
j=1         i=1, m,                                                                                                                       (1) 235 

where yi  is the response variable at location i, β0  is the intercept, βj  are the slope coefficients of the explanatory 236 

categorical or continuous  variables xij, n the number of variables and m is the  number of locations or wells (number 237 

of studies here). εi is the regression residual. In this study, the response variable is the log transformed nitrate 238 

concentration in groundwater. The log transformation was needed to stabilize the variance and to comply with the basic 239 

hypothesis of MLR. The log transformed nitrate concentration is a continuous monotonic increasing function; it is, 240 

therefore, reasonable to accept that factors that contribute to the log transformed nitrate load will also contribute to the 241 

nitrate load. The explanatory variables were defined using a stepwise procedure, using the Akaike Information Criterion 242 

(AIC) as test statistic (Helsel and Hirsch, 1992).  We evaluated model performance based on the significance level of 243 

estimated coefficients, the coefficient of determination (R2), the mean square error (MSE), the probability plots of model 244 

residuals (PRES), the plots of predicted versus observed values and the Akaike Information Criterion (AIC). High values 245 

of R2 and low values of RMSE, PRES and AIC indicate a better performance of the model. To validate the model 246 

obtained by the stepwise procedure, the standard regression diagnostics were assessed. To test the heteroscedasticity in 247 

the model residuals, we use the Breusch-Pagan (BP) test by implementing with “lmtest” package. A Student statistic t 248 

test was finally used to check the statistical significance (with p-values <0.10) of variables in the final model.  We 249 

assessed tolerance to examine if multicollinearity exists between variables. In this study, we performed the statistical 250 

analyses using the R version 3.1.1 (R Development Core team, 2015).  251 

4 Results 252 

4.1 Normality of the dependent variable 253 

Prior to analysis, we carefully checked the data using descriptive statistics, such as boxplots and correlation analysis. 254 

The observed nitrate concentrations through meta-analysis range from 0 mg/L to 4625 mg/L for all categories, i.e. mean, 255 

maximum and minimum values of nitrate groundwater contamination. Descriptive statistics are summarized in Table 4. 256 

The average mean nitrate concentration is 27.85 mg/L. The positive skewness of the mean nitrate concentration data 257 

and the kurtosis suggest that the mean nitrate concentration is not normally distributed. In contrast, the lognormally 258 

transformed mean nitrate concentration obeys normality, as demonstrated by means of the non-parametric Shapiro-Wilk 259 

test (p-value=0.1432>0.05). The histogram of mean and log transformed concentration is shown in the Fig. 5. We also 260 

checked the minimum and maximum nitrate concentration for normality (results can be obtained from the authors upon 261 

request). 262 
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 263 

4.2 Correlation between nitrate in groundwater and explanatory variables 264 
 265 

Land Cover/Land Use is a principle factor, controlling groundwater contamination. The box plot distribution of log 266 

transformed mean nitrate concentration for different land use classes is presented in Fig. 6.  Groundwater in agricultural 267 

and urban areas is clearly more susceptible to nitrate pollution as compared to forest/bare area land use. Also, water 268 

bodies are susceptible to nitrate contamination but this result is likely spurious since only two studies support this 269 

category. We performed a similar analysis on the log transformed maximum and minimum nitrate concentration. The 270 

corresponding boxplots results can be obtained from the authors upon request. High values for log transformed 271 

maximum nitrate concentration are also found in urban and cropland areas. High values for log transformed minimum 272 

nitrate concentration are detected in croplands fields.  All analyses confirm that the highest nitrate pollution is retrieved 273 

in urban areas, immediately followed by agricultural areas. 274 

 275 

In this study, the aquifer systems for Africa are divided into 5 categories based on the lithological formations. Fig. 7 276 

shows the relation between mean log transformed nitrate concentration and aquifer system type class. The carbonates 277 

rocks, the unconsolidated sediments, and the siliciclastic sedimentary rocks represent respectively the first, the second 278 

and the third class in terms of nitrate contamination. The crystalline rock and volcanic rock aquifer classes are less 279 

contaminated. The high concentrations in the unconsolidated aquifer systems is a particular point of concern since this 280 

class is the most representative in terms of groundwater exploitation. The high concentrations in the carbonates rocks 281 

and fractured basalt can be explained by their high vulnerability related to the presence of solution channels and 282 

fractures. 283 

 284 

The distribution of the log transformed mean nitrate concentration data with depth is shown in Fig. 8a. Apparently, no 285 

clear relationship exist between depth to groundwater and nitrate contamination. The Pearson’s correlation give a poor 286 

correlation (r=0.004). However, the careful analysis of this figure shows clearly that shallower wells  (7-25 m bgl and 287 

25-50 m bgl)  are associated with higher values of log-transformed mean nitrate concentration, in contrast to the low 288 

values of log transformed nitrate concentrations found in the deeper groundwater systems ( >250 m bgl). 289 

 290 

The relationship between the log transformed mean nitrate concentration and groundwater recharge can also be observed 291 

in Fig. 8b. This figure shows that nitrate concentration in the groundwater decreases with recharge. This may due to 292 

dilution of nitrate charge.  We observe on this figure high nitrate concentrations in the very low recharge class (0-45 293 

mm/year). This may be due to irrigation water return that feeds the groundwater and that is not integrated into the 294 

recharge calculations.  The analysis of Pearson’s correlation between recharge and log transformed mean nitrate give a 295 

r=-0.292. 296 

 297 

The relation between the log transformed mean nitrate concentration and the population density is given in Fig. 8c. We 298 

observe an increasing nitrate in groundwater related to increasing population. This explicit relationship between 299 

population density and nitrate concentration has a Pearson’s correlation of 0.632. This obviously confirms the 300 

importance of studying the population as a potential polluting parameter and its relevant correlation to nitrate occurrence 301 

in the groundwater at the African scale. 302 

 303 
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Nitrogen fertilizer contributes significantly to an increase in crop yields, but excess nitrogen fertilizer generally pollutes 304 

groundwater (Green et al., 2005; Nolan et al., 2002). In the case of Africa, the impact of the nitrogen fertilizer application 305 

rate on log transformed mean nitrate concentration is illustrated in Fig. 8d. Pearson’s correlation give a low relation 306 

(r=0.09). The analysis in this figure confirms that no clear relationship existing between fertilizer load and groundwater 307 

nitrate contamination. This can be linked to the relatively low fertilizer use in Africa, as compared to other continents. 308 

Indeed, most studies have nitrogen fertilizer dressings that are below 50 kg/ha. According to the FAO (2012), Africa 309 

accounts only for about 2.9 percent of the world fertilizer consumption in 2011.  310 

 311 

 312 

We performed similar correlation analysis on the log transformed maximum concentration and log transformed 313 

minimum concentration respectively. Details can be obtained from the authors upon request. Results of these analyses 314 

are coherent with the results for log transformed mean nitrate concentration.  315 

 316 

4.3 Development of the multi-variate statistical model 317 
 318 

We developed a set of multiple variable regression models for the log transformed mean and maximum nitrate 319 

concentration in terms of above mentioned explanatory variables. A positive regression coefficient indicates a positive 320 

correlation between a significant explanatory variable and a target contaminant while a negative coefficient suggests an 321 

inverse or negative correlation. We retained only explanatory variables with p-values ≤ 0.1.  322 

 323 

The best final model that explains the log transformed mean nitrate concentration includes only 4 explanatory variables: 324 

(1) Depth to groundwater, (2) Recharge, (3) Aquifer type, and (4) Population density. Table 5 summarizes the results 325 

of this linear regression model. This model can explain 65 percent of the log transformed mean nitrate concentration 326 

observations. The sign of the parameter coefficient indicates the direction of the relationship between independent and 327 

dependent variable (Boy-Roura et al., 2013).  The lower the p-value, the more significant is the model parameter.  328 

 329 

The regression analysis confirms the strong relationship between population density and log transformed mean nitrate 330 

concentration. As the p-value is far below 0.05, we are more than 95 % confident that the population density strongly 331 

affects the nitrate occurrences in groundwater. 332 

 333 

The aquifer medium is another important explanatory variable for log-transformed mean nitrate concentration. Three 334 

categories of aquifer media are significantly explaining the dependent variables: carbonates rocks, crystalline, and 335 

unconsolidated sediments rocks. Indeed, the analyse of regression coefficients shows that the likelihood of nitrate 336 

contamination decreases with the presence of unconsolidated sediments and crystalline rocks.  Other aquifer types tested 337 

include siliciclastic sedimentary rocks and volcanic rocks aquifers were found not statistically significant in the model. 338 

However, the aquifer media type is an important variable to assess groundwater vulnerability and to bring information 339 

about the hydrogeological system in the assessment. It allows differentiating the vulnerability in terms of aquifer 340 

lithology. Variables such as hydraulic conductivity could be surrogates for aquifer media because hydraulic conductivity 341 

data were developed based on the lithological formation. Nevertheless, they were not statistically significant in the final 342 

model.  343 

 344 
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The third variable represents the depth to groundwater. The three first classes (0-7; 7-25 and 25-50 m bgl) of 345 

groundwater depth are all statistically significant.  The water table corresponding to the 0-7 m class has the strongest 346 

statistical significance. The positive parameter coefficient indicates large contamination for shallow groundwater 347 

depths. By analyzing the table of the coefficients, we observe that the largest groundwater depth class (100-250 m bgl) 348 

is not statistically significant (p-value >0.05). We can conclude that the shallow groundwater systems in African scale 349 

are most vulnerable to nitrate pollution. 350 

 351 

The fourth variable included in the final model is the recharge. The recharge rate in the 45-123 mm/year and 123-224 352 

mm/year class are statistically significant. In general, these rates correspond to semi-arid and dry sub-humid regions. 353 

The high concentrations in these areas can be due to intensive agricultural activities.  354 

 355 

Other explanatory variables such as rainfall or land cover/land use were not considered in the final model. Indeed, 356 

notwithstanding a variable such as land cover/land use strongly influences observed log transformed mean nitrate 357 

concentration (Fig. 6), it is related to other variables such as population density.  Hence, to avoid multicollinearity in 358 

the final model, the land cover/land use variable is no longer included in the final model.  359 

 360 

The final multiple linear regression (MLR) model using the four variables yields an R2 of 0.65, indicating that 65% of 361 

the variation in observed log transformed mean nitrate concentration at the African scale is explained by the model. The 362 

result of the model is globally significant because the p-value =2.422e-10 at 95% of the significant level. The observed 363 

versus predicted log transformed mean nitrate concentration is shown in Fig. 9 and indicates that the MLR fits the data 364 

well. The probability plot of model residuals indicates that they the distribution is close to normal (Fig. 10). We 365 

performed the Shapiro-Wilk test as an additional check on the distribution of nitrate residuals. Because the probability 366 

associated with the test statistic is larger than 0.05, we accept the null hypothesis that the residuals follow a normal 367 

distribution. Despite the fact that a few points have higher Cook’D value compared to the rest of the observation, they 368 

were kept in the MLR to represent the whole range of nitrate concentration data. In order to check the regressions 369 

assumptions of homoscedasticity, a plot of the residuals of log transformed mean nitrate versus the predicted log 370 

transformed mean values is illustrated in Fig.11. We observe that the majority of observations are in the range of -2 to 371 

2 except for two outliers observed in the bottom left part of the graph. The residual standard error of the log transformed 372 

mean nitrate is 0.91116 (ln (mg/L)). We observe that the residuals decrease with increasing predicted nitrate 373 

concentrations. The Breusch-Pagan test was used to assess heteroscedasticity in the model residuals (BP=24.2773 and 374 

p-value= 0.042). With a p-value of 0.042, we reject the null hypothesis that the variance of the residuals is constant and 375 

infer that heteroscedasticity is indeed present. As a result, we may expect some bias in the MLR model.  376 

 377 

Similarly to the log transformed mean nitrate concentration modelling, we developed another model corresponding to 378 

the log transformed maximum nitrate concentration. This model yielded only an R2= 0.42 for the maximum values. The 379 

explanatory variables which influence the log transformed maximum nitrate concentration in groundwater are depth to 380 

groundwater, soil media, topography, rainfall, climate class and type of region. For the log transformed minimum 381 

concentration, the absence of normal distribution assumptions did not allow to develop a MLR model.  382 
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5 Discussion 383 

We present in this study a database method to assess the vulnerability of groundwater systems for water quality 384 

degradation. We used the log transform of reported nitrate concentration as a proxy for groundwater vulnerability.   We 385 

present a statistical model to explain this proxy in terms of generic data at the African scale. In a previous study, we 386 

evaluated the groundwater vulnerability for pollution at the African scale using the generic DRASTIC approach 387 

(Ouedraogo et al., 2016). Yet, the uncalibrated DRASTIC model predictions are subjected to quite some uncertainty, in 388 

particularly due to the subjectivity in assigning the generic DRASTIC model parameters.  In contrast to this previous 389 

study, we focus in this paper on nitrate pollution which is a parameter that is strongly related to vulnerability and that 390 

often is measured in on-going monitoring programmes. We integrate published nitrate in groundwater data explicitly in 391 

the assessment, thereby reducing the subjectivity of the DRASTIC approach.  392 

We assessed in this study the quality of the data (Sect. 3.2).  Yet, notwithstanding this, some caution is needed in the 393 

interpretation of the results, in particular as bias may be present in the meta-analysis. For instance, there may be bias 394 

towards studies on aquifers which are productive and used for drinking water supply, irrigation or mining activities. 395 

Another possible bias is that some studies mainly focussed on nitrates while others are oriented to more general 396 

groundwater quality studies. Further, the data were collected from different sources (peer-reviewed journal articles, 397 

book chapters or other grey literature). With such approach, sampling and analytical methods are not standardised, being 398 

an additional source of possible bias. Data availability is a major issue when developing a continental-scale groundwater 399 

nitrate statistical model. Unsurprisingly there are no consistent and standardised monitoring datasets at the continental 400 

scale. The available data sets are also patchy, both spatially and temporally. A meta-analysis of literature data is so far 401 

the only method for getting the picture at the continental scale. Results from this meta-analysis should not be over-402 

interpreted. Whilst the data provide a useful preliminary assessment into the nitrate contamination in groundwater at 403 

the African scale, there are clear limitations.  404 

In this study, we used multiple linear regression (MLR) for explaining nitrate groundwater in terms of other generic 405 

spatially distributed environmental parameters. MLR is an approach to model the relationship between a response 406 

variable and multiple sets of explanatory variables (Rawlings et al., 1998). MLR analysis is capable of both predicting 407 

and explaining a response variable using explanatory variables without compromise (Kleinbaum et al., 1988).  Previous 408 

studies of MLR using spatial variables for nitrate concentration in groundwater showed R2 values of 0.52 and 0.64 in 409 

shallow alluvial aquifers (Gardner and Vogel, 2005; Kaown et al., 2007) and R2 of 0.82 in deep sandy tertiary aquifers 410 

(Mattern et al., 2009). For the application in this study, we selected the parameters using stepwise MLR regression, 411 

allowing to select only those parameters which have a significant impact on the log transformed concentration values 412 

of nitrate.  413 

The explanatory variables with the strongest influence on the mean log transformed nitrate concentration at the African 414 

scale are the population density and groundwater depth, which is in agreement with results from other studies such as 415 

Nolan, (2001),  Nolan et al., (2002), Nolan and Hitt (2006),  Liu et al., (2013),  Bonsor et al., (2011) and Sorichetta et 416 

al. (2013). Both explanatory variables are directly related to the probability of having high nitrate concentrations in 417 

groundwater. The strong influence of the population density variable can be explained by the serious problem of 418 

sanitation in Africa townships. This is consistent with the conclusions of the UNEP/UNESCO project ‘Assessment of 419 

Pollution Status and Vulnerability of Water Supply Aquifers Cities’, stating that the major pollution pressure on African 420 

water bodies are related to poor  on-site sanitation, solid waste dumpsites including household waste pits and  surface 421 
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water influences (Xu and Usher, 2006).  This is also consistent with other studies stating that that leaking septic tanks 422 

and sewer systems are considerably causing nitrate contamination of groundwater in urban areas (Bohlke, 2002; 423 

Showers et al., 2008). The magnitude of contamination is not only affected by the population density but also by the 424 

socio-economic setting (UNEP/DEWA, 2014). A high population density is therefore often associated with the lack of 425 

adequate sanitation in many slums/shanty towns in Africa. The strong influence of population density in our model 426 

suggests that high concentrations in groundwater are mainly from subsurface leakage of municipal sewage systems, 427 

petrol service station (underground storage tanks), and agricultural chemicals in small scale farming. Hence, sanitation 428 

programmes in Africa must not be delinked from groundwater protection and controlling the use of fertilizer products 429 

in agriculture.  430 

 431 

Nitrate concentrations were generally higher for shallower wells than for deeper groundwater systems. For deep 432 

groundwater, predicted nitrate concentration was lower as compared to shallow groundwater (Nolan et al.,2014). 433 

Alluvial and shallow aquifers are thus particularly vulnerable to nitrate pollution while deep confined aquifers are 434 

generally better protected. The inverse relation between depth and nitrate is consistent with previous groundwater 435 

studies that considered well depth or depth of the screened interval as explanatory variables (Nolan and Hitt, 2006; 436 

Nolan et al., 2014; Wheeler et al., 2015; Ouedraogo and Vanclooster, 2016).  Nitrate generally moves relatively slowly 437 

in soil and groundwater, and therefore there is a significant time lag between the polluting activity and detection of the 438 

pollutant in groundwater (typically between 1 and 20 years, depending on the situation) (Boy-Roura, 2013; Mattern and 439 

Vanclooster, 2009). Deeper groundwater may, therefore, predate periods of intensive fertilizer application (1950–440 

present).  441 

The rate at which nitrate moves through the subsurface depends on the permeability and extent of fissuring of soil and 442 

aquifer, which controls flow, diffusion and dispersion processes. According to Close (2010), nitrate is negatively 443 

charged and thus electrostatically repelled by media in unsaturated zone that usually have a negative charge, such as 444 

clay minerals. This means that nitrate sorption within the unsaturated zone is unlikely and that the large residence times 445 

are related to the slow physical transport process. Foster and Crease, (1974), and Young et al., (1976) were the first 446 

authors to mention a  “storage of nitrate” in porewater and consequent slow vertical migration through the unsaturated 447 

zone towards groundwater systems. More recently, others investigators showed the process of nitrate accumulation in 448 

the unsaturated zone (Ascott et al.,2016; Wang et al.,2016; Worall et al.,2015). The long travel distances towards deep 449 

aquifer systems increase the probability that nutrients will react for instance through denitrification (Stevenson and 450 

Cole, 1999; Thayalakumaran et al., 2004; Aljazzar, 2010; Wheeler et al., 2015).  Denitrification is facilitated by the 451 

absence of oxygen.  Denitrification was found to be relatively limited in unsaturated zone (Kinniburgh et al., 1994; 452 

Rivett et al., 2008), while it is the principle process responsible for reduction of nitrate in groundwater (Aljazzar, 2010, 453 

Stevenson and Cole, 1999; Thayalakumaran et al., 2004), in particular in reduced groundwater  (Burow et al.,2013).  454 

Boy-Roura et al.,(2013), for instance, found low nitrate concentrations (below 50 mg/L) in those areas where 455 

denitrification processes have been identified. An indicator of the presence of denitrification processes contributed as 456 

such to explain nitrate contamination in the Osona region (NE Spain) (Boy-Roura et al., 2013). In our study, an indicator 457 

of the presence of denitrification processes in the groundwater system was not available and could not be included in 458 

the model.   459 

Another remark concerns the presence of nitrate in some specific geological formations. According to Tredoux and 460 

Talma (cited in Xu and Usher, 2006), an apparent correlation may exist between the occurrence of high nitrate levels 461 
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and certain geological formations.  The apparent correlation however between the occurrence of high nitrate levels and 462 

certain geological formations is mainly due to secondary effects.  Only in exceptional cases, geological formations can 463 

serve as a primary source of nitrogen. This happens when contamination ions are incorporated in rock minerals to be 464 

released by weathering and oxidized to nitrate.  These authors further concluded that in most cases, the occurrence of 465 

high levels of nitrate is due to contamination related to anthropogenic activities. 466 

 467 

The strong relation between nitrate contamination and both, groundwater depth and population density is a particular 468 

point of concern given the fact that the majority (85 %) of Africa’s population lives in regions where depth to 469 

groundwater is shallow (0-50 m bgl) and where  hand pumps may be used to abstract water. Eight percent of these 470 

people (i.e. nearly 66 million people) are likely to live in areas where depth to groundwater is 0-7 m bgl. A significant 471 

minority (8 %) of Africa’s population lives in regions where the depth to groundwater is between 50 and 100 m bgl and 472 

common hand pump technologies (e.g. India Mark) are inoperable in these cases.  These areas are mainly within 473 

southern Africa and to a lesser extent situated in the Sahel. 474 

 475 

A third important explanatory variable that was included in the model was the groundwater recharge rate. The recharge 476 

rate of an aquifer is indeed another factor that controls groundwater flow regime and hence the movement of nitrate. 477 

Nitrate can easily be transported to shallow groundwater in well-drained areas with rapid infiltration and highly 478 

permeable subsurface materials. However, according to a recent study in the shallow unconfined aquifer of the Piemonte 479 

plain, dilution can be considered as the main cause for nitrate attenuation in groundwater (Debernardi et al., 2007). The 480 

variable recharge in our model is consistent with studies like Hanson (2002) and Saffigna and Keeney (1997). According 481 

to UNEP/DEWA (2014), recharge from multiple sources influences groundwater microbial and chemical water quality. 482 

Groundwater recharge rate is interlinked with many other environmental variables including, but not limiting, soil type, 483 

aquifer type, antecedent soil water content, land use / land cover type and rainfall (Sophocleous, 2004;  Ladekarl et al., 484 

2005; Anuraga et al., 2006). Hence, to avoid multi-collinearity, variables like land use/land cover type, rainfall, and soil 485 

type were not considered in the final model.  486 

 487 

Despite land cover/land use type is not explicitly included in the final model, the exploratory analysis clearly shows a 488 

strong relationship between nitrate concentration and land use/land cover type. Indeed, nitrate concentrations are 489 

generally higher in urban areas. This is consistent with many other studies such as Showers et al., (2008). The high 490 

contamination in urban areas jeopardises groundwater exploitation in urban areas. Urbanization is a pervasive 491 

phenomenon around the world, and groundwater demands in urban areas are increasingly growing. The degradation of 492 

groundwater bodies in urban areas is, therefore, a particular point of concern. Also, agricultural land exhibit an impact 493 

on groundwater nitrate concentrations compared to the grassland/shrubland, water bodies, and forest/bare area, but this 494 

effect is less important as compared to agricultural land effects in other parts of the world (e.g. Europe).  495 

 496 

The influence of aquifer type to the nitrate contamination was demonstrated by Boy-Roura et al.,(2013) and the 497 

influence of soil type by Liu et al.,(2013). As with land cover/ land use type, these variables were not retained in the 498 

final model to avoid collinearity with recharge.  499 

 500 
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The advantage of the MLR technique is that it can be easily implemented and that model parameters can be easily 501 

interpreted if the possible interaction between variables is ignored. However, MLR cannot represent well the many non-502 

linear dynamics that are associated with the contamination of groundwater systems. The violation of the 503 

homoscedasticity hypothesis, for instance, indicates that some bias will be present in our MLR model. Standard 504 

statistical models employed in distribution modelling, such as MLR, work under the assumption of independence in the 505 

residuals and homoscedasticity. When heteroscedasticity is present, residuals may be autocorrelated. This will lead to 506 

inflated estimates in degrees of freedom, an underestimation of the residual variances and an overestimation of the 507 

significance of effects (Legendre and Fortin, 1989; Legendre, 1993; Dale and Fortin, 2002; Keitt et al., 2002). This may 508 

show that others variables should be included in the model or that the system may be highly non-linear. 509 

 510 

We could avoid heteroscedasticity and improve the modelling performance by introducing non-linear regression 511 

techniques (Prasad et al.,2006) or by introducing additional variables in the model.  Indeed, many studies showed that 512 

non-linear statistical models of groundwater contamination outperform as compared to linear models (e.g. Pineros-513 

Garcet et al.,2006; Mattern et al., 2009; Oliveira et al.,2012 and Wheeler et al.,2015). To uncover nonlinear relationships 514 

non-parametric data mining approaches provide obvious advantages (Olden et al., 2008; Wiens, 1989; Dungan et    al., 515 

2002). Machine learning provides a framework for identifying other explanatory variables, building accurate 516 

predictions, and exploring other nonlinear mechanistic relationships in the system. We may, therefore, expect that non-517 

linear statistical models will improve the explanatory capacity of the model and remove heteroscedasticity from the 518 

model.   519 

 520 

However, we believe that this theoretical constraint of heteroscedasticity does not question the overall results. The 521 

observed heteroscedasticity can be considered modest in view of the large extent of the study, and the violation of 522 

statistical design criteria when collecting data through a meta-analysis. Also, the interpretation of the factors and 523 

coefficients associated with non-linear regression techniques become more complicated. We, therefore, prefer to 524 

maintain in this paper the MLR techniques as a first approach to screen the factors that contribute to log transformed 525 

mean nitrate concentration risk.  We suggest however that future studies should address the added value that can be 526 

generated with non-linear modelling techniques.  Such non-linear modelling techniques are particularly needed for the 527 

maximum concentration for which the R2 of simple MLR remains currently too poor and also for the minimum 528 

concentration who shows the absence of normal distribution assumptions.   529 

 530 

Also, in this study, we only identified a MLR model based on a meta-analysis spanning the African continent. Since, 531 

the data collected through the meta-analysis are very heterogeneous, the quality of the data set remains rather poor. 532 

Therefore, future studies should critically address the validity of the identified model and explore how the model can 533 

be improved and be used in a predictive model.  It is however suggested that such model improvement and validation 534 

step should be based on a more homogeneous data set. We, therefore, suggest to perform this future model validation 535 

and model improvement step using data collected at the regional scale using more homogeneous data collection 536 

protocols. 537 
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6 Conclusion 538 

Contamination of groundwater by nitrate is an indicator of groundwater quality degradation and remains a point of 539 

concern for groundwater development programmes all over the world. It is also a good proxy of overall groundwater 540 

vulnerability for water quality degradation.  We address in this paper the issue of nitrate contamination of groundwater 541 

at the African scale. We inferred the spatial distribution of nitrate contamination of groundwater from a meta-analysis 542 

of published field studies of groundwater contamination. We analysed the literature for reported mean, minimum and 543 

maximum concentration of nitrate contamination. We subsequently analysed, using box-plots, the reported 544 

contamination in terms of spatially distributed environmental attributes related to pollution pressure and attenuation 545 

capacity. We extracted the explanatory variables from a geographic information system with the ArcGIS 10.3TM tool.  546 

We finally developed a MLR statistical model allowing to explain quantitatively the log transformed observed 547 

contamination that is a proxy of vulnerability, in terms of spatially distributed attributes. We selected the explanatory 548 

variables using a stepwise regression method.  549 

 550 

Groundwater contamination by nitrates is reported throughout the African continent, except for a large part of the Sahara 551 

desert. The observed nitrate concentrations range from 0 mg/L to 4625 mg/L.  The mean nitrate concentration varies 552 

between 1.26 to 648 mg/L. The sample mean of this mean nitrate concentration is 54.85 mg/L, its standard deviation 553 

was 89.91 mg/L and its median was 27.58 mg/L.  The minimum nitrate concentration varies between 0 to 185 mg/L 554 

while the maximum concentration varies 0.08 to 4625 mg/L. The sample mean of the minimum and maximum 555 

concentrations  is 8.91 mg/l and 190.05 mg/L;  the sample standard deviations is  23.17 mg/L and 428.69 mg/L;  and 556 

the sample median is  0.55 mg/L and 73.64 mg/L, respectively. The distribution of the reported nitrate contamination 557 

data is strongly skewed. We, therefore, build statistical models for the log transformed mean and maximum 558 

concentrations.  559 

 560 

The graphical box plot analysis shows that nitrate contamination is important in shallow groundwater systems and 561 

strongly influenced by population density and recharge rate. Nitrate contamination is, therefore, a particular point of 562 

concern for groundwater systems in urban sectors.  563 

 564 

The MLR model for the log transformed mean nitrate concentration uses ‘the depth to groundwater’, ‘groundwater 565 

recharge rate’, ‘aquifer type’ and ‘population density’ as an explanatory variable. The total variability explained by the 566 

model is 65 %. This suggests that other variables may be needed to explain the reported nitrate concentrations. These 567 

findings highlight the challenges in developing appropriate regional databases to predict groundwater degradation. The 568 

MLR shows that the population density parameter is the most statistically significant variable. This authenticates that 569 

leaking cesspits and sewer systems are considerably causing nitrate contamination of groundwater predominantly in 570 

urban areas.  We identified similar MLR models for the log transformed maximum nitrate concentrations. Yet, for this 571 

latter attribute, the explained variation using the simple MLR techniques (i.e. 42 %) remains small.   572 

 573 

One of the main strengths of our study is that it is based on a large database of groundwater contamination reports from 574 

different countries, spanning the African continent and linked to environmental attributes that are available in a spatially 575 

distributed high-resolution format. In addition, the development of a continental-scale model of nitrate contamination 576 

in groundwater of Africa allowed determining which explanatory variables mainly influence the presence of nitrate. 577 
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This represents an important step in managing and protecting both water resources and human health at the African 578 

scale. The main weakness of the modelling approach lies in the lack of detailed information available at the African 579 

scale, particularly the lack and uneven distribution of measured nitrate points. In spite of weaknesses and uncertainties 580 

caused by a moderate heteroscedasticity from residuals in the model, the modelling approach presented here has great 581 

potential. Although the meta-analysis should not replace systematic nitrate monitoring, it gives a first indication of 582 

possible contamination. It can be also applied to the preliminary assessment of nitrate using spatial variables. This may 583 

support the water resources development program for transboundary aquifers managers and regional basin 584 

organizations. This is particularly important as the demand for drinking water is increasing rapidly at the African scale.   585 

We suggest that further development include the use of non-linear modelling techniques such as Random Forest 586 

techniques. Such techniques have the potential to improve the quality of explanation and eventually prediction by 587 

incorporating spatial autocorrelation.  We also suggest that the models should be further validated using more 588 

homogeneous data sets. In a predictive mode, statistical models like those developed in the present manuscript can be 589 

used for exposure estimate in epidemiological studies on the effect of polluted groundwater on human health. Similar 590 

models can also be developed for others contaminants could be explored. 591 

Acronyms: 592 

BGS:                 British Geological Survey 593 
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DRASTIC:         Depth, Recharge, Aquifer media, Soil media, Topography, Impact of vadose    zone, Conductivity 595 

ECOWAS:         Economic Community of West African States 596 

FAO:                  Food and Agriculture Organization (United Nations)  597 

OECD:               Organization for Economic Cooperation and Development 598 

MODFLOW:     MOdular finite-Difference Flow model (U.S. Geological Survey) 599 
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UNEP:                United Nations Environment Programme 601 
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                            Table 1. Criteria used to identify nitrate data studies within web data bases. 1296 

Search engine Search criteria 

Google, Google Scholar, and 

Google Books 

  

  

  

  

  

  

  

Groundwater pollution + Africa 

Nitrate in groundwater + “African country name” or 

“African capital city name” 

Groundwater quality + Africa 

Nitrate and agricultural practices in Africa 

Groundwater vulnerability + “African country name” 

Pollution des eaux souterraines par les 

nitrates+  ‘’nom du pays Africain’’ (in French) 

Pollution des eaux souterraines + "nom du pays 

Africain" (in French) 

Nitrate concentrations under irrigated agriculture + 

“African country name” 

Web of Sciences, Scopus 

and Sciences Direct 

  

  

  

  

  

  

  

Groundwater pollution by nitrate + “African country 

name” 

Nitrate in groundwater +  “Africa capital city name” 

Pollution des eaux souterraines par les nitrates + 

"nom du capital des pays"(in French) 

Groundwater contamination by nitrate + “Africa 

countries” or  “African capital city name” 

Africa irrigated agriculture + nitrate 

Groundwater contamination by nitrate + “Africa 

country name” or  “African capital city name” 

Nitrate concentrations under irrigated agriculture + 

“African country name” 

Groundwater vulnerability to nitrate contamination + 

“Africa country name” or  “African capital city name” 

Books 
Groundwater pollution in Africa ( Xu and Usher, 

2006) 

 1297 
 1298 
 1299 
 1300 
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Table 2. Localisation of study sites considered in the meta-analysis 

Country Localisation  

Number of 

studies per 

country 

References 

Algeria 

North east of Algeria 

11 

Labar et al.,2012a 

Ouargla phreatic aquifer in Algeria: Valley of OuedM'y a Semar et al., 2013 

Nord-Algerian aquifer ( Mitidija) Sbargoud, 2013 

Medja area Rouabhia et al., 2010 

Biskra Messameh et al., 2014 

Case Skikda Labar et al., 2012b 

El Eulma Belkhiri and Mouni, 2012 

Mostaganem, Mecheria,  Naama, Tiaret, Bechar, and Adrar Bahri and Saibi, 2012 

Southern Hodna Abdesselam et al., 2012 

Tlemcen Abdelbaki et al., 2013 

Merdja plain Rouabhia et al., 2009 

Angola Angola  1 Angola Water Works, 2013 

Benin 

Cotonou  

6 

Totin et al., 2013 

Beninese coastal basin Totin et al., 2010 

Municipality of  Pobè Lagnika et al., 2014 

Dongo-pont  Bossa et al., 2012 

Cotonou BGS,2003 

Cotonou Xu et al.2006 

Bostwana 

Rural Bostwana 
3 

Batisani, 2012 

Kalahari Stadler et al., 2004 

Eastern fringe of the Kalahari near Serowe  Stadler et al., 2008 

Burkina Faso 

Burkina Faso 

4 

BGS, 2002 

Burkina Faso  Pavelic et al., 2012 

Sourou Valley Rosillon et al., 2012 

Ouagadougou Xu et al.2006 

Cameroon 

Mingoa River basin/Yaounde 

10 

Tabue et al., 2012 

Bafoussam Mpakam et al.,2009 

Coastal zone of Cameroon/Douala Nougang et al., 2011 

Logon Valley/Chad-Cameroun Sorlini et al., 2013 

Anga's river Kuitcha et al., 2013 

Rio del Rey Basin/South Western Coast  Wotany et al., 2013 

Mingoa/Yaounde catchment Tabue et al., 2009 
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2 areas of Cameroon and Chad in the Lake Chad basin Ngatcha and Daira, 2010 

Dschang Municipality Temgoua, 2011 

Cameroon  Xu et al.2006 

Central African Republic Bangui area 1 Djebebe-Ndjiguim et al., 2013 

Congo-Brazzaville 

Brazzaville 

5 

Matini et al., 2012 

Brazzaville Barhe and Bouaka, 2013 

Souht East Brazaville Laurent et al., 2010 

Souht East Brazaville Laurent and Marie, 2010 

South West Brazzaville Matini et al., 2009 

Egypt 

Alexandria 

7 

Abd El-Salam and Abu-Zuid, 2014 

Helwan  Abdalla and Scheytt, 2012 

Nile Valley Abdel-Lah and Shamrukh, 2001 

Tahta Easa and Abou-Rayan, 2010 

Kafr Al-Zayet District  Masoud, 2013 

Nile Delta aquifers / Western Nile Delta Sharaky et al., 2007 

Cairo, Egypt / province of Giza Sadek and El-Samie, 2001 

Ethiopia 

Dire Dawa 

13 

Abate, 2010 

Ethiopia BGS, 2001 

Raya valley Bushra, 2011 

Adis Ababa Engida, 2001 

Addis Ababa Kahssay et al. 

Koraro/Tigray Nedaw, 2010 

Ethopia  Pavelic et al., 2012 

Bulbule and Zway Bonetto et al., 2005 

Haromaya Watershed, Eastern Ethiopia Tadesse et al., 2010 

Akaki Tegegn, 2012 

Adis Ababa Xu et al.2006 

Dire Dawa of Sabian area Tilahun and Merkel, 2010 

Wondo Genet District, Southern Ethiopia Haylamicheal and Moges, 2012 

Ghana 

Ga East 

14 

Ackah et al., 2011 

Sawla-Tuna-Kalba District  Cobbina et al., 2012 

Akatsi,  Adidome and Ho Districts Ansa- Asare et al., 2009 

Ghana BGS, 2000 

Six districts in the eastern region of Ghana Fianko et al., 2009 

Kwahu West District Nkansah et al., 2010 

Ga-East District of Accra( Taifa) Nyarko, 2008 

Ghana  Obuobie and Barry, 2010 

Ghana  Pavelic et al., 2012 
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Densu basin Tay and Kortatsi, 2008 

Contamination in Ghana Xu et al.2006 

Western Region of Ghana Affum et al., 2015 

Gold Mining area in Ghana/Tarkwa Armah et al., 2012 

Lower Pra Basin of Ghana Armah, 2010 

Guinea-Biseau Boloma 1 Bordalo and Savva-Bordalo, 2007 

 

 

 

 

 

 

 

 

Ivory Coast 

Bonoua 

 

 

 

 

 

 

 

 

 

16 

Abenan et al., 2012 

Bondoukou region Ahoussi et al., 2012 

Bonoua aquifer (South-East Ivory Coast) Ake et al., 2010 

Abidjan District Douagui et al., 2012 

Adiaké Region Eblin et al., 2014 

Abidjan and Korhogo Kouame et al., 2013 

Abidjan aquifer Xu et al.2006 

South-West Ivory Coast Yao et al., 2013 

N'zi-Comoé (Centre East Ivory Coast) Kouassi et al., 2010 

Guiglo-Douekoué (West Ivory Coast) Kouassi et al., 2012 

N'zi, N'Zianouan municipality(South Ivory Coast) Ahoussi et al., 2012 

Bandama basin at Tortiya(Nothern Ivory Coast) Drissa et al., 2013 

Abia Koumassi village/Abidjan Loko et al., 2013a 

Slums of Anoumabo (Marcory) and AdjouffouPort-Bouet Osemwegie et al., 2013 

Catchment Ehania, South-Eastern Ivory Coast Dibi et al., 2013 

Hiré , South-West of Ivory Coast Loko et al., 2013b 

Kenya Kisaumi, Mombasa 1 Xu et al.2006 

Libya 

North-East Libya 

3 

Nair et al., 2006 

Alshati Salem and Alshergawi, 2013 

North East Jabal Al Hasawnah Sanok et al., 2014 

Malawi 

Lake Chilwa basin 

4 

Xu et al.2006 

Chikhwawa Grimason et al., 2013 

Upper Limphasa River/Nkhata-Bay district Kanyerere et al., 2012 

Blantyre Mkandawire, 2008 

Mali 

Bamako city 

3 

Xu et al.2006 

Mali  Pavelic et al., 2012 

Timbuktu Cronin et al., 2007 

Mauritania Mauritania 1 Friedel, 2008 

Morocco 

Oued Taza 

16 

Ben Abbou et al., 2014 

Taldla plain Aghzar et al., 2002 

Marrakesh Alaoui et al., 2008 

Meknès region Belghiti et al., 2013 

Oum Azza of Rabat Benabbou et al., 2014 
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Phreatic aquifer of M'nasra Bricha et al., 2007 

Taldla plain EL Hammoumi et al., 2013 

Mzamza-Chouia Asslouj et al., 2007 

Berrechid plain EL Bouqdaoui et al., 2009 

Taldla plain El Hammoumi et al., 2012 

Triffa plain Fekkoul et al., 2011 

Triffa plain Fetouani et al., 2008 

Essaouira Basin  Laftouhi et al., 2003 

Phreatic aquifer of Martil Lamribah et al., 2013 

Casablanca Smahi, 2013 

Souss-Massa basin (South-west Morocco) Tagma et al., 2009 

Mozambique 
Lichinga 

2 
Cronin et al., 2007 

Maputo city Muiuane,2007 

Niger 

Niamey  

3 

Chippaux et al., 2002 

Niamey Hassane, 2010 

Niamey Abou, 2000 

Nigeria 

Uzouwani (South Eastern Nigeria) 
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Ekere, 2012 

Lagos Adelekan and Ogunde, 2012 

Ondo State Akinbile, 2012 

Southwestern Abeokuta Aladejana and Talabi, 2013 

Lagos Anthony, 2012 

Lagos-State Balogun et al., 2012 

Nigeria BGS, 2003 

Konduga town Dammo et al., 2013 

Abuja Dan-Hassan et al., 2012 

Nigeria Edet et al., 2011 

Edo State/ South-South  Imoisi et al., 2012 

Jimeta-Yola (Northeastern of Nigeria) Ishaku, 2011 

Eastern Niger Delta Nwankwoala and Udom, 2011 

Anambra State Obinna et al., 2014 

Lagos  Ojuri and Bankole, 2013 

Afikpo basin Omoboriowo et al., 2012 

Benue State Ornguga, 2014 

Nigeria  Palevlic et al.,2012 

Niger Delta Rim-Rukeh et al., 2007 

Igbokoda, Southwestern Nigeria Talabi, 2012 

Lagos Wakida and Lerner, 2005 

Nigeria Xu et al.,2006 

Abia state Obi and George, 2011 
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Eti-Osa, Lagos Akoteyon and Soladoye, 2011 

Republic Democratic of Congo 
Kahuzi-Biega Nationals Parks 

2 
Bagalwa et al., 2013 

Kinshasa Longo, 2009 

Senegal 

Dakar Region  

7 

Brandvold, 2013 

Thiaroye Madioune et al., 2011 

Niayes region Sall and Vanclooster, 2009 

Dakar Wakida and Lerner, 2005 

Dakar Xu et al.,2006 

Dakar Diédhiou et al., 2012 

Yeumbeul/Dakar BGS, 2003 

Somalia Somaliland and Puntland 1 FAO-SWALIM, 2012 

South Africa 

South Africa 

6 

Maherry et al., 2009 

Philippi/Western Cape  Aza-Gnandji et al., 2013 

Mpumalanga Province Mpenyana-Monyatsi and Momba, 2012 

South Africa Musekiwa and Majola, 2013 

South Africa Pavelic et al., 2012 

Hex River Valley; Sandveld; Hertzogville Xu et al.,2006 

Sudan 

Southern Suburb of the Ondurman 

5 

Abdellah et al., 2013 

Khartoun Ahmed et al., 2000 

Karrary Salim et al., 2014 

Karrary Taha, 2010 

Khartoum Idriss et al., 2011 

Tanzania 

Tanzania 

8 

BGS, 2000 

Dar es Salam De Witte, 2012 

Dodoma Kashaigili, 2010 

Kilimandjaro region McKenzie et al., 2010 

Dar es Salam Mjemah, 2013 

Dar es Salam Mtoni et al., 2013 

Tanzania Palevlic et al.,2012 

Temekedistric/Dar es Salam Napacho and Manyele, 2010 

Tchad 

N'djamena 

3 

Guideal et al., 2010 

Lake Chad basin  Seeber et al., 2014 

Chad basin  Ngatcha and Daira, 2010 

Togo 
Agoè-Zongo 

2 
Kissao and Housséni, 2012 

Gulf/South of Togo Mande et al., 2012 

Tunisia 

North-east of Tunisia (Korba aquifer) 

8 

Zghibi et al., 2013 

Cap Bon Anane et al., 2014 

Cap Bon Charfi et al., 2013 

Djebeniana Fedrigoni et al., 2001 
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Metline-Ras Jebel-Raf Raf/North-East Hamza et al., 2007 

Sfax-Agareb Hentati et al., 2011 

El Khairat aquifer Ketata et al., 2011 

Chaffar/ South of Sfax Smida et al., 2010 

Uganda 
Uganda 

2 
BGS, 2001 

Kampala/Bwaise III Kulabako et al., 2007 

 

 

Zambia 

Petauke Town 

4 

Mbewe, 2013 

John Laing and Misisi de Lusaka  Xu et al.2006 

Copperbelt Province/(North Western Province; Lusaka Province ; 

Central Province ; Southern Province) 
Nachiyunde et al., 2013 

Lusaka Wakida and Lerner, 2005 

Zimbawe 
Kamangara 

2 
Dzwairo et al., 2006 

Epworth at Harare Zingoni et al., 2005 
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Table 3. Explanatory variables used in the MLR analysis.  

Explanatory variables Type 
Units or 

Categories 

Spatial 

resolution/Scale 
Date Data source(s) 

Land Cover/Land Use Categorical data -  300 m 2014 1UCL/ELIe-Geomatics (Belgium) 

Population density Continuous point data people/km2 2.5 km 2004 ESRI : www.arcgis.com/home 

Nitrogen application Continuous point data kg/ha  0.5° x 0.5° 2009 2SEDAC : www.sedac.ciesin.columbia.edu 

Climate class data Categorical data -  0.5° 1997 
Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The Netherlands) 

Type of regions Categorical data -  0.5° 2014 
Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The Netherlands) 

Rainfall class Categorical data mm/year 3.7 km 1986 UNEP : http://www.grid.unep.ch 

Depth to groundwater Categorical data m  0.5° x 0.5° 2012 British Geological Survey:  www.bgs.ac.uk/ 

Aquifer type Categorical data -  1:3750 000 2012 3GLiM data (Hamburg University) 

Soil type Categorical data  - 1 km × 1 km 2014 
ISRIC, World Soil Information: 

www.isric.org/content/soilgrids 

Unsaturated zone(impact of 

vadose zone) 
Categorical data  - 1:3750 000 2012 GLiM data (Hamburg University) 

Topography/Slope Continuous point data Percentage (%) 90 m 2000 
UCL/ELIe-Geomatics (Belgium) and 
4CGIAR/CSI 

Recharge Continuous point data mm/year 5 km 2008 
Global-scale modelling of groundwater recharge 

 (University of Frankfurt)  

Hydraulic conductivity Continuous point data m/day 
Average size of 

polygon ~100km2 
2014 5GLHYMPS data (McGill University) 

1Université Catholique de Louvain/Earth and Life Institute/Environmental sciences; 
2Socioeconomic Data and Applications Center (SEDAC); 
4Consultative Group for International Agricultural Research (CGIAR)/ Consortium for Spatial Information (CSI); 
3The new global lithological map database GLiM: A representative of rock properties at the Earth surface; 
5A glimpse beneath earth’s surface: Global Hydrogeology MaPS (GLHYMPS) of permeability and porosity. 

 

http://www.arcgis.com/home
http://www.sedac.ciesin.columbia.edu/
http://www.grid.unep.ch/
http://www.isric.org/content/soilgrids
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Table 4. Summary statistics of original and log (ln) transformed nitrate data. 

Statistic 

Maximum 

NO3
- 

concentration 

Maximum ln(NO3
-) 

concentration 

Mean NO3
- 

concentration 

Mean ln(NO3
-) 

concentration 

 

Minimum NO3
- 

concentration 

Minimum ln(NO3
- 

concentration 

Number  of data (-) 
206 206 82 82 185 185 

Minimum (mg/l or 

ln(mg/l))  

0.08 -2.52 1.26 0.231 0 0 

Maximum 

(mg/l or ln(mg/l)) 

4625 8.43 648 6.473 180 5.19 

Median 

(mg/l or ln(mg/l)) 

73.64 4.29 27.58 3.317 0.55 0.43 

Mean 

(mg/l or ln(mg/l)) 

190.05 3.99 54.85 3.169 8.91 1.08 

Variance 

((mg/l)2 or 

ln(mg/l)2) 

183778.94 3.39 163.92 43.901 537.07            1.78 

CV (-) 225.56 46.18 8085.08 1.935 260.08 123.04 

Standard Deviation 

(mg/l or ln(mg/l)) 

428. 69 1.84 89.91 1.391 23.17 1.33 

Kurtosis 60. 24 0.90 23.99 -0.167 25.57 0.37 

Skewness 6.75 -0.74 4.31 -0.294 4. 56 1.2 

 



 

38 
 

 
Table 5. Optimal linear regression model for explaining the logtransformed mean nitrate concentration 

Note: *** significant at p<0.001; ** significant at p<0.05 and * significant at p<0.1 

 

 
 
 
  

Coefficients:     

 Estimate Std. Error t value Pr (>|t|) 

(Intercept)                                                                    3.348e+00 6.624e-01 5.055 3.56e-06 *** 

Depth [0-7]                                                                    1.160e+00 3.895e-01 2.977 0.00404 ** 

Depth [7-25]                                                                    6.563e-01 3.693e-01 1.778 0.08002* 

Depth [25-50]                                                          1.114e+00 4.755e-01 2.342 0.02216 ** 

Depth [50-100]                                                          6.536e-01 4.005e-01 1.632 0.10744 

Depth [100-250]                                                     4.258e-01 6.766e-01 0.629 0.53129 

Recharge [0-45]                                                             -2.506e-01 6.089e-01 -0.412 0.68200 

Recharge [45-123]   -1.187e+00 6.055e-01 -1.961 0.05407* 

Recharge [123-224]                                                       -1.112e+00 6.134e-01 -1.812 0.07440* 

Recharge [224-355]                                                       -8.856e-01 6.089e-01 -1.455 0.15047 

Aquifer media [Crystalline rocks]                -9.851e-01 3.374e-01 -2.920 0.00477 ** 

Aquifer media [Siliciclastic sedimentary 

rocks]   

1.893e-02 3.916e-01 0.048 0.96158 

 

Aquifer media [Unconsolidated 

sediments rocks]     

-7.632e-01 3.384e-01 -2.255 0.02740 ** 

 

Aquifer media [Volcanic rocks]                   -5.245e-01 6.123e-01 -0.857 0.39469 

Population density (people/km2) 5.611e-04 6.887e-05 8.147 1.30e-11 *** 

Residual standard error: 0.9116 on 67 degrees of freedom 

Multiple R-squared: 0.65  

F-statistic: 8.693 on 14 and 67 DF, p-value=2.422e-10 < 0.001 
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Fig. 1. Hydrogeological setting of the African continent (from Hartmann and Moosdorf, 2012). 

 

Fig. 2. Distribution of studies identified across Africa. 
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Fig. 3.  The locations and the maximum values of nitrate in Africa superimposed on risk pollution map as 

generated in the previous generic vulnerability study of Ouedraogo et al., 2016. 

 
 

 
 

Fig. 4. Land Cover/Land Use map of Africa (modified from Defourny et al., 2014). 
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Fig. 5. Histograms of observed mean nitrate concentration (mg/l) and logtransformed mean nitrate concentration 

(ln (mg/l)). 

 
 

 

Fig. 6. Log transformed mean nitrate concentration for different land use classes. 
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Fig. 7.  Log transformed mean nitrate concentration for different aquifer system classes. 

 

 

 



 

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Log transformed mean nitrate concentration for different groundwater depth classes (a), recharge classes (b), population density classes (c) and nitrogen application rate 

classes (d). 

(a) (b) 

(c) (d) 



 

44 
 

 

Fig. 9. Predicted versus observed mean log transformed nitrate concentration (R2=0.65). 

 

 
 

Fig. 10. Normal probability distribution of model residuals for the predicted log transformed mean nitrate 

concentration. 
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Fig. 11. Relation between residuals and predicted log transformed mean nitrate concentration. 

 
 

 
 
 
 


