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Abstract:  5 

Within this study we propose a stochastic approach to simulate soil water dynamics in the 6 

unsaturated zone by using a non-linear, space domain random walk of water particles. Soil 7 

water is represented by particles of constant mass, which travel according to the Itô form of 8 

the Fokker Planck equation. The model concept builds on established soil physics by 9 

estimating the drift velocity and the diffusion term based on the soil water characteristics. A 10 

naive random walk, which assumes all water particles to move at the same drift velocity and 11 

diffusivity, overestimated depletion of soil moisture gradients compared to a Richards’ solver. 12 

This is because soil water and hence the corresponding water particles in smaller pore size 13 

fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing 14 

soil moisture, much less mobile. After accounting for this subscale variability of particle 15 

mobility, the particle model and a Richards’ solver performed highly similar during simulated 16 

wetting and drying circles in three distinctly different soils. Both models were in very good 17 

accordance during rainfall driven conditions, regardless of the intensity and type of the 18 

rainfall forcing and the shape of the initial state. Within subsequent drying cycles the particle 19 

was typically slightly slower in depleting soil moisture gradients than the Richards’ model. 20 

Within a real world benchmark the particle model and the Richards’ solver showed the same 21 

deficiencies in matching observed reactions of top soil moisture to a natural rainfall. The 22 

particle model performance, however, clearly improved after a straightforward 23 

implementation of rapid non equilibrium infiltration, which treats event water as different 24 

type of particle, which travel initially in the largest pore fraction at maximum velocity, and 25 

experience a slow diffusive mixing with the pre-event water particles within a characteristic 26 

mixing time. The proposed Lagrangian approach is hence a promising, easy to implement 27 

alternative to the Richards equation for simulating rainfall driven soil moisture dynamics, 28 

which offers straightforward opportunities to account for preferential, non-equilibrium flow.   29 
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1 INTRODUCTION 32 

Only a tiny amount of water is stored in the unsaturated zone: with an estimated volume of 33 

about 16,500 km
3
 (Dingman, 1994), soil moisture represents 0.05% of total fresh water. 34 

Nevertheless, this tiny storage amount exerts first order control on the partitioning of net 35 

radiation energy in latent and sensible heat flux (Kleidon and Renner, 2013a, b; Gayler et al., 36 

2014; Turner et al., 2014) - maybe the key process in land surface atmosphere exchange. 37 

Crucially, soil moisture crucially controls CO2 emissions of forest soils (Koehler et al., 2010), 38 

de-nitrification and related trace gas emissions into the atmosphere (Koehler et al., 2012) as 39 

well as metabolic transformations of pesticides (e.g. Holden and Fierer, 2005). 40 

Notwithstanding soil moisture controls splitting of rainfall into surface runoff and 41 

(preferential) infiltration (Zehe et al., 2007; Lee et al., 2007; Loos and Elsenbeer, 2011; 42 

Graeff et al., 2012; Bronstert et al., 2012; Zimmermann et al., 2013; Klaus et al., 2014). Soil 43 

water is furthermore a key factor limiting vegetation dynamics in savannah ecosystems (Saco 44 

et al., 2007; Tietjen et al., 2010).  45 

 46 

Water storage in the unsaturated zone is controlled by capillary forces which increase 47 

nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil (Horton 48 

and Jury, 2004). The standard approach to represent capillary and gravity controlled soil water 49 

dynamics is the Darcy-Richards equation in combination with suitable soil water 50 

characteristics. This continuum model essentially assumes that capillarity controlled diffusive 51 

fluxes dominate soil water dynamics under local equilibrium conditions even during rainfall 52 

driven conditions. Today we know that the assumptions of local equilibrium conditions (e.g. 53 

Hassanizadeh et al., 2002; Neuweiler et al., 2012) and a mainly diffusive flow are often not 54 

appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow 55 

imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, 56 

travelling in interconnected coarse pores or non-capillary macropores (Šimůnek et al., 2003; 57 

Wienhoefer et al. 2009; Klaus et al., 2013), and the slower diffusive flow in finer fractions of 58 

the pore space. As outlined in a couple of excellent review articles (e.g. Šimůnek et al., 2003; 59 

Beven and Germann, 2013), up to now many concepts have been proposed to overcome the 60 

inability of the Darcy – Richards concept to cope with not-well mixed or even non capillary, 61 

preferential flow. These concepts range from a) early stochastic convection (Jury, 1982), b) 62 

dual porosity and permeability approaches assuming overlapping and exchanging continua 63 

(Gerke and van Genuchten, 1993; van Schaik et al., 2014), to c) spatially explicit 64 
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representation of macropores as vertically and laterally connected flow paths (Vogel, 2006; 65 

Klaus and Zehe, 2010; Zehe et al., 2010a; Wienhoefer and Zehe, 2014) and d) non local 66 

formulations of the Richards equation (Neuweiler et al., 2012). Notwithstanding the listed 67 

short comings, the Darcy Richards concept works well when soil water dynamics are 68 

dominated by capillarity particularly during radiation driven conditions (Zehe et al., 2010b; 69 

Zehe et al., 2014). Furthermore, it would be foolish to mistake the limitations of the Richards 70 

equation with non-importance of capillary forces in soil. Without capillarity infiltrating 71 

rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium 72 

state - there would be no soil water dynamics at all, probably even no terrestrial vegetation 73 

and the water cycle would operate in a complete different manner without capillary forces. 74 

Alternatives to the Darcy-Richards approach particularly for rainfall driven soil moisture 75 

dynamics are thus highly desirable, as long as they preserve the grain of “truth” about 76 

capillarity as underlying key control.  77 

 78 

Here we propose such an alternative approach to simulate infiltration and soil moisture 79 

dynamics during and shortly after rainfall events in an effective, stochastic and yet physical 80 

way. Specifically, we hypothesise that infiltration and soil water flow during and shortly after 81 

rainfall events may be simulated by means of a non-linear random walk, representing soil 82 

water by a variable number of particles. To the best of our knowledge, similar Lagrangian 83 

approaches were proposed by Davies and Beven (2012) and taken much further by Ewen 84 

(1996b, a). In accordance with the latter approach our model concept is essentially built on 85 

capillarity by making use of soil physics and established soil water characteristics.  86 

 87 

Particle tracking based on a random walk is usually employed for simulating advective-88 

dispersive transport of solutes in the water phase, but not for the soil water phase itself (Delay 89 

and Bodin, 2001; Klaus and Zehe, 2011; Dentz et al., 2012). For linear problems, when 90 

neither the dispersion coefficient nor the drift term depend on solute concentration and thus 91 

particle density, a time domain representation of the random walk is favourable as it 92 

maximises computational efficiency (Dentz et al., 2012). Non-linear problems, such as 93 

transport of nonlinearly adsorbing solutes or the envisaged simulation of soil water dynamics, 94 

require a space domain, random walk, because the drift and diffusion term change non-95 

linearly with changing particle density. Hence an integral treatment is in appropriate as the 96 

superposition principle is invalid for non-linear problems.    97 
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 98 

In the following we introduce the model concept and present different benchmarks to test its 99 

capability to simulate soil moisture dynamics during and shortly after rainfall events for 100 

equilibrium and non-equilibrium conditions. More specifically we a) detail the underlying 101 

theory and model implementation, b) reflect on obvious and non-obvious implications of 102 

treating water flow in a porous medium as a non-linear random walk and c) propose a straight 103 

forward way to treat non-equilibrium infiltration in section 2. Section 3 explains the model 104 

benchmarking a) against a model based on the Darcy-Richards concept for various soils, 105 

initial and boundary conditions as well as b) against soil moisture observations obtained in a 106 

rural loess catchment in Germany. After presenting the results in section 4, we close with 107 

discussion and conclusions in section 5.  108 

2 THEORY AND MODEL IMPLEMENTATION  109 

2.1 A random walk approach for diffusive water flow in the soil matrix 110 

Our starting point is the Richards equation in the soil moisture based form.  111 


































)(k)(D

z
)(D

zz

)(k

t
(Eq.1) 112 

[L
3
/L

3
] is the volumetric soil water content. Eq. (1) can be re-written in as, 113 

 114 










































z
)(D

z

)(k

zt
 (Eq. 2.), 115 

 116 

and Eq. 2 can be further re-written into a divergence based form 117 

 118 
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 120 

Equation 3 is formally equivalent to the Fokker-Planck equation. The volumetric soil water 121 

content [L
3
/L

3
] corresponds to the concentration C [M/L

3
] in the advection diffusion 122 

equation; the first term corresponds to a drift/advection term z/)(D/)(k)(u  [L/T] 123 

characterizing downward advective water fluxes driven by gravity. The second term 124 
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corresponds to the dispersive/diffusive solute flux, by representing diffusive water movements 125 

driven by the soil moisture gradient and controlled by the diffusivity D() [L
2
/T] of soil water. 126 

D is the product of the hydraulic conductivity k() [L/T] and the slope of the soil water 127 

retention curve 



 [L]. This formal equivalence and the work of Ewen (1996 a, b) motivated 128 

the idea to simulate infiltration and soil water movement by a random walk of a large number 129 

of particles. The soil moisture profile at a given time and within a given spatial discretisation 130 

is represented by the spatial density of “water particles” at this time. Water particles are 131 

constant in mass and volume. The trajectory of a single particle within a time step t is 132 

described by the corresponding Langevin equation:    133 
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With Z being a random number, uniformly distributed between [1,-1]. Or when using standard 135 

normally distributed random numbers, N, one obtains alternatively.  136 
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 corrects the drift term in the case of a spatial variable diffusion as 139 

recommended by (Kitanidis, 1994; Roth and Hammel, 1996; Michalak and Kitanidis, 2000; 140 

Elfeki et al., 2007; Uffink et al., 2012). The main difference to the usual linear random walk is 141 

that D and k depend on soil moisture and thus the water particle density. Here we 142 

parameterise this dependence by means of the van-Genuchten (1980) and Mualem (1976) 143 

model (Figure 1).  144 

2.2 Challenges of the particle based approach 145 

2.2.1 Non-linear dependence of D and k on particle density 146 

The obvious implication of the non- linear dependence of the drift velocity and diffusion term 147 

on the soil water content is that a short time stepping in combination with at least a predictor 148 

corrector scheme is needed to account for the non-linear change of both parameters during an 149 

integration time step.  150 

 151 
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The non-obvious implication arises from the fact that the soil water retention curve reflects 152 

the cumulative pore size distribution of the soil (Jury and Horton, 2004) and the actual soil 153 

moisture reflects water that is stored among different size fractions of the wetted pore space.  154 

At first sight, one could expect an approach where all water particles in the pore space 155 

experience the same diffusion coefficient D((t)) and drift k((t))/(t) to work well for high 156 

particle numbers. This straightforward approach is in analogy to the treatment of solutes in a 157 

random walk, where all solute particles in a flow field experience indeed the same dispersion, 158 

as they experience the same “average path length”. Hence their diffusion step scales for all 159 

solute particles with the same coefficient. A closer look reveals, however, that it might be not 160 

that straightforward in the pore space, because water flow velocity decreases with decreasing 161 

pore size, which is reflected in the non-linear decrease in soil hydraulic conductivity with 162 

decreasing soil water content. This non-linear decrease implies that the water particles 163 

representing the actual soil water content (t) do not all travel at the same constant drift 164 

velocity k((t)) and diffusivity D((t)). In fact, only a small fraction of the particles, 165 

representing the water in the largest wetted pores, travels according to these values; the 166 

remaining water particles, representing water stored in smaller pores, are much less mobile. 167 

To account for this distribution of mobility the diffusive step in the water particle model 168 

cannot scale for all particles with same maximum D((t)), it needs to reflect the distribution of 169 

D within the different wetted pore sizes fraction (Figure 1). To achieve this, we subdivide the 170 

particles in a grid cell into N bins (for instance 800) and calculate k and D starting from the 171 

residual moisture content to the r stepwise to (t) using a step with  ((t)-r)/N. The 172 

random walk step for particles within a given bin is hence as follows: 173 
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 (Eq. 6) 174 

 175 

Essentially, we propose that a correct random walk implementation needs to account for the 176 

different mobility of the water particles in different pore sizes in the outlined manner. 177 

Contrarily, we expect a “naive” execution of Eq. (5), assuming that all particles in a given 178 

grid element as equally mobile according to k((t)) and D((t)), to overestimate fluxes and 179 

depletion soil moisture gradients.  180 

 181 
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2.2.2 The necessity to operate at high particle numbers 182 

Another challenge when treating water flow in a Lagrangian approach is that a much larger 183 

number of particles is necessary compared to random walk applications of solute transport. 184 

Why so? The latter treats cases when a solute invades a domain with a small or zero 185 

background concentration of this solute. The total solute mass in the system can thus be 186 

represented by the order of 10
4
 – 10

5
 particles even in large, two-dimensional domains at a 187 

good signal-to-noise ratio (Roth and Hammel, 1996; Zehe et al,. 2001). In the case of soil 188 

water dynamics the “background concentration”, i.e. the stored pre-event water mass in the 189 

soil profile, is much larger than the input signal of infiltrating event water. The particle 190 

number must thus be considerably increased to the order of 10
6
 in a one dimensional domain, 191 

to ensure that the rainfall input is represented by a number of particles which is sufficiently 192 

high for a stochastic approach. 193 

2.3 Equilibrium and non-equilibrium infiltration 194 

Infiltration into the soil at a given t is represented as input of event water particles N
in

(t) 195 

into the upper model element, thereby changing the soil water content by . Local 196 

equilibrium conditions, as assumed in the Darcy-Richards concept, imply that water infiltrates 197 

into the smallest non-wetted part of the pore space (as sketched in Figure 1). Consequently the 198 

random walk of the event and pre-event water particles in the largest wetted pores is 199 

determined by D(t  and k(t (Figure 1).  200 

 201 

A straightforward approach to account for non-equilibrium infiltration is to assume that event 202 

water enters into and travels in the coarsest pores of the soil, thereby wetting the path of 203 

minimum flow resistance. This implies that diffusive mixing from these coarse pores into the 204 

smallest non-wetted part of the pore space is much slower than the gravity driven downward 205 

flow. Non-equilibrium infiltration may hence be simulated, by assigning the saturated 206 

hydraulic conductivity ks as drift term for “event water particles” and assuming small 207 

diffusive mixing, for instance the lower 5 or 10% quantile of D(). From the latter we specify 208 

the time scales for the event water to mix with the pre-event water as explained further in 209 

section 3.2. 210 
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2.4 Model implementation and execution 211 

2.4.1 Model parameters, initial and boundary conditions  212 

The proposed water particle model is coded in Matlab and requires in its simplest form the 213 

same parameters, initial and boundary conditions as a numerical solver of the Richards 214 

equation (soil hydraulic functions for the entire soil profile as well as a rainfall time series). 215 

Although the random walk itself does not require a spatial discretisation, we employ a grid to 216 

calculate particle densities and soil water contents during run time. The model is populated 217 

with the initial number of particles based on definitions of either soil moisture or matric 218 

potential of the profile and its selected spatial discretisation. The particle mass m [M] is equal 219 

to the integral water mass of the initial state divided by N. The spatial gradient of the 220 

diffusion coefficient in Eq. (6) can hence be estimated by means of a centered finite 221 

difference.  222 

Initial positions of the pre-event water particles in a given grid cell are uniformly distributed. 223 

Infiltration or soil evaporation is represented as particle input N
in

(t) or loss N
out

(t) into/from 224 

the upper model element, by dividing the infiltrated/evaporated water mass in a time step by 225 

the particle mass. Infiltrating particles start at z=0. Depending on the selected lower boundary 226 

condition, particles may drain freely from the domain (free drainage boundary), a fixed 227 

number of particles is kept (constant head boundary), or particles are not allowed to leave the 228 

domain (zero flux boundary).  229 

 230 

For the implementation of non-equilibrium infiltration we treat event water particles as 231 

separate type of particles (Figure 1), similar to a different kind of solute that is not influenced 232 

by the pre-event water particles unless both fractions are well mixed. Shortly after infiltration 233 

we assume event particles to be mainly controlled by gravity; they travel according to k(s) 234 

and experience a small diffusive motion characterized by Dmix. Dmix determines the time scale 235 

at which pre-event and event water particles get mixed (compare Eq. 3). Non-equilibrium 236 

implies that the time scale for diffusive mixing tmix is much larger than the time scale of 237 

advective transport tad, through a grid element z which implies the grid Peclet number being 238 

much larger than 1:   239 

 240 
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 242 

Based on this time scale mixing can be characterised by, for instance, using an exponential 243 

distribution (as proposed by Davies and Beven, 2012). In our study we selected an even 244 

simpler approach, assuming uniformly distributed mixing between the time when particle 245 

enter the domain and the mixing time. This approach maximises the entropy of the mixing 246 

process (Klaus et al., 2015) thereby minimizing the number of a priory assumption; because 247 

mixing of each particle is equally likely. 248 

 249 

2.4.2 Time stepping and subscale variability of particle mobility 250 

For model execution we choose a predictor corrector scheme: We predict the particle 251 

displacement for 0.5*t, based on k((t)), D((t)), update (t+0.5*t) based on the new 252 

particle density distribution and compute the full time step using k((t+0.5*t)), 253 

D((t+0.5*t)). As k((t)) and D((t)) are only available at the discrete nodes of the 254 

simulation grid, these are interpolated to the particle locations using inverse distance weights. 255 

 256 

We tested two different approaches to cope with the above explained non-linear dependence 257 

of D and k on (t) and thus on particle density. The first, referred to as “full mobility mode”, 258 

distributes D among the particles to resemble the shape of D between D(r) and D((t)) and of 259 

k between k(r) to k((t)) according to Eq. (6). To this end we subdivided the particles in a 260 

grid cell representing the actual soil water content (t) and the D and k curves in different 261 

numbers of bins, as shown in Figure 1, to estimate the sensitivity of N. This full mobility 262 

approach does, however, imply the need to calculate a large chunk of rather marginal 263 

displacements as k and D decline rather fast. The computational less extensive alternative is to 264 

calculate the displacement according to Eq. 2 exclusively for the fastest 10 or 20 % of water 265 

particles and assuming the remaining ones to be immobile. Of key interest in this context is 266 

also the question whether the fast mobile and the slow immobile particles fractions mix across 267 

the pores size fractions or not (Brooks et al., 2010). Mixing can be implemented by assigning 268 

the particles randomly to the different bins of during each time step D(), while no mixing 269 
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can be realised by always assigning the same particle to same pore size fraction/ “mobility 270 

class”. Within our simulations we tested both options. The second option turned out to be 271 

clearly superior with respect to matching simulations with a Richards’ solver. Alternatively, 272 

we implemented also the straightforward/naïve approach, where all particles in a grid cell 273 

travel according to the same diffusion coefficient and drift velocity.   274 

3 MODEL BENCHMARKING  275 

3.1 Particle model versus Richards equation 276 

In a set of benchmarks we compared the particle model (PM) to a numerical solver of the 277 

Richards equation, which was also implemented using Matlab using the same predictor 278 

corrector scheme. We simulated wetting and drying cycles for three soils with rather different 279 

soil water characteristics (Table 1). The first is a sandy soil developed on limestone located in 280 

the Attert experimental basin in Luxembourg (Martinez-Carreras et al., 2010; Wrede et al., 281 

2015). The second is a young highly porous and highly permeable soil on schistose periglacial 282 

deposits in the Attert basin, which predominantly consists of fine silt aggregates with relative 283 

coarse inter-aggregate pores. The third is a Calcaric Regosol on loess with a large fraction of 284 

medium size pores, which is located in the Weiherbach catchment in south western Germany.  285 

 286 

These soils were exposed to simulated wetting and drying cycles summarized in Table 2, by 287 

combining block rains of different intensity with periods of no flux at the upper boundary. 288 

Thereby we compared two different initial soil moisture profiles: a uniform soil water content 289 

of 0.269 m
3
m

-3
 and an s-shaped profile. The intensities of block rain events were selected to 290 

be small enough to avoid infiltration excess. Both models were operated at a constant grid 291 

size of 0.025 m and a coarser grid size of 0.05 m, to explore their related sensitivity. The 292 

model domain had a vertical extent of 1.5 m. Additionally, we run the particle model at 293 

different time steps to work out the upper limit for a feasible model execution. The initial 294 

number of particles was N
ini

 = 10
6 

in all cases.  295 

 296 

Additionally, we tested the model during a 3 h long drainage scenario starting from a bell 297 

shaped initial soil moisture profile. In the latter case the model domain was extended to a 298 

depth of 2.5 m. Last not least, we compared both models in the sandy soil using a 2h long 299 

convective rainfall event of 16 mm observed at a 6 minutes resolution in summer 2014 in the 300 

Attert catchment (Figure 1 d). 301 
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 302 

3.2 Real world benchmarks: moderate rainfall event on a loess soil  303 

Additionally, we evaluated the particle model against moisture dynamics observed at the 304 

central meteorological station in the Weiherbach catchment (Zehe et al., 2001; Plate and 305 

Zehe, 2008). At this site past rainfall records and soil moisture records in 0.025, 0.1, 0.2, 0.3 306 

and 0.4m are available at a 6 min resolution. We carefully selected a moderate nocturnal 307 

rainfall event, to avoid the influence of macropore flow and evaporation on wetting and 308 

subsequent drying. The event had a total amount of 4 mm with maximum rainfall intensity of 309 

2 mm/h, started at the 9
th

 of May at 1:15 and lasted until 4:15 a.m. The changes in soil 310 

moisture in the upper layers revealed a recovery of 90% of the rainfall water, which implies 311 

that a small fraction of the water might have bypassed the sensors.  312 

 313 

Both models were operated at the fine spatial discretisation of 0.025 m. We set the number of 314 

pre-event particles to 10
6
. The simulation period ranged from 0:05 until 5:45 a.m. at this day, 315 

to allow for a drainage period but to stop simulation before evaporation in the natural system 316 

kicked in. Hydraulic properties of the top and subsoil of the Calcaric Regosol are given in 317 

Table 3. Both models were initialised by assigning the observed soil moisture values, which 318 

increased from 0.18 m
3
m

-3
 in 0.025 m to 0.33 m

3
m

-3
 in 0.4 m depths, using inverse distance 319 

interpolation between the grid nodes. As no surface runoff occurred during this event, rainfall 320 

was treated as a flux boundary condition. 321 

4 RESULTS 322 

In the following we present final soil moisture profiles simulated with the Darcy - Richards 323 

and the particle model for selected runs and compare the temporal evolution of soil moisture 324 

profiles in form of 2d colour plots. In terms of computing time we noted no remarkable 325 

difference between the particle model and the Richards solver. This is because the code is 326 

implemented by relying almost exclusively on array operations, thereby avoiding time-327 

consuming loops over all particles. 328 

4.1 Particle model versus Richards equation 329 

4.1.1 Sandy soil on lime stone  330 

Figure 2 presents the final soil moisture profiles for both models for selected simulation 331 

experiments. Panel a) reveals that a treatment of soil moisture dynamics as naive random walk 332 
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(solid green line), when all particles travel according to D((t)) and k((t)), implies 333 

clearly - as expected - too fast mixing of event water particles into larger depths compared to 334 

the Richards equation (solid blue line). However, when we accounted for the different 335 

mobility of water particles in different pore sizes, by resembling the distribution of D and k 336 

according to Eq. (6) with a suitable number of bins (N), simulations with the particle model 337 

converge quickly converge to the simulations with the Richards equation. While a simulation 338 

with N = 10 bins shows still considerably differences to the Richards equation, a simulation 339 

with N = 50 bins provides already a much better match. When operating the particle model 340 

according to Eq. 6 using N = 800 bins, the model performed highly similar to the Richards 341 

equation for all simulation experiments. This can be deduced from panels b) and c) in Figure 342 

2, which show the simulated soil moisture profiles which evolved from a uniform and a s-343 

shaped initial state after a block rain input of 20mm, respectively. Panel d) in Figure 2 344 

additionally corroborates the similar performance of both models during a simulated 1h 345 

wetting and 2h drying cycle. The particle model slightly underestimates the depletion of the 346 

soil moisture gradient, which can be deduced from the small overshoot at the top of the profile 347 

and final profile and the slightly smaller values at a depth between 15 and 60 cm. For the 348 

sandy soil we also found in general a very good agreement between the “full mobility” 349 

particle model and a simulation assuming a mobile fraction of 20% (solid green line Figure 2 350 

b).  351 

Figure 3 (a1 and a2) presents a comparison of both models for two different grid sizes, during 352 

a simulation of a block rain of 40 mm in 1h. While the simulations with the different models 353 

at a grid size of 0.05 m were clearly different in the depth of 0.2 and 0.4 m, they performed 354 

nearly identical at the finer grid size. Stronger differences between the particle model and the 355 

Richards model occurred, however, at the end of a 3h long drainage experiment, which started 356 

from a bell shaped initial state (Figure 3 b1 and b2). Additional simulations without drift term 357 

in Eq. 6 and without gravity flux in the Richards equation performed in contrary nearly 358 

indistinguishable (not shown). This suggests that during drainage conditions gravity driven 359 

flow in the Richards model is slightly faster than in the particle model, which explains the 360 

slight upward shift of the corresponding soil moisture peak.  361 

However, both model perform nearly identical during the simulation of the convective rainfall 362 

event, as corroborated by Figure 3 d and Figure 4 c and d. Maximum feasible time steps for 363 

the particle model in fast draining soils were 200 s, as corroborated by Figure 3 c. In this 364 
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context it is worth mentioning that the Richards solver already started oscillating at time steps 365 

larger than 40 s. 366 

Figure 4 sheds light on differences in simulated soil moisture dynamics by providing the 367 

temporal evolution of simulated soil moisture profiles in the form of 2d colour plots. Figure 4 368 

a and b corroborate that small differences between the particle model and the Richards solver 369 

arise mainly during the 2 h drainage period that follows on the 1h long wetting phase. 370 

However, these differences are small, as further corroborated by 2d colour plots of the 371 

simulated drainage experiment (Figure 4 e and f). Both models perform highly similar during 372 

wetting periods in form of block rains (Figure 4 a and b) or during simulation of natural 373 

rainfall events (Figure 4 c and d). 374 

  375 

We may hence state that the particle model might be not suited for long term simulations in 376 

coarse grained, fast draining soils during non-driven conditions. It appears however as a 377 

feasible alternative to the Richards equation for simulation of rainfall driven soil moisture 378 

dynamics in these soils. 379 

 380 

4.1.2 Young silty soil on schist 381 

Simulations of soil water dynamics for the young silty soil on schist, revealed again a highly 382 

similar performance of the Richards equation and the full mobility particle model. This is 383 

corroborated by Figure 5 for a simulated block rain of 20 mm in 1h (Panel a) and subsequent 384 

drying of 2h duration (Panel b). Both models perform also highly similar when starting with 385 

an s-shape initial soil moisture profile (Panel c) and during a 40 mm block rain (Panel d). 386 

During the latter case small differences occurred mainly close to the soil surface as shown for 387 

the final state (Figure 5 d) and the course of the simulation (Figure 6 c and d).  388 

 389 

Again the particle model was slightly less efficient in depleting soil moisture gradients during 390 

longer drainage periods. This is corroborated by the overestimation of topsoil moisture 391 

simulated with the particle model compared to the benchmark based on the Richards equation 392 

(Figure 5 c) and the corresponding colour plot in Figure 6 a and b). The differences between 393 

simulations of the particle model operated in the full mobility mode and at a mobile fraction 394 

of 0.1 (Figure 5 panel c) were as small as in the sandy soil.  395 

 396 



14 

 

We may hence also state that the particle model might be a feasible alternative to the Richards 397 

equation for simulation of for rainfall driven soil moisture dynamics in soils which consists of 398 

fine aggregated, silty material. Compared to the Richards equation the particle model shows 399 

the same type of deficiency as during simulations for the sandy soil, a slightly too slow 400 

depletion of gradients due to a slightly too slow gravity flux, but less pronounced.  401 

  402 

4.1.3 Calcaric Regosol on loess 403 

Simulations of soil water dynamics in the either finer grained Calcaric Regosol on loess 404 

revealed again that both models performed highly similar, particularly when operating the 405 

particle model at a mobile fraction of 0.1. This is corroborated for 3h long block rain with a 406 

total amount of 15 mm (Figure 7a). While the particle model in the full mobility mode 407 

deviates from the benchmark model by a small underestimation of top soil moisture and an 408 

overestimation of the wetting front propagation to a depth of 0.25 m, the model with a mobile 409 

fraction of 0.1 yields an almost perfect match, also within a subsequent drying phase of 3h (as 410 

shown in Figure 7 c). The accordance between both models during a combined wetting and 411 

drainage phase starting from the s-shaped initial state was of similar quality, as can be 412 

deduced from the corresponding soil moisture profiles in Figure 7 (b and d) and the 413 

corresponding 2d colour plot of the simulated space-time soil moisture patterns (Figure 8 a 414 

and b).  415 

 416 

We may hence state that the achievement of a very good and numerically efficient match of 417 

the Richards model required an operation of the particle model at a mobile fraction of 0.1. 418 

This is likely explained by the even finer pore sizes in the Calcaric Regosol, which is reflected 419 

in the corresponding air entry values in Table 1. This finding suggest that 90% of the water 420 

stored in soil this fined grained soil does not contribute to rainfall driven soil moisture 421 

dynamics, but compiles a rather immobile soil moisture stock. 422 

  423 

4.2 Real world benchmark  424 

The real world benchmark in the Calcaric Regosol revealed that the particle model operated at 425 

a mobile fraction of 0.1 and the Richards solver performed again almost identical. This can be 426 

deduced from the comparison of corresponding 2d colour plots of the simulated space-time 427 

soil moisture patterns in Figure 8 c and d as well as from the soil moisture profiles at the end 428 

of precipitation event (after 15000 s, Figure 9 a) and the end of the simulation (after 21000 s, 429 
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Figure 9 b). Both models overestimate the observed soil moisture increase in 0.025 m at both 430 

time steps but clearly underestimate the observed soil moisture increase in 0.1 m depth at the 431 

end of the simulation. Hence, although both models perform nearly identical, none of them 432 

does perform acceptable with respect to the observations.  433 

 434 

A possible explanation for the overestimation of the soil moisture change in 0.025 m by the 435 

models, which is consistent with a non-closed water balance, is that a part of the rainfall water 436 

bypassed the measurement device due fast non-equilibrium infiltration in connected coarse 437 

pores. To test this idea, we performed additional simulations by treating infiltrating event 438 

water particles as a second particle type infiltrating into the largest pores, which uniformly 439 

mixed with the pre-event water particles within the time tmix. Figure 9 c) and d) compare the 440 

event water content and total content (as the sum of pre-event and mixed water) for two 441 

different mixing times tmix= 4004 (Dmix =1.5 10
-7

 m
2
s

-1
) and 17144 (Dmix =3.3 10

-8
 m

2
s

-1
), 442 

which correspond the lower 50 or 30 % quantiles of D(),respectively. Particularly, the model 443 

with the longer mixing time performed distinctly differently to the particle model, assuming 444 

well mixed infiltration. Event water infiltrates and bypasses the pre-event water to a depth of 445 

between 0.1 and 0.3 m in a clearly advective fashion. Related volumetric pre-event water 446 

contents peak at 0.04 m
3
m

-3 
(Figure  9 c and d). Consequently, the rainfall input leaves a much 447 

weaker signal in the well mixed water fraction (Figure 10 c), reflecting those event water 448 

particles which diffusively travelled from the coarse pore fraction into the smallest non-449 

wetted fraction. In case of the faster mixing most of the event water is already mixed with the 450 

pre-event water at the end of the rainfall event (Figure 9 c) and water is completed mixed at 451 

the end of the simulation (Figure 9 d). Consequently, the differences with the simulation 452 

assuming equilibrium infiltration are much less pronounced. 453 

 454 

None of the selected mixing time scales did however yield a systematic better performance of 455 

the particle model, in a sense that the mixed water fraction, which we assumed to be in good 456 

contact with the TDR, better matched the observation at 0.025 m depth. This is corroborated 457 

for the final states in Figure 10 c) and d). We thus performed an additional model run 458 

assuming a diffusive mixing according to the 40 % quantile of D(), which corresponds to tmix 459 

= 7800s (Dmix = 8.8 10
-8

 m
2
s

-1
). In this case the simulated well mixed water content was at 460 

both times and in good accordance with the observations at 0.025 m and 0.1 m. We may, 461 
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hence, state that the proposed explanation is feasible and that the particle model allows 462 

treatment of non-equilibrium infiltration in a straightforward manner. 463 

5 DISCUSSION AND CONCLUSIONS  464 

5.1 Subscale variability of water particles – the key to a reasonable 465 

performance of non-linear random walk 466 

This study provides evidence that a non-linear, random walk of water particles is a feasible 467 

alternative to the Richards equation for simulating rainfall driven soil moisture dynamics in 468 

the unsaturated zone in an effective and yet physical manner. The model preserves capillarity 469 

as first order control and estimates the drift velocity and the diffusivity term based on the 470 

unsaturated soil hydraulic conductivity and the slope of the soil water retention curve. As 471 

expected, a naive random walk, when all particles in a grid element travel according to 472 

k((t)), D((t)), overestimated depletion of soil moisture gradients compared to the Richards 473 

solver within three different soils for all tested initial and boundary conditions. The key for 474 

improving the particle model performance was to account for the fact that soil water in 475 

different pore size fractions is not equally mobile. When accounting for this subscale 476 

variability in particle mobility in different pore sizes by resampling the D and k curves from 477 

their minimum to the actual values with a suitable numbers of bins (Eq. 6), the particle model 478 

performed in good to very good accordance with the Richards solver in three distinctly 479 

different soils. Both models were in very good accordance during rainfall driven conditions, 480 

regardless of the intensity and type of the rainfall forcing and the shape of the initial state.   481 

 482 

Within subsequent drying cycles the particle was typically slightly slower in depleting soil 483 

moisture gradients than the Richards model. Test simulations corroborated that the likely 484 

reason for this is the fact that gravity driven flow in the Richards model is slightly faster than 485 

in the particle model. This reason is consistent with our finding that these differences are 486 

larger in the fast draining sandy soil with low retention properties than in the more fine 487 

grained soils. 488 

  489 

5.2 Learning about inherent assumption and stepping beyond limitations of 490 

the Richards approach  491 

Alternatively, we tested a less computational demanding approach, assuming only the 10 or 492 

20% of the fasted particles to be mobile, while treating the remaining particles located in 493 
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smaller pores sizes as immobile. In the cases of the sandy soil and the silty soil a mobile 494 

fraction of 0.1 or 0.2 revealed almost identical results as the full mobility model. In the fine 495 

porous Calcarig Regosol the differences between the full mobility model and the model 496 

operated at a mobile fraction of 0.1 were slightly stronger. The mobile fraction mode was 497 

generally less dispersive then the full mobility model and particularly in better accordance 498 

with the Richards solver for all simulation experiments. Our simulations hence provide clear 499 

evidence that 90% of the water stored in fine porous cohesive soils does not contribute to 500 

rainfall driven soil moisture dynamics, but compiles a rather immobile soil moisture stock. 501 

 502 

In this context we compared also the cases of perfect mixing and no mixing between mobile 503 

and immobile water particles between different time steps (as explained in section 2.4.2). The 504 

second option was clearly superior with respect to matching simulations with a Richards’ 505 

solver, while the other yielded strong differences. We may thus state that the particle model is 506 

a suitable tool to “unmask” a) inherent implications of the Darcy-Richards concept on the 507 

fraction of soil water that actually contributes to soil water dynamics and b) the inherent very 508 

limited degrees of freedom for mixing between mobile and immobile water fractions. Our 509 

findings suggest, furthermore, that the idea of two separate water worlds, one supplying 510 

runoff the other supplying transpiration, which is advocated in Brooks et al. (2010), is a 511 

somewhat naïve interpretation of soil physics and the inherently low degrees of freedom water 512 

to mix across pores size fractions, than a real mystery. 513 

 514 

In a real world benchmark the particle model matched simulations with the Richards solver 515 

again very well. However, both models clearly overestimated top soil wetting compared to 516 

observations, and underestimated wetting in 10 cm at the end of the simulation. An asset of 517 

the particle based approach is that the assumption of local equilibrium equation during 518 

infiltration may be easily ignored. Specifically, we did this to test the idea whether bypassing 519 

of a fast water fraction might explain the model bias in the topsoil. To this end infiltrating 520 

event water particles were treated as second particle type, which travel initially mainly gravity 521 

driven in the largest pore fraction at maximum drift, and yet experience a slow diffusive 522 

mixing with the pre-event water particles within a characteristic mixing time. Simulations 523 

with the particle model in the non-equilibrium mode performed evidently distinctly different 524 

in the topsoil, and were rather sensitive to the diffusion coefficient Dmix describing mixing of 525 

event water particles. When assuming Dmix equal to the 40% quantile of the D() curve, the 526 
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mixed water fraction of the particle model was in good accordance with observed soil 527 

moisture changes at0.025 and 0.1 m depths after the rainfall and at the end of the simulation 528 

period.  529 

 530 

Our findings are in line with the early findings of Ewen (1996b). The diffusive mixing term 531 

parameter Dmix is perhaps easier to interpret as the  parameter Ewen (1996b) introduced to 532 

account for displacement of old water by new water particles, notwithstanding that 533 

displacement of pre-event water seems to play a key role in feeding macropore flow (Klaus et 534 

al, 2013; Klaus et al., 2014). Contrary to the exponential mixing term Davis and Beven (2012) 535 

introduced to stop rapid flow in the MIPs model, we used a uniform distribution which 536 

maximizes entropy of the mixed particles (Klaus et al., 2015).  537 

5.3 Conclusions and Outlook 538 

We conclude overall that the proposed non-linear random walk of water particles is an 539 

interesting alternative for simulating rainfall driven soil moisture dynamics in the unsaturated 540 

zone in an effective manner, which nevertheless preserves the influence of capillarity and 541 

makes use of established soil physics. The approach is easy to implement, even in two or 542 

three dimensions and fully mass conservative. The drawback is the required high density of 543 

particles, arising from the small ratio of event water to pre-event water in soil, which might 544 

become a challenge when working in larger domains and several dimensions. However, due 545 

to its simplicity the model is straight forward to implement on a parallel computer.  546 

 547 

The approach has, however, compared to the Richards solver slight deficiencies during long 548 

term drainage phases, particularly in coarse grained, fast draining soils. One might hence find 549 

an adaptive model structure as favourable. During radiation driven conditions when water 550 

flow is slow and in local equilibrium, it is favorable to use to a Richards solver, because it 551 

works well and it is much more computationally efficient and treatment of for instance root 552 

water uptake is much more straightforward. During rainfall driven conditions, when time 553 

stepping needs to be in the order of minutes, due to the characteristic time scale of changes in 554 

rainfall intensity, we recommend to switch to the particle approach. Particularly also because 555 

the implementation of fast non-equilibrium infiltration and the separation of event and pre-556 

event water is straight forward, for instance compared to a non-local formulation of the 557 

Richards equation (Neuweiler et al., 2012). In line with Ewen (1996) we hence regard particle 558 
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based models as particularly promising to deal with preferential transport of solutes 559 

(optionally also heat), and to explore transit time distributions in a forward mode.  560 

 561 

We are aware, that the evidence we provided here is a somewhat tentative first step 562 

corroborate the flexibility of the particle based approach to include non-equilibrium flow and 563 

matrix flow in the same stochastic, physical framework. A much more exhaustive treatment of 564 

this issue is provided in a forthcoming study which presents and extension of the concept to a 565 

2 dimensional domain with topologically explicit macropores and the test of concurring 566 

hypothesis to represent infiltration into macropores as well as macropore matrix interactions. 567 

 568 
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7 FIGURES 740 

 741 

Figure 1: Advective/drift displacement of a particle k() dt (panel a) and maximum diffusive 742 

displacement (D()dt)
0.5

 (panel b) plotted against soil water content for the sand on limestone 743 

in the Attert catchment and the Calcaric Regosol on loess in the Weiherbach catchment. The 744 

vertical bars visualize the distribution of the D among the particles, representing water in 745 

different pore size fractions. The arrows mark the most mobile particle fraction in the five 746 

upper soil moisture classes. The red and the blue rectangle highlight the case when treating 747 

event water either as in local equilibrium and particles travel according to D(((t+0.5t)) and 748 

k(((t+0.5t)) or when they enter the coarsest pores and travel according ks. Panel c and d 749 

present the two different rainfall events for the model testing. 750 
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 752 

Figure 2: Final soil moisture profiles simulated for the sandy soil with the naive random walk 753 

(panel a) and the particle model (PM) using different number of bins. Panel c and b compare 754 

the particle model to the Richards equation for a block rain of 20 mm starting from the 755 

uniform initial or the s-shaped initial state (panel b and c), mf = 0.1 denotes the mobile 756 

particle fraction. Panel d) presents the same case as b after 2h of additional drainage. The 757 

dashed grey line marks the initial soil moisture profiles.  758 
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 760 

Figure 3: Final soil moisture profiles simulated for the sandy soil with full mobility model for 761 

a block rain of 40 mm at two different grid sizes (Panels a1 and a2), the drainage experiment 762 

starting from the clock shaped initial state (Panels b1 and b2), for a block rain of 20 mm at 763 

different time steps (Panel c) and the convective rainfall event (Panel d).  764 
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 767 

 768 

 769 

Figure 4: Time series of soil moisture simulated with the particle model (PM) and the 770 

Richards solver for the sandy soil as 2d color plots for a simulated wetting event of 20 mm in 771 

1 h and additional 2 h of drainage (Panels a and b),  the convective rainfall even (Panels c and 772 

d) and the drainage experiment (Panels e and f). 773 
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 775 

 776 

Figure 5: Final soil moisture profiles simulated with the Richards eq. and the particle model 777 

for the young silty soil on schist for the block rain of 20 mm (Panel a) and additional 2 h of 778 

drainage (Panel b), the same forcing but an s-shaped initial soil profile (Panel c), including a 779 

simulation with a mobile fraction, mf, of 10%. Panel c compares the full class approach 780 

against the Richards equation starting for a 40 mm block rain of 1h.  The dashed grey line 781 

marks the initial soil moisture profiles. 782 
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 784 

 785 

786 
Figure 6: Time series simulated soil moisture profiles in the upper 80 cm of the young silty 787 

soil on schist for a block rain of 20 mm and 2 h of subsequent drainage (Panels a and b) and a 788 

block rain of 40 mm in 1h (Panels c and d). 789 
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 791 

 792 

Figure 7: Final soil moisture profiles simulated for Calcaric Regosol on loess. Panels a) and b) 793 

compare the particle model in the full mobility model (solid green) and in a mobile fraction of 794 

10 % (solid red) to the Richards solver for a 15 mm rainfall input in 3h and different initial 795 

patterns. Panels c) and d) compare the Richards solver and the particle model assuming a 796 

mobile fraction of 0.1 after 15 mm infiltration in 3 h and a subsequent drainage phase of 3 h. 797 

The dashed grey line marks the initial soil moisture profiles. 798 
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 800 

801 

 802 

 803 

Figure 8: Time series simulated soil moisture profiles in the upper 80 cm/ 20 cm of the 804 

Calcaric Regosol on loess for a block rain of 20 mm in 1 h and 2 h of subsequent drainage 805 

(Panels a and b) starting from an s-shaped soil moisture profile and for the nocturnal rainfall 806 

event observed in May in the Weiherbach catchment (Panels c and d). 807 

 808 
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 810 

 811 

Figure 9: Soil moisture profiles simulated with the Richards equation (solid blue) and the 812 

particle model compared to observations in different depths at the end of the precipitation 813 

event (panel a), 15000s) and the end of simulation (panel b), 21000s). Initial soil moisture 814 

observations are given as black, intermediate and final observations as green crosses. Panels 815 

c) and d) present fractions of event water (dashed lines) total water content (pre-event + 816 

mixed water) for simulations assuming non-equilibrium infiltration. Blue lines correspond to 817 

tmix = 4300s, red lines to tmix= 7300s, the solid green line shows the soil water content 818 

simulated with equilibrium infiltration.  819 
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 821 

Figure 10: Non equilibrium simulations compared against observed soil moisture values, for 822 

tmix = 5800s after the rainfall event (panel a) and at the end of simulation (panel b). Panel c) 823 

and d) present the final state for tmix = 7300s or tmix = 4300s, respectively.  824 
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8 TABLES  826 

 827 

Table 1: Soil hydraulic parameters of the sandy soil on limestone, the young silty soil on 828 

schist and the Calcaric Regosol on loess: saturated hydraulic conductivity ks, saturated and 829 

residual water contents sr, air entry value , shape parameter n. 830 

Soil type ks [m/s]  s[-] r[-]  [m
-1

] n[-] 

Sand on limestone 2.23*10
-4

 0.508 0.01 4.71 1.475 

Young silty soil on schist 2.62 10
-4

 0.51 0.12 6.45 1.50 

Calc. Regosol on loess 6.0 10
-6

 0.46 0.06 1.50 1.36 

 831 
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 833 

Table 2: Characteristics of the numerical benchmarks: rainfall input P, initial condition ini, 834 

simulation time tsim    835 

Soil type Wetting  Wetting Wetting Wetting &drying 

Sand P =20 mm in 1h 

ini = uniform 

tsim =1h   

P =40 mm in 1h 

ini = uniform 

tsim =1h   

P =20 mm in 1h 

ini = s-shape 

tsim =1h   

P =20 mm in 1h 

ini = uniform 

tsim =3h   

Silty soil P =20 mm in 1h 

ini = uniform 

tsim =1h   

P =40 mm in 1h 

ini = uniform 

tsim =1h   

P =20 mm in 1h 

ini = s-shape 

tsim =1h   

Input: 20 mm in 1h 

initial con.: uniform  

Duration: 2h  

Calc.  

Regosol 

P =20 mm in 1h 

ini = s-shape 

tsim =1h   

P =20 mm in 4h 

ini = uniform 

tsim =4h 

P =15 mm in 3h 

ini = s-shape 

tsim =3h   

P =15 mm in 3h 

ini = uniform 

tsim =6h   

 836 
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Table 3: Top soil and the subsoil hydraulic properties at the central meteorological station in 838 

the Weiherbach catchment: saturated hydraulic conductivity ks, saturated and residual water 839 

contents sr, air entry value , shape parameter n. 840 

Depth [ m] ks [m/s]  s[-] r[-]  [m
-1

] n[-] 

0 - 0.3 6.0 10
-6

 0.46 0.06 1.50 1.36 

> 0.3  3.4 10
-6

 0.44 0.06 1.50 1.36 

 841 
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