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Abstract 17 

The Tibetan Plateau (TP) plays a major role in regional and global climate. The 18 
knowledge of latent heat flux can help to better describe the complex mechanisms and 19 
interactions between land and atmosphere. Despite its importance, accurate estimation 20 
of Evapotranspiration (ET) over the TP remains challenging. Satellite observations 21 
allow for ET estimation at high temporal and spatial scales. The purpose of this paper 22 
is to provide a detailed cross comparison of existing ET products over the TP. Six 23 
available ET products based on different approaches are included for comparison. 24 
Results show that all products capture the seasonal variability well with minimum ET 25 
in the winter and maximum ET in the summer. Regarding the spatial pattern, the High 26 
Resolution Land Surface Parameters from Space (HOLAPS) ET demonstrator dataset 27 
is very similar to the LandFlux-EVAL dataset (a benchmark ET product from the 28 
Global Energy and Water Cycle Experiment), with decreasing ET from the southeast to 29 
northwest over the TP. Further comparison against the LandFlux-EVAL over different 30 
sub-regions that are decided by different intervals of normalized difference vegetation 31 
index (NDVI), precipitation and elevation reveals that HOLAPS agrees best with 32 
LandFlux-EVAL having the highest correlation coefficient (R) and lowest Root Mean 33 
Square Difference (RMSD). These results indicate the potential for the application of 34 
the HOLAPS demonstrator dataset in understanding the land-atmosphere-biosphere 35 
interactions over the TP. In order to provide more accurate ET over the TP, model 36 
calibration, high accuracy forcing dataset, appropriate in situ measurements as well as 37 
other hydrological data such as runoff measurements are still needed. 38 
 39 
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1. Introduction 42 

Evapotranspiration (ET) is an essential nexus of energy and water cycles through the 43 
mass and energy interactions between land and atmosphere (Jung et al., 2010; Peng et 44 
al., 2013a). The estimation of spatially distributed ET has been advanced by the 45 
progress of satellite remote sensing technology. However, remote sensing techniques 46 
do not allow to directly inverting ET from space (Peng et al., 2013b; Zhang et al., 47 
2016a). Different methods have been therefore developed to estimate ET with the use 48 
of physical variables that are sensed by satellite and are related to the evaporation 49 
process (Kalma et al., 2008; Wang and Dickinson, 2012). In recent years, a number of 50 
global ET products have been generated with the availability of long-term global 51 
satellite products and progress in computer science (Zhang et al., 2010; Vinukollu et al., 52 
2011j; Miralles et al., 2011; Fisher et al., 2008). Some of these global products can 53 
even provide ET with spatial resolution less than 10 km and temporal resolution less 54 
than 3 hour (Mu et al., 2007; Miralles et al., 2016; Loew et al., 2015). HOLAPS (High 55 
resOlution Land Atmosphere surface Parameters from Space) demonstrator dataset is 56 
one of them. HOLAPS is actually a framework that can provide surface energy and 57 
water fluxes at sub-hourly timescales and spatial resolutions at the kilometer scale. It is 58 
also worth noting that very high spatial resolution (on the order of 10 m) ET product at 59 
regional scale can be provided by ALEXI/DisALEXI based on thermal observations 60 
from polar and geostationary orbiting satellites (Anderson et al., 2011; Anderson et al., 61 
2007). Although these global ET products have been applied to many applications such 62 
as multi-decadal trend analysis (Zhang et al., 2016b; Zhang et al., 2015; Miralles et al., 63 
2014; Jiménez et al., 2011), large discrepancies remain exist in these products. Within 64 
the Global Energy and Water Cycle Experiment (GEWEX) LandFlux initiative, 65 
Mueller et al. (2011) conducted a comparison of existing global LE products from 66 
either land surface models, re-analysis, or satellite estimates, and found that the global 67 
mean LE over land was 45±5 W/m2, with a spread of 20 W/m2. In addition, a synthesis 68 
dataset has also been generated within the GEWEX LandFlux-EVAL initiative, which 69 
provides LE at monthly timescale and a spatial resolution of 1 degree (Mueller et al., 70 
2013). Recently, several studies have evaluated commonly used ET retrieval 71 
algorithms, including Penman-Monteith (PM) algorithm, the Priestley-Taylor (PT) 72 
model and the Surface Energy Balance System (SEBS) (Su, 2002), which are driven by 73 
the same forcing dataset at both FLUXNET tower and global scales (Vinukollu et al., 74 
2011j; Miralles et al., 2016; Michel et al., 2016; McCabe et al., 2016; Ershadi et al., 75 
2014). To develop a more accurate global LE product, improvements of the 76 
parameterization and sensitivity analysis of the model to forcing dataset are still 77 
needed (Michel et al., 2016; McCabe et al., 2016). Note that the energy equivalent for 78 
ET is referred as latent heat flux (LE), which is used interchangeable with ET in this 79 
paper. 80 
 81 
   Nevertheless, theses global ET products have great potentials for global and 82 
regional hydrological applications. In this study, the performances of the widely used 83 
global ET products will be investigated over the Tibetan Plateau (TP), as the ET over 84 



 
 

 

 

the TP is of great importance and research interest. The TP has strong impacts on 85 
weather and climate at the regional to global scale and controls climatic and 86 
environmental changes in Asia and elsewhere in the Northern Hemisphere (Ma et al., 87 
2008). The knowledge of ET is essential for the study of land-atmosphere interactions, 88 
and assessment of the impacts of and feedbacks to the global change (Shi and Liang, 89 
2014). In order to characterize the distribution of ET over the TP, different methods 90 
using micrometeorological measurements (Yang et al., 2003; Lee et al., 2012; Chen et 91 
al., 2013b; Zhang et al., 2007), remote sensing products (Ma et al., 2014; Ma et al., 92 
2006; Chen et al., 2013a) and the combined use of both data sources (Ma et al., 2003; 93 
Ma et al., 2011; You et al., 2014) have been investigated over the last decades. In 94 
addition, land surface models have also been applied to simulate ET over the TP 95 
(Gerken et al., 2012; Yang et al., 2009). However, accurate estimation of ET over TP is 96 
still a challenge due to the limitations of the above approaches. Specifically, the 97 
observation-based methods are not adequate for determination of regional ET due to 98 
the limited spatial representativeness of meteorological stations, while the remote 99 
sensing products are only available under clear sky conditions. The models results are 100 
limited by the accuracy of input parameters and the uncertainties of model 101 
parameterization over complicated topography and highly heterogeneous areas of the 102 
TP (Shi and Liang, 2013d). The existing global ET products especially those with high 103 
spatial and temporal resolutions such as HOLAPS provide a potentially applicable ET 104 
dataset over the TP. Although the global ET products have been validated against 105 
FLUXNET measurements, the reliability of spatial and temporal patterns of them over 106 
the TP is still unknown. A comprehensive analysis of the characteristics of the LE over 107 
the TP based on the state-of-the-art global ET products has not yet been conducted. 108 
Therefore, the main objective of this study is to provide a detailed cross comparison of 109 
the different existing ET products over the TP. Through this study, the following 110 
research questions will be addressed: (1) Do existing global ET products show 111 
consistent spatial and temporal patterns over the TP? (2) Are there systematic 112 
deviations between the different data products which can be explained by different 113 
climate or surface conditions? The study will focus mainly on a cross-comparison 114 
between the different existing dataset due to a lack of appropriate reference data in the 115 
region like will be discussed. 116 
 117 

2. Study area 118 

The Tibetan Plateau (TP), known as the third pole of the Earth (Qiu, 2008), covers 119 
approximately the latitude from 26º N to 40º N, and longitude from 75º E to 105º E, 120 
with an area of 2500000 km2. It is the highest and largest plateau in the world, with 121 
very complex terrain and an average elevation higher than 4000 m above sea level (asl) 122 
(Figure 1) (Frauenfeld et al., 2005; Ma et al., 2008). Due to its unique and special 123 
geographical position and physical environment, the climate of TP is influenced by 124 
both Asian monsoon and westerlies (Yang et al., 2014), and it has profound thermal 125 
and dynamical impacts on atmospheric circulation over China, the whole East Asia and 126 
even the entire globe (Cui and Graf, 2009; You et al., 2014). Specifically, the TP 127 



reaches the middle troposphere and influences the atmospheric circulation through 128 
mechanical forcing (Yanai and Li, 1994). On the other hand, the thermal forcing of the 129 
TP enhances the Asian summer monsoon and influences its variability (Duan and Wu, 130 
2005; Lau et al., 2006). In addition, the melting water from snow and glaciers in TP is 131 
the source of many rivers in South and East Asia such as Yangtze, 132 
Ganges-Brahmaputra. Therefore, the TP is also known as ‘the Asian water tower’, 133 
supporting approximately 25% of the world’s population (Immerzeel et al., 2010; Xu 134 
et al., 2008). Quantitative estimation of the water and energy cycles over the TP is of 135 
great significance for the study of land-atmosphere-biosphere interactions, and 136 
understanding its response to climate change. (Sellers et al., 1997; Yang et al., 2014). 137 
 138 

 139 
Figure 1: Map of the location and topography of the Tibetan Plateau. 140 
 141 

3. Data and methods 142 

3.1 Data 143 

Different groups of algorithms have been developed to estimate ET from satellite data. 144 
These comprise (1) surface energy balance models forced either by satellite remote 145 
sensing or re-analysis data (Bastiaanssen et al., 1998; Su, 2002); (2) the methods based 146 
on Penman-Monteith (PM) or Priestley and Taylor (PT) equations (Fisher et al., 2008; 147 
Miralles et al., 2011; Mu et al., 2007; Zhang et al., 2015); (3) spatial variability 148 
methods (Peng et al., 2013b; Peng and Loew, 2014; Roerink et al., 2000). Among them, 149 
the PM algorithm, the PT model and the Surface Energy Balance System (SEBS) are 150 
widely used, and have been explored by both GEWEX LandFlux-EVAL initiative and 151 
the Water Cycle Multi-mission Observation Strategy EvapoTranspiration 152 
(WACMOS-ET) project. Therefore, three LE datasets based these models and driven 153 
by same forcing data are compared over the TP in this study. These datasets are 154 
SEBSSRB-PU, PTSRB-PU and PMSRB-PU, which are respectively based on SEBS, PT, and 155 
PM algorithms but driven by the same input radiation from Surface Radiation Budget 156 
(SRB) (Stackhouse et al., 2011) and meteorological forcing datasets from Princeton 157 
University (PU) (Vinukollu et al., 2011a). These three datasets used in this study were 158 
obtained from the Princeton University Terrestrial Hydrology Research Group. In 159 



 
 

 

 

addition, to investigate the impact of forcing data on the estimation of LE, another 160 
recent released SEBS dataset (SEBSChen) is also included in this study (Chen et al., 161 
2014). Different from SEBSSRB-PU, SEBSChen is driven by the meteorological forcing 162 
data obtained from the Institute of Tibetan Plateau Research, Chinese Academy of 163 
Sciences (ITP, CAS), which was generated based on 740 weather stations operated by 164 
the China Meteorological Administration. In addition, the recently developed 165 
HOLAPS LE demonstrator dataset is also included for comparison. A brief description 166 
of these products is presented below. For detailed algorithms and parameterizations of 167 
these datasets, the readers are referred to the original articles: SEBSSRB-PU, PTSRB-PU 168 
and PMSRB-PU (Vinukollu et al., 2011a), SEBSChen (Chen et al., 2014), and HOLAPS 169 
(Loew et al., 2015). 170 
 171 
   SEBS: SEBS is a one-source energy balance algorithm, which firstly calculates the 172 
sensible heat flux (H) based on the Monin and Obukhov theory (Monin and Obukhov, 173 
1954) with the requirement of surface temperature, air temperature gradient and the 174 
parameterization of aerodynamic resistance. To constrain H within a lower and upper 175 
boundary, two limiting conditions are considered. Under dry limit, the ET is equal to 0 176 
and H is at its maximum, while the ET reaches to its potential rate and H is at its 177 
minimum under wet limit. After the H is calculated, ET can be obtained through 178 
closing the energy balance with the availability of net radiation and ground heat flux. 179 
SEBS has already been widely validated with ground-based measurements over 180 
different areas. Two SEBS datasets are included in the comparison. The SEBSSRB-PU 181 
was generated by Vinukollu et al. (2011a) and based on radiation from Surface 182 
Radiation Budget (SRB) and meteorological forcing datasets from Princeton 183 
University (PU) (Vinukollu et al., 2011a), while SEBSChen estimated ET with 184 
meteorological forcing data from the Institute of Tibetan Plateau Research, Chinese 185 
Academy of Sciences (ITP, CAS). The monthly SEBSChen ET has been found to agree 186 
well with ground-based measurements over China (Chen et al., 2014). The comparison 187 
of these two SEBS datasets can show the impact of forcing dataset on the estimation of 188 
LE for the same type of model. 189 
 190 
   PMSRB-PU: The PMSRB-PU is estimated based on a revised PM model (Mu et al., 191 
2007; Mu et al., 2011), which has been widely used to estimate global ET. Due to its 192 
basis of Penman-Monteith equation, the PM model has high demand of inputs, with 193 
high-level parameterization of the aerodynamic and surface resistances using 194 
meteorological data and vegetation phenology. In contrast to the most PM based ET 195 
models, two improvements have been implemented in PMSRB-PU: (1) instead of a fixed 196 
value, a biome-specific value for the mean potential stomatal conductance is applied; 197 
(2) the aerodynamic resistance parameterization used by SEBS is applied here to 198 
account for wind speed and boundary layer stability (Vinukollu et al., 2011a). The 199 
PMSRB-PU is based on the same forcing data as SEBSSRB-PU.  200 
 201 
   PTSRB-PU: The PT-JPL model by Fisher et al. (2008) is used to estimate PTSRB-PU. 202 
Different from the PM model, the PT model does not require the parameterization of 203 



the aerodynamic and surface resistances. Traditionally, the Priestley-Taylor (PT) 204 
equation (Priestley and Taylor, 1972) is used to estimate potential ET, while the 205 
PT-JPL model adjust it to estimate actual ET through considering ecophysiological 206 
stress factors based on atmospheric moisture and vegetation indices. This implies that 207 
the forcing data required for PTSRB-PU is quite comparable to that of PMSRB-PU. The 208 
PTSRB-PU relies on the same forcing datasets as SEBSSRB-PU and PMSRB-PU, which 209 
provides the possibility to investigate the performance of different ET models driven 210 
by the same forcing data over the TP. 211 

 212 
   HOLAPS: The HOLAPS LE product was generated from HOLAPS framework, 213 
which makes use of meteorological drivers coming exclusively from globally available 214 
satellite and re-analysis datasets and is based on a state-of-the-art land surface scheme 215 
(Loew et al., 2015). It is based on a radiation module, a planetary boundary layer 216 
model, a soil module and a general module for the exchange of energy and moisture at 217 
the surface layer. HOLAPS can ensure internal consistency of the different energy and 218 
water fluxes and provide estimates at high temporal (< 1h) and spatial (~5 km) 219 
resolutions. Good agreement with in situ measurements have also been found by Loew 220 
et al. (2015) when compared against 48 FLUXNET stations worldwide. The details of 221 
the HOLAPS framework and relevant evaluation results can be found in the reference 222 
of Loew et al. (2015). 223 
 224 
   The validation of different LE datasets against in-situ measurements over the TP is 225 
not possible for the current study period due to: a) the access to suitable in situ 226 
measurements is not possible; b) spatial representativeness of the existing FLUXNET 227 
towers for areas of only several square kilometers. Therefore, the above LE datasets 228 
are cross-compared with LandFlux-EVAL benchmark product in the current analysis. 229 
LandFlux-EVAL is a merged synthesis LE product based on a total of 14 datasets 230 
including land surface model output, observations-based estimates, and atmospheric 231 
reanalyses (Mueller et al., 2013). It provides the best guess estimate of LE for the first 232 
time based on the existing global LE datasets, and also provides the uncertainty range 233 
of the absolute LE values (interquartile range of the merged synthesis LE products). 234 
Note that the merged LE dataset agreed well with precipitation minus runoff over large 235 
river basins around the world (Mueller et al., 2011), and it has been used to evaluate 236 
the LE simulations of the fifth phase of the Coupled model Inter-comparison project 237 
(CMIP5) (Mueller and Seneviratne, 2014). To further demonstrate the validity of 238 
LandFlux-EVAL benchmark product over the TP, we also compared it to precipitation, 239 
which is one of the most important driving factors for LE. It should be noted here that 240 
LandFlux-EVAL also includes satellite-based LE datasets that are estimated from PM 241 
and PT algorithms. However, the PMSRB-PU and PTSRB-PU datasets used in the current 242 
analysis are different from those datasets. They are based on revised PM and PT 243 
approaches, which also account for the evaporation from canopy intercepted 244 
precipitation (Vinukollu et al., 2011a). In addition, the forcing datasets used for 245 
PMSRB-PU and PTSRB-PU are also different from that used for PM and PT datasets in 246 
LandFlux-EVAL. For example, the radiation used for the PMSRB-PU is from SRB, while 247 



 
 

 

 

PM dataset from LandFlux-EVAL uses radiation from International Satellite Cloud 248 
Climatology Project (ISCCP). A summary of these datasets is given in Table 1. For 249 
detailed information about each product, the reader is referred to the relevant 250 
publications.  251 
 252 

Table 1: Summary of the datasets used in our study. 253 

Dataset ET scheme Spatial resolution Temporal resolution Reference 

PMSRB-PU Penman-Monteith 1º daily (Vinukollu et al., 2011a) 

PTSRB-PU Priestley-Taylor 1º daily (Vinukollu et al., 2011a) 

SEBSSRB-PU SEBS 1º daily (Vinukollu et al., 2011a) 

SEBSChen SEBS 0.1º daily (Chen et al., 2014) 

HOLAPS Priestley-Taylor 5 km half hourly (Loew et al., 2015) 

LandFlux-EVAL Synthesis product 1º monthly (Mueller et al., 2013) 
 254 
    255 

3.2 Methods 256 

3.2.1 Data Preprocessing 257 
 258 
All of the datasets were firstly aggregated to monthly mean values over the common 259 
time period 2001-2005, which corresponds to the temporal resolution of 260 
LandFlux-EVAL benchmark product and the time period currently covered by the 261 
HOLAPS demonstrator dataset (Loew et al., 2015; Mueller et al., 2013). To make an 262 
unbiased comparison with LandFlux-EVAL dataset, HOLAPS and SEBSChen were 263 
further aggregated to the same spatial resolution as LandFlux-EVAL. In addition, the 264 
current HOLAPS demonstrator dataset does not include the estimate of LE over 265 
snow-covered areas. Therefore, the snow-covered areas of all the products were also 266 
masked out based on the MODIS snow cover product.  267 
 268 
3.2.2 Spatial and temporal analysis 269 
 270 
The characteristics of all the datasets were investigated through spatial and temporal 271 
analysis. The spatial distributions of the seasonal and annual average LE over the TP 272 
were analyzed, including the identification of patterns such as low and high values, and 273 
the investigation of seasonal changes. The four seasons are defined as autumn 274 
(September–October–November), winter (December–January–February), spring 275 
(March–April–May), and summer (June–July–August). The temporal analysis explored 276 
the seasonal and annual variation of all the datasets from 2001 to 2005 over the whole 277 
TP. In addition, the correlation analysis was conducted to evaluate the impacts of 278 
climate (precipitation) and surface conditions (normalized difference vegetation index 279 
and elevation) on the performance of ET estimation. The relationship between different 280 
LE products and the LandFlux-EVAL benchmark product were quantified by using 281 



correlation coefficient and root-mean-square deviation over the whole TP and different 282 
sub-regions, which were decided by different intervals of normalized difference 283 
vegetation index (NDVI, generated from MODIS), precipitation (Global Precipitation 284 
Climatology Project, GPCP) and elevation (Global Multi-resolution Terrain Elevation 285 
Data 2010, GMTED2010).  286 
 287 

4 Results and discussion 288 

4.1 Spatial and temporal variability of different LE products  289 

The spatial distributions of annual mean LandFlux-EVAL and precipitation are shown 290 
in Figure 2. It can be seen that the LE has similar patterns as observation-based 291 
precipitation, both decreasing from southeast to northwest over the TP. The 292 
comparison of all the pixels shows a very high correlation coefficient of 0.9 between 293 
LE and precipitation. Besides precipitation, the radiation is another important driver for 294 
LE. Compared to the published studies, the LandFlux-EVAL LE also corresponds well 295 
with the merged net radiation and LE datasets, which were developed and validated 296 
over the TP by Shi and Liang (2013d, 2013a) and Shi and Liang (2014). The spatial 297 
distribution of annual mean net radiation and LE can be found in study of Shi and 298 
Liang (2013a) and Shi and Liang (2014). Although the LandFlux-EVAL has not been 299 
validated against in-situ measurements over the TP, the similar spatial patterns 300 
between LE and both observation-based precipitation and validated radiation to some 301 
extent demonstrate the validity of LandFlux-EVAL over the TP.  302 
 303 
   Figure 3 displays the spatial pattern of annual mean values for different LE datasets. 304 
Although these LE products have been reported performing well against FLUXNET 305 
measurements at point scale, they exhibit differently in terms of spatial pattern over the 306 
TP. In general, the LandFlux-EVAL, HOLAPS and SEBSChen have high LE in the 307 
southeastern TP and low LE in the northwestern TP, which might be related to the 308 
decrease of elevation from northwest to southeast as well as the monsoon climate in 309 
the southeastern TP. The spatial variations of PTSRB-PU and PMSRB-PU are related to the 310 
increase of latitude from south to north, while SEBSSRB-PU has high and low LE in 311 
outer and central TP.  312 
 313 
   Figure 4 further shows the annual mean spatial patterns of 25th-percentile and 314 
75th-percentile of the LandFlux-EVAL multi-datasets ensemble, which quantifies the 315 
uncertainty range of the absolute LE values (interquartile range of the merged 316 
synthesis LE products). It can be seen that HOLAPS and most parts of PTSRB-PU and 317 
PMSRB-PU are within the interquartile range, while outer part of SEBSSRB-PU and 318 
southern part of SEBSChen are out of the interquartile range. To make an unbiased 319 
comparison between LandFlux-EVAL and other LE datasets, all the datasets were 320 
resampled to the same spatial resolution as LandFlux-EVAL and masked out the 321 
snow-covered areas. Figure 5 shows the differences of spatial patterns between 322 



 
 

 

 

LandFlux-EVAL and other LE datasets. Overall, the HOLAPS dataset is found to have 323 
good agreement with the benchmark product (LandFlux-EVAL) for most parts of TP. 324 
The PTSRB-PU and PMSRB-PU are found to have positive biases over western TP, and 325 
SEBSSRB-PU has bias over outer TP, and SEBSChen has bias over southern TP.  326 
 327 
   Besides the analysis of spatial distribution of annual mean, the seasonal means of 328 
each LE dataset are also show in Figure 6. It can be seen that all the LE datasets show 329 
clear seasonal cycles with highest values in summer and lowest values in winter, which 330 
might be related to both westerlies and Asian monsoon. Due to the influence of Asian 331 
summer monsoon, the highest LE in LandFlux-EVAL is in southeastern TP and the LE 332 
decreases to northwest. The lowest LE appears in northern TP where dry westerlies 333 
dominate. Similar patterns are also found in HOLAPS, PTSRB-PU, PMSRB-PU and 334 
SEBSChen. The LE is lower in spring than that in summer in the eastern TP, which 335 
relates to the onset of the Asian summer monsoon. All the datasets present very low 336 
values during winter due to the cold and dry climate. The seasonal patterns of 337 
LandFlux-EVAL are also consistent with the study by You et al. (2014), where the LE 338 
was also found to increase from northwest to southeast in all seasons over the TP. 339 
Overall, the HOLAPS is most similar to LandFlux-EVAL compared to other datasets 340 
in terms of spatial distribution and spatial mean values over all seasons.  341 
 342 
 343 

 

  
 344 
Figure 2. Spatial distribution of annual mean LandFlux-EVAL LE and GPCP 345 
precipitation over the TP (left panel). The scatter plots of the comparison between LE 346 
and precipitation for all the pixels (right panel). 347 
 348 
 349 



  

  

  
 350 
Figure 3: Spatial distribution of annual mean LE for each dataset over the TP. 351 
 352 

 353 

 354 
Figure 4: The annual mean spatial patterns of 25th-percentile and 75th-percentile of the 355 
LandFlux-EVAL multi-datasets ensemble. 356 
 357 
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Figure 5: Differences of spatial distribution of annual mean LE between LandFlux-EVAL and 359 
other datasets over the TP. 360 
 361 
 362 
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Figure 6: Spatial distribution of seasonal mean LE for each dataset over the TP. (a) Winter, (b) 363 
Spring, (c) Summer, (d) Autumn. 364 
 365 
   In addition to the spatial comparisons of annual and seasonal mean values, the time 366 
evolution of all datasets is also explored. Figure 7 presents the time series of the area 367 
mean LE for different LE datasets, and the inter-quartile range between 25th-percentile 368 
and 75th-percentile of the LandFlux-EVAL ensemble. According to Figure 7, all 369 
products capture well the seasonal variability with minimum LE in the winter and 370 
maximum LE in the summer. However, the mean values of different LE products differ 371 
substantially. There is a spread of about 35 W/m2 at the annual cycle peak. Compared 372 
with the other products, the HOLAPS seems to be closer to the LandFlux-EVAL 373 
benchmarking product. The SEBSSRB-PU and SEBSChen seem to be more distinctive with 374 
LE from most months outside the inter-quartile of LandFlux-EVAL ensemble. 375 
However, when compared to the climatology calculated from flux tower measurements 376 
around the TP the SEBS estimates seem to be close to the flux tower measurements 377 
(Chen, 2011). The differences between LandFluxEval and SEBS might be caused by 378 
the scale mismatch between gournd measurement at point scale and the satlellite 379 
estimate at pixel scale. The mismatch includes the surfacde heteogenity (such as 380 
topography, land cover types) and atmospheric conditions (such as cloud coverage, 381 
altitude variations) (You et al., 2014; Hakuba et al., 2013). Compared to SEBS (Chen, 382 
2011), the LandFlux-EVAL has relative low spatial resolution of 1º, which might be 383 
strongly influenced by scale mismatch effects over comlex surface and atmospheric 384 
conditions in TP. Taking advantage of high temporal resolution of HOLAPS, the 385 
temporal variability of the area averaged LE for 5-day HOLAPS over the 2001-2005 is 386 
shown in Figure 8, where more temporal variations are found compared to monthly 387 
temporal variability. Besides, the temporal variation of the averaged LE over the TP 388 
has also been compared with precipitation and NDVI, which might regulate the LE. 389 
Table 2 shows the statistics of the comparisons. A strong correlation of higher than 0.7 390 
has been found between all LE datasets and NDVI, implying the importance of 391 
vegetation on regulating LE over the TP. The highest R value was found between 392 
HOLAPS and NDVI. As expected, the LE has strong correlation to precipitation with 393 
R value higher than 0.87 for all LE datasets, which is because precipitation is one of 394 
the most important drivers for LE. In the next section, the performance of each product 395 
will be further discussed based on the comparison results against the LandFlux-EVAL 396 
benchmark product. 397 
 398 

 399 



 

    
 400 

Figure 7: Temporal variability of the area averaged LE for each dataset over the TP. The grey 401 
shadow displays the inter-quartile range between 25th-percentile and 75th-percentile of the 402 
LandFlux-EVAL multi-datasets ensemble. 403 
 404 

       405 
Figure 8: Temporal variability of the area averaged LE for 5-day HOLAPS over the TP. 406 
 407 
 408 
Table 2. Correlation coefficient (R) between averaged LE and NDVI, precipitation over the TP 409 
for the time 2001-2005.  410 

 LandFlux-EVAL HOLAPS PMSRB-PU PTSRB-PU SEBSSRB-PU SEBSChen 
R (NDVI) 0.89 0.93 0.81 0.81 0.7 0.76 

R (precipitation) 0.98 0.96 0.96 0.96 0.87 0.94 

 411 

4.2 Comparison of LE datasets against LandFlux-EVAL benchmark 412 

product 413 

Figure 9 presents the monthly mean scatter plots of LE between the LandFlux-EVAL 414 
benchmark product and other products over the whole TP. The detailed statistics are 415 
listed in Table 3. It can be seen that the model performance varies among different LE 416 
products with statistical indices values ranging from 0.91 to 0.99 for correlation 417 



 
 

 

 

coefficient (R), and from 2.69 to 17.02 W/m2 for RMSD. Overall, the HOLAPS 418 
appears to yield the closest agreement with the LandFlux-EVAL benchmark product, 419 
with R higher than 0.99 and RMSD of 2.69 W/m2. In addition, the impacts of NDVI, 420 
precipitation and elevation on the estimate of LE are also investigated. Figure 10 421 
shows the comparison results over different NDVI thresholds. Table 4 lists the 422 
corresponding statistics including R and RMSD. The performance of HOLAPS is 423 
stable over different NDVI intervals, with RMSD less than 5.1 W/m2. PTSRB-PU and 424 
PMSRB-PU perform similarly with highest RMSD appearing at the lowest NDVI interval 425 
[0, 0.15], and the RMSD of PTSRB-PU decreases with the increase of NDVI. Both 426 
SEBSSRB-PU and SEBSChen seem to overestimate LE over all NDVI intervals, with 427 
RMSD ranging from 11.09 W/m2 to 24.94 W/m2. The comparison results over 428 
different precipitation thresholds are shown in Figure 11 and Table 5. Similar to the 429 
response to NDVI, the HOLAPS also has stable performances over different 430 
precipitation intervals, with RMSD less than 4.91W/m2. PTSRB-PU and PMSRB-PU 431 
slightly overestimate LE over the areas with low precipitation values [0, 2 mm], while 432 
SEBSSRB-PU and SEBSChen overestimate LE among all precipitation intervals. Figure 12 433 
and Table 6 present the comparison results over the areas with different elevations. In 434 
general, the elevation has no strong impacts on the HOLAPS, which has R value 435 
higher than 0.97 and RMSD lower than 5.56 W/m2 over all the elevation intervals. 436 
PTSRB-PU and PMSRB-PU have similar performance, with overestimation of LE in areas 437 
with high elevation [5000 m, 6000 m]. Relatively low R values for PTSRB-PU and 438 
PMSRB-PU are also found over areas with low elevations [1000 m, 3000 m]. SEBSSRB-PU 439 
and SEBSChen both overestimate LE over all elevation intervals. Overall, the HOLAPS 440 
LE has stable performance over different NDVI, precipitation and elevation values. 441 
PTSRB-PU and PMSRB-PU have very similar performance. The SEBSSRB-PU has the highest 442 
uncertainty over areas with low NDVI and precipitation and high elevation, while the 443 
highest uncertainty for SEBSChen occurs in areas with high NDVI and precipitation and 444 
low elevation. 445 
 446 
 447 

 448 
Figure 9: The monthly mean scatter plots of LE between the LandFlux-EVAL benchmark 449 
product and other products over the whole TP. 450 
 451 



Table 3. Statistics of the LE comparisons between the LandFlux-EVAL benchmark product 452 
and other products over the whole TP. 453 

 454 

 

HOLAPS PMSRB-PU PTSRB-PU SEBSSRB-PU SEBSChen 

R 
RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 

Tibetan Plateau 0.99 2.69 0.98 5.68 0.98 7.12 0.91 17.02 0.96 16.36 

 455 
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 457 
Figure 10: The monthly mean scatter plots of LE between the LandFlux-EVAL benchmark 458 
product and other products over different NDVI thresholds. 459 
 460 
 461 
Table 4. Statistics of the LE comparisons between the LandFlux-EVAL benchmark product 462 
and other products over different NDVI thresholds. 463 
 464 

 

HOLAPS PMSRB-PU PTSRB-PU SEBSSRB-PU SEBSChen 

R 
RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 



 
 

 

 

NDVI ∈ [0, 0.15] 0.99 3.27 0.96 11.42 0.96 11.89 0.84 20.93 0.95 15.38 

NDVI ∈ (0.15, 0.3] 0.98 3.59 0.95 7.46 0.96 7.09 0.88 16.42 0.94 20.09 

NDVI ∈ (0.3, 0.45] 0.98 4.08 0.99 10.88 0.99 7.4 0.94 11.43 0.92 17.6 

NDVI ∈ (0.45,1] 0.97 5.1 0.98 7.1 0.98 6.21 0.95 11.87 0.95 19.11 

 465 
 466 
 467 

  

  
 468 
 469 
Figure 11: The monthly mean scatter plots of LE between the LandFlux-EVAL benchmark 470 
product and other products over different precipitation thresholds. 471 
 472 
 473 
Table 5. Statistics of the LE comparisons between the LandFlux-EVAL benchmark product 474 
and other products over different precipitation thresholds. 475 
 476 

 

HOLAPS PMSRB-PU PTSRB-PU SEBSSRB-PU SEBSChen 

R 
RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 

Precipitation ∈ [0, 1] 0.99 3.97 0.95 8.08 0.95 8.56 0.86 19.5 0.94 15.96 

Precipitation ∈ (1, 2] 0.98 3.48 0.97 11.05 0.98 13.52 0.83 20 0.95 17.9 



Precipitation ∈ (2, 3] 0.99 3.36 0.98 9.21 0.98 7.45 0.96 14.89 0.96 16.26 

Precipitation ∈ (3, 4] 0.97 4.91 0.95 7.82 0.95 6.68 0.89 11.09 0.94 24.94 

 477 
 478 
 479 

  

  
 480 
Figure 12: The monthly mean scatter plots of LE between the LandFlux-EVAL benchmark 481 
product and other products over different elevation thresholds. 482 
 483 
 484 
Table 6. Statistics of the LE comparisons between the LandFlux-EVAL benchmark product 485 
and other products over different elevation thresholds. 486 
 487 

 

HOLAPS PMSRB-PU PTSRB-PU SEBSSRB-PU SEBSChen 

R 
RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 
R 

RMSD 

(W/m2) 

Elevation ∈ [1000, 3000] 0.97 5.56 0.64 10.24 0.69 9.94 0.79 12.92 0.76 22.53 

Elevation ∈ (3000, 4000] 0.99 4.06 0.94 5.71 0.95 5.05 0.93 20.02 0.91 17.77 

Elevation ∈ (4000, 5000] 0.99 2.72 0.96 6.4 0.97 7.56 0.9 15.93 0.95 17.76 

Elevation ∈ (5000, 6000] 0.98 2.45 0.97 16.82 0.97 17.6 0.83 21.39 0.96 15.24 

 488 



 
 

 

 

4.3 Discussion on the different performance of the LE datasets over TP 489 

The spatial and temporal inter-comparisons of different global LE datasets over the TP 490 
suggest that there are large differences among different datasets. The LandFlux-EVAL 491 
benchmark product was found to agree well with observation-based precipitation, in 492 
situ measurements-validated radiation (Shi and Liang, 2013a) and in situ 493 
measurements-validated LE product (Shi and Liang, 2014). From this point of view, it 494 
can be served as the reference dataset. The HOLAPS is found to agree temporally and 495 
spatially well with LandFlux-EVAL benchmark product. The PTSRB-PU and PMSRB-PU 496 
have similar performance and are within the uncertainty range provided by 497 
LandFlux-EVAL product. Despite relying on the same forcing dataset, SEBSSRB-PU 498 
performs differently from PTSRB-PU and PMSRB-PU, which is driven by the differences in 499 
the models. Since all these datasets rely on the same radiation forcing, the 500 
overestimation is due to the high sensitivity to the parameterization of resistances. 501 
Therefore, examination of the differences between the models especially the calculated 502 
resistances still needs to be conducted in the future work. In addition, for the same 503 
model, different forcing data lead to different results (SEBSSRB-PU and SEBSChen). The 504 
overestimation in both SEBS datasets suggests the high sensitivity of LE to the 505 
calculated resistances. And the different spatial patterns and magnitude between the 506 
two SEBS datasets are likely due to the different forcing datasets. These results suggest 507 
that model and forcing are equally critical for the estimation of ET. Future studies 508 
should be focused on the development of high quality forcing dataset, and the 509 
exploration of the sensitivity of each model to its forcing. This type of research could 510 
be facilitated by the HOLAPS framework. Because the components in HOLAPS are 511 
coupled through well-defined interfaces, which allows the integration of different 512 
models for estimation of ET while building on the general HOLAPS infrastructure for 513 
providing the consistent forcing data. Overall, the results presented here suggest that 514 
the validation and inter-comparison are essential before applying the global LE 515 
datasets for regional applications, especially for the areas with sparse in-situ 516 
measurements such as TP. The high spatial and temporal resolution HOLAPS 517 
demonstrator dataset provides a potential LE product for hydrological applications 518 
over TP. However, the current HOLAPS demonstrator dataset does not consider the 519 
ET over snow-covered areas. The parameterization scheme of ET over snow-covered 520 
areas will be added in HOLAPS framework to generate the next version of HOLAPS 521 
dataset.   522 
 523 

5 Conclusions 524 

   This study provides a first comprehensive inter-comparison of existing LE products 525 
over the TP for the period 2001-2005. The results of the study can be summarized as 526 
follows: 527 
   1. The existing global LE products show substantial differences in spatial and 528 
temporal patterns over the TP, although all these products have been found to agree 529 



well with FLUXNET measurements in different climate conditions. 530 
   2. The LandFlux-EVAL benchmark product as well as the HOLAPS LE show very 531 
similar spatial patterns, both with LE increasing from northwest to southeast. The other 532 
LE products (SEBSSRB-PU, SEBSChen, PTSRB-PU and PMSRB-PU) display different spatial 533 
patterns compared to LandFlux-EVAL LE. The differences between SEBSSRB-PU, 534 
SEBSChen and PTSRB-PU, and the discrepancies between SEBSSRB-PU and SEBSChen 535 
indicate the equal importance of model structure and forcing data. Nevertheless, all 536 
products capture well the seasonal variability with maximum LE in the summer and 537 
minimum LE in the winter. The HOLAPS LE was found to agree best with 538 
LandFlux-EVAL LE. 539 
   3. Further comparison against LandFlux-EVAL benchmark dataset over the whole 540 
TP and sub-regions that are decided by different intervals of NDVI, precipitation and 541 
elevation reveals that climate and surface conditions have impacts on the performances 542 
of SEBSSRB-PU, SEBSChen, PTSRB-PU and PMSRB-PU, which implying that the systematic 543 
deviations between these datasets are partly due to the impacts of different climate and 544 
surface conditions. Note that the HOLAPS LE product is insensitive to different 545 
climate and surface conditions over the TP, compared to other LE datasets. 546 
   Overall, there are still large uncertainties in the current global LE dataset over the 547 
TP. In order to accurately estimate LE over the TP, model calibration ad development 548 
of high accuracy forcing dataset are still needed. There is therefore a strong need for 549 
appropriate in situ flux measurements as well as other hydrological data like e.g. runoff 550 
measurements. 551 
 552 
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