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Point-by-point response to the reviews 
 
A Retrospective Streamflow Ensemble Forecast for an Extreme 
Hydrologic Event: a Case Study of Hurricane Irene and on the 
Hudson River basin 
 
Referee #1 comments and reply 

Comment 1: In the abstract the authors state that this modeling framework could be applied anywhere in 
the world. However, they use NARR dataset and a database from US based gage sites for calibration. 
How would these methods be applied for watersheds without gaging stations (or with only a few) outside 
of the US where the NARR dataset does not apply? Also, this statement was not discussed in the paper.  
It is possible to use other sources of atmospheric data in the framework instead of NARR in order to apply 
the framework to watersheds in other countries. For instance, one may use atmospheric reanalysis 
products from the European Center for Medium range Weather Forecasting (ECMWF), National Centers 
for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR). The 
framework directly handles GRIB1, GRIB2 and NetCDF. As for watersheds without gaging stations (or 
with only a few), it is possible to use remote sensing river discharge data to calibrate and validate the 
modeling outputs. Despite that fact that such data have uncertainties, there have been many 
advancements in this field and there is potential for future applications (e.g., the Surface Water and Ocean 
Topography (SWOT) satellite mission). This was added in the revised version of the manuscript (section 
4). 
 
Comment 2: The HEC-HMS model uses the SCS Curve Number method that includes “antecedent 
moisture content” (P5 Line 22) as a parameter for estimating runoff. From my experience, model runoff 
estimation can be very sensitive to soil moisture. This indicates that calibrating the model will only 
produce accurate answers for the conditions of the storm it was calibrated to. How do you account for 
changing soil moisture in the forecast framework?  
This is a very important point that the referee is addressing. We are aware of the limitations in using 
static parameters for the SCS curve number method. To this end, the framework has a look up table for 
the initial abstraction parameters based on the hindcast and the continuous run of the model with the 
NARR data. We are actively working on integrating a machine learning technique which automatically 
selects the optimal initial abstraction parameters on the fly. This was added in the revised version of the 
manuscript (section 2.2.2). 
 
Comment 3: How long does it take for the streamflow forecasts to be produced? How much lead-time is 
left over? Is it enough to issue a warning? 
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For the entire Hudson River Basin, the required time for GEFS (21 members) is around 30 minutes. This 
includes processing the GRIB files and post-processing of the ensemble outputs. We are currently running 
125 ensemble members in the framework and this includes (in addition to GEFS) the ECMWF, ECMWF-
HRES, the Short-Range Ensemble Forecast (SREF), the Canadian Meteorological Centre (CMC) and the 
North American Mesoscale Forecast System (NAM). The total time for all these ensemble members is 
around five and a half hours from pre-processing to updating the database and the website. We are 
currently updating the forecasts every 6 hours. The current lead time (87 hours) is sufficient for issuing 
a flood warning. This was discussed in the revised version of the manuscript (section 4). 
 
Technical Corrections 
All the technical corrections were carefully addressed in the revised manuscript (see marked-up version). 
 
Referee #2 comments and reply 

- Streamflow forecasts are indeed highly dependent on the meteorological input and have historically 
been associated with much uncertainty. 
- Summary/discussion states that a higher confidence in the river discharge forecast may be attained 
within 48 hours of a major rainfall event. This concept isn’t new and points back to the uncertainty with 
hydrologic modeling. 
 
We agree with your comments regarding the concept of obtaining a higher confidence in the river 
discharge forecast as one approaches the event in question but we would like to reiterate the fact that 
using ensemble members instead of one deterministic forecast has advantages in terms of better 
representing the envelope uncertainty, particularly in an extreme hydrologic event such as the one 
presented in this work. Furthermore, while the general idea is that hydrologic uncertainty is reduced with 
lead time, we have not found studies that quantitatively characterize this aspect using the GEFS 
retrospective data and in the event of an extreme flood event such as Hurricane Irene. This was added to 
the revised version of the manuscript (section 4). 
 
- In terms of what’s new that is presented in this work is perhaps using GIS and a regional scale HEC-
HMS model but the paper seems to suggest that you are reducing uncertainty. The work seems to suggest 
that this will enable better flood forecasts but that can’t be ascertained unless you are doing hydraulic 
modeling (HEC-RAS). It is the hydraulic modeling that will translate the hydrology to a given water 
surface elevation (i.e., flood stage). It is the flood stage that determines the level of riverine inundation. 
While HEC-HMS can be used for routing, if this work is suggesting better with streamflow forecasts 
unless this work is coupled with simulations in HEC-RAS. Hydrology is more of science and hydraulics 
more of an engineering discipline. This work is suitable for hydrologic modeling discussions but not “the 
uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing 
the potential to effectively mitigate flood damage” (lines 17-19). Flood forecasting is possible than 
traditional riverine hydraulic modeling is warranted. I’m a little unfordable with what is being stated for 
better control of modeling uncertainty  
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We agree with the reviewer that using a hydrodynamic model will have advantages in terms of simulating 
the water levels but from our perspective the simulation of hydrological streamflow remains the main 
driver because HEC-RAS or any other hydrodynamic model would require flow boundary conditions 
produced by a hydrological (rainfall-runoff) model to solve the Saint-Venant equations. If the flow inputs 
produced by the hydrological model are not accurate then the simulated inundations or water surface 
elevations will be impacted regardless of the level of complexity within the modeling framework. 
Furthermore, hydrodynamic modeling would require detailed representation of river cross sections 
geometry that is not available at regional scale. In this context, a number of techniques such as pre-
defined rating curves (water levels vs. discharge) are operationally used to convert the streamflow to 
water levels at specific locations. This is also the technique we are currently using in our operational 
framework and we have discussed it in the revised version of the manuscript (section 4). 
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Marked-up manuscript version 
 
A Retrospective Streamflow Ensemble Forecast for an Extreme 
Hydrologic Event: a Case Study of Hurricane Irene and on the 5 

Hudson River basin 

F. Saleh*, V. Ramaswamy, N. Georgas, A. F. Blumberg and J. Pullen 

Stevens Institute of Technology, Davidson Laboratory, Department of Civil, Environmental and Ocean Engineering, Hoboken 
NJ, 07030, USA 

*Correspondence to: F. Saleh (fsaleh@stevens.edu) 10 

Abstract. This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event 

using a hydrological model forced with short-range ensemble weather prediction models.  

A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale 

hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River Basin, USA (~36,000 km2) in 

the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North 15 

American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic 

Survey (USGS). Finally, 21 precipitation datasets reforecast by the 21 ensemble members of the latest Global Ensemble 

Forecast System (GEFS/R) were usedforced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an 

extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved 

predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with 20 

deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, 

reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median 

streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 hours pre-event utilizing 

the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at 

regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold 25 

exceedance diagram. Although the modelling framework was implemented on the Hudson River basin, it is flexible and 

applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available. 

Although the modelling framework was implemented on the Hudson River basin, it is flexible and re-locatable in other parts 

of the world. 

  30 
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1 Introduction 5 

Riverine floods are known to adversely impact affected communities by causing casualties, inflicting damage to physical 

property, temporarily disrupting social and economic activities, and forcing a community to take emergency measures (IFRC, 

2013). In the United States, for example, floods are recognized as the main natural disaster with $7.96 Billion in flood-related 

damages/year and 82 fatalities/year, averaged over the past 30 years (NWS, 2014). It is reported that 78% of emergencies are 

weather related (Weaver et al., 2014; Hoss and Fischbeck, 2016). 10 

The increase in global averaged temperatures enhanced the potential for severe to extreme weather events (Becker and 

Grunewald, 2003; WMO, 2003). As the world warms, northern regions and mountainous areas are experiencing more 

precipitation falling as rain rather than snow, with a pronounced increase in precipitation being observed in the area of eastern 

North America (Karl, 2009). The special report on “Managing the Risks of Extreme Events and Disasters to Advance Climate 

Change Adaptation” of the Intergovernmental Panel on Climate Change (IPCC), critically assessed recent scientific literature 15 

on climate change and the impacts from extreme events. They reported that increased frequency and intensity of rainfall, based 

on climate models,  substantially contributed in local flooding (Kundzewicz et al., 2014). Studies addressing flood damage in 

the United States show that the impact of floods to a community has increased over time as a result of both climate factors 

such as precipitation and societal factors: such as increased damage is associated with increased precipitation and with 

increasing population and urban development (Pielke Jr, 2000; Changnon et al., 2001). Furthermore, studies report that 20 

associated monetary damages from flooding are also likely to go up in the 21st century and beyond (Milly et al., 2002; Allamano 

et al., 2009; Pall et al., 2011)... The rise in the number of extreme weather events in recent years has spurred the need to better 

predict floods and mitigate flood damage. Such advanced warnings are not only important for economic losses but can mean 

the difference between life and death (NWS, 2012) ). Studies suggest that as little as one hour of lead-time can result in a ten-

percent reduction in flood damages if forecast information is communicated in a timely manner (McEnery et al., 2005). Flood  25 

modelling and prediction has greatly advanced in recent years with the advent of geographic information systems (GIS), high-

resolution digital elevation models (DEMs), distributed hydrologic and weather models and better delivery systems on the 

internet (McEnery et al., 2005). However, despite the advancement in hydrological prediction systems, such systems remain 

plagued by uncertainty from numerical weather prediction models (Clark and Hay, 2004) and, hydrologic model and structure 

parameters (Krzysztofowicz, 2001a; Gupta, 2005).  30 

In terms of atmospheric forcing,  the main source of uncertainty in streamflow forecasts arises from precipitation forecast 

errors which include errors arising from parameterizations of physical processes in atmospheric models, resolution and initial 



 

3 
 

conditions (Krzysztofowicz, 2001a; Bartholmes and Todini, 2005; Cuo et al., 2011). In this context, ensemble hydrological 

forecasts using every member in the ensemble are appealing to account for the uncertainty in numerical weather prediction 

(NWP) model forecasts (Buizza et al., 1999; Krzysztofowicz, 2001b; Bowler et al., 2008; Hamill et al., 2008; Cloke and 

Pappenberger, 2009).  

Recent studies show the promise of adopting streamflow ensemble forecast techniques due to advantages over deterministic 5 

forecasts (Habets et al., 2004; Younis et al., 2008; Boucher et al., 2011; Schellekens et al., 2011; Verkade and Werner, 2011; 

Alfieri et al., 2013) as well as a way of accounting for uncertainties in hydrological forecasting (Chen and Yu, 2007; 

Demeritt et al., 2007; Davolio et al., 2008; Pappenberger et al., 2008; Reggiani and Weerts, 2008; Cloke and Pappenberger, 

2009; Bao et al., 2011; Bogner and Pappenberger, 2011; Cuo et al., 2011; Schellekens et al., 2011; Alfieri et al., 2012; 

Amengual et al., 2015). Other advantages include the ability to distinguish between an extreme event forecast that is more or 10 

less likely to occur within the model’s forecast horizon (Buizza, 2008; Golding, 2009) and better decision making with 

respect to operational hydrological concerns (Ramos et al., 2007; McCollor and Stull, 2008; Boucher et al., 2012). 

Furthermore, ensemble-based streamflow forecasts tend to be more consistent between successive forecasts (Pappenberger et 

al., 2011). Fan et al. (2014) showed benefits in the use of ensembles, particularly for reservoir inflows on flooding events, 

and in comparison to the deterministic values given by the control member of the ensemble and by the ensemble mean. 15 

Komma et al. (2007) foundreported that for longer lead forecast times, the variability of the precipitation ensemble is 

amplified as it propagates through the catchment system as a result of non-linear catchment response. Also,They also 

showed that the ensemble spread was found to be ais useful indicator to assess potential forecast errors for lead time greater 

than 12 hours. Several 

A numbers of existing techniques have been devisedare currently used by the hydrologic community to account for 20 

uncertainty in hydrological forecast systems. For instance, Krzysztofowicz (2001a) implemented a method of combining 

theto combine uncertainties from both hydrological uncertainties with uncertainties of themodels and precipitation forecasts 

using a Bayesian Forecasting System (BFS) which decomposes). This approach was based on decomposing the total 

uncertainty aboutin the river stage into precipitation uncertainty and hydrologic uncertainty, which are quantified 

independently and then integrated into a predictive distribution of the river stage. Montanari and Grossi (2008) indirectly 25 

related the forecast error to the sources of uncertainty in the forecasting procedure through a probabilistic link with the 

current forecast issued by the hydrologic model, the past forecast error, and the past rainfall. Olsson and Lindström (2008) 

performed analysis on separating the contributions of the precipitation forecast errors and the hydrological simulation errors. 

Weerts et al. (2011) used quantile regressions to assess the relationship between the hydrological forecast and the associated 

forecast error. Renard et al. (2010) addressed the total predictive uncertainty and separated it into input and structural 30 

components under different inference scenarios. They highlighted the inherent limitations of inferring inaccurate hydrologic 

models using rainfall-runoff data with large uncertainties. Brown (2015) quantified the total uncertainty in future streamflow 

as a combination of the meteorological forcing uncertainties and the hydrologic modeling uncertainties. He implemented a 
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Meteorological Ensemble Forecast Processor (MEFP) to quantify the meteorological uncertainties and correct biases in the 

forcing inputs to the streamflow forecasts modeling.  

In spite of the advancements and advantages in streamflow ensemble forecasts reported in the literature there are a number of 

key scientific questions that need better understanding. These include: how the meteorological forecast uncertainty reflects in 

the ensemble streamflow forecast; how does the degree of spread and hydrological response correlate with the lead time of the 5 

forecast and the scale of application; and how effective is streamflow ensemble forecasting during an extreme hydrological 

event. The present work investigates these questions by retrospectively forecasting streamflow of an extreme event (Hurricane 

Irene) in the Hudson River Basin, USA. Hurricane Irene had strong hydrological effects from high moisture content that 

brought very heavy rainfall rates to the US East Coast including the Hudson River basin (Coch, 2012) (Figure 1). The total 

estimated damage from Hurricane Irene was ~$around $15.8 billion. This includes about $7.2 billion from inland flooding and 10 

storm surges (Avila and Cangialosi, 2011).  

In this paper we first describe the case study area and context. We then summarise the main datasets that were used to 

implement the hydrologic framework. Subsequently, we provide a detailed quantitative analysis and discussion of the 

uncertainties in the streamflow forecasts associated with the forcing from weather models and demonstrate how uncertainties 

in streamflow forecast median, time of peak and spread are reduced approaching a given event.  15 

2 Materials and Methods 

2.1 Study area and context 

The study encompasses the Hudson River Basin (USA) which originates from the Adirondack Mountains of Upstate New 

York and drains into the Atlantic Ocean (Figure 2). The drainage area of the basin is approximately 36,000 km2, covering 25% 

of New York State and other portions of the States of New Jersey, Connecticut, Massachusetts and Vermont. The basin is 20 

considered one of the largest drainage areas in the eastern seaboard of the United States. According to a national water quality 

assessment study conducted by the United States Geological Survey (USGS), nearly 60% of the water supplied in the basin is 

for commercial or industrial use. Several reservoirs within the Hudson River basin contribute to the New York City water-

supply system, which supplies water to about 8 million people.  

In 2011, Hurricane Irene caused severe damage and widespread destruction that affected the east coast of the United States. 25 

The storm made landfall as a strong tropical storm at Little Egg Inlet in New Jersey on August 28, 2011 (Figure 1). The total 

precipitation accumulation from Hurricane Irene during August 27–30, 2011 was more than 300 mm in certain areas of the 

Hudson River basin (Figure 4). It inundated streams throughout New Jersey resulting in peak stream flows exceeding the 

100-year recurrence interval at many stream gages and causing heavy property and road damage. For instance, the Passaic 

and Hackensack River Basins in Northern New Jersey just (south of the Hudson River Basin) witnessed new record peaks at 30 

a number of streamflow-gauging stations.  
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President Obama issued a Major Disaster Declaration for counties in New York and New Jersey impacted by Hurricane Irene. 

In total, 38 counties across New York State were impacted with an estimated $1.5 billion dollars in FEMA public assistance 

costs and 10 deaths (FEMA, 2011)  . . In New Jersey, the property damage was estimated to be $1 billion. In addition to high 

monetary damages, millions of people across the State were evacuated and seven deaths were reported (Watson et al., 2013; 

NJOEM, 2014).  5 

2.2 Modeling framework description 

The operational framework diagram is shown in Figure 3 and the datasets used in constructing the Hudson River basin regional 

scale hydrological model are depicted in Figure 2. The framework was validated using the National Centers for Environmental 

Prediction (NCEP) North American Regional Reanalysis (NARR) precipitation data (Mesinger et al., 2006). A retrospective 

forecast of Hurricane Irene utilizing the 21 ensemble members from NOAA’s Global Ensemble Forecast System Reforecast 10 

(GEFS/R) was then used (Hamill et al., 2015; Zhou and Zhu, 2016). 

Apart from this work, the framework is currently operational and fully automated on the Pharos (lighthouse) Linux 

supercomputer at Stevens Institute of Technology, producing. It produces 4 forecast cycles of ensemble river discharge per 

day, simulated at hourly time step, thatsteps, which feed into the New York Harbor Observing and Prediction System 

(NYHOPS) (Bruno et al., 2006; Georgas et al., 2007; Georgas et al., 2014). NYHOPS was developed at Stevens Institute of 15 

Technology's Davidson Laboratory to generate forecasts of the Atlantic Coast, New York Harbor, and Hudson River region 

through in-situ monitoring equipment and hydrodynamic modeling (Blumberg et al., 2015). 

2.2.1 HEC-HMS model description 

The Hudson River Basin was modelled using the latest Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-

HMS), version 4.1 (USACE, 2015). HEC-HMS, developed by the US Army Corps of Engineers, is a conceptual semi-20 

distributed hydrological model that has been used extensively in rainfall-runoff modeling and other related hydrological studies 

(Anderson et al., 2002; Neary et al., 2004; Knebl et al., 2005; Amengual et al., 2009; Chu and Steinman, 2009; Halwatura and 

Najim, 2013; Meenu et al., 2013; Seyoum et al., 2013; Zhang et al., 2013; Yang and Yang, 2014). The model uses a number 

of adjustable empirically derived parameters that describe the overall structure of the basin including parameters for runoff, 

baseflow, and river routing (Feldman, 2000). In this work, the Modified Clark (ModClark) distributed method (Kull and 25 

Feldman, 1998) was used to account for the spatial variability and characteristics of the basin. The gridded precipitation inputs 

were used to enable spatially distributed infiltration calculations at all regions of the basin. Infiltration capacity in the model 

was quantified using the gridded curve number (CN) methodology derived by the Soil Conservation Service (SCS) (USDA, 

1986; Mishra and Singh, 2013). The SCS CN method estimates precipitation excess as a function of cumulative precipitation, 

soil cover, land use andtype, antecedent soil moisture content, land use, total length of the river, and the elevation of the 30 

catchment area (Scharffenberg, 2015). The baseflow component of the model includes the initial flow and the recession 

constant to account for ground-water contributions to stream flow (Chow, 1959; Maidment, 1992; Feldman, 2000).  
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2.2.2 Hudson River Basin hydrological model datasets 

The ArcGIS HEC-GeoHMS 10.2 extension (Fleming and Doan, 2013) was used to prepare and import the geographical 

information system (GIS) data into the HEC-HMS (Johnson et al., 2001). The regional model datasets shown in Figure 2 

include topography obtained from the USGS National Elevation Dataset (NED) (Gesch et al., 2002), land surface cover 

obtained from the US Department of Agriculture National Resource Conservation Service (NRCS) and soil data for New York 5 

State and New Jersey gathered from the State Soil Geographic Database (STATSGO) (Miller and White, 1998). Land use 

datasets were obtained from the USGS National Land Cover Dataset (NLCD) (Homer et al., 2012).  

The Hudson River basin was first delineated into sub-basins based on flow direction and accumulation derived from a digital 

elevation model (DEM) using HEC-GeoHMS (Fleming and Doan, 2013), and then each sub-basin was subdivided into 

hydrologic response units, each of which has a gridded curve number representing its runoff response rate based on its unique 10 

combination of land use, soil type, and slope (Gassman et al., 2007). The gridded SCS curve number was obtained by 

intersecting land use and land cover with the soil data using the -CN-grid tool in HEC-GeoHMS. An example of the curve 

number grid GIS layer over a sub-basin of the Hudson River is shown in Figure 2. The other hydrologic parameters namely, 

imperviousness storage coefficient and imperviousness, were derived from the GIS datasets listed earlier this section (. It is 

important to point out that model runoff estimation can be very sensitive to soil moisture and using static SCS curve number 15 

parameters may introduce limitations when the model is run operationally. To overcome such limitations, the framework 

utilizes a look up table for the initial abstraction parameters based on the hindcast and the continuous run of the model with 

the NARR data. Other future techniques that involve integrating machine learning techniques to automatically select the 

optimal initial abstraction parameters on the fly, can be advantageous as well. The sub-basins’ storage coefficients and 

imperviousness percent were derived from the GIS datasets described earlier this section using HEC-GeoHMS 10.2 (Figure 20 

2). For observed river discharge we used fifteen USGS gauging stations that were made available through the National Water 

Information System (NWIS). The dataRetrieval R package (Hirsch and De Cicco, 2015) was used to download and process 

the USGS data into the R environment (R Core Team, 2012). We used river discharge data recorded at 15 minutes time 

intervals to form a complete HEC-DSSVue (HEC, 2009) database of streamflow observations over the study region (Figure 

2). In total, we used 25-years of available historical flow data (not shown) to derive the model baseflow recession constants 25 

that are important to better simulate the falling limb of the discharge hydrograph for each sub-basin. More precisely, an 

automated base flow separation technique based on the R low flow statistics package “lfstat” was used (Gustard and Demuth, 

2009; Koffler and Laaha, 2012).). The observed streamflow data for fifteen USGS gauging stations, located in the Hudson 

River basin (Figure 2), were automatically retrieved using the R dataRetrieval package (Hirsch and De Cicco, 2015).The 

observed discharge data were recorded at 15 minutes time intervals and imported to the USACE Data Storage System Visual 30 

Utility Engine (HEC-DSSVue) (HEC, 2009). The optimal recession constant values for the sub-basins ranged from 0.67 to 

0.90 depending on the sub-basin that was considered. These calculated values were consistent and in agreement with the ones 

reported in the literature (Pilgrim and Cordery, 1993; Feldman, 2000).  
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The model’s baseflow recession constants were derived using an automated base flow separation technique based on the R 

low flow statistics package “lfstat” (Gustard and Demuth, 2009; Koffler and Laaha, 2012). In total, 25-years of observed 

historical flow data were used to derive the baseflow recession constants for each sub-basin in order to better simulate the 

falling limb of the simulated discharge hydrograph. The optimal recession constant values for the sub-basins ranged from 0.67 

to 0.90 depending on the sub-basin that was considered. The calculated recession constant values were consistent and in 5 

agreement with the ones reported in the literature (Pilgrim and Cordery, 1993; Feldman, 2000).  

For the initial baseflow, we used observed conditions in the gauging stations to reduce uncertainties in the model as the model 

was intended to forecast short term extreme events, within a 96-hrhour forecast horizon, and not long term simulations. The 

model was forced with gridded precipitation, discussed in detail in the next sections of this paper, to work with the ModClark 

transform method (Kull and Feldman, 1998). 10 

2.3 Model meteorological datasets 

2.3.1 North American Regional Reanalysis (NARR) 

NARR is a long term, dynamically consistent, high resolution, high frequency, atmospheric and land surface hydrology data 

setdataset for the North American domain (Mesinger et al., 2006). NARR was developed as a major improvement upon the 

earlier National Centers for Environmental Prediction - National Centre for Atmospheric Research Global Reanalysis 1 15 

(NCEP-NCAR GR1). NARR data has successfully assimilated high-quality and detailed precipitation observations into the 

atmospheric analysis to create a long-term, consistent, high-resolution climate dataset for the North American domain. The 

temporal resolution of the NARR data is 3 hours and the spatial resolution is 32 km (Mesinger et al., 2006). The NARR 

precipitation data has been used in a number of hydrological studies. For instance, Choi et al. (2009) used the NARR data sets 

to successfully calibrate the Semi-Distributed Land Use-based Runoff Process (SLURP) model. Solaiman and Simonovic 20 

(2010) used the NARR data in a regional hydrological basin and reported satisfactory performance of such data in scarce 

regions. 

In this work, NARR precipitation data, from the 26th to 31st of August 2011, corresponding to Hurricane Irene was used in the 

hydrological model applied to the Hudson River Basin in a 2-km common hydrologic gridded format using bicubic 

interpolation. Table 1 displays the rainfall accumulation totals extracted from the NARR data for selected sub-basins of the 25 

Hudson River. The hydrological simulation using this dataset of precipitation was considered as the simulation of reference 

and was compared with the ensemble forecast that is reported in the next section. 

2.3.2 Global Ensemble Forecast System Reforecast (GEFS/R) 

The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 ensemble members (Hamill et al., 

2013; Hamill et al., 2015; Zhou and Zhu, 2016).(Hamill et al., 2013; Hamill et al., 2015). The GEFS accounts for the amount 30 

of uncertainty in a forecast by generating an ensemble of multiple forecasts, each minutely different, or perturbed, from the 
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control forecast. The GEFS, 1 degree horizontal resolution, data reforecasts used initial conditions obtained from high quality 

reanalyses data and same assimilation system that is used operationally. These reforecasts have been shown to be particularly 

useful for the calibration of relatively uncommon phenomena such as heavy precipitation (Hagedorn, 2008; Hamill et al., 

2008). In relation to hydrology, reforecasts help produce quantitative probabilistic estimates of river streamflow that are as 

sharp and reliable as possible (Schaake et al., 2007). 5 

2.4 Statistical criteria used to assess models performance 

The performance of the models was statistically evaluated using the criteria of Nash-Sutcliffe Efficiency [referred hereafter as 

NSE (Eq. (1)] and Bias (in %) between simulations and observations [referred hereafter as BIAS Eq. (2)]. The NSE measures 

the fraction of the variance of the observed flows explained by the model in terms of the relative magnitude of the residual 

variance (‘noise’) to the variance of the flows (‘information’); the optimal value is 1.0 and values should be larger than 0.0 to 10 

indicate ‘minimally acceptable’ performance (Nash and Sutcliffe, 1970; O'Connell et al., 1970). 
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where N is the number of compared values, ௜ܲ is the simulated (forecast) value, ௜ܱ is the observed value and തܱ௜ is the average 

of ௜ܱ time series. 15 

The BIAS measures the average tendency of the simulated values to be larger or smaller than the observed ones. The optimal 

value of BIAS is 0.0, with low-magnitude values indicating accurate model simulation. Positive values indicate overestimation, 

whereas negative values indicate underestimation (Yapo et al., 1996).  
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Model BIAS is reported relative to the mean observation magnitude (Eq 2), in percentage (%).  

3 Results  

3.1 HEC-HMS model calibration using NARR precipitation data 

Upon implementing the model set-up, we calibrated the hydrological model to assess its ability to reproduce the Hurricane 

Irene event using the North American Regional Reanalysis (NARR) gridded precipitation data (Mesinger et al., 2006). The 25 

HEC-HMS model was run on a 2x2 km Standard Hydrologicstandard hydrologic grid resolution (SHG) (Maidment and Djokic, 

2000) at hourly time steps. The simulated flow hydrographs were calibrated against hourly river flow observations to obtain 

optimal performance in terms of both runoff volume and peak flow. The hydrological parameters were modified to produce a 

best-fit model using a root- mean- square error (RMSE) objective function within the HEC-HMS model’s Nelder Mead 
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optimization method (Barati, 2011; Seyoum et al., 2013), aiming at maximizing the fit between simulated streamflow and 

observations at fifteen U.S. Geological Survey (USGS) gauging stations (Figure 2).  The calibration was also carried out by 

comparing visually and statistically to produce an accurate simulation of discharge at the Hudson River gauging stations 

(Figure 2). We also used the HEC-HMS uncertainty function which, through a variant of Latin Hypercube Sampling, varies 

sensitive model parameters within a defined range, thereby producing an estimate of best-fit parameters after multiple iterations 5 

(Mousavi et al., 2012). For example, the hydrologic Muskingum routing parameters were modified to include a greater ratio 

of attenuation to translation of runoff in the sub-basins which significantly improved the model results (Figure 5). To assess 

and evaluate the parameter uncertainties we performed a Monte-Carlo- based uncertainty analysis available in HEC-HMS 4.1 

(Scharffenberg et al., 2015). 

Table 1 lists the NARR accumulated precipitation for each sub-basin of the Hudson River while the summary of the model fit 10 

represented by the NSE and BIAS criteria is shown in Figure 4. The NARR hydrological model results (also referred to as the 

simulation of reference) showed a reasonable fit between model and observations in all the selected sub-basins. The lowest 

NSE was 0.75 and certain sub-basins had NSE values higher than 0.90 (Figure 4). Amongst the 15 flow stations examined in 

the study, 13 stations had a BIAS below 10% while 2 stations had a BIAS higher than 10%. It was observed that the stations 

with a higher BIAS were located in the upstream parts of the basin, notably the Hoosic River sub-basin (USGS ID 01334500) 15 

(Figure 4). Importantly, the hourly hydrograph shape and timing of peaks accurately replicated the observations as illustrated 

in Figure 5. Overall, the reference simulation exhibited a representative fit to observations. Thus, the developed calibrated 

framework showed promising results for generating 96-hour-lead streamflow forecasts with a 96-hour lead time using 

ensemble member weather forecast forcing.  

3.2 Ensemble river discharge retrospective forecast  20 

We forced the HEC-HMS model in ensemble mode, with precipitation fields from the GEFS-retrospective forecast ensemble 

members to examine the variations in simulated discharge among the ensemble members. More specifically, we fed the Hudson 

River basin hydrological model with every single GEFS member of the 21 available members. The resulting sets of streamflow 

forecasts were then analysed to better understand the uncertainty of the streamflow forecasts that arises from the hydrologic 

framework’s response to uncertainties in the meteorological forcing. The spread of ensemble members is considered as a useful 25 

measure of forecast uncertainty (Pappenberger et al., 2005).  

To assess the skill of the forecasts, we compared, at lead times of 72, 48 and 24 hours, observations with results of the individual 

ensemble members, the median of all members, the ensemble control member (GEFSC00) and the NARR simulation of 

reference (Figure 5). We chose to include the control member in these comparisons as a proxy for the single deterministic 

models used when ensemble forecasts are not considered. The hydrological parameters and baseflow conditions calibrated in 30 

the NARR simulation of reference were retained in all simulations. The 98th and 2nd percentiles of accumulated precipitation 

from the 21 ensemble members at each forecast are reported in Table 1. One notes 
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In the reforecast issued 72 hours prior to the event, the high uncertainty in the precipitation data from the weatherNWP 

ensemble 72-hours prior to the event which wasinputs translated by the hydrological model to a high uncertainty in the 

simulated streamflow. when simulated by the hydrological model. For instance, in station 01390500ID 01391500 (Saddle 

River at Lodi, NJ), there was a 20-fold spread in the accumulated precipitation amongst the 21 ensemble members. For the 

same station the peak flow ranged from base flow (3 m3/s) to 242 m3/s (exceeding the major flood threshold) (Figure 5). At 5 

the Hackensack River at New Milford the peak flow was ranging anywhere between 20 m3/s and 525 m3/s. The magnitude of 

spread in other stations was similar (Figure 5). At that point of the retrospective forecast, the streamflow simulated using the 

control member (GEFSC00) underestimated the observed flow in all stations except for station ID 01375000 (Croton River on 

Hudson, NY) where the flow was simulated correctly (Figure 5). However, the spread between the individual ensemble 

members remained very high as reported above. In terms of estimated time of peak, one notes that the GEFSC00 control 10 

member correctly projected the peak time of the event in all stations with an error of ±3 hours when compared with 

observations. However, other individual members had an offset of up to 24 hours between simulated and observed peaks in 

certain stations (Figures 5-a1, 5-b1, 5-c1, 5-d1 and 5-e1). For instance, at station ID 01375000 (Croton River on Hudson, NY), 

one individual member was projecting an estimated peak on the evening of August 28 while another individual member was 

projecting it at noon of the following day. In thatthis particular station, the observed peak was around the midnight of August 15 

28.  This finding offers an interesting perspective in terms of precisely extracting hydrograph features as one may, therefore 

use the control member at this stage of the forecasts to precisely project the time of the peak with a temporal error of ±3 hours. 

In terms of statistical evaluation, Figure 6 and Figure 7 report the NSE and BIAS (%) for selected stations. For station ID 

01375000, the control member (GEFSC00) predictspredicted the flow accurately with a NSE of approximately 0.95, however 

the flow is underestimated by about 20% in the forecast issued 72 hours prior to the event. Overall, only seven ensemble 20 

members at this station had a NSE above 0.70 while more than 60% of the members underestimated or overestimated the flow 

hydrograph by more than 30% (Figure 7). Although uncertainties in baseflow initial conditions and model hydrological 

parameters are not addressed in this work, one may argueit was noted that uncertainties from precipitation inputs have a 

substantial impact on the prediction compared to remaining uncertainties in the initial conditions and parameters of the 

calibrated hydrological model.  25 

In the next reforecast, issued 48 hours before the event, the spread (or the uncertainty envelope) was reduced substantially 

reduced, notably in the projected time of the peak (FigureFigures 5-a2, 5-b2, 5-c2, 5-d2 and 5-e2). This is primarily due to the 

decrease in accumulated precipitation ensemble spread (Table 1). The magnitude of the peak ensemble spread was between 

104 to 229 m3/s for the Saddle River. The same river had a spread on the order of 20-fold in the prior forecast. This 

improvement was observed at other stations as well. At 48hrs48 hours lead time, the control member systematically 30 

overestimatingoverestimated the flow at all stations (e,g. FigureFigures 5-a2, 5-b2, 5-c2, 5-d2 and 5-e2), but it consistently 

predicted the time of peak, as was the case in the  forecast issued 72 hours before the event. The uncertainty in the time of the 

peak also decreased, with most of the ensemble members predicting the peaks aroundwithin ±3 hours from the observed ones.  

This suggests that the peak ensemble spread mayshould not be the only metric that should be analyzedconsidered to quantify 
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potential uncertainty, it suggests that other features such as the peak timing and magnitude should also be examined. The 

control member (GEFSC00), which predicted the flow correctly for Croton River on Hudson (ID 01375000) 72 hours before 

the event, however, at 48hrs48 hours lead time showed a marked overestimation of the flow 65%. This suggests that the 

accuracy of the predictions also varies temporally and no single member can be relied upon consistently as a perfect forecast. 

Overall one notes that for 48 hours before the event, there iswas a significant improvement in NSE for most of the ensemble 5 

members in the examined stationsforecasts issued 48 hours before the event. 

In the final reforecast considered, issued 24 hours before the event, the spread was further reduced with all the members 

predicting the rising and the falling limbs of the hydrograph more accurately. The control member presented an almost perfect 

forecast for Hackensack River at New Milford (Figure 6). The peak ensemble spread was reduced by 57%, 60% and 48% 

compared to the 72hrs-72 hours lead- time predicted peak ensemble spread at the Hackensack River, Saddle River and Wallkill 10 

River stations, respectively. Also, the peaks were predicted to occur within ±3 hours of the observed event peak in all cases. 

The control member seemed to be consistent with the observations in terms of the peak time at this stage of the forecast and 

the uncertainties are less than that projected 48 hours before the event. At this stage of the forecast 75% of the ensemble 

members had a NSE higher than 0.75 (Figure 6). This is consistent with findings in recent ensemble streamflow studies that 

used different modelling frameworks (Thielen et al., 2009; Fan et al., 2014; Yang and Yang, 2014). The results also suggest 15 

that the magnitude of spread between the ensemble members depends significantly on the sub-basin drainage area. For 

example, at station ID 01391500, Saddle River at Lodi (140 km2) a peak discharge of 242 m3/s corresponds to a maximum 

accumulated precipitation of 206 mm. Thus, there is peak flow of about 1 m3/s for 1 mm of accumulated precipitation. This 

ratio however increases for a basin with a larger area. For example, at Wallkill River at Gardiner, NY (ID 01371500, 1800 

km2) there was a peak flow of approximately 10 m3/s for 1 mm of accumulated precipitation as it propagates (non-linearly) 20 

through the drainage area, thus there is a correlation between the spread in the precipitation data and the area of the sub-basin. 

To have an overall assessment of the forecast skill, we calculated the range and average NSE and Bias (%) across all stations 

(Figure 8) in the Hudson River basin for the different reforecast ensemble members 24 hours before the event. The figuresfigure 

depicts how a member that has a good NSE and BIAS at one station can have a very poor performance in other parts of the 

basin that may partly be due to the statistical downscaling of precipitation from 1 degree resolution to 2km2 km, and the 25 

associated uncertainty in the spatial distribution of precipitation. The median of all the members and the control member 

showed a good performance with an average NSE of 0.75 compared to each of the members. The results show that there is no 

“one size fits all” solution for selecting an ensemble member, noting that each sub-basin has its own distinct set of 

characteristics manifested in local conditions such as the size of the basin and land use. This finding calls for further work 

involving higher resolution precipitation models to assess the effect of basin size and meteorological forcing resolutions.  30 

3.2.1 Threshold exceedance persistence diagram 

In addition to the statistical metrics and visual comparison of stream-flow, an assessment of the forecasts skill was carried out 

for Hurricane Irene using a threshold exceedance persistence diagram at 6-hrhour time intervals of the forecasts streamflow 
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time series (Figure 9). The exceedance diagram used in this study is an adaptation of the operational European Flood Alert 

System (Bartholmes et al., 2009; Thielen et al., 2009). Such quantitative diagrams give an idea ofabout the forecast persistence 

and support operational flood management decisions and human judgment. The “major flood” threshold for each station was 

based on the “major flooding” flow defined byobtained from the NOAA National Weather Service . It is defined as athe 

category of flood where extensive inundation of structures and roads is expected, leading to which calls for significant 5 

evacuationsevacuation of people and/or transfer of property to higher elevations is called (NWS, 2012)   . .  

The major thresholds for observed and simulated discharge were transformed into dichotomous time series of 1 (=Yes, the 

major threshold is exceeded) and 0 (=No, the major threshold is not exceeded). The information of each cell in the matrix 

diagram is the probability of exceeding the major flooding value, calculated using all the ensemble members at a given forecast. 

For instance, a probability of 100% suggests that all 21 ensemble members used in the work are projecting a major flood.  10 

Figure 9 exhibits the exceedance diagram results at selected stations of the Hudson River basin in which observations exceeded 

the major flood threshold during this event. The results suggest that one may establish a highly reliable streamflow forecast 48 

hours prior to the event. For instance, the 72-hrs- hours lead- time reforecasts (issued on 26-Aug-2011 00:00 GMT) for station 

ID 01381900 were projecting a 52% probability (11 members out of 21) of having a major flood event 78 hours out. However, 

the probability increased to 100% in the 27-Aug-2011 00:00 GMT (48 hours before the event) reforecast for the same station. 15 

The average across all stations for the day-3 (72 hours before the event) reforecast was showing a 60% probability of having 

a major flood on 29-Aug-2011 (between 00:00 and 06:00 am GMT), while the day-2 (48 hours before the event) reforecasts 

had a 99% average chance of exceeding the major flood threshold,.. This highlights the increase in reliability the event 

approaches. The diagram also suggests that the persistence of the event occurrence among subsequent forecasts is a good 

indicator to trigger a major flood warning, especially when the proportion of members above the threshold exceeds 71% (15 20 

or more out of the 21 ensemble members). By contrast, in station ID 0137500, both observations and flow ensemble members 

did not exceed the major flood threshold (Figure 9). This is particularly important for the reliability and validation of the 

operational forecast system. However, caution should be practiced when interpreting the persistence exceeding diagrams as 

time series will have to be examined in parallel to confirm any potential discrepancy between the models.  

4. Summary and Discussion 25 

The first part of this work consisted of implementing a regional scale hydrological modeling framework on of the Hudson 

River basin using the HEC-HMS model (USACE, 2015) forced with NARR gridded precipitation inputs (Mesinger et al., 

2006). The second part investigated the use of GEFS (Hamill et al., 2013; Hamill et al., 2015) ensemble inputs to 

retrospectively forecast an extreme hydrological event, Hurricane Irene, with a 96-hrhour time horizon at hourly time stepsteps. 

In total, 21 GEFS ensemble members were tested on the Hudson River basin atwith reforecasts issued 72, 48, and 24 hours 30 

prior to the event.  
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This work did not address uncertainty in hydrological initial conditions and model parameters, which were optimized in the 

NARR-based calibration, but rather was focused on how dominant the precipitation inputs are on the results of the hydrological 

streamflow forecasts.  

In terms of assessment, we visually and statistically quantified the results of the GEFS individual members, the deterministic 

forecasts represented by the control member (GEFSC00), and the median of all members. We also used the persistence 5 

exceedance diagram of established thresholds to project the possibility of major floods based on all the individual members.  

The visual comparison and the statistical metrics showshowed that ensemble forecasts are advantageous in quantifying 

uncertainty of forecasts lead time and raising reliability from an operational perspective. This work did not address uncertainty 

in hydrological initial conditions and model parameters, which were optimized in the NARR-based calibration, but rather was 

focused on how dominant the precipitation inputs are on the results of the hydrological streamflow forecasts. The findings of 10 

this work confirm that using ensemble streamflow predictions have advantages over deterministic forecasts in terms of better 

representing the uncertainty, particularly in an extreme hydrologic event such as the one presented in this work. Furthermore, 

while the general perception is that hydrological uncertainty is reduced with lead time, there are no studies that quantitatively 

characterize this aspect using the GEFS retrospective data and in the event of an extreme flood event such as Hurricane Irene. 

The work shows that streamflow forecasts are highly dependent on the meteorological inputs and reflect uncertainties 15 

associated with these inputs. Clearly, the relatively small area of the sub-basin and resolution of the weather model was of 

importance for the spread overestimation due to the precipitation inputs. In this context, higher resolution weather models such 

as the European Centre for Medium‑Range Weather Forecast (ECMWF) (Molteni et al., 1996; Thiemig et al., 2015) or the 

Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)® (Pullen et al., 2015) may be of particular interest in 

smaller scale sub-catchments in order to provide higher accuracy. The operational GEFS ensemble forecast datasets were 20 

upgraded to 0.5 degrees resolution on December 2, 2015 (http://www.nco.ncep.noaa.gov/pmb/changes/).. More detailed 

weather model forcing shouldmay lead to a reduction in the streamflow spread, and reduce the uncertainty of the forecast.  

The presented hydrologic modeling of the Hudson River basin demonstratesdemonstrated that a given streamflow ensemble 

member may produce streamflow that is highly in agreement with observations, accounting for uncertainty in precipitation 

and in hydrologic-the hydrological model parameters. However, there is no “one size fits all” solution for selecting an ensemble 25 

member, noting that each sub-basin has its own distinct set of characteristics manifested in local conditions such as the area of 

the drainage basin and land use. Furthermore, caution should be exercised in forecast models that only use the control member 

from the weather models or the average ensemble member as it may lead to considerable deviation in river discharge forecasts 

from observations resulting in false warnings and missed flooding events, thereby, decreasing the potential reduction of flood 

risk (Figure 5). 30 

The findings also suggest that higher confidence in the river discharge forecasts may be attained as we approach a major event 

by approximately 48 hours. The outcomes of this work provide interesting perspectives for future ensemble post-processing 

techniques and features extraction, notably regarding the peak timing of an extreme hydrologic event when combined with the 

major flood persistence diagram. 
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This operational framework offers an improvement over the available NOAA’s Advanced Hydrological Prediction System 

(AHPS) in this particular region (McEnery et al., 2005). The AHPS streamflow forecasts are at 6-hour time interval using one 

weather control member for input and with a lead time that is less than 60 hours in this region (Adams, 2015).   

The Hudson River basin regional scale model may be potentially used for numerous applications such as continuously 

forecastingThe operational framework presented in this work offers an improvement over the available NOAA’s Advanced 5 

Hydrological Prediction System (AHPS) in this particular region (McEnery et al., 2005) and is operationally running 125 

ensemble members including (in addition to GEFS) the ECMWF, ECMWF-HRES, the Short-Range Ensemble Forecast 

(SREF), the Canadian Meteorological Centre (CMC) and the North American Mesoscale Forecast System (NAM). The AHPS 

streamflow forecasts are at 6-hour time intervals using one weather deterministic forecast as input and with a lead time that is 

less than 60 hours in this region (Adams, 2015).  10 

The framework is highly flexible and directly handles GRIB1, GRIB2 and NetCDF meteorological inputs format. This 

operational flexibility in the framework allows it to use other sources of meteorological data instead of NARR, which is not 

available in areas outside North America. Examples of atmospheric reanalysis products that may be used include the European 

Center for Medium range Weather Forecasting (ECMWF), National Centers for Environmental Prediction (NCEP) and 

National Center for Atmospheric Research (NCAR). As for framework validation, if applied to watersheds without gauging 15 

stations (or with only a few), it is possible to use remote sensing river discharge data to calibrate and validate the modeling 

outputs. Despite that fact that such data have uncertainties, there have been many advancements in this field and there is 

potential for future applications [e.g., the Surface Water and Ocean Topography (SWOT) satellite mission (Saleh et al., 2012; 

Biancamaria et al., 2015)]. Thus, this framework shows promise for operational streamflow forecasting in other parts of the 

world. 20 

The computational time required to run the Hudson River basin for the 21 GEFS ensemble members was approximately 30 

minutes. This includes processing the GRIB input files and post-processing of the ensemble outputs. The total time required 

to run the entire 125 ensemble members is approximately five and a half hours, this includes pre-processing inputs and updating 

the database and the Stevens Flood Advisory System (SFAS) website. The forecasts are updated every 6 hours which is 

sufficient for issuing a flood warning.  25 

The current work maybe potentially expanded to integrate a hydrodynamic model such as HEC-RAS (Brunner, 2002) that has 

advantages in terms of simulating the water levels and flood extents in addition to streamflow. However, this would require 

detailed representation of river cross sections geometry that is currently not available at regional scale (Saleh et al., 2011).  

In terms of applications, the Hudson River basin regional scale model may be used to continuously forecast the overall 

variability of the water resources (Saleh et al., 2011; Pryet et al., 2015; Saraiva Okello et al., 2015), predicting fate and transport 30 

of water quality such as nitrate (Schoonover and Lockaby, 2006; Wang et al., 2012; Bastola and Misra, 2015; Schuetz et al., 

2015) and climate change scenarios (Ducharne et al., 2007; Graham et al., 2007; Ducharne et al., 2010; Quintana Seguí et al., 

2010; Habets et al., 2013). Moreover, socio-economic analysis may be used to weigh how such improved forecasts 
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potentiallycan prevent loss of life and minimize the damage to property, with the aid of effective communication and social 

media. 
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 Table 1 Percentiles of total accumulated precipitation from the 21 GEFS ensemble members 
along with the peak discharge for forecasts issued at lead times of 72 to 24 hours. The drainage 
area of each basin is also reported 

Station USGS ID 
/  name 

Basin 
area 
(km2) 

Forecast 
date 

NARR 
precipitation 

(mm) over 
the whole 

event 

GEFS 
precipitation 

(mm) over the 
whole event 

Simulated 
peak flow 

(m3/s) 

2nd 98th 2nd 98th 

01391500  
 Saddle River at 

Lodi, NJ 
141 

26-Aug-11 
143 

11 206 3 242

27-Aug-11 110 201 104 229

28-Aug-11 108 178 105 200
01378500 

Hackensack 
River at New 
Milford, NJ 

293 
26-Aug-11 

143 
11 206 20 525

27-Aug-11 108 200 196 514

28-Aug-11 111 183 225 442

01371500 
Wallkill River at 

Gardiner, NY 
1800 

26-Aug-11 
106 

3 190 22 1990

27-Aug-11 80 187 475 1857

28-Aug-11 82 154 558 1585
01388500 

Pompton River 
at Pompton 
Plains, NJ 

329 

26-Aug-11 

130 

7 202 156 1208

27-Aug-11 101 200 474 1150

28-Aug-11 98 168 490 1024

01375000  
Croton River on 

Hudson, NY 
979 

26-Aug-11 

126 

13 192 2 1255

27-Aug-11 123 190 604 1205

28-Aug-11 112 182 503 1205
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Figure 1. Geostationary Operational Environmental Satellite (GOES) East image of Hurricane Irene making landfall on August 10 
28, 2011 (image source: National Oceanic and Atmospheric Administration, 2011). 
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Figure 2 Map showing the Hudson River Basin topography including basin divisions (thin black lines) and hydrographic 
network. Examples of land use, curve number, and imperviousness datasets (zoomed) that were used in HEC-GeoHMS to 
construct the hydrological model are also shown. The upper right side of the figure exhibits an example of the HEC-HMS 5 
model structure and its sub-basins using Standard Hydrologic Gridsstandard hydrologic grids [SHG (2*2 km)]. 
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Figure 3 Framework design steps including spatial data and USGS discharge time series. Processing of General Regularly-
distributed Information in Binary GRIB precipitation files data was carries out in Qgis (Qgis, 2011), R and Python and exported 
to the HEC-DSSvue storage system. Basin parameters were derived for the study area and the hydrological model was run 5 
using these inputs.  
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Figure 4 Summary of HEC-HMS performances at the USGS streamflow stations. The circles represent the criteria of Nash 
and Sutcliffe (NSE) while the squares represent the Bias (%). The statistical criteria are computed at an hourly time 
stepsteps. The model performances are illustrated for the NARR precipitation forcing. The map also shows the total 5 
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observed accumulated precipitation received in 48 hours during August 28–29, 2011 (data from National Oceanic and 
Atmospheric Administration, 2011)  .. The time series for selected flow station are presented in Figure 5. 
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Figure 5 Models performanceEnsemble streamflow forecasts compared to observed streamflow in selected stationstations at 
lead times of 72 h, 48 h and 24 hours from the observed peak flow, reported time is in UTCGMT. 
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Figure 6 ModelsModels’ performance represented by Nash-Sutcliffe efficiency (NSE) statistical metric at lead times of 72 h, 
48 h and 24 hours from the observed peak flow. The metrics are also showing the NARR model outputs and, the median of 
ensemble members of this stationand the GEFS control member. The GEFS perturbed members are shown in grey. 
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Figure 7 ModelsModels’ performance represented by Bias (%) statistical metric at lead times of 72 h, 48 h and 24 hours from 
the observed peak flow. The metrics are also showing the NARR model outputs and, the median of ensemble members of this 
stationand the GEFS control member. The GEFS perturbed members are shown in grey. 
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Figure 8 Overall NSE and BIAS (%) across the stations for forecast issued 24 hours before Hurricane Irene. 

[b] 
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Figure 9 Color-coded threshold exceedance diagram for Hurricane Irene forecasts at 6-hour intervals using the major flood 
threshold for each USGS station. The flow values below the station ID are the major flood threshold for a given station. The 
x-axis represents the 96-hrhour forecast horizon from the simulation date shown on the left column. The time period, in which 
the major event hydrological record exceeds the equivalent alert threshold, is indicated using a dark red cell while the cell 5 
values refer to the percentage of ensemble members that were projecting a major flood. For instance, if the value is 100 then 
all 21 flow ensemble members are projecting a major event within a given time interval, while 0 means none of the ensemble 
members are exceeding the major event threshold. The observed occurrence of the threshold is exhibited at the last row for 
each station, the red colour-code indicates an observed flow higher than the major flood threshold, while the green cell is flow 
below the major threshold. Reported time is in UTC.GMT.  10 


