
Reviewer 2: The authors compare two random walk approaches to simulate Richard’s equation. One 

is straightforward (called naïve) and the author is based on the fact that particles are distributed 

among the different capillary tubes given by the retention curve. The latter is a nice approach worth 

of publication. 

Erwin Zehe (EZ): We sincerely thank the anonymous reviewer for his encouraging comments and 

helpful comments.  

Reviewer 2: I am missing technical details on the applicability of these two methods in the paper in 

regards to the gradient of dispersion. I do not see how it is estimated. Also, an explanation of why 

the first method does not work. In theory, one should expect that the naïve method works for vary 

large number of particles? What are we missing here? Please, explain exactly how the two methods 

are implemented step by step. 

 

EZ: The spatial gradient of the dispersion coefficient is estimated by means of a centered finite 

difference. This is straight forward, as the dispersion coefficient is in both approaches well defined in 

each grid box. We will better explain this point in the revised manuscript. 

Based on the widespread evidence that particle tracking is suitable for simulating solute transport, 

we also expected the “naïve” approach to work well for large particle numbers and a suitable 

updating rate of the dispersion coefficient. We started initial simulations with the naïve approach 

with 104 particles and found this approach systematically too overestimates depletion of gradients 

and the thus vertical redistribution of water compared to the Richards model. Neither an increase of 

the particle number to 106 nor an iterative updating of the dispersion coefficient nor shorter time 

steps fixed the problem.  

Within the naïve approach all water particles in the pore space experience the same dispersion 

D((t)). This assumption is based on the analogy to the solute transport problem, where all solute 

particles in a flow field experience indeed the same dispersion: they experience so to say the same 

“average path length”, which implies that the diffusive step scales for all solutes with the same 

dispersion coefficient Dsolute as follows tDsolute  6 . This is however not the case for water 

parcels/molecules in porous media, because diffusive flow velocities decrease with decreasing pore 

size. To account for this the diffusive step cannot scale for all particles with same maximum D((t)), it 

needs to reflect the distribution of D within the different wetted pore sizes fraction. To achieve this 

we subdivide the particles in a grid cell into N bins (800) and calculate D starting from the residual 

moisture content to the r stepwise to (t) using a step with  ((t)-r)/N. The diffusive step for 

particles within bin i scales tiD r  )(6  , for i=1 … N. We will add a similar explanation to the 

revised manuscript. 

 

Fortunately Reviewer 1 pointed out that our implementation of the Langevin Equation was not 

entirely correct (see our corresponding reply). Figure 1 shows a simulation with the corrected model 

in the full class mode (using 200 bins) and the “naive” approach, also based on the correct form of 

the Langevin equation. The full class model shows a nearly perfect match of the Richards solver, 

while the naïve approach shows the above explained deficit. 



 

 Figure 1: Comparison of the new particle model based on the corrected form of the Langevin 
Equation using N(0,1) random numbers in the full class mode, with the naïve model based on the 
corrected Langevin Equation.  

 
 

We again thank Reviewer 2 for her/his insightful comments that will surely help us to improve the 
presentation quality of our study. 
 

Erwin Zehe 

 


