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Abstract. This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event 

using a hydrological model forced with short-range ensemble weather prediction models.  

A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale 10 

hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River Basin, USA (~36,000 km2) 

using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional 

Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). 

Finally, 21 precipitation datasets reforecast by the 21 ensemble members of the latest Global Ensemble Forecast System 

(GEFS/R) were used to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane 15 

Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about 

associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties 

in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate 

flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as 

the ensemble spread (uncertainty) are reduced 48 hours pre-event utilizing the ensemble framework. The methodology and 20 

implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing 

of an extreme hydrologic event when combined with a flood threshold exceedance diagram. 

Although the modelling framework was implemented on the Hudson River basin, it is flexible and re-locatable in other parts 

of the world. 
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1 Introduction 

Riverine floods are known to adversely impact affected communities by causing casualties, inflicting damage to physical 

property, temporarily disrupting social and economic activities, and forcing a community to take emergency measures (IFRC, 

2013). In the United States, for example, floods are recognized as the main natural disaster with $7.96 Billion in flood-related 5 

damages/year and 82 fatalities/year, averaged over the past 30 years (NWS, 2014). It is reported that 78% of emergencies are 

weather related (Weaver et al., 2014; Hoss and Fischbeck, 2016). 

The increase in global averaged temperatures enhanced the potential for severe to extreme weather events (Becker and 

Grunewald, 2003; WMO, 2003). As the world warms, northern regions and mountainous areas are experiencing more 

precipitation falling as rain rather than snow, with a pronounced increase in precipitation being observed in the area of eastern 10 

North America (Karl, 2009). The special report on “Managing the Risks of Extreme Events and Disasters to Advance Climate 

Change Adaptation” of the Intergovernmental Panel on Climate Change (IPCC), critically assessed recent scientific literature 

on climate change and the impacts from extreme events. They reported that increased frequency and intensity of rainfall, based 

on climate models,  substantially contributed in local flooding (Kundzewicz et al., 2014). Studies addressing flood damage in 

the United States show that the impact of floods to a community has increased over time as a result of both climate factors and 15 

societal factors: increased damage is associated with increased precipitation and with increasing population and urban 

development (Pielke Jr, 2000; Changnon et al., 2001). Furthermore, studies report that associated monetary damages from 

flooding are also likely to go up in the 21st century and beyond (Milly et al., 2002; Allamano et al., 2009; Pall et al., 2011).. 

The rise in the number of extreme weather events in recent years has spurred the need to better predict floods and mitigate 

flood damage. Such advanced warnings are not only important for economic losses but can mean the difference between life 20 

and death (NWS, 2012) . Studies suggest that as little as one hour of lead-time can result in a ten-percent reduction in flood 

damages if forecast information is communicated in a timely manner (McEnery et al., 2005). Flood  modelling and prediction 

has greatly advanced in recent years with the advent of geographic information systems (GIS), high-resolution digital elevation 

models (DEMs), distributed hydrologic and weather models and better delivery systems on the internet (McEnery et al., 2005). 

However, despite the advancement in hydrological prediction systems, such systems remain plagued by uncertainty from 25 

numerical weather prediction models (Clark and Hay, 2004) and, hydrologic model and structure parameters (Krzysztofowicz, 

2001a; Gupta, 2005).  

In terms of atmospheric forcing,  the main source of uncertainty in streamflow forecasts arises from precipitation forecast 

errors which include errors arising from parameterizations of physical processes in atmospheric models, resolution and initial 

conditions (Krzysztofowicz, 2001a; Bartholmes and Todini, 2005; Cuo et al., 2011). In this context, ensemble hydrological 30 

forecasts using every ensemble are appealing to account for the uncertainty in numerical weather prediction (NWP) model 

forecasts (Buizza et al., 1999; Krzysztofowicz, 2001b; Bowler et al., 2008; Hamill et al., 2008; Cloke and Pappenberger, 2009).  
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Recent studies show the promise of adopting streamflow ensemble forecast techniques due to advantages over deterministic 

forecasts (Habets et al., 2004; Younis et al., 2008; Boucher et al., 2011; Schellekens et al., 2011; Verkade and Werner, 2011; 

Alfieri et al., 2013) as well as a way of accounting for uncertainties in hydrological forecasting (Chen and Yu, 2007; 

Demeritt et al., 2007; Davolio et al., 2008; Pappenberger et al., 2008; Reggiani and Weerts, 2008; Cloke and Pappenberger, 

2009; Bao et al., 2011; Bogner and Pappenberger, 2011; Cuo et al., 2011; Schellekens et al., 2011; Alfieri et al., 2012; 5 

Amengual et al., 2015). Other advantages include the ability to distinguish between an extreme event forecast that is more or 

less likely to occur within the model’s forecast horizon (Buizza, 2008; Golding, 2009) and better decision making with 

respect to operational hydrological concerns (Ramos et al., 2007; McCollor and Stull, 2008; Boucher et al., 2012). 

Furthermore, ensemble-based streamflow forecasts tend to be more consistent between successive forecasts (Pappenberger et 

al., 2011). Fan et al. (2014) showed benefits in the use of ensembles, particularly for reservoir inflows on flooding events, 10 

and in comparison to the deterministic values given by the control member of the ensemble and by the ensemble mean. 

Komma et al. (2007) found that for longer lead forecast times, the variability of the precipitation ensemble is amplified as it 

propagates through the catchment system as a result of non-linear catchment response. Also, the ensemble spread was found 

to be a useful indicator to assess potential forecast errors for lead time greater than 12 hours. Several techniques have been 

devised to account for uncertainty in hydrological forecast systems. Krzysztofowicz (2001a) implemented a method of 15 

combining the hydrological uncertainties with uncertainties of the precipitation forecasts using a Bayesian Forecasting 

System (BFS) which decomposes the total uncertainty about the river stage into precipitation uncertainty and hydrologic 

uncertainty, which are quantified independently and then integrated into a predictive distribution of the river stage. 

Montanari and Grossi (2008) indirectly related the forecast error to the sources of uncertainty in the forecasting procedure 

through a probabilistic link with the current forecast issued by the hydrologic model, the past forecast error, and the past 20 

rainfall. Olsson and Lindström (2008) performed analysis on separating the contributions of the precipitation forecast errors 

and the hydrological simulation errors. Weerts et al. (2011) used quantile regressions to assess the relationship between the 

hydrological forecast and the associated forecast error. Renard et al. (2010) addressed the total predictive uncertainty and 

separated it into input and structural components under different inference scenarios. They highlighted the inherent 

limitations of inferring inaccurate hydrologic models using rainfall-runoff data with large uncertainties. Brown (2015) 25 

quantified the total uncertainty in future streamflow as a combination of the meteorological forcing uncertainties and the 

hydrologic modeling uncertainties. He implemented a Meteorological Ensemble Forecast Processor (MEFP) to quantify the 

meteorological uncertainties and correct biases in the forcing inputs to the streamflow forecasts modeling.  

In spite of the advancements and advantages in streamflow ensemble forecasts reported in the literature there are a number of 

key scientific questions that need better understanding. These include: how the meteorological forecast uncertainty reflects in 30 

the ensemble streamflow forecast; how does the degree of spread and hydrological response correlate with the lead time of the 

forecast and the scale of application; and how effective is streamflow ensemble forecasting during an extreme hydrological 

event. The present work investigates these questions by retrospectively forecasting streamflow of an extreme event (Hurricane 

Irene) in the Hudson River Basin, USA. Hurricane Irene had strong hydrological effects from high moisture content that 
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brought very heavy rainfall rates to the US East Coast including the Hudson River basin (Coch, 2012) (Figure 1). The total 

estimated damage from Hurricane Irene was ~$15.8 billion. This includes about $7.2 billion from inland flooding and storm 

surges (Avila and Cangialosi, 2011).  

In this paper we first describe the case study area and context. We then summarise the main datasets that were used to 

implement the hydrologic framework. Subsequently, we provide a detailed quantitative analysis and discussion of the 5 

uncertainties in the streamflow forecasts associated with the forcing from weather models and demonstrate how uncertainties 

in streamflow forecast median, time of peak and spread are reduced approaching a given event.  

2 Materials and Methods 

2.1 Study area and context 

The study encompasses the Hudson River Basin (USA) which originates from the Adirondack Mountains of Upstate New 10 

York and drains into the Atlantic Ocean (Figure 2). The drainage area of the basin is approximately 36,000 km2, covering 25% 

of New York State and other portions of the States of New Jersey, Connecticut, Massachusetts and Vermont. The basin is 

considered one of the largest drainage areas in the eastern seaboard of the United States. According to a national water quality 

assessment study conducted by the United States Geological Survey (USGS), nearly 60% of the water supplied in the basin is 

for commercial or industrial use. Several reservoirs within the Hudson River basin contribute to the New York City water-15 

supply system, which supplies water to about 8 million people.  

In 2011, Hurricane Irene caused severe damage and widespread destruction that affected the east coast of the United States. 

The storm made landfall as a strong tropical storm at Little Egg Inlet in New Jersey on August 28, 2011 (Figure 1). The total 

precipitation accumulation from Hurricane Irene during August 27–30, 2011 was more than 300 mm in certain areas of the 

Hudson River basin (Figure 4). It inundated streams throughout New Jersey resulting in peak stream flows exceeding the 20 

100-year recurrence interval at many stream gages and causing heavy property and road damage. For instance, the Passaic 

and Hackensack River Basins in Northern New Jersey just south of the Hudson River Basin witnessed new record peaks at a 

number of streamflow-gauging stations.  

President Obama issued a Major Disaster Declaration for counties in New York and New Jersey impacted by Hurricane Irene. 

In total, 38 counties across New York State were impacted with an estimated $1.5 billion dollars in FEMA public assistance 25 

costs and 10 deaths (FEMA, 2011) . In New Jersey, the property damage was estimated to be $1 billion. In addition to high 

monetary damages, millions of people across the State were evacuated and seven deaths were reported (Watson et al., 2013; 

NJOEM, 2014).  

2.2 Modeling framework description 

The operational framework diagram is shown in Figure 3 and the datasets used in constructing the Hudson River basin regional 30 

scale hydrological model are depicted in Figure 2. The framework was validated using the National Centers for Environmental 
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Prediction (NCEP) North American Regional Reanalysis (NARR) precipitation data (Mesinger et al., 2006). A retrospective 

forecast of Hurricane Irene utilizing the 21 ensemble members from NOAA’s Global Ensemble Forecast System Reforecast 

(GEFS/R) was then used (Hamill et al., 2015; Zhou and Zhu, 2016). 

Apart from this work, the framework is currently operational and fully automated on the Pharos (lighthouse) Linux 

supercomputer at Stevens Institute of Technology, producing 4 forecast cycles of ensemble river discharge per day, simulated 5 

at hourly time step, that feed into the New York Harbor Observing and Prediction System (NYHOPS) (Bruno et al., 2006; 

Georgas et al., 2007; Georgas et al., 2014). NYHOPS was developed at Stevens Institute of Technology's Davidson Laboratory 

to generate forecasts of the Atlantic Coast, New York Harbor, and Hudson River region through in-situ monitoring equipment 

and hydrodynamic modeling (Blumberg et al., 2015). 

2.2.1 HEC-HMS model description 10 

The Hudson River Basin was modelled using the latest Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-

HMS), version 4.1 (USACE, 2015). HEC-HMS, developed by the US Army Corps of Engineers, is a conceptual semi-

distributed hydrological model that has been used extensively in rainfall-runoff modeling and other related hydrological studies 

(Anderson et al., 2002; Neary et al., 2004; Knebl et al., 2005; Amengual et al., 2009; Chu and Steinman, 2009; Halwatura and 

Najim, 2013; Meenu et al., 2013; Seyoum et al., 2013; Zhang et al., 2013; Yang and Yang, 2014). The model uses a number 15 

of adjustable empirically derived parameters that describe the overall structure of the basin including parameters for runoff, 

baseflow, and river routing (Feldman, 2000). In this work, the Modified Clark (ModClark) distributed method (Kull and 

Feldman, 1998) was used to account for the spatial variability and characteristics of the basin. The gridded precipitation inputs 

were used to enable spatially distributed infiltration calculations at all regions of the basin. Infiltration capacity in the model 

was quantified using the gridded curve number (CN) methodology derived by the Soil Conservation Service (SCS) (USDA, 20 

1986; Mishra and Singh, 2013). The SCS CN method estimates precipitation excess as a function of cumulative precipitation, 

soil cover, land use and antecedent moisture content, total length of the river, and the elevation of the catchment area 

(Scharffenberg, 2015). The baseflow component of the model includes the initial flow and the recession constant to account 

for ground-water contributions to stream flow (Chow, 1959; Maidment, 1992; Feldman, 2000).  

2.2.2 Hudson River Basin hydrological model datasets 25 

The ArcGIS HEC-GeoHMS 10.2 extension (Fleming and Doan, 2013) was used to prepare and import the geographical 

information system (GIS) data into the HEC-HMS (Johnson et al., 2001). The regional model datasets shown in Figure 2 

include topography obtained from the USGS National Elevation Dataset (NED) (Gesch et al., 2002), land surface cover 

obtained from the US Department of Agriculture National Resource Conservation Service (NRCS) and soil data for New York 

State and New Jersey gathered from the State Soil Geographic Database (STATSGO) (Miller and White, 1998). Land use 30 

datasets were obtained from the USGS National Land Cover Dataset (NLCD) (Homer et al., 2012).  
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The Hudson River basin was first delineated into sub-basins based on flow direction and accumulation derived from a digital 

elevation model (DEM) using HEC-GeoHMS (Fleming and Doan, 2013), and then each sub-basin was subdivided into 

hydrologic response units, each of which has a gridded curve number representing its runoff response rate based on its unique 

combination of land use, soil, and slope (Gassman et al., 2007). The gridded SCS curve number was obtained by intersecting 

land use and land cover with the soil data using the -CN-grid tool in HEC-GeoHMS. An example of the curve number grid 5 

GIS layer over a sub-basin of the Hudson River is shown in Figure 2. The other hydrologic parameters namely, imperviousness 

storage coefficient and imperviousness, were derived from the GIS datasets listed earlier this section (Figure 2). For observed 

river discharge we used fifteen USGS gauging stations that were made available through the National Water Information 

System (NWIS). The dataRetrieval R package (Hirsch and De Cicco, 2015) was used to download and process the USGS data 

into the R environment (R Core Team, 2012). We used river discharge data recorded at 15 minutes time intervals to form a 10 

complete HEC-DSSVue (HEC, 2009) database of streamflow observations over the study region (Figure 2). In total, we used 

25-years of available historical flow data (not shown) to derive the model baseflow recession constants that are important to 

better simulate the falling limb of the discharge hydrograph for each sub-basin. More precisely, an automated base flow 

separation technique based on the R low flow statistics package “lfstat” was used (Gustard and Demuth, 2009; Koffler and 

Laaha, 2012). The optimal recession constant values for the sub-basins ranged from 0.67 to 0.90 depending on the sub-basin 15 

that was considered. These calculated values were consistent and in agreement with the ones reported in the literature (Pilgrim 

and Cordery, 1993; Feldman, 2000).  

For the initial baseflow, we used observed conditions in the gauging stations to reduce uncertainties in the model as the model 

was intended to forecast short term extreme events within a 96-hr forecast horizon and not long term simulations. The model 

was forced with gridded precipitation, discussed in detail in the next sections of this paper, to work with the ModClark 20 

transform method (Kull and Feldman, 1998). 

2.3 Model meteorological datasets 

2.3.1 North American Regional Reanalysis (NARR) 

NARR is a long term, dynamically consistent, high resolution, high frequency, atmospheric and land surface hydrology data 

set for the North American domain (Mesinger et al., 2006). NARR was developed as a major improvement upon the earlier 25 

National Centers for Environmental Prediction - National Centre for Atmospheric Research Global Reanalysis 1 (NCEP-

NCAR GR1). NARR data has successfully assimilated high-quality and detailed precipitation observations into the 

atmospheric analysis to create a long-term, consistent, high-resolution climate dataset for the North American domain. The 

temporal resolution of the NARR data is 3 hours and the spatial resolution is 32 km (Mesinger et al., 2006). The NARR 

precipitation data has been used in a number of hydrological studies. For instance, Choi et al. (2009) used the NARR data sets 30 

to successfully calibrate the Semi-Distributed Land Use-based Runoff Process (SLURP) model. Solaiman and Simonovic 
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(2010) used the NARR data in a regional hydrological basin and reported satisfactory performance of such data in scarce 

regions. 

In this work, NARR precipitation data, from the 26th to 31st of August 2011, corresponding to Hurricane Irene was used in the 

hydrological model applied to the Hudson River Basin in a 2-km common hydrologic gridded format using bicubic 

interpolation. Table 1 displays the rainfall accumulation totals extracted from the NARR data for selected sub-basins of the 5 

Hudson River. The hydrological simulation using this dataset of precipitation was considered as the simulation of reference 

and was compared with the ensemble forecast that is reported in the next section. 

2.3.2 Global Ensemble Forecast System Reforecast (GEFS/R) 

The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 ensemble members (Hamill et al., 

2013; Hamill et al., 2015; Zhou and Zhu, 2016). The GEFS accounts for the amount of uncertainty in a forecast by generating 10 

an ensemble of multiple forecasts, each minutely different, or perturbed, from the control forecast. The GEFS, 1 degree 

horizontal resolution, data reforecasts used initial conditions obtained from high quality reanalyses data and same assimilation 

system that is used operationally. These reforecasts have been shown to be particularly useful for the calibration of relatively 

uncommon phenomena such as heavy precipitation (Hagedorn, 2008; Hamill et al., 2008). In relation to hydrology, reforecasts 

help produce quantitative probabilistic estimates of river streamflow that are as sharp and reliable as possible (Schaake et al., 15 

2007). 

2.4 Statistical criteria used to assess models performance 

The performance of the models was statistically evaluated using the criteria of Nash-Sutcliffe Efficiency [referred hereafter as 

NSE (Eq. (1)] and Bias (in %) between simulations and observations [referred hereafter as BIAS Eq. (2)]. The NSE measures 

the fraction of the variance of the observed flows explained by the model in terms of the relative magnitude of the residual 20 

variance (‘noise’) to the variance of the flows (‘information’); the optimal value is 1.0 and values should be larger than 0.0 to 

indicate ‘minimally acceptable’ performance (Nash and Sutcliffe, 1970; O'Connell et al., 1970). 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑃𝑖

𝑁
𝑖=1 − 𝑂𝑖)

2

∑ (𝑂𝑖
𝑁
𝑖=1 − �̅�𝑖)

2
  − − − − − − − − − − 𝐸𝑞(1) 

where N is the number of compared values, 𝑃𝑖  is the simulated (forecast) value, 𝑂𝑖  is the observed value and �̅�𝑖  is the average 25 

of 𝑂𝑖  time series. 

The BIAS measures the average tendency of the simulated values to be larger or smaller than the observed ones. The optimal 

value of BIAS is 0.0, with low-magnitude values indicating accurate model simulation. Positive values indicate overestimation, 

whereas negative values indicate underestimation (Yapo et al., 1996).  

 30 
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𝐵𝐼𝐴𝑆(%) = 100
∑ (𝑃𝑖

𝑁
𝑖=1 − 𝑂𝑖)

∑ 𝑂𝑖
𝑁
𝑖=1

− − − − − − − − − − 𝐸𝑞(2) 

Model BIAS is reported relative to the mean observation magnitude (Eq 2), in percentage (%).  

3 Results  

3.1 HEC-HMS model calibration using NARR precipitation data 

Upon implementing the model set-up, we calibrated the hydrological model to assess its ability to reproduce the Hurricane 5 

Irene event using the North American Regional Reanalysis (NARR) gridded precipitation data (Mesinger et al., 2006). The 

HEC-HMS model was run on a 2x2 km Standard Hydrologic grid resolution (SHG) (Maidment and Djokic, 2000) at hourly 

time steps. The simulated flow hydrographs were calibrated against hourly river flow observations to obtain optimal 

performance in terms of both runoff volume and peak flow. The hydrological parameters were modified to produce a best-fit 

model using a root-mean-square error (RMSE) objective function within the HEC-HMS model’s Nelder Mead optimization 10 

method (Barati, 2011; Seyoum et al., 2013), aiming at maximizing the fit between simulated streamflow and observations at 

fifteen U.S. Geological Survey (USGS) gauging stations (Figure 2).  The calibration was also carried out by comparing visually 

and statistically to produce an accurate simulation of discharge at the Hudson River gauging stations (Figure 2). We also used 

the HEC-HMS uncertainty function which, through a variant of Latin Hypercube Sampling, varies sensitive model parameters 

within a defined range, thereby producing an estimate of best-fit parameters after multiple iterations (Mousavi et al., 2012). 15 

For example, the hydrologic Muskingum routing parameters were modified to include a greater ratio of attenuation to 

translation of runoff in the sub-basins which significantly improved the model results (Figure 5). To assess and evaluate the 

parameter uncertainties we performed a Monte-Carlo-based uncertainty analysis available in HEC-HMS 4.1 (Scharffenberg et 

al., 2015). 

Table 1 lists the NARR accumulated precipitation for each sub-basin of the Hudson River while the summary of the model fit 20 

represented by the NSE and BIAS criteria is shown in Figure 4. The NARR hydrological model results (also referred to as the 

simulation of reference) showed a reasonable fit between model and observations in all the selected sub-basins. The lowest 

NSE was 0.75 and certain sub-basins had NSE values higher than 0.90 (Figure 4). Amongst the 15 flow stations examined in 

the study, 13 stations had a BIAS below 10% while 2 stations had a BIAS higher than 10%. It was observed that the stations 

with a higher BIAS were located in the upstream parts of the basin, notably the Hoosic River sub-basin (USGS ID 01334500) 25 

(Figure 4). Importantly, the hourly hydrograph shape and timing of peaks accurately replicated the observations as illustrated 

in Figure 5. Overall, the reference simulation exhibited a representative fit to observations. Thus, the developed calibrated 

framework showed promising results for generating 96-hour-lead streamflow forecasts using ensemble member weather 

forecast forcing.  
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3.2 Ensemble river discharge retrospective forecast  

We forced the HEC-HMS model in ensemble mode, with precipitation fields from the GEFS-retrospective forecast ensemble 

members to examine the variations in simulated discharge among the ensemble members. More specifically, we fed the Hudson 

River basin hydrological model with every single GEFS member of the 21 available members. The resulting sets of streamflow 

forecasts were then analysed to better understand the uncertainty of the streamflow forecasts that arises from the hydrologic 5 

framework’s response to uncertainties in the meteorological forcing. The spread of ensemble members is considered as a useful 

measure of forecast uncertainty (Pappenberger et al., 2005).  

To assess the skill of the forecasts, we compared, at lead times of 72, 48 and 24 hours, observations with results of the individual 

ensemble members, the median of all members, the ensemble control member (GEFSC00) and the NARR simulation of 

reference (Figure 5). We chose to include the control member in these comparisons as a proxy for the single deterministic 10 

models used when ensemble forecasts are not considered. The hydrological parameters and baseflow conditions calibrated in 

the NARR simulation of reference were retained in all simulations. The 98th and 2nd percentiles of accumulated precipitation 

from the 21 ensemble members at each forecast are reported in Table 1. One notes the high uncertainty in the precipitation 

data from the weather ensemble 72-hours prior to the event which was translated by the hydrological model to a high 

uncertainty in the simulated streamflow. For instance, in station 01390500 (Saddle River at Lodi, NJ), there was a 20-fold 15 

spread in the accumulated precipitation amongst the 21 ensemble members. For the same station the peak flow ranged from 

base flow (3 m3/s) to 242 m3/s (exceeding the major flood threshold) (Figure 5). At the Hackensack River at New Milford the 

peak flow was ranging anywhere between 20 m3/s and 525 m3/s. The magnitude of spread in other stations was similar (Figure 

5). At that point of the retrospective forecast, the streamflow simulated using the control member (GEFSC00) underestimated 

the observed flow in all stations except for station ID 01375000 (Croton River on Hudson, NY) where the flow was simulated 20 

correctly (Figure 5). However, the spread between the individual ensemble members remained very high as reported above. In 

terms of estimated time of peak, one notes that the GEFSC00 control member correctly projected the peak time of the event 

in all stations with an error of ±3 hours when compared with observations. However, other individual members had an offset 

of up to 24 hours between simulated and observed peaks in certain stations (5-a1, 5-b1, 5-c1, 5-d1 and 5-e1). For instance, at 

station 01375000 (Croton River on Hudson, NY), one individual member was projecting an estimated peak on the evening of 25 

August 28 while another individual member was projecting it at noon of the following day. In that station the observed peak 

was around midnight of August 28.  This finding offers an interesting perspective in terms of precisely extracting hydrograph 

features as one may, therefore use the control member at this stage of the forecasts to precisely project the time of the peak 

with a temporal error of ±3 hours. In terms of statistical evaluation, Figure 6 and Figure 7 report the NSE and BIAS (%) for 

selected stations. For station 01375000, the control member (GEFSC00) predicts the flow accurately with a NSE of 30 

approximately 0.95, however the flow is underestimated by about 20% 72 hours prior to the event. Overall, only seven 

ensemble members at this station had a NSE above 0.70 while more than 60% of the members underestimated or overestimated 

the flow hydrograph by more than 30% (Figure 7). Although uncertainties in baseflow initial conditions and model 
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hydrological parameters are not addressed in this work, one may argue that uncertainties from precipitation inputs have a 

substantial impact on the prediction compared to remaining uncertainties in the initial conditions and parameters of the 

calibrated hydrological model.  

In the next reforecast, 48 hours before the event, the spread (or the uncertainty envelope) was reduced substantially, notably 

in the projected time of the peak (Figure 5-a2, 5-b2, 5-c2, 5-d2 and 5-e2). This is primarily due to the decrease in accumulated 5 

precipitation ensemble spread (Table 1). The magnitude of the peak ensemble spread was between 104 to 229 m3/s for the 

Saddle River. The same river had a spread on the order of 20-fold in the prior forecast. This improvement was observed at 

other stations as well. At 48hrs lead time, the control member systematically overestimating the flow at all stations (e,g. Figure 

5-a2, 5-b2, 5-c2, 5-d2 and 5-e2), but it consistently predicted the time of peak, as was the case in the  forecast issued 72 hours 

before the event. The uncertainty in the time of the peak also decreased, with most of the ensemble members predicting the 10 

peaks around ±3 hours from the observed ones.  This suggests that the peak ensemble spread may not be the only metric that 

should be analyzed to quantify potential uncertainty, it suggests that other features such as the peak timing and magnitude 

should also be examined. The control member (GEFSC00), which predicted the flow correctly for Croton River on Hudson 

(ID 01375000) 72 hours before the event, however, at 48hrs lead time showed a marked overestimation of the flow 65%. This 

suggests that the accuracy of the predictions also varies temporally and no single member can be relied upon consistently as a 15 

perfect forecast. Overall one notes that for 48 hours before the event there is a significant improvement in NSE for most of the 

members in the examined stations. 

In the final reforecast considered, 24 hours before the event, the spread was further reduced with all the members predicting 

the rising and the falling limbs of the hydrograph more accurately. The control member presented an almost perfect forecast 

for Hackensack River at New Milford (Figure 6). The peak ensemble spread was reduced by 57%, 60% and 48% compared to 20 

the 72hrs-lead-time predicted peak ensemble spread at the Hackensack River, Saddle River and Wallkill River stations, 

respectively. Also, the peaks were predicted to occur within ±3 hours of the observed event peak in all cases. The control 

member seemed to be consistent with the observations in terms of the peak time at this stage of the forecast and the uncertainties 

are less than that projected 48 hours before the event. At this stage of the forecast 75% of the ensemble members had a NSE 

higher than 0.75 (Figure 6). This is consistent with findings in recent ensemble streamflow studies that used different modelling 25 

frameworks (Thielen et al., 2009; Fan et al., 2014; Yang and Yang, 2014). The results also suggest that the magnitude of spread 

between the ensemble members depends significantly on the sub-basin drainage area. For example, at station ID 01391500, 

Saddle River at Lodi (140 km2) a peak discharge of 242 m3/s corresponds to a maximum accumulated precipitation of 206 

mm. Thus, there is peak flow of about 1 m3/s for 1 mm of accumulated precipitation. This ratio however increases for a basin 

with a larger area. For example, at Wallkill River at Gardiner, NY (ID 01371500, 1800 km2) there was a peak flow of 30 

approximately 10 m3/s for 1 mm of accumulated precipitation as it propagates (non-linearly) through the drainage area, thus 

there is a correlation between the spread in the precipitation data and the area of the sub-basin. 

To have an overall assessment of the forecast skill, we calculated the range and average NSE and Bias (%) across all stations 

(Figure 8) in the Hudson River basin for the different reforecast ensemble members 24 hours before the event. The figures 
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depicts how a member that has a good NSE and BIAS at one station can have a very poor performance in other parts of the 

basin that may partly be due to the statistical downscaling of precipitation from 1 degree resolution to 2km, and the associated 

uncertainty in the spatial distribution of precipitation. The median of all the members and the control member showed a good 

performance with an average NSE of 0.75 compared to each of the members. The results show that there is no “one size fits 

all” solution for selecting an ensemble member, noting that each sub-basin has its own distinct set of characteristics manifested 5 

in local conditions such as the size of the basin and land use. This finding calls for further work involving higher resolution 

precipitation models to assess the effect of basin size and meteorological forcing resolutions.  

3.2.1 Threshold exceedance persistence diagram 

In addition to the statistical metrics and visual comparison of stream-flow, an assessment of the forecasts skill was carried out 

for Hurricane Irene using a threshold exceedance persistence diagram at 6-hr time intervals of the forecasts streamflow time 10 

series (Figure 9). The exceedance diagram used in this study is an adaptation of the operational European Flood Alert System 

(Bartholmes et al., 2009; Thielen et al., 2009). Such quantitative diagrams give an idea of the forecast persistence and support 

operational flood management decisions and human judgment. The threshold for each station was based on the “major 

flooding” flow defined by the NOAA National Weather Service as a category of flood where extensive inundation of structures 

and roads is expected, leading to significant evacuations of people and/or transfer of property to higher elevations is called 15 

(NWS, 2012)  . The major thresholds for observed and simulated discharge were transformed into dichotomous time series of 

1 (=Yes, the major threshold is exceeded) and 0 (=No, the major threshold is not exceeded). The information of each cell in 

the matrix diagram is the probability of exceeding the major flooding value, calculated using all the ensemble members at a 

given forecast. For instance, a probability of 100% suggests that all 21 ensemble members used in the work are projecting a 

major flood.  Figure 9 exhibits the exceedance diagram results at selected stations of the Hudson River basin in which 20 

observations exceeded the major flood threshold during this event. The results suggest that one may establish a highly reliable 

streamflow forecast 48 hours prior to the event. For instance, the 72-hrs-lead-time reforecasts (26-Aug-2011 00:00 GMT) for 

station 01381900 were projecting a 52% probability (11 members out of 21) of having a major flood event 78 hours out. 

However, the probability increased to 100% in the 27-Aug-2011 00:00 GMT (48 hours before the event) reforecast for the 

same station. The average across all stations for the day-3 (72 hours before the event) reforecast was showing a 60% probability 25 

of having a major flood on 29-Aug-2011 (between 00:00 and 06:00 am GMT), while the day-2 (48 hours before the event) 

reforecasts had a 99% average chance of exceeding the major flood threshold,. This highlights the increase in reliability the 

event approaches. The diagram also suggests that the persistence of the event occurrence among subsequent forecasts is a good 

indicator to trigger a major flood warning, especially when the proportion of members above the threshold exceeds 71% (15 

or more out of the 21 ensemble members). By contrast, station 0137500, both observations and flow ensemble members did 30 

not exceed the major flood threshold (Figure 9). This is particularly important for the reliability and validation of the 

operational forecast system. However, caution should be practiced when interpreting the persistence exceeding diagrams as 

time series will have to be examined in parallel to confirm any potential discrepancy between the models.  
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4. Summary and Discussion 

The first part of this work consisted of implementing a regional scale hydrological modeling framework on of the Hudson 

River basin using the HEC-HMS model (USACE, 2015) forced with NARR gridded precipitation inputs (Mesinger et al., 

2006). The second part investigated the use of GEFS (Hamill et al., 2013; Hamill et al., 2015) ensemble inputs to 

retrospectively forecast an extreme hydrological event, Hurricane Irene, with a 96-hr time horizon at hourly time step. In total, 5 

21 GEFS ensemble members were tested on the Hudson River basin at 72, 48, and 24 hours prior to the event.  

This work did not address uncertainty in hydrological initial conditions and model parameters, which were optimized in the 

NARR-based calibration, but rather was focused on how dominant the precipitation inputs are on the results of the hydrological 

streamflow forecasts.  

In terms of assessment, we visually and statistically quantified the results of the GEFS individual members, the deterministic 10 

forecasts represented by the control member (GEFSC00), and the median of all members. We also used the persistence 

exceedance diagram of established thresholds to project the possibility of major floods based on all the individual members.  

The visual comparison and the statistical metrics show that ensemble forecasts are advantageous in quantifying uncertainty of 

forecasts lead time and raising reliability from an operational perspective. The work shows that streamflow forecasts are highly 

dependent on the meteorological inputs and reflect uncertainties associated with these inputs. Clearly, the relatively small area 15 

of the sub-basin and resolution of the weather model was of importance for the spread overestimation due to the precipitation 

inputs. In this context, higher resolution weather models such as the European Centre for Medium‑Range Weather Forecast 

(ECMWF) (Molteni et al., 1996; Thiemig et al., 2015) or the Coupled Ocean-Atmosphere Mesoscale Prediction System 

(COAMPS)® (Pullen et al., 2015) may be of particular interest in smaller scale sub-catchments in order to provide higher 

accuracy. The operational GEFS ensemble forecast datasets were upgraded to 0.5 degrees resolution on December 2, 2015 20 

(http://www.nco.ncep.noaa.gov/pmb/changes/). More detailed weather model forcing should lead to a reduction in the 

streamflow spread, and reduce the uncertainty of the forecast.  

The presented hydrologic modeling of the Hudson River basin demonstrates that a given streamflow ensemble member may 

produce streamflow that is highly in agreement with observations, accounting for uncertainty in precipitation and in 

hydrologic-model parameters. However, there is no “one size fits all” solution for selecting an ensemble member, noting that 25 

each sub-basin has its own distinct set of characteristics manifested in local conditions such as the area of the drainage basin 

and land use. Furthermore, caution should be exercised in forecast models that only use the control member from the weather 

models or the average ensemble member as it may lead to considerable deviation in river discharge forecasts from observations 

resulting in false warnings and missed flooding events, thereby, decreasing the potential reduction of flood risk (Figure 5). 

The findings also suggest that higher confidence in the river discharge forecasts may be attained as we approach a major event 30 

by approximately 48 hours. The outcomes of this work provide interesting perspectives for future ensemble post-processing 

techniques and features extraction, notably regarding the peak timing of an extreme hydrologic event when combined with the 

major flood persistence diagram. 
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This operational framework offers an improvement over the available NOAA’s Advanced Hydrological Prediction System 

(AHPS) in this particular region (McEnery et al., 2005). The AHPS streamflow forecasts are at 6-hour time interval using one 

weather control member for input and with a lead time that is less than 60 hours in this region (Adams, 2015).   

The Hudson River basin regional scale model may be potentially used for numerous applications such as continuously 

forecasting the overall variability of the water resources (Saleh et al., 2011; Pryet et al., 2015; Saraiva Okello et al., 2015), 5 

predicting fate and transport of water quality such as nitrate (Schoonover and Lockaby, 2006; Wang et al., 2012; Bastola and 

Misra, 2015; Schuetz et al., 2015) and climate change scenarios (Ducharne et al., 2007; Graham et al., 2007; Ducharne et al., 

2010; Quintana Seguí et al., 2010; Habets et al., 2013). Moreover, socio-economic analysis may be used to weigh how such 

improved forecasts potentially prevent loss of life and minimize the damage to property, with the aid of effective 

communication and social media. 10 
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 Table 1 Percentiles of total accumulated precipitation from the 21 GEFS ensemble members 

along with the peak discharge for forecasts issued at lead times of 72 to 24 hours. The drainage 

area of each basin is also reported 

Station USGS ID 

/  name 

Basin 

area 

(km2) 

Forecast 

date 

NARR 

precipitation 

(mm) over 

the whole 

event 

GEFS 

precipitation 

(mm) over the 

whole event 

Simulated 

peak flow 

(m3/s) 

2nd 98th 2nd 98th 

01391500  

 Saddle River at 

Lodi, NJ 

141 

26-Aug-11 

143 

11 206 3 242 

27-Aug-11 110 201 104 229 

28-Aug-11 108 178 105 200 

01378500 

Hackensack 

River at New 

Milford, NJ 

293 

26-Aug-11 

143 

11 206 20 525 

27-Aug-11 108 200 196 514 

28-Aug-11 111 183 225 442 

01371500 

Wallkill River at 

Gardiner, NY 

1800 

26-Aug-11 

106 

3 190 22 1990 

27-Aug-11 80 187 475 1857 

28-Aug-11 82 154 558 1585 

01388500 

Pompton River 

at Pompton 

Plains, NJ 

329 

26-Aug-11 

130 

7 202 156 1208 

27-Aug-11 101 200 474 1150 

28-Aug-11 98 168 490 1024 

01375000  

Croton River on 

Hudson, NY 

979 

26-Aug-11 

126 

13 192 2 1255 

27-Aug-11 123 190 604 1205 

28-Aug-11 112 182 503 1205 
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Figure 1. Geostationary Operational Environmental Satellite (GOES) East image of Hurricane Irene making landfall on August 10 

28, 2011 (image source: National Oceanic and Atmospheric Administration, 2011). 
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Figure 2 Map showing the Hudson River Basin topography including basin divisions (thin black lines) and hydrographic 

network. Examples of land use, curve number, and imperviousness datasets (zoomed) that were used in HEC-GeoHMS to 

construct the hydrological model are also shown. The upper right side of the figure exhibits an example of the HEC-HMS 5 

model structure and its sub-basins using Standard Hydrologic Grids [SHG (2*2 km)]. 
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Figure 3 Framework design steps including spatial data and USGS discharge time series. Processing of General Regularly-

distributed Information in Binary GRIB precipitation files data was carries out in Qgis (QGis, 2011) R and Python and exported 

to the HEC-DSSvue storage system. Basin parameters were derived for the study area and the hydrological model was run 

using these inputs.  5 
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Figure 4 Summary of HEC-HMS performances at the USGS streamflow stations. The circles represent the criteria of Nash 

and Sutcliffe (NSE) while the squares represent the Bias (%). The statistical criteria are computed at an hourly time step. The 

model performances are illustrated for the NARR precipitation forcing. The map also shows the total observed accumulated 5 

precipitation received in 48 hours during August 28–29, 2011 (data from National Oceanic and Atmospheric Administration, 

2011) .The time series for selected flow station are presented in Figure 5. 
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Figure 5 Models performance in selected station at lead times of 72 h, 48 h and 24 hours from the observed peak flow, reported 

time is in UTC. 
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Figure 6 Models performance represented by Nash-Sutcliffe efficiency (NSE) statistical metric at lead times of 72 h, 48 h and 

24 hours from the observed peak flow. The metrics are also showing the NARR model outputs and the median of ensemble 

members of this station. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-104, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 15 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



27 

 

 

Figure 7 Models performance represented by Bias (%) statistical metric at lead times of 72 h, 48 h and 24 hours from the 

observed peak flow. The metrics are also showing the NARR model outputs and the median of ensemble members of this 

station. 
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Figure 8 Overall NSE and BIAS (%) across the stations for forecast issued 24 hours before Hurricane Irene. 5 

[a] 

[b] 
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Figure 9 Color-coded threshold exceedance diagram for Hurricane Irene forecasts at 6-hour intervals using the major flood 

threshold for each USGS station. The flow values below the station ID are the major flood threshold for a given station. The 

x-axis represents the 96-hr forecast horizon from the simulation date shown on the left column. The time period, in which the 

major event hydrological record exceeds the equivalent alert threshold, is indicated using a dark red cell while the cell values 5 

refer to the percentage of ensemble members that were projecting a major flood. For instance, if the value is 100 then all 21 

flow ensemble members are projecting a major event within a given time interval, while 0 means none of the ensemble 

members are exceeding the major event threshold. The observed occurrence of the threshold is exhibited at the last row for 

each station, the red colour-code indicates an observed flow higher than the major flood threshold, while the green cell is flow 

below the major threshold. Reported time is in UTC. 10 
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