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Abstract. This is the second paper of a two part series on introducing an experimental seasonal hydrological forecasting 

system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial 

hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel 

Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit 10 

consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast 

skill in terms of Anomaly Correlation (AC) for 2-m air temperature and precipitation does not necessarily decrease over 

leads, but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there 

is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME 

ensemble mean forecast has consistently higher skill than the best single model out to six months for the temperature, but up 15 

to two months for the precipitation. The NMME climate predictions are downscaled to drive the Variable Infiltration 

Capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to 

produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble 

Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982-2010. 

As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, 20 

and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. 

The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, 

with an increase of the average AC by 0.08-0.2. To compare with the observed streamflow, both the hindcasts from 

NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline simulated 

streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed 25 

ESP/VIC by 5-15%. And the reduction occurs mostly during the transition from wet to dry seasons. With the consideration 

of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short 

leads, suggesting the necessity of improving the large-scale hydrological models in human intervened river basins. 

 

1. Introduction 30 
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Seasonal climate forecasts have now been used to provide early warnings for health and food security (Thomson et al., 2006; 

Lizumi et al., 2013), and can be skilful for the applications that are mainly affected by temperature. However, due to a more 

chaotic nature and limited physical understanding, seasonal forecasting of precipitation has only marginal improvement 

(Smith et al., 2012; Saha et al., 2014), and the skill over land is not so favourable unless during the period with strong 

oceanic anomalies like the El Niño (Stockdale et al., 1998). An intermediate solution is the ensemble forecasting technique, 5 

including the ensembles of different initial conditions by perturbing Sea Surface Temperature (SST) and wind stress (Slingo 

and Palmer, 2011) or by running the climate model with different start dates (Saha et al., 2014), as well as the ensembles 

from multiple climate forecast models (Krishnamurti et al., 1999). Ensembles of initial conditions based on a single model 

do not necessarily sample the forecast space completely, and usually result in under-dispersion errors. Therefore, multimodel 

ensemble forecasts are receiving more attentions from a variety of perspectives, including the applications in the 10 

hydrological forecasting (Luo and Wood, 2008; Pappenberger et al., 2008; Demargne et al., 2014; Yuan et al., 2015a). 

In fact, multimodel ensemble weather forecasts have already been successfully used for short-term hydrological forecasts. 

For example, Pappenberger et al. (2008) found that if the grand THORPEX International Grand Global Ensemble (TIGGE) 

forecasts had been used, flood warnings could be issued 8 days before the event, whereas the warning based on a single 

ensemble system would only allow for a lead time of 4 days (Swinbank et al., 2016). The continuation of the TIGGE project 15 

(Swinbank et al., 2016) will further benefit the flooding forecastings. Similarly, the seasonal climate prediction from the 

Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project 

(Palmer et al., 2004) was used to improve the hydrological forecasting over the Ohio River basin during the first two months 

(Luo and Wood, 2008). However, as compared with the short-term flood forecasting (Pappenberger et al., 2005; Cloke and 

Pappenberger, 2009), the seasonal hydrological forecasting based on multiple climate forecast models is less widely applied 20 

in general. One of the reasons is that it is difficult to find the added value from climate-model-based seasonal hydrological 

forecasting as compared with the traditional Ensemble Streamflow Prediction (Day, 1985) method because significant 

climate prediction skill that is useful for hydrological forecasting is usually regime-dependent (Wood et al., 2002; Luo and 

Wood, 2007; Mo et al., 2012; Sinha and Sankarasubramanian, 2013; Yuan et al., 2013; Shukla et al., 2014; Trambauer et al., 

2015). Another important reason is the lack of an open source of multimodel seasonal climate hindcast datasets that can be 25 

used to understand the hydro-climate predictability from global to river basin scales and to develop climate-model-based 

experimental or operational seasonal hydrological forecasting systems for an adaptive hydrological service.  

Since 2011, the National Oceanic and Atmospheric Administration (NOAA)’s Modeling, Analysis, Prediction, and 

Projections (MAPP) program has been supporting the implementation and assessment of an experimental North American 

Multimodel Ensemble (NMME; Kirtman et al., 2014) seasonal forecast system as part of the NOAA Climate Test Bed and 30 

Climate Prediction Task Force research (Wood et al., 2015). Several decades of NMME hindcast datasets are available for 

the public research community, which provides an unprecedented opportunity to assess the added value for seasonal 

hydrological forecasting. In addition, the NMME is now being made to produce global seasonal climate prediction in a real-
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time mode, which motivates the development of experimental seasonal hydrological forecasting systems based on the 

downscaled NMME prediction at regional, continental and global scales. 

Recently, a few studies have been carried out to investigate the usefulness of the NMME in advancing seasonal hydrological 

forecasting. Driving a hydrological model with the NMME seasonal climate hindcasts, Mo and Lettenmaier (2014) analyzed 

the skill of monthly and seasonal soil moisture and runoff forecasts over the United States by comparing with the ESP-based 5 

forecasts, and found that the climate forecasts contribute to the hydrological forecast skill over wet regimes. Thober et al. 

(2015) used similar method to assess the soil moisture drought prediction over the Europe, and found that the NMME-based 

method outperforms the ESP-based method for drought forecasting at all lead times. Besides continental-scale hydrological 

forecasting, Yuan et al. (2015a) assessed the value of NMME in improving the seasonal forecasting of hydrological extremes 

over global major river basins, and the NMME/hydrology method showed higher detectability for soil moisture drought, 10 

more reliable low and high flow ensemble forecasts as compared with the ESP approach. 

However, even the state-of-the-art NMME climate predictions could not help the hydrological forecasting over the river 

basins with limited hydrological gauges and less reliable meteorological observations that are used to correct the errors in the 

hydrological model and climate prediction (Sikder et al., 2016). In addition, most NMME/hydrology assessments neglected 

the uncertainty in hydrological model for the forecast verification (Mo and Lettenmaier, 2014; Thober et al., 2015; Yuan et 15 

al., 2015a; Sikder et al., 2016), except for an assessment for a “real-time” forecasting of the 2012 North American drought 

where the model-predicted soil moisture drought area is verified against the satellite retrievals (Yuan et al., 2015a). As 

shown by Yuan et al. (2013), the added value from climate-model-based streamflow forecasting tends to diminish over some 

river basins if the observed streamflow instead of the simulated streamflow is used for forecast verification. For those river 

basins, uncertainty in the hydrological modeling might be larger than the uncertainty in climate forecast at short leads, or the 20 

error in the hydrological model might be too large to reflect the improved skill in precipitation. Actually, Yuan and Wood 

(2012) discussed whether the downscaling of climate prediction or the bias-correction of streamflow is more important for 

the seasonal streamflow forecasting, and they hypothesized that the errors in the climate prediction could be amplified 

through the nonlinear rainfall-runoff processes and resulted in a unreliable streamflow forecast even if the climate prediction 

had been corrected as reliable. Therefore, a hydrological post-processor that is used to correct the errors in hydrological 25 

models and/or the propagation of climate forecast errors is essential to seasonal hydrological forecasting, especially over 

those river basins with heavy human interventions. 

The Yellow River basin is a heavily managed river basin located in northern China. For the upper reaches, the observed flow 

is much more steady (less variant) with less extremes during both dry and wet seasons;but for the lower reaches, the 

observed streamflow is consistently lower than the naturalized streamflow due to heavy human water consumption. The 30 

surface water resources in the Yellow River account for only about 2% of total surface water resources in China, but they are 

used to irrigate 15% of the cropland and to raise 12% of the population in China. Before establishing an operational 

forecasting system that can handle the detailed physical processes of irrigation and inter-basin water diversion in a climate-

hydrology coupled mode that is currently not available due to the scarcity of management data and the deficiency in the 
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human component in most hydrological models, it is necessary to understand the naturalized hydrological predictability and 

the added value from climate forecast models by using an experimental seasonal hydrological forecasting system over the 

Yellow River basin, and to use the hydrological post-processing as an intermediate approach to account for the human 

interventions implicitly in the forecasting system. 

The first paper of the two-part series introduced the climate-hydrology forecasting system and investigated the naturalized 5 

hydrological predictability in terms of initial hydrological conditions through the reverse ESP-type simulation (Yuan et al., 

2016). This paper focuses on the evaluation of the NMME-based seasonal hydrological forecasting by comparing with the 

ESP approach over the Yellow River basin. Besides assessing the added value from climate forecast models by neglecting 

the errors in the hydrological models (i.e., verifying the hydrological forecasts with model offline simulations driven by 

observed meteorological forcings), this paper also tries to evaluate the seasonal forecast skill in a “real” world by using a 10 

hydrological post-processing procedure. 

2. Data and Method 

2.1 Downscaling of NMME climate prediction 

As described in the companion paper (Yuan et al., 2016), hydrometeorological datasets from 324 meteorological stations and 

12 mainstream hydrological gauges are used to calibrate the Variable Infiltration Capacity (VIC; Liang et al. 1996) land 15 

surface hydrological model and a global routing model (Yuan et al., 2015a) regionalized over the Yellow River. To our 

understanding, this is the first time that over three hundred meteorological station observations have been used to study the 

hydrological forecasting over the Yellow River. The improved quality of the meteorological observations not only facilitates 

a more objective calibration of the hydrological models, but also helps the downscaling and bias correction of the seasonal 

climate predictions. The meteorological datasets for precipitation, 2-m maximum and minimum air temperature and 10-m 20 

wind speed are interpolated into 1321 grid cells at a 0.25-degree resolution, with a lapse rate correction for temperature at 

different elevations. 

In this study, eight NMME models with 99 realizations in total (Table 1) are used for the seasonal hydrological forecasting. 

The NMME leverages considerable research and development activities on coupled model prediction systems carried out at 

universities and various research laboratories throughout North America (Kirtman et al., 2014). Besides using the NMME 25 

hindcasts for hydrological forecasting over the USA, Europe, south Asia and global major river basins (Mo and Lettenmaier, 

2014; Thober et al., 2015; Yuan et al., 2015a; Sikder et al., 2016), the NMME was also used to assess the potential drought 

predictability over China (Ma et al., 2015). Given that one of the NMME models, the NCEP-CFSv2, has an ensemble with 

different initialization dates (Saha et al., 2014), the month-1 forecast is called as a forecast at 0.5 month lead, and the month-

2 is at 1.5 month lead, and so on. 30 

Similar to Yuan et al. (2015a), the NMME hindcasts are downscaled and bias-corrected through the quantile-mapping 

method (Wood et al., 2002) as follows: 1) the 1-degree NMME global hindcasts of monthly precipitation and temperature 

during 1982-2010 are first bilinearly interpolated into 0.25-degree over the Yellow River; 2) for each calendar month and 

each NMME model, all hindcasts (excluding the target year) with all ensemble members for the target month are used to 
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construct cumulative distribution functions (CDFs) of the forecasts, the CDFs of observations are constructed similarly 

(excluding the target year), and the hindcast in the target year is adjusted by matching its rank in the CDF of the forecasts 

and that in the CDF of the observations to remove the bias; and 3) the bias-corrected monthly hindcasts of precipitation and 

temperature are temporally downscaled to a daily time step by sampling from the observation dataset and rescaling to match 

the monthly hindcasts. 5 

2.2 Hydrological post-processing 

The downscaled NMME climate predictions are used to drive the VIC land surface hydrological model to provide soil 

moisture and runoff forecasts up to six months, and the runoff forecasts are used to drive the routing model to provide 

streamflow forecasts. The results represent “naturalized hydrological forecasts” because the hydrological models were 

calibrated against naturalized streamflow as described in Yuan et al. (2016). To make the forecasts comparable to the 10 

hydrological observations over the Yellow River where human interventions occur at middle and lower reaches, a 

hydrological post-processing procedure is necessary to correct the raw forecasts without human components. In this study, a 

linear regression is applied to correct the streamflow forecasts at 12 mainstream gauges where the observations are available. 

For each gauge, tThe regression coefficients are firstly fitted between observed and offline simulated streamflow for each 

calendar month to account for the seasonality in the human water usage, then the coefficients are applied to correct the 15 

streamflow forecasts for their target months. The coefficients are estimated during 1982-2010 in a cross validation mode (i.e., 

dropping the target year). 

Table 2 lists the Nash-Sutcliffe efficiency (NSE) for the post-processed streamflow simulations during 1982-2010. As 

compared with the results that are verified by using the naturalized streamflow, the NSE values decrease by 0.1-0.4 (except 

for the Tangnaihai gauge at the headwaters region where almost no human interventions occur). However, there are many 20 

negative NSE values without implementing the post-processing procedure (not shown), which is because of large systematic 

biases in the simulations neglecting the processes such as irrigation water withdraw. Therefore, the post-processing is an 

effective intermediate method to reduce the uncertainty in the hydrological modelling. In fact, the NSE averaged among the 

12 gauges is about 0.61, which is still much higher than the climatology (with NSE=0). For the Tangnaihai gauge in the 

headwaters region, the naturalized streamflow is almost the same as the observed streamflow, so a higher NSE after post-25 

processing (Table 2) indicates that the post-processing can also reduce the errors in hydrological modelling that is less 

relevant to human intervention. In other words, the post-processing procedure reduces both the “natural” and “anthropogenic” 

errors in the hydrological model in an integral manner.  

2.3 Experimental design and evaluation metrics 

As described in Yuan et al. (2016), a continuous offline hydrological simulation driven by observed meteorological forcings 30 

from 1951 to 2010 was conducted to generate the initial hydrological conditions (ICs) for the VIC land surface hydrological 

model and the river routing model, and the 6-month ESP/VIC hydrological hindcasts with 28 ensemble members during 

1982-2010 were carried out to provide a reference forecast. The NMME/VIC hindcasts use the same ICs as the ESP/VIC, i.e., 
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those generated by the offline simulations, and use meteorological hindcasts from eight NMME models. The grand 

NMME/VIC ensemble is an average of 99 ensemble hydrological hindcasts. 

One of the metricsmeasures for assessing the hydroclimate forecast skill is the anomaly correlation (AC; Wilks, 2011), 

which is defined as: 
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where X’(s,t) is the hydrological forecast, and Y’(s,t) is the verification data; for a given lead and forecast target 

month/season, the summation is both over time (t, 29 years in this study) and space (s, 1321 grid cells for the Yellow River 

basin). The AC is widely used in the hydro-climate forecast evaluations (Becker et al., 2014; Saha et al., 2014; Mo and 

Lettenmaier, 2014; Ma et al., 2015), and can be regarded as a measure of forecast skill both in space and time. If the AC is 

used for each grid cell within the Yellow River basin (i.e., there is only a summation over time), it is reduced to the Pearson 10 

correlation. And if the AC is used for each year, it is reduced to the pattern correlation.  

Another measure to determine whether the target forecast (NMME/VIC) is more skilful than the reference forecast 

(ESP/VIC) is the root mean squared error skill score (SSRMSE; Wilks, 2011). The SSRMSE is defined as 1-

RMSENMME/RMSEESP, where RMSENMME and RMSEESP are the root mean squared errors for NMME/VIC and ESP/VIC 

forecasts respectively. Here, SSRMSE=1 indicates a perfect forecast, while SSRMSE less than zero means that the NMME/VIC 15 

forecast is worse than ESP. Unless otherwise specified, the ensemble mean for ESP, individual climate models and the grand 

NMME mean are used for the skill assessment. 

3. Temperature and Precipitation Forecast Skill  

Figure 1 shows the skill of monthly mean (ensemble mean) surface air temperature at 2-m above ground over the Yellow 

River basin. The X axis is the target or verification month, and the Y axis is the forecast lead in months. For example, 20 

forecasts for June at a lead of 3.5 month for the COLA-RSMAS-CCSM4 have an AC around 0.35 (Fig. 1a), they are for the 

forecasts initialized in March but verified at June. Most climate models show a forecast skill that is not necessarily lower at 

longer leads, but is dependent on the target month. For example, Figure 1b shows that the GFDL-CM2p1 model has a low 

skill in the first month (less than 0.2) for the forecasts initialized in May, but the skill increases to 0.35 in the second month 

(June). Similar skill dependence on the target month can be found for another two GFDL models (Figs. 1c-1d) for March and 25 

June, and the NCEP-CFSv2 model for the summer time (Fig. 1f) etc. For the GFDL models at higher resolution (Figs. 1c-1d), 

the skill is low during the first month, but the skill increase at longer leads. This might be caused by the initialization 

procedure over land because these two models are experimental forecasting models.  

For the forecasts in the first month, the NCEP-CFSv2 has the highest skill in general (Fig. 1f), with an average AC of 0.46. 

However, other models have the best forecast skill for a specific month/season. For instance, the COLA-RSMAS-CCSM4 30 

has higher forecast skill than the NCEP-CFSv2 for the forecasts of November at 0.5 month lead (Fig. 1a). Such 

complementary feature is more obvious for the forecasts at long leads. As a result, the grand NMME ensemble mean forecast 
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(Fig. 1i) has consistently higher skill than the best single model, with an average AC of 0.5 at 0.5 month lead, and about 0.3 

up to 6 months. Figure 1i shows that the highest forecast skill for 2-m temperature occurs during the summer and late winter, 

and the lowest skill occurs during the late spring. The low temperature forecast skill for the spring months at long leads 

might be related to the snow processes during the early winter. 

Figure 2 shows similar plots for the precipitation forecasts. Again, the forecast skill does not necessarily decline over leads 5 

due to a strong seasonality in the precipitation. The NASA-GMAO is the best model for the precipitation forecast at 0.5 

month lead (Fig. 2e), with an average AC of 0.31. The NCEP-CFSv2 starts to rank the first for the forecast at 1.5 month and 

beyond (Fig. 2f), with average ACs of 0.06-0.08. The grand NMME ensemble for precipitation forecast (Fig. 2i) has a higher 

skill than individual models during the first 2 months, with average ACs of 0.35 and 0.09 at 0.5 and 1.5 month leads 

respectively. Beyond the first two months, the forecast skill of NMME is comparable to the best single model (i.e., NCEP-10 

CFSv2), but both have an AC lower than 0.1. One may wonder about the significance of the low correlations. The 

uncertainty (sampling error) in a correlation is 2/1 N , where N is the effective number of cases. For the AC over the 

Yellow River basin, the N is 29 (years) × 1321 (grid cells) = 38309, so an AC of 0.05 would be enough for the statistical 

significance. However, this does not mean that the low correlation is practically useful. 

Figure 3 shows the spatial distribution of AC for the grand NMME ensemble forecasts for the precipitation averaged over 15 

the first season. As described in section 2.3, the grid-scale AC reduces to the Pearson correlation. And given that the hindcast 

period is 1982-2010, the correlation is significant if it is larger than 0.37 (0.31) at the 5% (10%) level. For the upper reaches 

of the Yellow River, there is significant forecast skill at the beginning of the cold season (Figs. 3i-3j). For the middle and 

lower reaches, forecasts starting from November have the highest skill (Fig. 3k). During the spring, the forecasts are skilful 

over the northern part (Fig. 3c-3e). And during the summer, the forecasts are skilful over a marginal wet region in the 20 

southern part of the Yellow River, with correlations higher than 0.37 (p<0.05). 

4. Soil Moisture and Streamflow Forecast Skill 

The precipitation and temperature forecasts with 99 NMME ensemble members are downscaled and used to drive the VIC 

land surface hydrological model to provide seasonal hydrological forecasts. The grand NMME/VIC ensemble mean values 

are used for the analysis hereafter. Figure 4 shows the AC of soil moisture and runoff ensemble mean forecasts from 25 

ESP/VIC and NMME/VIC, where the forecasts are verified against offline simulations. Unlike the precipitation and 

temperature forecasts that the skill does not necessarily decline over leads, the forecast skill for soil moisture and runoff 

generally decreases as the forecast leads proceed, especially during the dry seasons. This indicates that the ICs have strong 

impacts on the forecast skill for the land surface variables (but note that this result may be model dependent since the 

hydrological hindcasts in this section are verified against VIC offline simulations by neglecting the errors in the hydrological 30 

model). The skill is very high for the soil moisture forecasts, especially for the target months during winter and spring (Figs. 

4a-4b). The AC averaged over 12 target months for the ESP/VIC soil moisture forecasts is higher than 0.8 out to three 

months. The NMME/VIC shows no improvement against the ESP/VIC in cold seasons given the strong memory of the soil 
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moisture. However, the added value occurs for the target months in autumn at long leads, i.e., NMME/VIC can improve the 

skill for the forecasts initialized in the rainy season, and the improvement becomes more obvious after the rainy season (Figs. 

4a-4b). 

Figure 4c shows that ESP/VIC has lower forecast skill for the runoff than that for the soil moisture. The AC averaged over 

12 target months for the ESP/VIC runoff forecasts is 0.64 at 0.5 month lead, drops to 0.2 at 2.5 month lead, and even 5 

becomes negative after the first 4 months. As the ICs have less control on the runoff forecasts than the meteorological 

forcings, the added value from climate forecast models becomes more obvious. The skill for the runoff forecasts from 

NMME/VIC is consistently higher than that from the ESP/VIC, especially for the target months from late spring to early 

autumn (Figs. 4c-4d). The AC averaged over 12 target months for the NMME/VIC runoff forecasts is 0.72 at 0.5 month lead, 

drops to 0.38 at 2.5 month lead, and keeps a value larger than 0.2 out to 6 months. Therefore, NMME/VIC increases the 10 

average AC by 0.08-0.2, and the increase is larger at long leads. 

Figure 5 shows the spatial distributions of the correlations for the soil moisture forecasts. For each grid cell, the correlation is 

an average of 12 target months. Similar to the predictability analysis in Yuan et al. (2016), strong soil moisture memory 

exists over the middle reaches of the Yellow River, with an averaged correlation higher than 0.5 out to 6 months for the 

ESP/VIC soil moisture forecasts (Figs. 5a-5c). For the upper and part of the lower reaches, there are no significant 15 

correlations for the ESP/VIC forecasts beyond 3 months (Figs. 5b-5c). As a result, significant improvements from 

NMME/VIC for the soil moisture forecast mainly occur over the upper and lower reaches of the Yellow River at a lead 

beyond 2 months (Figs. 5d-5f). 

Figure 6 shows similar average correlation plots, but for the streamflow along the mainstream and major tributaries of the 

Yellow River. Given that the ICs control the first month streamflow forecasting greatly, ESP/VIC has an average correlation 20 

that is higher than 0.7 for the streamflow forecasts along the mainstream at 0.5 month lead (Fig. 6a), and there is only a 

marginal improvement from the NMME/VIC at upper reaches of the mainstream and tributaries (Fig. 6d). Beyond the first 

month, the added value from the NMME/VIC emerges, with an average correlation consistently higher than the ESP/VIC 

along the mainstream and major tributaries (Figs. 6b-6c, 6e-6f). The NMME/VIC increases the correlation for the 

streamflow forecast by 0.1-0.4, and the increase is more significant at long leads. 25 

5. The Impact of Hydrological Post-processing 

The above section shows the evaluation against model offline simulations of soil moisture, runoff and streamflow, i.e., it 

explores the added value from climate forecast models by neglecting the errors in the hydrological models. To go one step 

further, it is necessary to assess the climate-model-based seasonal hydrological forecasting with the consideration of the 

uncertainty in the hydrological models. Therefore, the hydrological forecasts should be verified with the observations. In 30 

terms of runoff, there is no direct observation at a large scale. The runoff is usually derived from water balance models, or 

obtained from the inverse streamflow routing through the data assimilation method (Pan and Wood, 2013). But again these 

estimates are more or less a model product. The soil moisture can be measured at local scale, but again its representativeness 

at a large scale is questionable given the strong heterogeneity of the land surface. The satellite remote sensing is a promising 



9 
 

method to measure the soil moisture at a large scale, but while currently its quality on representing the short-term variability 

is still a concern (Yuan et al., 2015b). Different from runoff and soil moisture, the streamflow can be measured at a certain 

hydrological gauge for a certain drainage area. Therefore, the streamflow forecasts both from ESP/VIC and NMME/VIC are 

verified with observation after the post-processing procedure described in section 2.2. 

Figure 7 shows the time series of the post-processed model streamflow and the observed streamflow at five hydrological 5 

gauges from the upper to lower mainstream of the Yellow River. As compared with the naturalized streamflow (Figure 4 in 

Yuan et al. (2016)), the observed streamflow shows a nonstationary feature, suggesting a human perturbation combined with 

the climate change impact over the Yellow River basin. After post-processing, the VIC simulated streamflow matches with 

the observation quite well at the upper gauges, but has a weaker decadal change during the 1980s and 1990s for the lower 

gauges.  10 

Figure 8 shows the RMSE skill score for the streamflow forecasts at 12 mainstream gauges, without considering the error in 

the hydrological models. The reference forecast is the ESP/VIC, and a skill score above zero represents the added value from 

climate forecast models. Figure 9 shows similar plots, but the RMSEs are calculated between post-processed forecasts and 

the observed streamflow. Regardless of the errors in the hydrological models, the NMME/VIC reduces the RMSE for the 

streamflow forecasts by 10-25% (Fig. 8). As compared with the observed streamflow, the NMME/VIC reduces the RMSE 15 

by less than 5-15% (Fig. 9). And the reduction occurs mostly during the transition from wet to dry seasons. The decrease in 

the RMSE skill score is consistent with previous finding over the USA (Yuan et al., 2013), which is because of the increase 

in the uncertainty of hydrological models. Given that the VIC model used in this study has no parameterization in the human 

water consumption, a linear regression in the post-processing procedure may reduce the systematic bias with the 

consideration of seasonality, but it does not necessarily correct the errors in the variability. Connecting the VIC model with 20 

water subtraction model with different complexities (e.g., from statistical to process-based models) will reduce the 

uncertainty in the hydrological model, and thus amplify the add value from climate forecast models. 

Without the consideration of the errors in hydrological models, tThe RMSE skill score generally decreases over leads 

without the consideration of the errors in hydrological models (Fig. 8);, but it may increase as verified by the observed 

streamflow (Fig. 9). This suggests that the added value from climate models at a long forecast lead might not be negligible as 25 

one we expected, or they might be underestimated by previous studies that verify the forecasts with model simulations. 

6. Concluding Remarks 

This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over 

the Yellow River basin in northern China. The system downscales the seasonal climate forecasts from the North American 

Multimodel Ensemble (NMME) models, and drives the Variable Infiltration Capacity (VIC) land surface hydrological model 30 

and a global routing model regionalized over the Yellow River basin to produce seasonal hydrological forecasting of soil 

moisture, runoff and streamflow at a 0.25-degree resolution. The first paper investigates the hydrological predictability in 

terms of initial hydrological conditions (ICs) by performing the reverse Ensemble Streamflow Prediction (revESP) 

simulations using the hydrological models in the forecasting system. This paper evaluates the added value for the seasonal 
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hydrological forecasting from climate forecast models by using 99 ensemble forecasts of surface air 2-m temperature and 

precipitation from eight NMME models during 1982-2010, as compared with ESP-type forecasts. 

The forecast skill in terms of Anomaly Correlation (AC) for 2-m temperature and precipitation does not necessarily decrease 

over leads, but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. The 

highest forecast skill for 2-m temperature occurs during the summer and late winter, and the lowest skill occurs during the 5 

late spring. Among eight NMME models used in this study, the NCEP-CFSv2 and NASA-GMAO models have the highest 

AC for the 2-m temperature and precipitation forecasts at the first month respectively. After the first month, the skill for 

NCEP-CFSv2 is consistently higher than other NMME models for the precipitation forecasts, but not for the temperature 

forecasts. As there is more diversity in the model performance for the temperature forecasts, the grand NMME ensemble 

mean forecast has consistently higher skill than the best single model, with an average AC of 0.5 for the 0.5 month lead, and 10 

about 0.3 up to 6 months. For the precipitation forecasts, the grand NMME ensemble mean forecast has higher skill than the 

best individual models during the first two month, and its skill is comparable to the best individual model beyond the first 

two months. During the first season, the NMME ensemble mean precipitation forecasts have statistically significant skill 

over northern part of the Yellow River basin for the forecasts initialized in spring, over southern marginal regions with wet 

climate for the forecasts initialized in summer, over the upper reaches for the forecasts initialized at the beginning of the cold 15 

season, and over the middle and lower reaches for that initialized in November.  

Due to the strong controldominant role of ICs in the forecasting of land surface conditions, the forecast skill for soil moisture 

and runoff as verified with offline VIC simulation without considering the model errors, decreases generally as the lead 

increases especially during the dry seasons. The soil moisture forecast skill for the ESP method is very high, with an 

averaged AC among 12 target months higher than 0.8 out to three months. The NMME climate models can improve the 20 

forecast skill against the ESP for the forecasts at long leads and for those initialized in the rainy season. As the ICs have 

weaker control on the runoff than the soil moisture, the added value from climate forecast models is more obvious for the 

runoff forecasts. Compared with the ESP/VIC runoff forecasts, the NMME/VIC increases the average AC by 0.08-0.2, and 

the increase is larger at long leads. In terms of spatial distributions, both the ESP/VIC and NMME/VIC have high forecast 

skill for the soil moisture over the middle reaches. The later increases the average AC from the former by 0.08-0.2 over 25 

upper and lower reaches of the Yellow River basin, and the increase is larger at long leads. For the streamflow forecasting, 

the ESP/VIC has an averaged correlation higher than 0.7 along the mainstream at 0.5 month lead, where there is only a 

marginal improvement from NMME/VIC at upper reaches and tributaries. However, the NMME/VIC increases the 

correlation for the streamflow forecasts at long leads by 0.1-0.4. 

The NMME/VIC reduces the root mean squared error (RMSE) from ESP/VIC by 10-25% across all target months for the 30 

streamflow forecasts verified by neglecting the uncertainty in hydrological models (i.e., verified by the offline simulated 

streamflow). To compare with the observed streamflow, the predicted streamflow from both ESP/VIC and NMME/VIC are 

post-processed through a linear regression, with the regression model fitted by offline simulation results. As verified by 

observed streamflow, the NMME/VIC reduces the RMSE from ESP/VIC by 5-15%, especially during the transition from 
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wet to dry seasons. Regardless of the errors in hydrological models, the added value from climate forecast models decreases 

over leads, which is consistent with the increase of error in the climate forecast. However, with the consideration of the 

uncertainty in the hydrological models, the added value from climate model may increase over leads, which suggests that the 

usefulness of the climate forecasts in the hydrological forecasts at long leads might be underestimated in the studies that 

verifies the forecasts with model offline simulations. 5 

This study shows that the NMME-based forecasting outperforms the ICs-based forecast method over the Yellow River basin, 

with or without the consideration of the errors in the hydrological models. Toward establishing an operational seasonal 

hydrological forecasting system, future efforts could be spent as follows: (1) a linear time series post-processing model, 

although considering the seasonality in the water subtraction by calibrating the parameters against observed streamflow 

month by month, is not sufficient to simulate and forecast a hydrological system with intensive human interventions because 10 

of the nonlinearity and nonstationarity. Either connecting with a seasonally-dependent water subtraction sub-model based on 

the subtraction statistics or explicitly representing the human intervention processes in the forecasting system is not only 

necessary to further reduce the uncertainty in the hydrological models, but also to facilitate the understanding of the 

hydrological predictability with human dimension; (2) for the variables that are not easily to be corrected due to limited 

observations (e.g., soil moisture, runoff), forecasting with multiple hydrological models might be useful to quantify the 15 

uncertainty in the hydrological model; (3) there is a decadal variation for the observed streamflow over the Yellow River 

basin, which is a result of both decadal climate change and the human water use change such as the water allocation in the 

1980s, and water conservation through planting more trees over the Loess Plateau. Attribution of the natural and 

anthropogenic changes in the environment and assessing their impacts on the terrestrial hydrology are not only interesting 

questions within the scope of the global change, but are also relevant for developing the short-term hydrological forecasting 20 

systems because they will influence the downscaling statistics, the calibration of hydrological models, and the hydrological 

post-processing. Therefore, more collaborations between the climate research scientists and operational hydrological 

forecasters should be put on the agenda, and the Global Framework for Climate Services (GFCS) is a good concept that 

facilitates the transfer of the advances in climate research to climate services including the seasonal hydrological forecasting 

that is targeted for adaption to hydrologic extremes; and (4) given that ensemble seasonal hydrological forecasting becomes 25 

popular, it is the time to think about the interpretation of the ensemble forecast results to the decision makers (Hoss and 

Fischbeck, 2016). A useful ensemble forecast should be reliable but also sharper than a climatological forecast (toward a 

more deterministic forecast), which is not always the case. There should be a balance between the reliability and the 

sharpness, and how to determine an effective balance is a question both for scientists and managers. 

 30 
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Table 1. List of NMME models used in this study. 

Model Version Ensemble 

Community Climate System Model 4 (COLA-RSMAS-CCSM4) 10 

Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL-CM2p1) 10 

 2.5 (GFDL-CM2p5-FLOR-A06) 12 

 2.5 (GFDL-CM2p5-FLOR-B01) 12 

Goddard Earth Observing System Model  5 (NASA-GMAO) 11 

Climate Forecast System 2 (NCEP-CFSv2) 24 

Canadian Coupled Global Climate Model 3 (CMC1-CanCM3) 10 

 4 (CMC2-CanCM4) 10 

 

Table 2. Information at twelve hydrological gauges and the Nash-Sutcliffe efficiency (NSE) verified by using the 

naturalized and observed streamflow during 1982-2010. When it verified against the observed streamflow, the simulated 

streamflow is post-processed before calculating the NSE. 5 

Gauge Latitude 

(°N) 

Longitude 

(°E) 

Drainage Area 

(103 km2) 

NSE with 

naturalized 

streamflow 

NSE with 

observed 

streamflow 

Tangnaihai 35.5 100.15 122 0.87 0.91 

Xunhua 35.83 102.5 145 0.88 0.42 

Xiaochuan 35.93 103.03 182 0.84 0.58 

Lanzhou 36.07 103.82 223 0.91 0.67 

Xiaheyan 37.45 105.05 254 0.90 0.63 

Shizuishan 39.25 106.78 309 0.89 0.58 

Hekouzhen 40.25 111.17 368 0.76 0.53 

Longmen 35.67 110.58 498 0.74 0.55 

Sanmenxia 34.82 111.37 688 0.77 0.63 

Huayuankou 34.92 113.65 730 0.81 0.57 

Gaocun 35.38 115.08 734 0.78 0.59 

Lijin 37.52 118.3 752 0.71 0.63 
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Figure 1. Anomaly Correlation (AC) of ensemble mean forecasts from eight NMME models (a-h) and the grand NMME 

ensemble averaged among 99 realizations as a function of lead and target month for monthly mean 2-m temperature over the 

Yellow River basin during the period of 1982-2010. 
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Figure 2. The same as Figure 1, but for monthly mean precipitation. 
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Figure 3. Spatial distributions of grid-scale AC of grand NMME ensemble forecasts for seasonal mean precipitation. 
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Figure 4. AC of ensemble mean hydrological forecasts from a climatology method (ESP/VIC) and the climate-model-based 

approach (NMME/VIC) as a function of lead and target month for monthly mean soil moisture (a-b) and runoff (c-d) over 

the Yellow River basin during the period of 1982-2010. The soil moisture and runoff used for the verification are from VIC 

offline simulation. 5 
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Figure 5. Spatial distributions of average AC of ensemble mean forecasts from ESP/VIC (left panel) and NMME/VIC (right 

panel) for monthly soil moisture at different leads. The average AC is the mean for the forecasts starting from twelve target 

months. 
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Figure 6. The same as Figure 5, but for streamflow along the mainstream and major tributaries of the Yellow River. 
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Figure 7. Naturalized (cyan) and oObservedation (blue) and post-processed VIC simulation (red) for themonthly streamflow 

(108 m3/s), and VIC simulated monthly streamflow (108 m3/s) before (orange) and after (red) the post-processing at five 

hydrological gauges located from upper to lower mainstream of the Yellow River. During the post-processing procedure, the 

simulated streamflow without human interventions is linearly regressed against the observed streamflow for each target 5 

month. 
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Figure 8. The Root Mean Squared Error Skill Score (SSRMSE) for streamflow as a function of start month and lead time at 

twelve hydrological gauges. The SSRMSE is defined as 1-RMSENMME/RMSEESP, where RMSENMME and RMSEESP are the 

RMSEs for the streamflow forecasts from NMME/VIC and ESP/VIC verified against the offline simulated streamflow. 
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Figure 9. The same as Figure 8, but the RMSEs are calculated against observed streamflow. 
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Dr. Alexander Gelfan  
Editor  
Hydrology and Earth System Sciences  
 
RE: manuscript #hess-2016-102 15 
 
Dear Dr. Gelfan, 
 
Thank you for your kind decision letter on our manuscript entitled “An experimental seasonal 
hydrological forecasting system over the Yellow River basin-Part II: The added value from climate 20 
forecast models” (hess-2016-102). We have carefully considered your and reviewer’s comments and 
incorporated them into the revised manuscript to the extent possible. We hope that you find the revised 
manuscript and the response to the reviews acceptable to HESS.  
The detailed responses to the comments are attached. 
 25 
We appreciate the effort you spent to process the manuscript and look forward to hearing from you soon. 
 
Sincerely yours, 

 
Xing Yuan 30 
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Responses to the comments from Reviewer #1 
 
I find this study very well carried out and the paper very well written. Following the Part I of the study, 
the author investigated how much extra forecast skill the NMME ensembles can provide relative to the 
baseline statistical forecast (ESP) which relies on the initial hydrologic conditions only (no information 5 
from dynamic forecast). To my knowledge, NMME has not been looked at over the study area here, the 
Yellow River basin, and I think the study presented here offered a lot of new insights about NMME and 
seasonal scale hydrologic forecast in general. So I think the work here is more than enough significant 
for being considered published at HESS. The analysis in the paper is focused on the two main drivers 
for surface hydrology, precipitation and air temperature, as well as two key hydrologic variables, soil 10 
moisture and river streamflow. A land surface model (VIC) and a river routing model were used to 
derive the surface hydrologic fluxes/states. The author also applied a number of important techniques 
like downscaling, bias correction, and post-processing in an effort to maximize the accuracy and skill of 
the final hydrologic forecasts. There is a solid amount of careful experiments and analyses. Besides the 
scientific quality, the author has also done a good literature review and the presentation is also well 15 
organized. 
Response: I would like to thank the reviewer for the compliment and recognizing the value of our work. 
The thoughtful comments have helped improve the manuscript. The reviewer’s comments are italicized 
and my responses immediately follow. 

 20 

My main concern is about the technical details of the analysis. The main skill metric used is the 
Anomaly Correlation, defined in Equation (1) on page 6, as the correlation calculated over both time 
and space. I think the author needs to offer some reasoning to back up such a definition. Normally, the 
skill can be defined as the correlation between forecasts and observations in time only. Why to lump all 
locations together calculating the correlation? Why not calculate the correlation over different 25 
locations first and then average them up? I guess that the short length of the data records (29 years) 
might be a factor which makes the correlation calculations less robust. The current definition lumps all 
locations together and it is hard to distinguish between NMME’s ability to resolve the dynamics in time 
and space. Because of that, I can’t quite interpret some of the discussions later, for example, about the 
significance of low correlation in lines 5-8 on page 7. If we calculate the correlation over 38309 30 
samples, then the correlation includes both those in time and space ... and in which part shall we 
measure the forecast skill? 

Response: Thanks for the comment. The anomaly correlation (AC) that assesses the performance both 
in space and time is widely used in the evaluations of the hydro-climate forecasts (Becker et al., 2014; 
Saha et al., 2014; Mo and Lettenmaier, 2014; Ma et al., 2015). The use of the AC facilitates the 35 
presentation of the results for different target months over different lead times in a single plot (e.g., 
Figures 1 and 2). Of course, it can also be reduced to the pearson correlation (time) or the pattern 
correlation (space). For example, Figure 3 shows the temporal part of the AC for the precipitation 
forecasts over different locations. As pointed out by the reviewer, the short length of the data records 
(29 years) might be a factor which makes the temporal correlation less robust. The AC samples the 40 



31 
 

forecasts both over space and time, and it can be regarded as an integral measure of the performance. To 
clarify it, I have revised the manuscript as follows: 

“The AC is widely used in the hydro-climate forecast evaluations (Becker et al., 2014; Saha et al., 2014; 
Mo and Lettenmaier, 2014; Ma et al., 2015), and can be regarded as a measure of forecast skill both in 
space and time. If the AC is used for each grid cell within the Yellow River basin (i.e., there is only a 5 
summation over time), it is reduced to the Pearson correlation. And if the AC is used for each year, it is 
reduced to the pattern correlation.” (P6, L8-11 in the tracked version) 

 
Also, a very minor point – can you show an example of the hydrological postprocessing? For example, 

to the time series of the raw, post-processed, and observed streamflow at one gauge? Did you train the 10 

regressions using data over the same period of 1982-2010 or a different period? 

Response: Thanks for the comment. I have now plotted the streamflow time series before and after 
post-processing in Figure 7. The training is done in a cross validation mode. In addition, I have clarified 
the post-processing procedure in the revised manuscript as follows: 
“In this study, a linear regression is applied to correct the streamflow forecasts at 12 mainstream gauges 15 
where the observations are available. For each gauge, the regression coefficients are firstly fitted 
between observed and offline simulated streamflow for each calendar month to account for the 
seasonality in the human water usage, then the coefficients are applied to correct the streamflow 
forecasts for their target months. The coefficients are estimated during 1982-2010 in a cross validation 
mode (i.e., dropping the target year).” (P5, L12-17) 20 

 

References: 
Becker, M., van Den Dool, H., and Zhang, Q: Predictability and forecast skill in NMME, J. Climate, 27, 

5891-5906, doi:10.1175/JCLI-D-13-00597.1, 2014. 

Ma, F., Yuan, X., and Ye, A.: Seasonal drought predictability and forecast skill over China, J. Geophys. 25 

Res. Atmos., 120, 8264–8275, doi:10.1002/2015JD023185, 2015. 

Mo, K. C., and Lettenmaier, D. P.: Hydrologic prediction over the conterminous United States using the 

National Multi-Model Ensemble, J. Hydrometeorol., 15, 1457-1472, doi: 10.1175/JHM-D-13-

0197.1, 2014. 

Saha, S., et al.: The NCEP climate forecast system version 2, J. Climate, 27, 2185-2208, 30 

doi:10.1175/JCLI-D-12-00823.1, 2014. 
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Responses to the comments from Reviewer #2 
 
The second of the two papers concerning the establishment of the seasonal ensemble hydrological 
prediction system in the Yellow River basin, this paper describes the investigation of the added value 
from implementing the ensemble of climate models into the considered framework. Two main forecast 5 
ensembles are compared: the ESP/VIC approach produces streamflow forecasts based on the ensemble 
of 28 meteorological conditions from the period of 1982-2010 and an ensemble of 8 North American 
Multimodel Ensemble models with a total of 99 members (referred to as NMME/VIC). The forecasts of 
soil moisture and naturalized streamflow are compared using two metrics – Anomaly Correlation and 
RMSE Skill score. The AC plots show that the NMME/VIC approach may enhance the forecast skill for 10 
both streamflow and soil moisture at longer lead times. To produce a forecast that would be 
comparable to the observations, the output from both approaches is then post-processed by a linear 
regression. The regression coefficients are derived by fitting the naturalized multiannual streamflow 
time-series to the observed time-series. After the post-processing, the NMME/VIC shows a significant 
reduction in RMSE as compared to the naturalized streamflow.  15 

Response: I would like to thank the reviewer for the compliment and recognizing the value of our work. 
The thoughtful comments have helped improve the manuscript. The reviewer’s comments are italicized 
and my responses immediately follow. 

 

Considering a hydrological system with high human interventions, would applying a linear regression 20 
for streamflow time-series be the best practice in fitting the simulated streamflow to the obeserved? 
Would water subtractions be a linear or a non-linear process? Is it possible to introduce a seasonally-
dependent water subtraction submodel in the VIC model based on e.g. municipal subtraction statistics 
and would the whole framework benefit from that? 
Response: Thanks for the important comment. I agree with reviewer that a linear regression is not 25 
sufficient to account for the nonlinearity and nonstationarity in the hydrological system with intensive 
human interventions. Incorporating a water subtraction submodel is a good suggestion for future work. 
Currently, the post-processing with linear regression is applied for each calendar month, so the 
seasonality in water subtraction can be addressed to some extent. I have incorporated the reviewer’s 
comment into the discussion section as follows: 30 

“(1) a linear time series post-processing model, although considering the seasonality in the water 
subtraction by calibrating the parameters against observed streamflow month by month, is not sufficient 
to simulate and forecast a hydrological system with intensive human interventions because of the 
nonlinearity and nonstationarity. Either connecting with a seasonally-dependent water subtraction sub-
model based on the subtraction statistics or explicitly representing the human intervention processes in 35 
the forecasting system is not only necessary to further reduce the uncertainty in the hydrological models, 
but also to facilitate the understanding of the hydrological predictability with human dimension;” (P11, 
L8-14 in the tracked version) 
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The reviewer kindly asks the author to provide further insight in section 5 on the reasons for a 

significant decrease in forecast RMSE skill verified against the observed streamflow. As far as the 

reviewer have understood, the VIC model was calibrated against the naturalized streamflow and only fit 

to the observed streamflow by linear regression, so were the forecasts.  

Response: Thanks for the suggestion. I have revised the manuscript as follows: 5 
“The decrease in the RMSE skill score is consistent with previous finding over the USA (Yuan et al., 

2013), which is because of the increase in the uncertainty of hydrological models. Given that the VIC 

model used in this study has no parameterization in the human water consumption, a linear regression in 

the post-processing procedure may reduce the systematic bias with the consideration of seasonality, but 

it does not necessarily correct the errors in the variability. Connecting the VIC model with water 10 

subtraction model with different complexities (e.g., from statistical to process-based models) will 

reduce the uncertainty in the hydrological model, and thus amplify the add value from climate forecast 

models.” (P9, L16-22) 

 

With the minor additions the paper is suitable for publication. 15 

Technical corrections: - page 3 line 19: correction “of the simulated streamflow” 
Response: Revised as suggested. (p3, L19) 
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Responses to the comments from Reviewer #3 
I am very grateful to the reviewer for the positive and careful review. The thoughtful comments have 
helped improve the manuscript. The reviewer’s comments are italicized and my responses immediately 
follow. 

 5 

1. Page 2, line 15: A reference is neededhere to support this statement.  
Response: I have added the references “Pappenberger et al., 2008; Swinbank et al., 2016”. (P2, L13,15 
in the tracked version) 

 
2. Page 2 line 16: change “flooding forecast” to “floodforecasting”.  10 

Response: Revised as suggested. (P2, L16) 

 
3. Page 2, line 25: Is NMME qualified to be called “open source”? Itsforecasts are made available to 

the research community, but the system itself is notopen source, is it?  
Response: I did not say that the NMME models are “open source”. I called it “an open source of 15 
multimodel seasonal climate hindcast datasets” in the paper. Those hindcast datasets are made available 
to the public by the IRI personnel through the NMME project. 

 
4. Page 3, line 28: If Yellow river basin is HEAVILY managed, I wonder if such activities can be 

simply represented by a linear regression in the postprocessing procedure. The probability 20 
distribution will be highly distorted as the goal of water resource management over the river is to 
do flood control and irrigation withdraw. Thus observed flow is much more steady (less variant) 
with less extremes duringboth dry and wet conditions. Linear regression is typically used between 
variables thatare normally distributed. Can you commend on this? This the linear regression is 
notsuitable here, it needs to be corrected.  25 

Response: Thanks for the important comment. Actually the naturalized and observed streamflow 
datasets do show the characteristics in the upper reaches of the basin as the reviewer’s comment: the 
observed flow is much more steady (less variant) with less extremes during both dry and wet seasons 
(e.g., Lanzhou station in the revised Figure 7). But this is not the case in the lower reaches, where the 
observed streamflow is consistently lower than the naturalized streamflow due to heavy human water 30 
consumption. To account for the seasonality in the water management, the linear regression is applied 
for each calendar month, where the water allocations during different years are similar and stable. 
Therefore, the linear regression method can be used to correct the systematic biases. However, I agree 
with the reviewer that it has drawbacks for correcting the nonlinear errors, where I mentioned it in the 
manuscript. With the water allocation and consumption data collected in the future, more sophisticated 35 
method should be implemented in the forecasting system. I have revised the manuscript as follows: 
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“For the upper reaches, the observed flow is much more steady (less variant) with less extremes during 
both dry and wet seasons; but for the lower reaches, the observed streamflow is consistently lower than 
the naturalized streamflow due to heavy human water consumption.” (P3, L28-30) 

 

And the disadvantage of the linear regression method has been discussed at the end of the paper as 5 
follows: 

“(1) a linear time series post-processing model, although considering the seasonality in the water 
subtraction by calibrating the parameters against observed streamflow month by month, is not sufficient 
to simulate and forecast a hydrological system with intensive human interventions because of the 
nonlinearity and nonstationarity. Either connecting with a seasonally dependent water subtraction sub-10 
model based on the subtraction statistics or explicitly representing the human intervention processes in 
the forecasting system is not only necessary to further reduce the uncertainty in the hydrological models, 
but also to facilitate the understanding of the hydrological predictability with human dimension”. (P11, 
L8-14) 

 15 

5. Page 4, line 31: why don’t you use lapse rate correction here when binlinear interpolate the 
temperature forecast from models?  

Response: The systematic bias (including the topography induced temperature bias) can be easily 
corrected by using the quantile-mapping method that is used in this study, i.e., mapping the forecast into 
the observed climatology with lapse rate correction. 20 

 
6. Page 4 line 32: When you say “all ensemble member”, are you referring to all members from one 

individual model or from the entire NMME ensemble?  
Response: As I mentioned in the manuscript, “for each calendar month and each NMME model…” (P4, 
L36 in the tracked version). So it refers to all members from one individual model. The rationale is that 25 
different models have different climatology that affects the robustness, so I chose to correct them 
individually. 
 

7. Page 5 linear 10: Again, I don’t think the linear regression model is suitable or good enough to 
represent the human component of the hydrological system.  30 

Response: I did not clarify that the linear regression saves the day. The statement actually clarifies that 
the hydrological post-processing is necessary to bridge the gap between the observed streamflow and a 
hydrological model calibrated against the naturalized streamflow. As I respond above, the disadvantage 
of the linear regression model will be discussed. But the linear regression does make the hydrological 
simulations closer to the observation over the river basins with human interventions. 35 
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8. Table 2: Can you actually showhow the two time series of streamflow look like, with a QQ plot or 
scatter plot? The current illustration is not very convincing.  

Response: Thanks for the comment. Actually Figure 7 shows a few examples of the time series of 
streamflow from observation and post-processed simulations. And I have added the time series of the 
simulated streamflow before post-processing and the naturalized streamflow into the same figure for 5 
comparison. Please see the revised Figure 7 in the revised manuscript.  

 
9. Page 5 line 32: change “measures” to“metrics  
Response: Revised as suggested. (P6, L3) 

 10 

10. Equation 1: This equation gives a space-time mixed formula for anomalycorrelation. Later in the 
paper, AC is also calculated for individual location, so it is necessary to mention that equation 1 
can be simplified for such purpose.  

Response: I agree with the reviewer, please see P6L9-10: “If the AC is used for each grid cell within 
the Yellow River basin (i.e., there is only a summation over time), it is reduced to the Pearson 15 
correlation.” 

 
11. Page 6, line10: What is the impact of having different ensemble members in ESP and NMME onthe 

skill assessment?  
Response: To my experience, more ensemble members will result in higher reliability, but not 20 
necessarily the sharpness. As we know, the ESP forecast refers to a kind of climatological forecast, so it 
is already the most reliable forecast. Adding more ensembles to the ESP usually does not improve the 
skill. Currently, the ESP consists of all historical forcings for the target seasons (excluding the target 
year) during the validation period (1982-2010), if we expand it with more ensemble members (e.g., 
those forcings before 1982), it has a risk that the results might be biased if there is a shift in the climate 25 
(e.g., decadal variation). Given that the main focus of the paper is the deterministic forecast skill and the 
setup of the ESP experiment, I think the impact of the ensemble members for the ESP simulation is 
limited.  

 
12. Figure 1: A pixelited shaded plot probably looks better and easier to read tan the current one. Can 30 

you highlight the correlations that are actually statistically significant? 
Response: Thanks for the comment. I have revised it as suggested (please see Figure 1 in the revised 
manuscript). As I mentioned in the manuscript, an anomaly correlation (AC) of 0.05 (as shown in colors) 
would be statistically significant, given the large samples.  

 35 
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13. Page 6, line 16: I don’t agree with this assessment. Most models do show the highest skill for month 
1, maybe except GFDL. So the lead time is still quite important, maybe just as important as 
seasonality. If you think there is not dependence on lead time, what could be the cause for that?  

Response: I did not state that the lead time is not important. I used “not necessarily” but not the “NOT” 
in the speculation. It is related to the strong seasonality, i.e., it is usually more skillful during dry season 5 
than wet season. 

 
14. Page 6, line 27: It would be interesting to know how much of the improvement in forecast skill is 

due to increase in the ensemble size.  
Response: The reviewer raises an interesting question. Actually in the past, I did some testing to see 10 
whether a subset of the NMME ensemble is more skill than the grand NMME ensemble in terms of the 
deterministic forecast. But it is very difficult to select the optimal subset ensemble members. For the 
training period, sometimes a subset ensemble is more skillful than the grand ensemble; but it usually 
does not hold for the verification period. For a real-time forecasting, it is very difficult to select a subset 
of the NMME models (according to the hindcast) that is consistently more skillful than the grand 15 
ensemble mean. Perhaps it is partly because of the similarity of the NMME models that we discussed in 
a paper (Yuan and Wood, 2012). But again, this is very complicated especially for the precipitation, and 
it is out of the scope of the paper. So I decided not to include it in the paper. If the reviewer has any 
suggestions, I am very glad to try it in the future study. 

 20 

15. Figure 2: The current way of plotting makes the 0.5month value almost invisible. I suggest a 
pixelited shaded plot. 

Response: I have revised it as suggested. Please see Figure 2 in the tracked version of the revised 
manuscript. 

 25 

16. Page 7, line 23:I don’t think you cannot draw conclusion like this from Figure 4 although this is 
likelyvery true. Statements like this need to be more careful.  

Response: Thanks for the comment. In this section, all hindcasts are verified against VIC offline 
simulations, i.e., the errors in the hydrological forecast model is neglected. To avoid confusion, I have 
added a note in the revised manuscript: 30 

“(but note that this result may be model dependent since the hydrological hindcasts in this section are 
verified against VIC offline simulations by neglecting the errors in the hydrological model)” (P7, L29-
31) 
 

17. Page 7, line 32: “less”than what?  35 
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Response: I have revised it as “As the ICs have less control on the runoff forecasts than the 
meteorological forcings…” (P8, L6-7) 

 
18. Page 8, line 25: “representativeness”??  
Response: Revised as suggested. (P8, L33) 5 

 
19. Page 8, line 34: What non-stationary feature are you referring to here? If there is a trend, can you 

actually tell if it is caused by water withdraw or climate change?  
Response: This refers to the human interventions. I have incorporated the time series of naturalized 
streamflow and the VIC simulations without post-processing in the revised Figure 7. The revised figure 10 
shows that the drying trend in the 1980s and 1990s is both caused by climate change and human 
interventions because the naturalized streamflow also has a drying trend, although it is weaker than the 
observed streamflow. 

 
20. Figure 8: Why not showthe negative part of SS?  15 

Response: There are some small negative values for SS, but are not significantly different from zero. 
Therefore, they (as well as those small positive values) are not discussed in the paper for investigating 
the added value from climate-model-based hydrological forecast. 

 
21. Page 10, line 3: IC is important, but not necessary always dominant.  20 

Response: Thanks for the comment. I have replaced it with “strong control”. (P10, L17) 

 
22. Page 10 line 23-25: This conclusion is counter intuitive. Are you saying that if we were to have a 

perfect land surface model, the climate forecast in hydrological forecasts at long leads would be 
less useful?  25 

Response: Most previous studies verify the forecast against hydrological model simulations by 
neglecting the errors in the hydrological models. My statement is that those studies (NOT perfect 
hydrological model) might underestimate the usefulness of the climate forecasts at long leads. With a 
perfect hydrological model, the skill for the climate-model-based hydrological forecasting will increase, 
and so does for the ESP forecasting, so the added value from climate model (against) is not necessarily 30 
increase.  
 

23. Page 10, line 31-32: This addresses a different type of uncertainty. Use of multiple models help to 
address uncertainties associated with model, not observations.  
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Response: What I mean is exactly the same as the reviewer. To avoid confusion, I have revised it as 
follows: “…forecasting with multiple hydrological models might be useful to quantify the uncertainty in 
the hydrological model” (P11, L15-16) 

 
24. Page 11, line 3: This depends on what type of downscaling method to be used, a dynamic 5 

downscaling scheme might not suffer the same.  
Response: According to my experiences in the dynamical downscaling (Yuan and Liang, 2011; Yuan et 
al., 2012), neglecting the human component will also affect the performance of dynamical downscaling. 
This is because most climate models, especially for those used in the seasonal forecasting, do NOT 
consider the human interventions such as reservoir regulation, irrigation, land use changes and 10 
groundwater pumping, and their forecasts may suffer from that. 

 
25. The last paragraph is an interesting discussion, but some of the statements are not directly based on 
the results of the current research, might need to be revised somehow. 
Response: I thank the reviewer for the appreciation. This discussion focus on 1) the representation of 15 
human intervention in the hydrological forecasting system, 2) development of the system with multiple 
hydrological models, 3) prediction of seasonal hydrology within the context of global environmental 
change, and 4) the interpret of the ensemble hydrological forecast. They are the questions we would like 
to address in our future study. So I would like to keep them unless the reviewer has specific concerns.  

 20 
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