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Abstract. This study explores whether climate models with higher spatial resolution provide higher accuracy for 14 

precipitation simulations and/or different climate change signals. The outputs from two convection-permitting 15 

climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse 16 

scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. 17 

Validation of historical design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows 18 

a better match of the convection-permitting model results with the observations-based IDF statistics compared to the 19 

driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during 20 

the summer season, while the convection-permitting models do not appear to bring added value to simulation of 21 

daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial scale 22 

independency of climate change signals for the delta change downscaling method, as high-resolution models may 23 

show larger changes in extreme precipitation. These larger changes appear to be dependent on the time scale, since 24 

such intensification is not observed for daily time scale for both the ALARO and CCLM models. 25 

1 Introduction 26 

It becomes evident that climate change will increase the frequency and intensity of extreme events (IPCC, 2007, 27 

2013). Therefore, the impacts of climate change on hydrological extremes such as heavy precipitation events have to 28 

be considered when designing and optimizing water infrastructures. The future projection of climate change impact 29 

on precipitation usually relies on the simulation results of General Circulation Models (GCMs). However, these 30 

results need to be validated against historical precipitation observations prior to any use for local impact studies of 31 

climate change. When GCM results are validated based on observations, sometimes large biases are observed 32 

especially for extreme precipitation values (van Pelt et al., 2012; van Haren et al., 2013; Tabari et al., 2015), 33 

imposing an uncertainty to the GCM projections for the future. The biases in the coarse-resolution GCMs come 34 
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from the fact that they disregard some governing features of precipitation at local scale, next to the scale differences 1 

when comparing GCM results with local observations (Maraun et al., 2010; Willems et al., 2012). Some previous 2 

studies that attempted to assess GCM skill as a function of resolution showed that the performance of GCMs is 3 

independent of their resolution (Johnson et al., 2011; Masson and Knutti, 2011). However, given that deep 4 

convective phenomena are sufficiently resolved only at spatial resolutions up to less than about 4 km, such 5 

dynamical downscaling is expected to be one of the solutions for decreasing the systematic biases and narrowing the 6 

gap between GCM outputs and needs for fine-scale precipitation in hydrological and water engineering studies. 7 

One of the methods to dynamically downscale GCM outputs is to drive a Regional Climate Model (RCM) using 8 

GCM as initial and boundary conditions. RCMs usually provide an improved description of surface features 9 

(topographical, land cover, etc.) and more complex description of atmospheric processes compared to GCMs. This 10 

often results in more realistic representation of precipitation variability and of climate feedback mechanisms (IPCC, 11 

2001; Mearns et al., 2004; Christensen and Christensen, 2007; Mayer et al., 2015). Whatever climate models are 12 

used, verification of their results under the current climate is needed, because some high-resolution RCMs fail to 13 

adequately describe local-scale surface processes (especially in inhomogeneous regions with complex topography) 14 

due to the convective parameterization scheme or the characteristics of the GCM they are nested in (Hohenegger et 15 

al., 2008; Willems et al., 2012). 16 

High-resolution (convection-permitting resolutions) climate models are of great added value to simulate large 17 

convective storms and mesoscale organization (Kendon et al., 2014; Prein et al., 2015). At these resolutions, deep 18 

convection is partly resolved and does not need to rely entirely on parameterizations. The representation of the daily 19 

cycle in precipitation, extreme events and spatial variability strongly improves for convection-permitting models 20 

(Kendon et al., 2012; Prein et al., 2013a, 2013b, 2015; Brisson et al., 2015; Ban et al., 2014, 2015, Fosser et al., 21 

2015, 2016). However, their long-term simulation is restricted due to high computational costs. They are 22 

consequently mainly applied for numerical weather prediction (Done et al., 2004; Baldauf et al., 2011; Tang et al., 23 

2013). First simulations for decadal time periods using convection-permitting models point to a stronger increase in 24 

extremes compared to coarser resolution integration, but the number of climate change impact studies with these 25 

models is limited so far (Hohenegger et al., 2008; Kendon et al., 2012, 2014; Prein et al., 2015). 26 

The use of regional climate models for local impact studies of climate change on precipitation (totals or 27 

extremes) has been increased in recent years (e.g. Willems and Vrac, 2011; Olsson et al., 2012; Mearns et al., 2013; 28 

Rajczak et al., 2013; Olsson et al., 2015). Nevertheless, in some studies, climate scenarios have been based on a 29 

broad set of coarse-resolution GCM results (Deng et al., 2013; Rana et al., 2014; Sun et al., 2015). Now, the 30 

question is whether high-resolution climate models truly improve extreme precipitation simulations, and if so, to 31 

what extent. This study intends to answer this research question by comparing high-resolution models (RCMs with 32 

resolutions between 40 and 3 km) with their driving GCM or reanalysis data for simulating sub-daily and daily 33 

precipitation quantiles. Further comparisons are performed for simulating design precipitation statistics derived from 34 

intensity–duration–frequency (IDF) curves. 35 

Second research question considered, in case the high resolution climate models show improved extreme 36 

precipitation results, is whether this improvement in absolute precipitation values also significantly changes the 37 
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relative climate change signal. Hydrological applications of climate change impact analysis often assume that the 1 

precipitation change factors, defined as the relative change from historical to future climate conditions, can be 2 

obtained from GCM or RCM simulations and applied for impact analysis at finer spatial scales. This is the case for 3 

any delta change or perturbation based statistical downscaling method (e.g. Ntegeka et al., 2014; Sunyer et al., 4 

2015). In this study, the validity of this hypothesis is investigated by comparing the climate change signals between 5 

the high and coarse scale resolution models. Central Belgium is considered as the study location. 6 

2 Climate models 7 

2.1 ALARO model 8 

The ALARO-0 model is a high-resolution regional climate model developed by the Royal Meteorological Institute 9 

(RMI) of Belgium based on the numerical weather prediction model called Aire Limitee Adaptation Dynamique 10 

Developpement International (ALADIN). Hereafter, ALARO is used as shorthand name for the ALARO-0 model 11 

described in De Troch et al. (2013). The ALADIN model is the limited area model (LAM) version of the Action de 12 

Recherche Petite Echelle Grande Echelle Integrated Forecast System (ARPEGE-IFS). The physics parameterization 13 

package of the ALARO model was designed specifically for running at resolutions between 3 and 8 km. The 14 

specific characteristics of the Modular Multiscale Microphysics and Transport (3MT) convection scheme used in the 15 

ALARO model lead to a good multiscale performance, particularly in convection-permitting resolutions (De Troch 16 

et al., 2013). The ALARO simulations for the present climate conditions over Belgium were performed for the 17 

periods 1961-1990 and 1981-2010 at resolutions ranging from 40 km down to 4 km, both using a set of simulations 18 

forced with ERA-40 or ERA-Interim reanalysis as well as with the CNRM-CM3 GCM for the historical control run 19 

(Table 1). For the future climate projections (2071–2100), the CNRM-CM3 GCM under the A1B scenario was used 20 

to force the ALARO model (Hamdi et al., 2014). 21 

2.2 CCLM model 22 

The other high-resolution climate model used in this study is the COSMO-CLM (CCLM) model. The CCLM is a 23 

non-hydrostatic limited area climate model developed by the climate limited-area modeling (CLM) community. The 24 

CCLM model is based on the COSMO model (Steppeler et al., 2003), designed by the Deutsche Wetterdienst 25 

(DWD) for operational weather prediction. In order to perform climate simulations with the COSMO model, the 26 

CLM community provided extensions such as dynamic surface boundaries, a more complex soil model and the 27 

possibility to use various CO2 concentration values (Böhm et al., 2006; Rockel et al., 2008). 28 

The model settings are based on a previous study by Brisson et al. (2015), which provide recommendations for 29 

performing climate simulations at convection permitting scale. The one-moment microphysical parameterization 30 

includes a representation of graupel hydrometeors. In addition, the domain size of this simulation (192x175 31 

gridpoints) is large enough to ensure that the analysis is not affected by the spatial spin-up described in Brisson et al. 32 

(2015). The integration scale of global models largely differs from convection permitting scale. A multiple nesting 33 

strategy was therefore selected to carry out such simulations (Brisson et al. 2015, 2016). A three-step nesting 34 
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strategy was applied with the driving data, either from ERA-Interim reanalysis data or the EC-EARTH GCM, 1 

forcing a CCLM at 25 km grid mesh size, which in turn forces a CCLM at 7 km grid mesh size, and next at the final 2 

2.8 km grid mesh size. Model simulations were performed for the period 2001-2010, and a thorough evaluation of 3 

the statistics of precipitation, temperature and cloud characteristics was recently performed (Brisson et al., 2016). 4 

The CCLM driven by EC-EARTH was performed for the period 2000-2010 and 2060-2069 using the RCP4.5 5 

emission scenario (Table 1). Hereafter, the driving GCM or reanalysis dataset is shown as subscript to the name of 6 

the RCM. As the control run of the EC-EARTH GCM ends in 2009, its data for the period 2000-2009 were used for 7 

comparing with the driven CCLM simulations. 8 

3 Methodology 9 

In this study, simulations of sub-daily and daily precipitation quantiles from the climate models are analyzed. For 10 

the future climate analysis, the climate change signals are obtained as relative changes of precipitation intensities 11 

calculated as the ratios of precipitation quantiles derived from each climate model scenario simulation over those 12 

from the corresponding climate model control simulation with same non-exceedance probability or return period. 13 

This methodology has been applied in several recent climate change studies, e.g. on the basis of statistical 14 

downscaling applying quantile mapping or quantile perturbations (Willems and Vrac, 2011; Gudmundsson et al., 15 

2012; Maraun, 2013; Ntegeka et al., 2014; Rana et al., 2014; Sunyer et al., 2015) and also a similar procedure for 16 

analyzing decadal precipitation anomaly (Tabari et al., 2014; Tabari and Willems, 2016). For sub-daily precipitation, 17 

independent extremes are selected using a Peak Over Threshold (POT) method. The POT selection is done based on 18 

three criteria for inter-event time, inter-event low precipitation and peak height, similar to those presented by 19 

Willems (2009) for extracting POT values for discharge. The inter-event time is the main criterion for extraction of 20 

POT values. Following Willems (2013), an inter-event time of 12 hours is selected, implying that two successive 21 

precipitation peaks within the same day or night are considered as one extreme event. In other words, two 22 

consecutive precipitation extremes are interpreted to be independent based on this criterion when the time between 23 

the two events exceeds 12 hours. Extreme precipitation is defined in this study as precipitation with return period (T) 24 

higher than 1 year. The return period is in this study calculated in two different ways: empirically based on the rank 25 

of the extracted POT values (n/i, where n and i are the length of the study period and rank, respectively; i = 1 for the 26 

highest value); and theoretically after calibrating an extreme value distribution to these POT precipitation extremes. 27 

Also for the calculation of the precipitation change factors for given return periods, these two different approaches 28 

were followed and compared: empirical data based and extreme value distribution based change factors. For the 29 

distribution based change factors, first a distribution is fitted separately to the extreme values of the control and 30 

scenario runs of the climate models. Afterwards, change factors are computed as a ratio between the fitted 31 

distribution values of the scenario and control runs. 32 

In addition to the quantile analysis, the historical simulations of the climate models are validated based on 33 

precipitation intensity–duration–frequency (IDF) curves which are typically used for design storm calculations and 34 

related designs, e.g., urban drainage systems and hydraulic structures. The IDF curves for 1-month, 1-year and 10-35 

year return periods and for durations from 10-15 minutes up to one month are developed for the control runs of the 36 
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climate models as well as the observations. The IDF curves are derived based on POT extreme value statistics after 1 

calibration of two-component exponential distributions, following Willems (2000). In this paper, the precipitation 2 

intensities of given return periods are referred to as design precipitation quantiles. 3 

For the climate models, precipitation data are extracted from a matrix of 3×3 model grid points (9 cells) 4 

surrounding the closest model grid point to Uccle station in Central Belgium. This station is selected because it has 5 

high quality 10-min observations recorded with same instrument since 1898 (Demarée, 2003). In addition to the 10-6 

min station observations, daily E-OBS gridded data (v12.0, Haylock et al., 2008) for 27.8 km and 55.7 km are used. 7 

These gridded data are aggregated to larger pixels of 167 km and 334 km to be consistent with the grid mesh size of 8 

the driving GCMs and reanalysis data. The aggregation is also performed to upscale the outputs of the convection-9 

permitting climate models to check the accuracy of the spatial structure in the models. 10 

4 Validation of precipitation simulations 11 

The capability of the climate models to simulate the present-day precipitation is evaluated before investigating 12 

future precipitation changes. Prior to this performance evaluation, the precipitation extremes from the model grid 13 

cell covering Uccle station are compared with those from neighboring cells for possible outlier or unrealistic values. 14 

The analysis shows spatial consistency in the frequency of daily and sub-daily precipitation extremes for both the 15 

ALARO and CCLM models. As an example, Fig. 1 illustrates hourly precipitation extremes in a matrix of 3×3 16 

ALAROERA-Interim 4 km model grid points surrounding the closest model grid point to Uccle station for summer and 17 

winter seasons. It is seen that hourly precipitation extremes in gridcell 5 covering Uccle station are consistent with 18 

the ones in the neighboring gridcells. Another preliminary analysis is performed to compare point and pixel 19 

interpolated Uccle precipitation observations, which are used as reference for the model performance evaluation 20 

(Fig. 2). The comparison is done for the periods 1961-1990 and 2001-2010, which are the control periods of the 21 

ALARO and CCLM models, respectively. The precipitation extremes from the pixel E-OBS data follow the pattern 22 

of the point observations and the extremes are well represented in the pixel dataset. The smaller amounts from the 23 

gridded dataset is due to the fact that spatial averaging smooths out the extreme values (Hofstra et al., 2010; Sunyer 24 

et al., 2013). 25 

The validation results of the daily precipitation quantiles simulated by the ALARO convection-permitting 26 

models and its boundary conditions based on the point and pixel interpolated Uccle observations for the summer 27 

season (June-July-August: JJA) are shown in Fig. 3. The precipitation extremes for each model run are evaluated on 28 

the native model grids, and are then aggregated to a larger model grid size in order to ensure a fair comparison. For 29 

the aggregation purpose, the coarsest grid is used as reference. It means that, for instance for the ALARO model, the 30 

evaluation of the model with 4 and 10 km resolutions is carried out on the coarser 40 km grid. The results on the 31 

native model grids are presented to evaluate whether the available climate model runs are of direct use for climate 32 

change impact analysis in urban hydrology. The native daily precipitation extremes reveal the largest extreme values 33 

for the ALAROERA40 4 km model (Fig. 3a). However, this might be due to the precipitation decrease after the spatial 34 

averaging. The overestimation of the ALARO runs nested in the ERA40 reanalysis data is also evident on the native 35 

model grids, while the extreme simulations of the ALAROCNRM-CM3 model with 4 km resolution are in between the 36 
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point observations and the gridded ones with a grid size of 27.8 km, which shows good accuracy of these 1 

simulations. When comparing the model results at the same grid size (Fig. 3b), the ALAROERA40 40 km outputs are 2 

larger than those from the ALAROERA40 model for the higher resolutions at 4 and 10 km. This indicates the role of 3 

spatial scale in the climate modeling by the ALARO model driven by the ERA40 reanalysis data. Also other authors 4 

reported no improvements in the simulations of daily mean precipitation by the convection-permitting models 5 

compared with large scale climate models (Chan et al., 2013; Fosser et al., 2015). Some other researchers found 6 

improvements especially over mountainous areas (Prein et al., 2013b; Ban et al., 2014), implying region and model 7 

dependency for simulation of daily mean precipitation. In our study, the higher skill of the ALAROCNRM-CM3 model 8 

in simulation of summer precipitation extremes appears to be because of a better representation of the small-scale 9 

characteristics and spatial variability relevant for convection (Fig. 3b). The CNRM-CM3 GCM and ERA40 10 

reanalysis data used as the boundary conditions of the ALARO model show a systematic underestimation especially 11 

for the higher return periods (Fig. 3a). The convection parameterization has been found to be responsible for this 12 

underestimation (Kendon et al., 2014). 13 

As for the CCLM model, the native daily precipitation quantiles from the 2.8 km runs are larger for most of the 14 

cases (Fig. 4a). After upscaling of the finer resolution models (2.8 and 7 km) to the larger scale (25 km), the results 15 

of the models become similar (Fig. 4b). The driving EC-EARTH GCM and ERA-Interim reanalysis underestimate 16 

the summer extremes, probably due to the misrepresentation of the convective processes. When the results of the 17 

driven GCM and reanalysis data are compared with the ones of the CCLM, the larger and more accurate simulations 18 

of the CCLM model is observed for summer when convection becomes dominant. This confirms the finding that 19 

higher resolution results in more extreme precipitation in climate models (Jacob et al., 2014). The increasing skill of 20 

RCMs with increasing model resolution for simulation of the spatio-temporal characteristics of summer precipitation 21 

has been found by using the high-resolution models, although limited in application (Rauscher et al., 2010; Kendon 22 

et al., 2012). Nevertheless, a comparison between the CCLM outputs of different resolutions does not show a clear 23 

difference, neither in precipitation intensity or in simulation skill (Fig. 4b). 24 

The extreme precipitation (averaged over the extreme events with T > 1 year) simulations of the climate models 25 

versus spatial scale for both summer and winter seasons are shown in Fig. 5. Taking the spatial scale difference into 26 

account and averaging the extreme values with T > 1 year, the ALAROERA40 simulations are closer to the 27 

observations compared with the ALAROCNRM-CM3 model. Decease in systematic biases in the large scale climate in 28 

reanalysis-driven RCM simulations was also reported by Maraun et al. (2010). They also pointed out that these 29 

RCMs are capable of reproducing the actual day-to-day sequence of weather events. The good accuracy of the 30 

CCLM model, large underestimations of CNRM-CM3 and EC-EARTH, slight overestimation of ERA-Interim data 31 

and slight underestimation of ERA40 data for summer precipitation extremes are also obvious from these plots. As 32 

expected, the percentage bias of the climate models (not shown) decreases as the time scales get larger (i.e., weekly 33 

and monthly). 34 

The validation of the climate model simulations for the summer season in terms of IDF statistics is shown in Fig. 35 

6 for time scales in the range between 10-15 minutes and 30 days. The IDF curves are plotted with reference to 36 

design precipitation intensities from the station and E-OBS pixel data over the Uccle location (Central Belgium). 37 
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Comparing the hourly simulations of the ALAROERA40 model with different resolutions shows the greater intensities 1 

for finer resolutions. In terms of accuracy, all of the ALARO runs except the ALAROCNRM-CM3 for 10-year return 2 

period and the ALAROERA40 40 km for both return periods underestimate the station observations and overestimate 3 

the gridded observations (extrapolated for sub-daily precipitation based on extreme value distribution). Regarding 3- 4 

and 6-hourly time scales, the ALARO model simulates more intense precipitation of 10-year return period in 5 

comparison to both the station and gridded observations. The model underestimates (overestimates) extreme 6 

precipitation of 1-year return period and 3- and 6-hourly durations when compared with the station (gridded) 7 

observations. Daily precipitation intensity of 10-year return period derived from the point observations is 8 

underestimated by the ALAROERA40 and ALAROERA-Interim runs and overestimated by the ALAROCNRM-CM3 run, 9 

while all the runs overestimate the pixel observations-based statistics. All the ALARO runs except the ALAROERA-10 

Interim simulate larger daily precipitation extremes of 1-year return period. A comparison between the ALARO 4 km 11 

runs nested in reanalysis data for larger time scales between 5 and 30 days shows overestimation of the 12 

ALAROERA40 and underestimation of the ALAROERA-Interim with respect to the station data, whereas both of them 13 

overestimate the pixel observations-based statistics. The other ALARO 4 km run (ALAROCNRM-CM3) underestimates 14 

both the point and pixel observations-based statistics for these larger aggregation levels (5, 10, 15 and 30 days). 15 

The CCLM model simulates less intense 15-min precipitation of 10-year return period (Fig. 6). However, this 16 

underestimation changes to overestimation for larger sub-daily aggregation levels. For the sub-daily design storms 17 

of 1-year return period, the CCLM model generally underestimates the station observations, while both over- and 18 

underestimations are seen in comparison with the gridded observations. However, the EC-EARTH GCM extremely 19 

underestimates both the gridded and raingauge observations for the 10-year return period. This supports the recent 20 

findings for underestimation of heavy hourly precipitation during summer by large scale climate models and more 21 

accurate simulations of convection-permitting models (Chan et al., 2013, 2014; Ban et al., 2014; Fosser et al., 2015). 22 

In the case of daily duration, which are less important for urban drainage applications, the CCLM runs 23 

underestimate (overestimate) precipitation intensity of 1-year return period in comparison with the point (gridded) 24 

observations (Fig. 6). The underestimation of higher intensities by the CCLM 2.8 km run for summer has also been 25 

reported in the literature (Fosser, 2014). For the daily precipitation extremes of 10-year return period, the 2.8 km 26 

runs and the CCLMEC-EARTH 25 km underestimate (overestimate) precipitation intensity from the point (gridded) 27 

observations, while the rest of the CCLM runs show the opposite behavior. For the larger aggregation levels 28 

between 5 and 30 days, the precipitation intensities of 1-year return period derived from both the point and pixel 29 

observations are underestimated by all the CCLM runs. For the 5-day duration and 10-year return period, 30 

underestimation of the station observations-based statistics and overestimation of the pixel observations-based 31 

statistics are seen for all the CCLM runs except for the 7 km runs. The CCLMERA-Interim 2.8 and 7 km runs simulate 32 

larger precipitation extremes for the 10-, 15- and 30-day durations of 10-year return period, whereas the CCLMERA-33 

Interim 25 km run simulates smaller extremes. The similarity between the CCLM 2.8 and 7 km runs is expected to be 34 

explained by the similarity in lateral boundary conditions since the CCLM 2.8 km model is nested in the CCLM 7 35 

km model. However, the difference between these runs becomes obvious when the convection is dominant in sub-36 

daily summer precipitation as they treat deep convection in different ways. The CCLMEC-EARTH 25 km run shows the 37 
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same pattern as the CCLMERA-Interim run: underestimation of extreme precipitation intensity for the 10-, 15- and 30-1 

day durations of 10-year return period. Both over- and underestimations are seen for the CCLMEC-EARTH 2.8 and 7 2 

km runs for the 10-, 15- and 30-day durations of 10-year return period (Fig. 6). 3 

For the winter season (December-January-February: DJF), the results show overestimations of the ALARO and 4 

CCLM models (Fig. 5). As winter precipitation over Belgium is mainly controlled by large scale circulation, an 5 

improvement in the simulations of convection-permitting models in comparison to the parent large scale models is 6 

less expected for the winter season. Although improved simulations of winter precipitation by convection-permitting 7 

model have been reported for regions with complex topography (Ikeda et al., 2010; Rasmussen et al., 2011) due to 8 

better resolved orography (Prein et al., 2015), this effect is less relevant for Belgium which is more flat. Whereas 9 

winter daily precipitation extremes are systematically overestimated by the ALARO model, the driving CNRM-10 

CM3 GCM slightly underestimates the winter extremes (Fig. 5). Deficiency of very high resolution climate models 11 

in simulation of winter precipitation extremes is because the fronts and synoptic depressions that cause the 12 

dynamical processes driving winter precipitation events have scales of 102-103 km. This deficiency has been 13 

demonstrated by Hong and Leetmaa (1999) and Chan et al. (2013). For the CCLM model, when the CCLMEC-EARTH 14 

2.8 and 7 km simulations are compared with those of the CCLMERA-Interim 2.8 and 7 km for the daily winter extremes, 15 

the overestimations of the earlier runs are higher than the later ones, while for larger time scales (weekly and 16 

monthly) the opposite pattern is observed. 17 

5 Future precipitation changes 18 

To cope with the scale difference and the biases shown in the previous section, state-of-the-art climate change 19 

impact analysis makes use of statistical downscaling. One of the popular downscaling methods is the delta change 20 

method. Different versions exist for that method: from the simple basic method to more advanced methods such as 21 

the quantile perturbation method. In this type of methods, the intrinsic assumption is made that the bias under future 22 

climate conditions is identical to the bias in current climate conditions. This is implemented through the use of 23 

“change factors” applied for historical precipitation quantiles. Another important assumption that is made by these 24 

methods is that the change factors are spatial scale independent, such that the scale difference, although it is an issue 25 

for the absolute precipitation intensity values, is less an issue for the delta change methods at which relative changes 26 

are applied. The latter assumption is tested next. In this context, the relative changes in precipitation quantiles 27 

between the future and historical simulations of climate model runs were calculated to compare the convection-28 

permitting models and their driving GCMs. These change factors were computed for winter and summer seasons as 29 

sub-daily and daily precipitation quantiles from the scenario period divided by those from the control period with the 30 

same return period (change factor equal to one means no change). 31 

The change factors derived from the empirical data, and the ones after use of the extreme value distribution in 32 

precipitation extremes for winter and summer seasons computed by the ALAROCNRM-CM3 model and the driving 33 

CNRM-CM3 GCM are shown in Fig. 7. From a comparison between the empirical data based change factors and 34 

those based on the extreme value distributions, it is seen that the extreme value distribution fitting smooths out 35 

abrupt changes and random variations in the change factors, making the results easier to interpret. In fact, the 36 
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distribution fitting removes the randomness involved in the high return periods of the empirical data for summer, 1 

leading to a slight difference in the range of changes. However, for the winter season the change factors from the 2 

two methods have similar ranges. The change factors obtained from the extreme value distribution fitting are further 3 

discussed here. The ALAROCNRM-CM3 projects an increasing signal in the range of 26% to 69% for daily winter 4 

extremes. The projected increase is even higher for hourly winter extremes, ranging between 37% and 120%. When 5 

the change factors computed by the ALAROCNRM-CM3 are compared with those obtained from the driving CNRM-6 

CM3 GCM, more or less the same conclusion can be made: an increasing signal for daily winter extremes between 7 

23% and 67%. For the summer season, the change factors from the ALAROCNRM-CM3 model and the parent CNRM-8 

CM3 GCM are around one, meaning no change in daily summer extremes. However, smaller hourly summer 9 

extremes are expected based on the ALAROCNRM-CM3 model projections with a decreasing signal down to -26%. 10 

Generally, it can be inferred from the results that, at synoptic (daily) scale, the projections by the ALARO model are 11 

consistent with those from the driving GCMs. De Troch et al. (2013) pointed out that an increase in spatial 12 

resolution in the ALARO model is not as important as the parameterization scheme used for extreme precipitation 13 

modeling at the daily scale. 14 

Fig. 8 shows the change factors for daily and 3-hourly precipitation computed using the CCLMEC-EARTH model 15 

with different spatial resolutions and the driving EC-EARTH GCM for winter and summer seasons. The change 16 

factors for all extreme events with T > 1 year are shown in this figure. For the winter season, the change factors for 17 

both daily and 3-hourly precipitation decrease as the model’s resolution increases. Nevertheless, the change factors 18 

for all the CCLM runs are higher than those for the driving EC-EARTH GCM. A larger change is projected for 3-19 

hourly precipitation compared with daily precipitation. For summer, the greatest change is obtained for 3-hourly 20 

precipitation extremes from the CCLMEC-EARTH 2.8 km run. This increasing signal goes as high as 55%. When the 21 

change factors in 3-hourly precipitation extremes from the CCLMEC-EARTH runs are compared with those from the 22 

driving EC-EARTH GCM, the results show an amplification of the future climate change signals by the CCLM 23 

model: maximum changes of 55%, 11% and 14% respectively for 2.8, 7 and 25 km runs versus a maximum change 24 

of 8% for the driving EC-EARTH GCM. This amplification is not evident for the daily scale. Intensification of 25 

change in sub-daily precipitation extremes that are not simulated by large scale models was also found by Kendon et 26 

al. (2014). The results also reveal that sub-daily precipitation extremes during summer are expected to change at a 27 

higher rate compared to daily extremes. Generally, it can be inferred that there is an increase in the change factors of 28 

sub-daily precipitation when going from parameterized convection to the convection-permitting scale. 29 

6 Concluding remarks 30 

A comparative study between the convection-permitting climate models with a spatial resolution from 2.8 km up to 31 

40 km and driving GCMs or reanalysis data was performed to check whether the models with higher resolution 32 

provide more accurate precipitation simulations. Another analysis was performed to validate the spatial scale 33 

independency assumption of climate change signals for the delta change downscaling method. The results show that 34 

whereas winter daily precipitation extremes are generally overestimated by the ALARO and CCLM models, 35 

improved results for summer precipitation extremes are observed especially for sub-daily time scale. This suggests 36 
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the added value of convection-permitting climate models to simulate summer sub-daily extremes because of either 1 

better representation of deep convection or more detail of the land surface. The results moreover indicate that the 2 

difference between the convection-permitting models and the parent GCMs or reanalysis data decreases as the time 3 

scales get larger (i.e., weekly and monthly). Based on the precipitation statistics derived from IDF curves, the 4 

ALARO and CCLM models mostly underestimate local sub-daily precipitation, but still better simulate it compared 5 

with parent GCM or reanalysis data when available. Higher precipitation intensities by finer resolution models are a 6 

result of better representation of small-scale convective precipitation by these models. 7 

To investigate whether or not the climate change signals from the convection-permitting models are more or less 8 

the same as those from the large scale driving GCMs, the relative changes were computed for precipitation extremes 9 

during summer and winter. For the ALARO model, it can be concluded that, at synoptic (daily) scale, the change 10 

factors for the ALARO model are comparable with the ones from the driving CNRM-CM3 GCM. In the case of the 11 

CCLM model, the results reveal an intensification of climate change signals for the CCLM model compared with 12 

the driving EC-EARTH GCM for the 3-hourly time scale. Comparing change factors for 3-hourly and daily 13 

precipitation, a larger change is projected for 3-hourly precipitation for both winter and summer seasons. When the 14 

change factors derived from the extreme value distribution are compared with those from the empirical data, it is 15 

seen that for both ALARO and CCLM models the climate change signals derived from extreme value distribution 16 

fitting are slightly different from the ones obtained from the empirical data for summer due to the removed 17 

randomness in the empirical data by the distribution fitting. However, for the winter season the change factors 18 

obtained from the two approaches cover more or less the same range. 19 

In summary, because the results of this study indicate that the local sub-daily summer precipitation simulations 20 

of the high-resolution climate models are closer to the observations, their future projections are expected to be more 21 

accurate than those of the driving GCMs. These climate change signals obtained from the high-resolution models 22 

may differ from the ones based on the coarse-resolution models, as a result of improved representation of complex 23 

landscape and land surface processes in high-resolution models. However, the resulting precipitation change from 24 

these high-resolution climate models should not be interpreted as an exact number because of their limited number. 25 

More runs with high-resolution models are required to check the consistency among models. In the same way as an 26 

ensemble approach on climate models provides uncertainty estimates on the climate change signals, an ensemble of 27 

the high-resolution models provides uncertainty estimates on the difference between the climate change signals of 28 

fine versus coarse scale. Also, the statistical significance of the difference in climate change signals at fine versus 29 

coarse scale can be tested in such approach. From the comparison in this study, the results of the CCLMEC-EARTH 30 

model indicate an increase in the change factors in sub-daily summer extremes when going from parameterized 31 

convection to the convection-permitting scale. This amplification is not evident at the daily time scale. For the 32 

ALARO model also the higher resolution models show changes in the same range as the coarse resolution models 33 

for daily precipitation. The differences appear to be a function of time scale, season and climate model. Different 34 

procedures for convection parameterization in the CCLM and ALARO models and different boundary conditions 35 

(the first one is nested in the EC-EARTH model from CMIP5 and the later in the CNRM-CM3 model from CMIP3) 36 

might explain the discrepancy between the results of the two models. The differences in time scale and season is 37 
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expected to be explained by more realistic simulation of the mesoscale processes involved during sub-daily summer 1 

precipitation extremes by convection-permitting models. The results also show an amplification of the change from 2 

daily to sub-daily precipitation for both ALARO and CCLM models, which casts a doubt on the validity of the 3 

temporal scale independency assumption of climate change signals. 4 
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Table 1 The convection-permitting model runs used in this study. 

Climate 

model 

Driving 

GCM/reanalysis 

Spatial scale 

(km) 

Temporal 

scale 

Control 

period 

Scenario 

period 

Data 

coverage 

CCLM 

ERA-Interim 2.8 15 min 2001-2010 - whole year 

ERA-Interim 7 hourly 2001-2010 - whole year 

ERA-Interim 25 3 hourly 2001-2010 - whole year 

EC-EARTH 2.8 15 min1 2001-2010 2060-2069 whole year 

EC-EARTH 7 hourly 2001-2010 2060-2069 whole year 

EC-EARTH 25 3 hourly 2001-2010 2060-2069 whole year 

ALARO 

ERA-Interim 4 hourly 1981-2010 - whole year 

CNRM-CM3 4 hourly 1961-1990 2071-2100 whole year 

ERA40 4 hourly 1961-1990 - summer 

ERA40 10 hourly 1961-1990 - summer 

ERA40 40 hourly 1961-1990 - summer 

1
 CCLMEC-EARTH data for the scenario period are available for the hourly time scale. 
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Figure 1. Hourly precipitation extremes in a matrix of 3×3 ALAROERA-Interim 4 km model grid points surrounding 

the closest model grid point to Uccle (Gridcell 5), for summer (left) and winter (right) seasons (historical climate: 

1961-1990). 
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Figure 2. Comparison between point and pixel interpolated (spatial resolution of 27.8 km) Uccle precipitation of 

different time scales for summer (left column) and winter (right column). 
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Figure 3. Validation of the native (a) and aggregated (b) daily precipitation quantiles (1961-1990) for the ALARO 

model and its driving GCM or reanalysis data based on Uccle observations, for summer season (shaded areas show 

at-site confidence intervals for the point observations using the bootstrap-based 95% confidence intervals). 
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Figure 4. Validation of the native (a) and aggregated (b) daily precipitation quantiles (2001-2010) for the CCLM 

model and its driving GCM or reanalysis data based on Uccle observations, for summer season (shaded areas show 

at-site confidence intervals for the point observations using the bootstrap-based 95% confidence intervals). 
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Figure 5. Validation of the extreme precipitation (averaged over the extreme events with T > 1 year) simulations for 

the ALARO, CCLM and the driving GCMs or reanalysis data based on point and pixel interpolated Uccle 

observations for summer (left) and winter (right) seasons, versus the models’ spatial scale. 
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Figure 6. Comparison of historical IDF-relationships based on point and pixel interpolated Uccle observations, with 

the CCLM, ALARO and the driving GCM or reanalysis results for summer season (IDF curves for the E-OBS pixel 

data were extrapolated for the sub-daily time scales based on extreme value distribution). 
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Figure 7. Change factors for daily and hourly precipitation quantiles computed using the ALAROCNRM-CM3 4 km and 

the driving CNRM-CM3 (A1B) for summer (left column) and winter (right column) seasons, obtained from the 

empirical data (top figures) and after use of the extreme value distributions (bottom figures). 
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Figure 8. Change factors for daily and 3-hourly precipitation quantiles computed using the CCLMEC-EARTH 2.8, 7, 25 

km for summer (left column) and winter (right column) seasons, obtained from the empirical data (top figures) and 

after use of the extreme value distributions (bottom figures). 


