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Point-by-point response to the Referee 1’s review 

GENERAL COMMENTS 

 

I appreciate the authors’ kind and detailed replies and I think the paper is now improved. Still, 

there are in my opinion some misunderstandings on the concept of Mean Transit Time (MTT) 

that I will try to explain with more detail. I think the authors had a good point in limiting the 

analysis to baseflow conditions, but some more efforts could be put to clarify the meaning of 

their analyses.  

Reply: We are glad to hear that the reviewer finds the paper is improved and appreciate 

his/her constructive suggestions to further improve our manuscript’s scientific quality. 

 

-The MTT is the mean of a distribution and as such it has some very useful mathematical 

properties. When the distributions are skewed, the mean is strongly affected by the 

“heaviness” of the tail, which is typically quite pronounced in catchments [see Kirchner, 

2000]. The tail of the distribution is very difficult to estimate, especially in systems where the 

output signal is not very informative. This can be because the output is very damped with 

respect to the input, or because the input is characterized by regular fluctuations around a 

constant trend. Both of these are typical situations with water stable isotopes. In these cases, 

one may well be able to describe the measured solute response with a number of different 

functions which have the same ‘young’ component but very different ‘old’ components (or 

tails). Unfortunately, this has a huge impact on the mean of the distribution, which then 

remains very uncertain. Some authors have started to describe other properties of the transit 

time distributions (TTDs) other than the mean, like the median transit time [e.g. Soulsby et 

al., 2015], or the “young water fraction” [e.g. Kirchner et al., 2016ab].  

Reply: As has been stated in the manuscript (P. 9, L. 17-21; P. 11, L. 9-20), we are aware of 

the mathematical properties of the transit time distributions (TTDs) used for modeling MTTs 

through the lumped convolution approach, as well as the advantages and limitations of this 

methodology. Because of those, the selection of the TTD distribution that best describes our 

system was conducted through a detailed statistical analysis to evaluate model’s 

performance for each TTD in combination with available information about catchment 

functioning and runoff generation at the study site.  

As the referee mentions, other authors have attempted to describe alternative properties of 

TTDs. However, Soulsby et al. (2015) do not provide theoretical basis for justifying the use 

and analysis of the median of TTDs instead of the MTT. The “young water fraction” metric 

proposed by Kirchner (2016a, 2016b) is on the other hand introduced with a detailed 

theoretical basis which should definitely be explored by catchment hydrologists. However, it 

is out of the scope of our current work to incorporate such analysis. We have clearly 

specified and justified the use of the LCA for estimating MTTs in our páramo catchment (P. 

11, L. 9-20).  

-Given the point above, it is clear that estimating catchment TTDs is not a trivial task, and 

uncertainty is often inevitable. For this reason, I am a bit skeptical about the fact that the 

exponential distribution is the most appropriate to describe the pàramo catchments. In my 

opinion, such a distribution is better identified because it has not enough degrees of freedom 

and the same distribution is used to fit short-term and long-term output features. As the 
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short-term features are the only one providing information, they dominate the identification of 

the function. However, I would argue this is an “apparent” identification because it explains 

stream chemistry fairly well and parsimoniously, but is not able to reliably estimate the older 

water components, which have a large impact on the MTT. Other functions tested by the 

authors are less determined, in my opinion, because they allow a de-coupling between short-

term and long-term information. Indeed, both the GM and TPLR predict MTT which are less 

constrained (296-1478 days and 356-1738) but also much larger than the EP (166-224 

days). Doesn’t this suggest that there may be a larger old water contribution than the one 

predicted by the EP? To further explore this problem it may be interesting to compare the 

results in terms of other metrics (e.g. are the median or the young water fraction similar in the 

EP and GM models?). 

Reply: We agree that selecting catchment TTDs is not a trivial task. Given that, we did not 

only rely on the results of the detailed statistical analysis conducted for selecting the TTD 

that best describes the system under study, but also on the process-based knowledge of 

catchment functioning at the study site (Mosquera et al., 2015, 2016). These authors have 

determined that the Zhurucay catchment is a fast response system, where runoff generation 

is mainly controlled by water flowing in the shallowest 30-40 cm of the low developed páramo 

soils (~ 1 m depth) underlain by a young and compact geology. Additionally, these authors 

concluded that deep-groundwater contribution (old water) to discharge is minimal at the 

Zhurucay catchment. Our MTT estimates corroborate their findings. Although the contribution 

of old water component/s cannot be definitely neglected, it seems unfeasible that given the 

biophysical features of the landscape and its pedological and geomorphological structure, 

baseflow MTTs on the range of those yielded by the GM and TPLR TTDs are reliable. A note 

about this issue has been added in P. 15, L. 3-9. Therefore, we are confident that the results 

yielded by the EM provide robust baseflow MTT estimates in this páramo catchment. 

Regarding your last point, as we have already mentioned above, although comparing our 

results with those yielded by other metrics (e.g., the young water fraction) would definitely be 

interesting, that is out of the scope of this study.  

-Finally, the idea that one single TTD exists is misleading. Any natural hydrologic domain 

responds differently before, during and after being forced by a storm event. This is not just 

about seasonality, it’s also about each storm that crosses the catchment after the considered 

precipitation event and makes transit time distributions intrinsically non-smooth curves. 

Moreover, stream concentration is affected by the specific hydrologic conditions that take 

place at the time of sampling, and not by the average catchment conditions. This of course 

does not mean that stationary analyses are meaningless, but it should be clear that they try 

to depict an average catchment condition, which is often very different from any actual 

situation.  

Reply: We agree that hydrologic systems are temporally dynamic and that such behavior 

needs to be accounted in models to better understand system’s response. Although the LCA 

lacks to characterize such dynamics, assumptions of this methodology are quite clear and as 

such, we have carefully evaluated them in light of the conditions in our study site (). Here, we 

again want to clarify that our study aims to set a baseline for the application of modeling 

techniques using stable water isotopes in tropical ecosystems above the tree line, and that 

one of our future goals using this dataset includes the application of modeling techniques 

that explicitly recognize non-stationarity and storage dynamics in the hydrological behavior 
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(e.g.,Birkel et al., 2015; Harman, 2015; Hrachowitz et al., 2013). However, those are out of 

the scope of our manuscript.   

 

Overall, I don’t want to look too critical about this work, but I think the paper would benefit 

from acknowledging a more realistic view on transit time distributions. 

Reply: We agree and appreciate the referee’s point of view. As so, based on the suggestions 

of both reviewers in the prior revision of our manuscript, we have already acknowledged the 

more realistic view on TTDs in light of the time-variant nature of MTTs (P. 4., L. 11-P. 5, L. 

11). As such, we considered this point has been already addressed in our manuscript. 

Other general comments are: 

-as the AIC criterion was introduced, which takes into account the number of parameters, I 

think the Measure of Identification (MI) could be removed from the analysis, as it is 

redundant and applied rather arbitrarily given the lack of prior knowledge on the parameters.   

Reply: We agree. The MI has been removed from the manuscript. 

-I think it may be worth reducing the discussion section, which is currently very long and 

include the repetition of concepts which were already mentioned in the results. 

Reply: We believe, that the readers will strongly benefit from the comprehensive discussion 

in its current form. Based on the suggestion from the reviewer, the section was again 

thoroughly reviewed and few small changes have been included to clarify the main ideas in 

the discussion though.    

 

DETAILED COMMENTS 

 

Abstract: it may be worth to specify from the beginning that the MTT refers to baseflow 

conditions 

Reply: This was already specified in the abstract in P. 1, L. 24.  

Page 4, line 7: please specify that you mean MTT variability among catchments 

Reply: Thanks for the suggestion. Updated accordingly in P. 4, L. 7. 

P. 4, l. 23: the first source of non-stationarity which should be mentioned is precipitation 

variability 

Reply: We agree. Precipitation variability is now mentioned in L.4, P. 23. 

P. 4, l. 27: what do you mean by stating that the cited works “have yielded results with high 

degree of uncertainty”? I personally think those works just show the complexity of the 

problem in more realistic terms. 

Reply: We agree that those studies show the complexity of the problem. As such, results 

yielded from them provide high uncertainties as the methods used yet provide low capability 

to represent reality. This, to our view, is an important limitation of the used methodologies. 

Such uncertainty is highly dependent on the usually poorly recorded temporal variability of 
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the input hydrometric and tracer field measurements, as we have already acknowledged in 

P. 5, L. 2-7. Therefore, we consider that the statement above is justified and appropriate in 

the context used in the manuscript.  

P.5, l.3: what is a mathematical limitation? 

Reply: We mean mathematical limitations to represent systems’ non-stationarities. This has 

been updated in P. 5, L. 3. 

P.9, l.19: I think this is a good point to mention that, as you do a steady-state analysis, you 

limit your study to the transit times of baseflow. 

Reply: We agree. Updated accordingly in L. 9, P. 16. 

P.11, l.15: I think this is a too strong sentence, which needs more context. 

Reply: We agree. The sentence has been updated in P. 11, L. 15-16.  

P.12, l.14: as mentioned in the general comments, I don’t think the MI is necessary anymore. 

Reply: We agree. The MI has been removed from the manuscript.  

P. 12, l.25-27: first you say that total runoff is “spatially more heterogeneous”, but then you 

say that Runoff coefficients show “relatively low spatial variability”. This sounds inconsistent. 

Reply: We think you mean P.13, L. 25-27. You are correct. Thanks for catching this 

inconsistency. We have updated the text accordingly in P. 13, L. 22-23.  

P.14, l.16: I think the threshold on the KGE is critical for the parameter uncertainty. Could the 

author observe important differences with a different values? I am also wondering whether 

the models with a higher number of parameters would require a higher threshold. 

Reply: We see your point about the critical threshold selection of the KGE value for 

parameter uncertainty. As such, we used a threshold already published in hydrologic science 

literature. We considered the threshold of 0.45 used by Timbe et al. (2014), who assed 

uncertainties in MTT estimations using the lumped convolution approach. Using different 

threshold values would be somehow arbitrary. Regarding your last point about models with 

higher number of parameters, we have already accounted for that in our model selection 

evaluation by using the AIC metric (P. 14, L. 16-20).  

P.14, l.21 (Figure 3): I thinks there is no need to show the isotopic content of precipitation in 

this figure, as it was already presented in figure 2b. Moreover, such broad Y-axis makes it 

difficult to assess modeled and measured 18O in streamflow. I think the authors could 

reduce the Y-axis to e.g. [-8, -14]. Please also avoid the use of biweeks at the x-axis. 

Reply: We agree. The figure has been replaced to show the observed and modeled isotopic 

composition in streamflow only. Biweeks has also been replaced by months in the x-axis. 

P.15, l.9-10: “rather than from a more realistic representation of the hydrologic functioning of 

the catchments”. This is a very strong and not justified statement. 

Reply: We agree that this statement is not clearly justified. As so, we have decided to delete 

this sentence (see P. 15, L. 3). 
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P. 16, l. 20-24: I had already commented on this, but I see that we probably did not 

understand each others. First, the unit “biweeks” is rather unusual and I recommend using 

days (or months, or years) instead. As the exponential function integrates to 1 only in the 

limit to infinity, the notion of “completely recovered” is linked to a threshold (e.g. 99%) and I 

suggest to mention it. Finally, I don’t fully agree with the last sentence. Even in a 3 years 

dataset, the first months are strongly affected by hydrologic events that had happened before 

the beginning of the measurements. 

Reply: Thanks for the recommendation. We have changed the unit biweeks to weeks in the 

text. You are correct that the notion of completely recover might be ambiguous, and that 

mentioning a threshold is more appropriate. This has been updated in P. 16, L. 19-22. Lastly, 

we were careful to minimize the effect of prior hydrologic events before the beginning of the 

measurements. To minimize this effect, and has been done by other authors (e,g., 

Hrachowitz et al., 2011; Timbe et al., 2014), we looped the available three years of isotopic 

data ten times during calibration in order to extend the data series for 30 years as a warm-up 

period as stated in P. 11, L., 20-22. 
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Point-by-point response to Christian Birkel (Referee 2)’s review 

I had the opportunity to read the revised version of the manuscript "Insights on the water 

mean transit time in a high-elevation tropical ecosystem" by Mosquera et al. and found the 

paper much improved. The authors have extensively discussed and addressed all my 

comments, clarified my initial doubts about some aspects of the model approach, process 

interpretations and how parsimony was assessed, included new and significant analysis (re-

run models, AIC calculated), and now they refer to the more up-to-date discussion around 

time-variable transit times (their incredibly fast responding system makes for an interesting 

contrast to most studies). The paper now makes for an excellent contribution to the literature 

about a geographical region with relatively sparse data and research. Therefore, I fully 

support publication of this paper. 

All the best, 

Christian Birkel 

Reply: We are glad to hear that the reviewer finds that all his comments have been 

satisfactory addressed. We thank him for his constructive suggestions to improve the 

scientific quality of the manuscript and look forward to publishing this work in HESS hoping to 

improve the understanding of hydrologic processes in tropical ecosystems.  

The only suggestion left is that the sentence on page 14, line 21 sounds rather odd and 

could be reformulated. 

Reply: We agree with the suggestion. This sentence has been rewritten in P. 14, L. 16-17. 
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Abstract 19 

This study focuses on the investigation of the mean transit time (MTT) of water and its spatial 20 

variability in a tropical high-elevation ecosystem (wet Andean páramo). The study site is the 21 

Zhurucay River Ecohydrological Observatory (7.53 km2) located in south Ecuador. A lumped 22 

parameter model considering five transit time distribution (TTD) functions was used to 23 

estimate MTTs under steady-state conditions (i.e., baseflow MTT). We used a unique data set 24 

of the δ18O isotopic composition of rainfall and streamflow water samples collected for three 25 

years (May 2011-May 2014) in a nested monitoring system of streams. Linear regression 26 
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between MTT and landscape (soil and vegetation cover, geology, and topography) and 1 

hydrometric (runoff coefficient and specific discharge rates) variables was used to explore 2 

controls on MTT variability, as well as mean electrical conductivity (MEC) as a possible 3 

proxy for MTT. Results revealed that the exponential TTD function best describes the 4 

hydrology of the site, indicating a relatively simple transition from rainfall water to the 5 

streams through the organic horizon of the wet páramo soils. MTT of the streams is relatively 6 

short (0.15-0.73 yr, 53-264 days). Regression analysis revealed a negative correlation 7 

between the catchment’s average slope and MTT (R2 = 0.78, p < 0.05). MTT showed no 8 

significant correlation with hydrometric variables whereas MEC increases with MTT (R2 = 9 

0.89 p < 0.001). Overall, we conclude that: 1) baseflow MTT confirms that the hydrology of 10 

the ecosystem is dominated by shallow subsurface flow; 2) the interplay between the high 11 

storage capacity of the wet páramo soils and the slope of the catchments provides the 12 

ecosystem with high regulation capacity; and 3) MEC is an efficient predictor of MTT 13 

variability in this system of catchments with relatively homogeneous geology. 14 

Keywords: Ecohydrology, MTT, runoff generation, wet Andean páramo, tropical wetlands, 15 

Histosols, Ecuador  16 

 17 

1 Introduction 18 

Investigating ecohydrological processes through the identification of fundamental catchment 19 

descriptors, such as the MTT, specific discharge, evapotranspiration to precipitation ratios, 20 

and others, is fundamental in order to: 1) advance global hydrological, ecological, and 21 

geochemical processes understanding and 2) improve the management of water resources. 22 

This is particularly critical in high-elevation tropical environments, such as the wet Andean 23 

páramo (further referred as “páramo”), in which, hydrological knowledge remains limited, 24 

despite its importance as the major water provider for millions of people in the region (De 25 

Bièvre and Calle, 2011; IUCN, 2002). Water originated from the páramo sustains the socio-26 

economic development in this region by fulfilling urban, agricultural, industrial, and 27 

hydropower generation water needs (Célleri and Feyen, 2009). Here we focus on the MTT of 28 

water, which we define as the average time elapsed since a water molecule enters a catchment 29 
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as recharge to when it exits it at some discharge point (Bethke and Johnson, 2002; Etcheverry 1 

and Perrochet, 2000; Rodhe et al., 1996). 2 

Despite the importance of tropical biomes as natural sources and regulators of streamflow, 3 

there are very few studies of MTT in tropical environments (e.g., Farrick and Branfireun, 4 

2015; Muñoz-Villers et al., 2016; Roa-García and Weiler, 2010; Timbe et al., 2014). The 5 

majority of MTT studies have been conducted in catchments with strong climate seasonality, 6 

i.e., located in the northern and southern hemispheres (e.g., Lyon et al., 2010; McGlynn and 7 

McDonnell, 2003; McGuire et al., 2005), and considerably less attention has been devoted to 8 

tropical environments. Most tracer-based studies conducted in tropical latitudes focused on 9 

isotope hydrograph separation at storm event scale (e.g., Goller et al., 2005; Muñoz-Villers 10 

and McDonnell, 2012), the isotopic characterization of precipitation patterns (e.g., Vimeux et 11 

al., 2011; Windhorst et al., 2013), and the identification of ecohydrological processes (e.g., 12 

(Crespo et al., 2012; Goldsmith et al., 2012; Mosquera et al., 2016). However, studies 13 

focusing on MTTs in order to improve the understanding of rainfall-runoff processes and their 14 

dependence on landscape biophysical features in tropical regions are still lacking and urgently 15 

needed in order to improve water resources management. 16 

The páramo is widely recognized by its high runoff regulation capacity (i.e., páramo water 17 

yield is sustained year-round regardless of precipitation inputs) (Buytaert et al., 2006; Célleri 18 

and Feyen, 2009). However, efforts to investigate the processes that control such hydrological 19 

behavior are scarce. Recent investigations in our study site suggest that runoff originates from 20 

the shallow organic horizon of the páramo soils located near the streams (Histosol soils or 21 

Andean wetlands), thus favoring shallow subsurface flow. On the contrary, deep groundwater 22 

contributions to discharge are minimal and saturation excess overland flow (even in the nearly 23 

saturated Histosol soils) rarely occur (Buytaert and Beven, 2011; Crespo et al., 2011). The 24 

hydrological importance of shallow subsurface flow to runoff generation has also been 25 

demonstrated in a variety of ecosystems around the globe (e.g., Freeze, 1972; Hewlett, 1961; 26 

Penna et al., 2011), but yet, MTTs have not been explored in these systems. Our study site 27 

provides a unique opportunity to gain understanding of the MTT of a shallow subsurface flow 28 

dominated system in a tropical setting. In addition, the study of the MTT in natural wetland 29 
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systems has been limited to sites located in northern boreal catchments in Sweden (Lyon et 1 

al., 2010), and peatlands in Scottish mountainous regions (e.g., Hrachowitz et al., 2009a; 2 

Tetzlaff et al., 2014). While streams draining these catchments have significant contributions 3 

from spring snowmelt and groundwater, respectively, neither of these allows for the isolation 4 

of the effect of wetlands in the shallow subsurface and/or near surface (i.e., overland flow) 5 

transport of the water within the catchments.  6 

Another critical issue is the identification of controls on MTT variability among catchments. 7 

As detailed observations of combined hydrometric and isotopic information are not feasible in 8 

many regions due to limited funding and site accessibility, identifying controls of MTT 9 

variability in nested and paired monitoring systems of streams is fundamental towards 10 

regionalization of ecohydrological processes (Hrachowitz et al., 2009a) and prediction in 11 

ungauged basins (Tetzlaff et al., 2010). Yet, investigation of controls on MTT variability is 12 

still fairly scarce (Tetzlaff et al., 2013). Most studies have found that MTT scales with 13 

topographic and/or hydropedological controls. For instance, topographical controls on MTT 14 

variability were found in New Mexico, USA catchments (slope direction and exposure) 15 

(Broxton et al., 2009) and a system of streams in Oregon, USA (ratio between flow path 16 

length and flow path gradient) (McGuire et al., 2005); whereas the proportion of wetlands and 17 

responsive soils were reported as major MTT controls in Swedish catchments (Lyon et al., 18 

2010) and Scottish streams (Soulsby et al., 2006), respectively.  19 

In the last few decades, MTT modeling has been conducted applying an approach that 20 

assumes steady-state conditions in the hydrologic systems, i.e., the lumped convolution 21 

approach (LCA) (Amin and Campana, 1996; Maloszewski and Zuber, 1996). However, this 22 

assumption is often violated as a result of precipitation variability, strong climate seasonality, 23 

and heterogeneities in the landscape configuration and hydropedological distribution of 24 

catchments (Kirchner, 2016a, 2016b). This has led to a growing recognition of the time-25 

variant nature of transit times (e.g., Birkel et al., 2015; Harman, 2015; Hrachowitz et al., 26 

2013), which a number of studies have begun to explore. Most of this initial work has yielded 27 

results with high degree of uncertainty (Harman, 2015; Klaus et al., 2015; McMillan et al., 28 

2012), or uncertainty has not been estimated (Davies et al., 2013; Heidbüchel et al., 2012; van 29 
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der Velde et al., 2015) as a result of expensive computation costs or high uncertainties related 1 

to the spatial variability of the input hydrometric and tracer field measurements. It is clear 2 

however, that given the mathematical limitations to represent systems’ non-stationarities 3 

(Duvert et al., 2016; Seeger and Weiler, 2014), the high-temporal resolution of tracer data 4 

(Harman, 2015; Heidbüchel et al., 2012), and the general unavailability of long-term tracer 5 

records (Hrachowitz et al., 2010; Klaus et al., 2015) required for hydrological modeling under 6 

non-stationary conditions, the LCA remains to be a useful methodology for MTT estimation. 7 

This holds true not only in understudied regions such as the tropics (e.g., Farrick and 8 

Branfireun, 2015; Muñoz-Villers et al., 2016; Timbe et al., 2014), but also elsewhere (e.g., 9 

Duvert et al., 2016; Hale and McDonnell, 2016; Hale et al., 2016; Hu et al., 2015; Seeger and 10 

Weiler, 2014).  11 

Given the relatively homogenous landscape features and very low seasonality in the 12 

hydrometeorological conditions in our páramo site, applying the LCA to our unique water 13 

stable isotopic dataset represents a robust first step to build-up improved catchment 14 

functioning understanding using hydrometric-tracer based hydrologic modeling. To our 15 

knowledge, this is the first contribution regarding the modeling of MTT in páramo 16 

ecosystems, and more generally, in regions with low climate seasonality and catchments with 17 

low degree of heterogeneity. Future efforts building on the monitoring infrastructure and 18 

continuously collected datasets will allow for continual improvement in hydrologic 19 

interpretation, eventually incorporating alternative modeling techniques that explicitly 20 

recognize non-stationarity and storage dynamics in the hydrological behavior of this tropical 21 

ecosystem (e.g., Birkel et al., 2015; Harman, 2015; Hrachowitz et al., 2013). 22 

In this study, we seek to add to the current geographical scope of MTT studies by addressing 23 

two questions which remain open in hydrological science, and have received little attention in 24 

high-elevation tropical ecosystems: “How old is stream water?” (McDonnell et al., 2010) and 25 

“How does landscape structure influence catchment transit time across different geomorphic 26 

provinces?” (Tetzlaff et al., 2009). Detailed hydrometric observations highlighting subsurface 27 

dominated rainfall-runoff response (Crespo et al., 2011; Mosquera et al., 2016) together with 28 

information of the landscape biophysical characteristics in our páramo study site will allow 29 
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for process-based understanding regarding: i) the spatial variability of baseflow MTTs and ii) 1 

the factors controlling such variability. Based on our current knowledge of the hydrology of 2 

the ecosystem, in particular, the apparent dominance of shallow subsurface flow to runoff 3 

generation, we hypothesize relatively short baseflow MTTs compared to systems dominated 4 

by groundwater contributions to discharge. Also, based on the hydropedological and climatic 5 

similarities between our páramo site and the peatland-podzols dominated ecosystems in the 6 

Scottish highlands (e.g., Soulsby et al., 2006; Tetzlaff et al., 2014), we hypothesize the 7 

proportion of wetlands to be a dominant control on the variability of the MTT in this high-8 

elevation tropical ecosystem. 9 

2 Materials and methods 10 

2.1 Study site  11 

The Zhurucay River Ecohydrological Observatory is a basin located within a tropical alpine 12 

biome, locally known as wet Andean páramo. It is situated in south Ecuador (3º04’S, 13 

79º14’W) on the west slope of the Atlantic-Pacific continental divide and discharges into the 14 

Jubones River (Pacific Ocean tributary). The basin has a drainage area of 7.53 km2 and 15 

extends within an elevation range of 3400 to 3900 m a.s.l. Climate is mainly influenced by the 16 

Pacific Ocean regime and to a lesser degree to the continental air masses from the Amazon 17 

basin. Mean annual precipitation at the observatory is 1345 mm at 3780 m a.s.l. Precipitation 18 

shows low seasonality with two relatively drier months (August and September) and primarily 19 

falls as drizzle (Padrón et al., 2015). Mean annual temperature is 6.0 °C at 3780 m a.s.l. and 20 

9.2 °C at 3320 m a.s.l. (Córdova et al., 2015). 21 

The geology of the region is characterized by volcanic rock deposits compacted by glacial 22 

activity during the last ice age (Coltorti and Ollier, 2000). The Quimsacocha formation, 23 

composed by basaltic flows with plagioclases, feldspars, and andesitic pyroclastics, covers the 24 

northern part of the basin. The Turi formation covers the southern part of the catchment and 25 

its lithology mainly corresponds to tuffaceous andesitic breccias, conglomerates, and 26 

horizontally stratified sands. Both formations date from the late Miocene period (Pratt et al., 27 

1997). The geomorphology of the landscape bears the imprint of glaciated U-shaped valleys. 28 
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The average slope of the basin is 17%. The majority of the basin (72%) has mean gradients 1 

between 0-20 %, although slopes up to 40% are also found (24%). There is an interesting 2 

geomorphic feature in the northeastern side of the basin corresponding to a ponded wetland at 3 

a flat hilltop. As indicated by geologists from INV metals mining company, this structure 4 

most likely resulted from the eutrophication of a lagoon due to high accumulation of volcanic 5 

material. This area is locally known as “Laguna Ciega” (“Blind Lagoon” in Spanish) and 6 

drains towards the outlet of catchment M7 (see Figure 1). The analysis of the water stable 7 

isotopic composition of soil water and streamflow in this area indicated that the hydrologic 8 

processes of this site occur in the shallow ponded water that is directly connected to the 9 

drainage network; while deeper water stored in the soil profile has little influence for 10 

discharge generation most likely as a results of the eutrophic condition of the wetland 11 

(Mosquera et al., 2016). 12 

Andosols are the dominant soil type in the study site. They cover approximately 80% of the 13 

total basin area and are mainly found in the hillslopes. Histosols (Andean wetlands) cover the 14 

remaining portion of the basin and are mainly found in flat areas where rock geomorphology 15 

allows water accumulation (Mosquera et al., 2015). These soils, formed from the 16 

accumulation of volcanic ash in flat valley bottoms and low gradient slopes, are black, humic, 17 

and acid soils rich in organic matter with low bulk density and high water storage capacity 18 

(Quichimbo et al., 2012). The organic fraction of the Histosol soils corresponds to an H 19 

horizon (median depth 76.5 cm); while in the Andosol soils it corresponds to an Ah horizon 20 

(median depth 40cm). The mineral fraction of both soils corresponds to a C horizon (median 21 

depth of 31 cm in the Histosols and 40 cm in the Andosols). A complete description of soil 22 

properties can be found in Mosquera et al. (2015) and Quichimbo et al. (2012). Vegetation 23 

coverage is highly correlated with the soil type. Cushion plants (such as Plantago rigida, 24 

Xenophyllum humile, Azorella spp.) grow primarily in Histosols, while tussock grass (mainly 25 

Calamagrostis sp.) (Ramsay and Oxley, 1997; Sklenar and Jorgensen, 1999) grow in 26 

Andosols. The main landscape characteristics are summarized in Table 1. 27 
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2.2 Hydrometric information 1 

Discharge and precipitation were continuously monitored since October 2010. A nested 2 

monitoring network was used to measure discharge. The network consisted of seven tributary 3 

catchments (M1 to M7) draining to the outlet of the basin (M8). Catchments M1 to M6 4 

comprise the main stream network draining towards the outlet of the Zhurucay basin (M8), 5 

whereas catchment M7 is a small catchment originating in a ponded wetland at a flat hilltop 6 

(Figure 1). V-notch weirs were constructed to measure discharge at the outlet of the 7 

tributaries M1-M7 and a rectangular weir at the outlet of the basin M8. Each catchment was 8 

instrumented with pressure transducers (Schlumberger DI500) with a precision of ±5 mm. 9 

Water levels were recorded at a 5-minute resolution, and transformed into discharge using the 10 

Kindsvater-Shen relationship (U.S. Bureau of Reclamation, 2001). The discharge equations 11 

were calibrated by applying the constant rate salt dissolution technique (Moore, 2004). 12 

Precipitation was recorded using tipping buckets with a resolution of 0.2 mm at two stations 13 

located at 3780 and 3700 m a.s.l. (Figure 1). 14 

2.3 Collection and analysis of water stable isotopic and electrical conductivity 15 

data  16 

We used a three-year record (May 2011 – May 2014) of 18O and 2H isotopic compositions of 17 

water samples collected in precipitation and streamflow. Data were collected at different 18 

resolutions, from event-based to biweekly, given logistic constraints and opportunities. 19 

Higher resolution data were aggregated to biweekly using precipitation weighted means for 20 

record consistency. The same nested monitoring network used for measuring discharge was 21 

implemented for stable isotopes in streamflow at the seven tributary catchments M1 to M7, 22 

and including M8 at the outlet of the basin. Water samples in precipitation were collected 23 

using two rain collectors located at 3780 and 3700 m a.s.l. Each collector consisted of a 24 

circular funnel and a polypropylene bottled covered with aluminum foil. Evaporation was 25 

prevented by placing a plastic sphere (4 cm diameter) in the funnel and a layer of 0.5 cm 26 

mineral oil within the polypropylene bottle. Due to the sampling procedure and the local 27 

climate, kinetic fractionation by evaporation can be neglected and hence both stable isotopes 28 
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yield the same results (Mosquera et al., 2016). Therefore only the results using the isotopic 1 

composition of 18O are reported. Rainwater samples are cumulative representations of the 2 

isotopic signature between sampling dates while stream grab water samples represent discrete 3 

points in time. The collected water samples were stored in 2 ml amber glass bottles, covered 4 

with parafilm, and kept away from the sunlight to prevent fractionation by evaporation as 5 

recommended by the International Atomic Energy Agency (Mook, 2000). The isotopic 6 

composition of the water samples was measured using a cavity ring-down spectrometer 7 

L1102-i (Picarro, USA) with a 0.5‰ precision for deuterium (2H) and 0.1‰ precision for 8 

oxygen-18 (18O). Isotopic concentrations are presented in the δ notation and expressed in per 9 

mill (‰) according to the Vienna Standard Mean Ocean Water (V-SMOW) (Craig, 1961). 10 

Electrical conductivity (EC) was measured directly in-stream simultaneously with the water 11 

isotopic data starting in 2012, the second year of the monitoring period. EC was measured 12 

using the digital conductivity sensor Tetracon 925 (WTW, Germany) with a precision of ± 13 

0.5%. 14 

2.4 Mean transit time modeling and transit time distributions 15 

Given the homogeneous landscape and hydrometeorological conditions in the Zhurucay 16 

basin, we estimated mean transit times (MTTs) using an inverse solution of the LCA (Amin 17 

and Campana, 1996; Małoszewski and Zuber, 1982), which assumes steady-state conditions 18 

(i.e., baseflow MTTs). The LCA seeks for the parameter set of the model that best describes 19 

the hydrologic system represented by a predefined transit time distribution (TTD) function 20 

(Maloszewski and Zuber, 1996). The TTD describes the transition of an input signal (e.g., 21 

precipitation, snow) of tracer (e.g., δ18O, δ2H) to the signal at an outlet point (e.g., 22 

groundwater, streamflow) resulting from the subsurface transport of water molecules within a 23 

catchment. Mathematically the TTD is described by a convolution integral that transforms the 24 

input signal (δin) into an output signal ( δout), considering a time lag between them (t − τ) 25 

through a transfer function (TTDs or g(τ)) describing the subsurface transport of tracer as 26 

follows: 27 
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𝛿𝑜𝑢𝑡 (𝑡) = ∫ 𝑔(𝜏) 𝛿𝑖𝑛(𝑡 − 𝜏) 𝑑𝜏
∞

0

 (1) 1 

where τ is the integration variable representing the MTT of the tracer. A more robust 2 

approximation weights the isotopic concentration of the input by considering recharge mass 3 

variation (w(τ)) so that the outflow composition reflects the mass flux leaving the catchment: 4 

δout(t) =
∫ g(τ) w(t − τ) δin(t − τ) dτ

∞

0

∫ g(τ) w(t − τ)dτ
∞

0

 (2) 5 

where w(t − τ) can be described in terms of rainfall magnitude, intensity, or effective 6 

precipitation (McGuire and McDonnell, 2006). Precipitation intensity was used to volume 7 

weight the isotopic composition of precipitation in our study. Recharge was represented by 8 

the rainfall isotopic composition weighted by precipitation rate and accounted for relatively 9 

small recharge (i.e., lower precipitation inputs) during the less wet months (August and 10 

September).  11 

MTT was estimated by adjusting the response function or TTD to fit the measured and 12 

simulated stream water isotopic composition. Five TTDs were considered to describe the 13 

subsurface transport of water molecules in the Zhurucay basin. We used the exponential 14 

model (EM), exponential-piston flow model (EPM), the dispersion model (DM) 15 

(Małoszewski and Zuber, 1982), the gamma model (GM) (Kirchner et al., 2000), and the two 16 

parallel linear reservoir model (TPLR) (Weiler et al., 2003). Each model is briefly described 17 

below and Table 2 summarizes their equations, fitting parameters, and the range of initial 18 

parameters used in this study. 19 

The EM represents a well-mixed system and assumes contributions from all flow paths. It 20 

assumes a relatively simple transition of the tracer towards the stream network. The EPM is 21 

an extension of the EM in which a delay in the shortest flow paths is assumed by the piston 22 

flow portion of the system. In addition to the MTT, it has an additional fitting parameter (η), 23 

which represents the ratio of the total volume to the volume represented by the exponential 24 

distribution. The DM arises from the solution of the one-dimensional advection-dispersion 25 

equation (Kreft and Zuber, 1978) and assumes that there is influence of hydrodynamic 26 
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dispersion in the system’s flow paths. It also has two fitting parameters, the MTT and the 1 

dispersion parameter (Dp), which relates to the tracer transport process. The GM is a more 2 

flexible and general version of the exponential model in which the product of two parameters 3 

provides an estimation of the MTT of the system. These parameters are the shape parameter 4 

(α) and the scale parameter (β) (Kirchner et al., 2000). The TPLR represents two parallel 5 

reservoirs each one represented by a single exponential distribution. It has three fitting 6 

parameters, the MTT of the slow (MTTs) and fast (MTTf) reservoirs and a parameter 7 

representing the fraction of each of them with respect to total flow (φ) (Weiler et al., 2003). 8 

The MTT approach is based on the following assumptions: 1) the tracer concentration is 9 

conservative (i.e., the tracer does not react with other elements present in the system); 2) the 10 

input tracer concentration is input in flux mode (i.e., volumetrically weighted); 3) the tracer 11 

enters the system only once and uniformly; 4) a representative tracer input can be identified; 12 

5) transport of solute is one-dimensional and represented by a single TTD; and 6) there is a 13 

uniform storage of water within the catchment (i.e., steady-state flow in the system) 14 

(Małoszewski and Zuber, 1982). The steady-state assumption is assumed to be accomplished 15 

in humid environments during  baseflow conditions (McGuire et al., 2002). In order to 16 

comply with the latter assumption, streamflow water samples collected during extreme 17 

rainfall events were excluded for the MTT simulations (McGuire and McDonnell, 2006; 18 

Muñoz-Villers et al., 2016). As a result, estimates correspond to baseflow MTTs, hereafter 19 

simply referred to as MTT. To obtain more stable results, we looped the available three years 20 

of isotopic data ten times during calibration in order to extend the data series for 30 years as a 21 

warm-up period following Hrachowitz et al. (2011) and Timbe et al. (2014). 22 

2.5 Model performance and uncertainty analysis 23 

The model performance was evaluated using the Kling–Gupta efficiency coefficient (KGE) 24 

(Gupta et al., 2009). KGE ranges from -∞ to 1, where unity indicates an ideal optimization. 25 

KGE can be viewed from a multi-objective perspective because it accounts for correlation 26 

(i.e., balancing dynamics, r), variability error (γ), and bias error (β) within a single objective 27 

function. The efficiency is mathematically represented by the Euclidean distance (ED) in each 28 

of the three dimensions (𝑟, 𝛾, and 𝛽) to an ideal point where all of them are maximized (i.e., 29 
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where ideally the three factors are set to one). Efficiencies lower than 0.45 were considered 1 

poor predictions (Timbe et al., 2014). 2 

Depending on the TTD function used, 1 to 3 parameters were fitted during the simulations. 3 

Models were built using parameter sets generated through a uniform Monte Carlo sampling 4 

procedure (Beven and Freer, 2001). Each model was first run 10,000 times within a wide 5 

range of parameter values (Table 2). Once a parameter value that yielded the best KGE was 6 

clearly identified, the model was run again within a narrowed range of parameters until 7 

obtaining at least 1,000 behavioral solutions (i.e., solutions corresponding to at least 95% of 8 

the highest KGE) (Timbe et al., 2014) and their 5 and 95% limit bounds (i.e., 90% confidence 9 

interval) were estimated using the Generalized Likelihood Uncertainty Estimation 10 

methodology (GLUE) (Beven and Binley, 1992). The Akaike Information Criterion (AIC, 11 

Akaike, 1974) was used as a parsimoniousness metric for model selection that penalizes 12 

model performance based on the number of fitted parameters used to calibrate each model. 13 

The model with the lowest AIC is the most efficient at fitting the observed values. A visual 14 

inspections of the parameter space (Figure 4) was also conducted to qualitatively analyze the 15 

models’ parameter identification. The best model describing the hydrologic conditions of the 16 

system was selected using the following criteria: 1) best goodness of fit using the KGE 17 

criterion, 2) lowest AIC, 3) results that yielded the lower uncertainty estimations, and 4) 18 

strong parameter identification. 19 

2.6 Correlation analysis of MTT and catchment characteristics 20 

We used linear regression to investigate relations between landscape characteristics and 21 

hydrological behavior with the MTT of the catchments. For this analysis, we included the 22 

catchments which comprise the main drainage network (i.e., catchments M1 to M6) and the 23 

catchment outlet (M8) given that they possess comparable hydropedological and 24 

geomorphological characteristics. That is, catchments situated at the valley bottom have well-25 

defined interconnections between wetlands in the riparian areas and the surrounding Andosol 26 

soils at the slopes. Catchment M7 on the other hand, is located at a flat hilltop at the outlet of 27 

a wetland area which remains ponded throughout the year. The geomorphology of this 28 

concave (lagoon shaped) structure and its ponded eutrophic condition has allowed for the 29 
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hydrologic processes to mainly occur in the shallowest ponded portion of the water directly 1 

connected to the stream network (with little influence of the most likely immobile water 2 

which remains stored in the deeper soil fraction) (Mosquera et al., 2016). Therefore, its 3 

hydrological response is not comparable to the other catchments where hydrologic processes 4 

mainly occur in the soils and consequently was excluded from the regression analysis. 5 

Statistical significance of the correlations was tested using the F-test at a 95% confidence 6 

level (i.e., p < 0.05).  7 

The landscape and hydrometric variables tested for correlation were obtained from previous 8 

studies at the site (Mosquera et al., 2015) and from detailed soil, vegetation, and topographic 9 

information provided by INV Metals. The landscape features considered were: soil type, 10 

vegetation, geology, catchment size, slope, flow path length and gradient, and topographic 11 

wetness index (TWI) (Beven and Kirkby, 1979b) (Table 1). The hydrometric variables 12 

considered were: annual runoff, annual precipitation, runoff coefficient, and streamflow rates 13 

(Table 3). Weekly collected EC for three years (June 2012-June 2015) was averaged and also 14 

tested for correlation with MTT.  15 

3 Results 16 

3.1 Hydrologic and isotopic characterization in rainfall and streamflow 17 

Precipitation in the Zhurucay basin is evenly distributed throughout the year (Figure 2a), 18 

except for two months with relatively lower precipitation inputs (i.e., August and September), 19 

both accounting for less than 8% of total annual precipitation. Spatially, annual precipitation 20 

(P) is evenly distributed across the basin with an average of 1,275 ± 9 mm. Total annual 21 

runoff (Q) and runoff coefficients (Q/P) are spatially more heterogeneous, varying between 22 

684 and 864 mm per year and 0.55 and 0.68, respectively (Table 3). The hydrograph at the 23 

outlet of the basin (M8) also depicts a flashy response to precipitation inputs, even during 24 

these less humid months (see zoom in Figure 2a). Similar behavior is observed at all 25 

catchments.  26 

The δ18O isotopic composition in rainfall is highly variable throughout the year (e.g., average 27 

-10.2 ± 0.32‰ at the upper station) (Figure 2b) and follows a seasonal pattern with 28 
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isotopically enriched values during highest precipitation rates (April-May), and isotopically 1 

depleted values in the less humid period (August-September). The δ18O isotopic composition 2 

in streamflow collected during low flows on the other hand, is much more damped (average -3 

10.0 ± 0.06‰, at M8) than the isotopic composition in precipitation (Table 4). 4 

3.2  TTD evaluation and selection  5 

In order to identify the TTD that best describes the hydrologic system in the Zhurucay basin, 6 

we tested and evaluated the performance of all TTDs at all catchments. Considering that 7 

similar results were obtained for all catchments and for brevity, only results for M8, the basin 8 

outlet, are shown.  9 

All TTDs reproduce the δ18O isotopic composition at the outlet of the basin (M8) with 10 

efficiencies varying between 0.50 and 0.76, i.e., above the threshold of model acceptance (KGE 11 

> 0.45) (Table 5). The more flexible models, GM and TPLR yield the highest performances 12 

with KGEs of 0.75 and 0.76, respectively. The EM and the EPM yield similar efficiencies (KGE 13 

= 0.63), while the DM yields the lowest efficiency among all (KGE = 0.50). The models 14 

associated with the highest KGEs yield the highest uncertainty bounds according to their 15 

threshold of behavioral solutions; whereas the EM shows the lowest uncertainty (Figure 3). The 16 

lowest AIC value was determined for the EM (AIC = 2.92), indicating that this model is the 17 

most parsimonious for the system under investigation. Higher AIC values were determined for 18 

the other models which fit more than one parameter (GM, 4.58; EPM, 4.92; DM, 5.39; TPLR, 19 

6.55).  The models’ visual parameter identification inspection indicates that even though the 20 

TPLR model yields the highest KGE, the identification of its parameters is poor, particularly 21 

the one representing the MTT of the slow reservoir (MTTs, Figure 4).For the DM and GM 22 

models one parameter is well identified (MTT and α, respectively); while the others are not 23 

well identified by the models. For the EPM, both parameters are not well identified. The single 24 

parameter that defines the EM is very well identified. This coupled analysis of model efficiency 25 

and parsimoniousness in combination with parameter identifiability indicates that although 26 

models with a higher number of fitting parameters provide higher efficiencies, their parameters 27 

are more uncertain. 28 
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Taking into account the goodness of fit, parsimoniousness, uncertainty bounds, and the 1 

identifiability of the models’ parameters, the EM is the model that best describes the temporal 2 

variability of the baseflow δ18O isotopic composition across the Zhurucay basin. These results 3 

are supported by previous findings of Mosquera et al. (2015, 2016) at the study site, hinting 4 

towards a fast response system with minimal impact of old water sources, and the further 5 

discussion in the final part of this paper. Although the contribution of old water component/s 6 

cannot be definitely neglected, it seems unfeasible that given the biophysical features of the 7 

landscape and its pedological and geomorphological structure, baseflow MTTs on the range 8 

of those yielded by the GM and TPLR TTDs are reliable. The EM represents a well-mixed 9 

reservoir with relatively simple transition of the water (i.e., tracer) in the subsurface towards 10 

the stream network. In the Zhurucay basin, the organic and porous páramo soils allow for the 11 

efficient mixing of water within the whole profile of these poorly developed soils. This effect 12 

particularly occurs in the Histosols (Andean wetlands) which are directly connected, 13 

hydrologically, to the drainage network (Mosquera et al., 2016). These factors result in a 14 

relatively simple transition of infiltrated precipitation from a well-mixed reservoir towards the 15 

catchment outlet. This process-based analysis of physical characteristics of the system further 16 

support the EM as the model that best describes the transport of water across the Zhurucay 17 

basin. The EM was also found to describe the subsurface transport of water in another system 18 

of catchments in eastern Mexico, where soil have predominantly formed by volcanic ash 19 

accumulation (Muñoz-Villers et al., 2016). 20 

3.3 Baseflow MTT  21 

Results of the EM for selected catchments with the longest (M3), intermediate (M6), and 22 

lowest (M7) MTTs are shown in Figure 5 and statistics of the EM simulations at all 23 

catchments are summarized in Table 6. The EM overcomes the modeling acceptance criterion 24 

of KGE > 0.45 at all catchments with KGE values ranging between 0.48 and 0.84. The 25 

longest MTTs is found in catchment M3 (0.73 years, 264 days) whereas the shortest at M7 26 

(0.15 years, 53 days). The MTT for the other catchments vary within this range. On average, 27 

within the 90% confidence level for the catchments forming the main drainage network (M1-28 

M6 and M8), MTT estimations show small variations (25 days at the lower confidence bound 29 
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and 35 days at the upper confidence bound) with small standard deviation (4 days for the 1 

upper bound and 6 days for the lower bound). For catchment M7, variations are even smaller 2 

(9 days at the lower confidence bound and 11 days at the upper confidence bound). In 3 

addition, the model performs best for catchments with high variability in their isotopic 4 

composition during the monitoring period. For instance, catchment M3 (Figure 5a) shows the 5 

smallest amplitude in isotopic variation for the observed and simulated data (Table 6), 6 

coupled with the lowest KGE (0.48) and the highest MTT. On the other hand, catchment M7 7 

(Figure 5c) shows the highest amplitude in isotopic variation for the observed and simulated 8 

data, coupled with the highest KGE (0.84) and the shortest MTT. Similarly, catchment M6 9 

(Figure 5b), which has a MTT shorter than the one in M3 and longer than the one in M7, has 10 

an amplitude and KGE varying between the ones in M3 and M7. The Monte Carlo 11 

simulations for the fitted parameter MTT (Figure 5) clearly depict how the MTT which yield 12 

the highest KGE in each catchment decreases as the variation in their isotopic composition 13 

increases as described above. Results from all the catchments are also described by this trend.  14 

The MTT probability density functions (PDFs), which indicate the distribution of MTTs in 15 

the hydrologic system, and cumulative density functions (CDFs), which express the tracer 16 

‘‘mass recovery from an instantaneous, uniform tracer mass addition” (McGuire et al., 2005) 17 

based on the fitted parameter distributions, not shown for brevity, exhibit a dominance of 18 

relatively short MTTs in the hydrology of the Zhurucay basin. The CDFs also indicate that the 19 

tracer is completely recovered (~ 100%) in all catchments at around 160 weeks, except for 20 

M7, where the tracers is even more rapidly recovered (~ 38 weeks). As we used a stable 21 

isotopic record of 156 weeks (3 years), these results indicate that a three years record of tracer 22 

data is sufficient to estimate the MTT of waters using the LCA in this páramo basin.  23 

3.4 Correlations of baseflow MTT with landscape and hydrometric variables 24 

Correlation analysis showed no statistically significant correlations (p-values > 0.05) between 25 

MTT and landscape features and hydrometric variables of the nested monitoring system when 26 

all catchments were included. This lack of correlation is likely related to the previously 27 

reported distinct responsiveness of catchment M7 to precipitation inputs due to its different 28 

geomorphologic configuration (i.e., ponded eutrophic wetland disconnected from the slopes) 29 
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and catchments M3 and M4 (Figure 1) driven by a spring water contribution during low flow 1 

generation. In general, deep subsurface flow and groundwater contributions to discharge seem 2 

to be minimal and geology has not been found to directly control the hydrology in this páramo 3 

ecosystem (Mosquera et al., 2015). However, the existence of this shallow spring sourced at 4 

the interface between the soil mineral horizon and the shallow bedrock upstream the outlet of 5 

M3 and M4, favors the generation of higher low flows (Mosquera et al., 2016) and increases 6 

MTTs in these catchments. The latter indicates that geology (fractures in the shallow bedrock) 7 

influence the hydrology of these small headwater catchments; thus, masking relationships 8 

between landscape features and MTT of the whole system. Therefore, we tested the MTT 9 

correlations without including these small catchments (M3 and M4) and M7. 10 

The reanalysis with the modified data set revealed significant relations of MTT with 11 

topographical indexes (Figure 6). The relations between MTT and average slope (Figure 6a, 12 

R2 = 0.78 and p = 0.047) and percent area having slopes in the range 20%-40% are negative 13 

(Figure 6b, R2 = 0.90, p = 0.015). Conversely the relation between the percent area having 14 

slopes 0%-20% and MTT is positive (R2 = 0.85, p = 0.026). No significant correlations (p-15 

values > 0.05) between MTT and vegetation, soil types, geology, flow path length, 16 

topographic wetness index, and hydrometric variables were found (Table 7). However, a 17 

relatively strong relation between MTTs and low flows with smaller significance was also 18 

found. That is, catchments with higher MTTs yielded lower low flows (R2 = 0.62, p = 0.11 for 19 

Q5 and R2 = 0.61, p = 0.12 for Q10). The regression analysis including all catchments also 20 

showed that mean electrical conductivity (MEC) of the waters explains 89% (p = < 0.001) of 21 

the catchments’ MTT variability (Figure 7). Streams with higher MEC have longer MTTs.  22 

4 Discussion 23 

4.1 General hydrometric and isotopic characterization 24 

The rainfall-runoff process evidences a rapid response of discharge to precipitation inputs in 25 

the Zhurucay basin. This rapid response occurs even during the less humid periods (August-26 

September) in which relatively small rainfall events result in peak flow generation (Figure 27 

2a). This high responsiveness results from the combined effect of the relatively uniform 28 

distribution of precipitation year-round – common in tropical regions – and the unique 29 
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properties of the Histosol soils or Andean wetlands located near the streams. The high storage 1 

capacity of wetlands was also highlighted by Roa-García and Weiler (2010) after the 2 

comparison of three paired catchments in the growing coffee region of Colombia at lower 3 

elevations (2000-2200 m a.s.l.). Similarly, Histosol soils in our study site are rich in organic 4 

matter content (mean 86% by volume), allowing for high water storage capacity. In addition, 5 

due to their relatively low saturated hydraulic conductivity (0.72-1.55 cm h-1), these soils 6 

remain near saturation throughout the year. These factors, in combination with the local 7 

climate, allow páramo soils to regulate and maintain a sustained discharge throughout the 8 

year. Moreover, as these processes occur in the shallow organic horizon of the soils, the 9 

hydrology of the Zhurucay basin páramo ecosystem is dominated by shallow subsurface water 10 

flow. This is supported by the similar isotopic composition between streams and soil waters in 11 

the organic layer of the Histosols in the Zhurucay basin (Mosquera et al., 2016).  12 

Although the δ18O isotopic composition of stream waters is damped and lagged with respect 13 

to that of precipitation, streamflow samples in the Zhurucay basin still reflect the variability 14 

of the δ18O composition of rainfall (Figure 2b), as expected in a system dominated by shallow 15 

subsurface flow. However, catchments are differently influenced by precipitation. M7, located 16 

at the outlet of a wetland that remains constantly ponded, shows a faster response to rainfall 17 

(Figure 5c), most likely as a result of the rapid mixing of rainfall water with the shallow water 18 

moving in the shallow organic horizon of the soils and the ponded water above it. All of the 19 

other catchments show considerably less influence of rainfall (Figures 5a and 5b) due to the 20 

mixing of rainfall water with the water stored within the whole profile of the Histosol soils. 21 

4.2 What is the baseflow MTT? 22 

The high performance (KGE > 0.48, Table 6), low uncertainty (Figure 3), high AIC (Table 5), 23 

and strong parameter identification (Figure 4) of the exponential model (EM) indicate that 24 

this model best mimics the subsurface transport of water in all catchments within the 25 

Zhurucay basin (Figure 5). In addition, the model captures some particularities in the 26 

functioning of each catchment. For instance, results indicate relatively long MTTs in two of 27 

the headwater catchments, M3 and M4 (0.73 and 0.67 years, respectively). This likely results 28 

from a shallow spring water contribution to these catchments during low flow generation 29 
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(Mosquera et al., 2015). The model seems to capture the effect of the shallow spring 1 

contribution by yielding the longest MTTs estimations in these catchments, and an intrinsic 2 

influence of geology on MTT variability. In addition, the performance of the model in these 3 

two catchments is the lowest within the basin. The latter most likely because of less efficient 4 

mixing of water due to the influence of the spring water source; suggesting that this effect is 5 

also captured by the model which assumes a well-mixed reservoir. This observation led us to 6 

consider that another model representing an additional slow flow reservoir (e.g., TPLR or 7 

GM) might better represent the subsurface movement of water in these catchments. Results, 8 

however, (Figures 3 and 4, Table 5) indicate that the contribution from this additional water 9 

source is small and an additional reservoir is not well distinguished by these TTDs as their 10 

parameters are not well identified. Recently, Muñoz-Villers et al. (2016) also identified the 11 

EM as the model that best mimics subsurface flow in 7 of 12 nested catchments underlain by 12 

volcanic soils (Andosols) in a tropical montane cloud forest (TMCF) located in Veracruz, 13 

Mexico. These authors estimated even longer MTTs (1.2-2.2 years) due to deeper 14 

groundwater contributions to discharge. 15 

On the other end, M7, dominated by the contribution from the shallowest part of the organic 16 

horizon of the soils and the ponded fraction of water accumulated in a ponded wetland – 17 

which is directly connected to the stream channel – presents the shortest MTT of all 18 

catchments (0.15 years, 53 days), linked to the highest model performance. Our results 19 

support the hypothesis that this catchment presents a shorter MTT, indicating that the ponded 20 

condition of the wetland allows for a rapid and efficient mixture of precipitated water with 21 

ponded water and water stored in and released from the shallow organic horizon of the soil. 22 

The latter resulting in a rapid delivery of event (new) water to the stream; whereas water 23 

stored deeper in the soil seems to remain mostly immobile with minimal influence in the 24 

hydrology of the catchment. The well-mixing and simpler delivery of water to the stream is 25 

also captured by the high model performance. The MTTs estimated for the rest of the 26 

catchments lie in between these two extremes and their values and efficiencies vary 27 

depending on the amplitude of the isotopic tracer variation, with longer MTTs in catchments 28 

where the amplitude of the signal is more damped – evidencing lower influence of 29 

precipitation and less efficient mixing with the soil storage – and vice versa. The MTT in 30 
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these catchments vary between 0.43 and 0.53 years (156 to 191 days). Overall, the MTTs are 1 

relatively short, further supporting previous evidence that shallow subsurface flow dominates 2 

the hydrology of the ecosystem.  3 

In other tropical latitudes, MTTs higher than 300 days were found in three paired Colombian 4 

catchments applying the TPLR model (Roa-García and Weiler, 2010). These basins show 5 

higher MTTs than the catchments in the Zhurucay basin most likely as a result of the higher 6 

development of the volcanic ash soils (> 10 m), which allow the water to be stored for longer 7 

periods in the subsurface. MTTs longer than two years were also found in a TMCF in 8 

southern Ecuador (Timbe et al., 2014), evidencing that differently from our findings, this 9 

lower elevation ecosystem is dominated by deep groundwater contributions. Preliminary 10 

MTT estimations in another TMCF biome located in central Mexico (Muñoz-Villers and 11 

McDonnell, 2012) yielded a MTT of three years. Although the ecosystem is dominated by 12 

soils formed by volcanic ash accumulation, as the páramo soils are, a combination of deeper 13 

hillslope soils (1.5-3 m depth) with highly fractured and permeable geology allows for the 14 

formation of longer flow paths of water and longer MTTs. Therefore, the relatively young and 15 

little weathered geology in the Zhurucay basin allows for a dominance of shallow subsurface 16 

flows. The results of these studies suggest that the particular shallow development of the rich 17 

organic soils with low saturated hydraulic conductivities, in combination with an 18 

homogeneous and low permeable geology provide the páramo basin of the Zhurucay River 19 

with a high water retention capacity, and relatively long transit times and flow paths 20 

considering the little development of the organic horizon of the soils. Hrachowitz et al. 21 

(2009b) reported MTTs (135-202 days) around the ones found in the Zhurucay basin 22 

catchments in a montane catchment in Scotland dominated by peatland soils and relatively 23 

little weathering geology. Nevertheless, the models which provided the best fit were the GM 24 

and the TPLR, as opposed to the EM in our study site. As in the Zhurucay basin, these authors 25 

attributed this short transit time to the dominance of ecohydrological processes occurring in 26 

the upper horizon of the peat soils. Therefore, we can conclude that in these two ecosystems, 27 

located at different latitudes but with similar hydropedological conditions, the hydrology is 28 

dominated by shallow subsurface flows. Nevertheless, the soils development of the shallow 29 

peaty soils in Scotland is lower (40 cm) in comparison to the soil development of the 30 
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Histosols (80 cm) in the Zhurucay basin. These factors, in combination with differences 1 

underlying geologies suggest that their overall hydrologic functioning might differ as 2 

evidenced by different TTDs describing the subsurface transport of solutes. 3 

Although we used a methodology that assumes stationary conditions in the hydrologic system 4 

(LCA), it is relevant to note here the results of a recent application of conceptual modeling for 5 

the investigation of non-stationary conditions in a hydrologically similar region (Birkel et al., 6 

2015). These authors detected non-stationary effects in water age distributions only during 7 

extreme weather conditions (extensive dry or wet periods) and attributed this behavior to the 8 

large mixing capacity of the Histosol soils. Although future investigations of the non-9 

stationary nature of MTTs are needed at the páramo, based on the dominance of flow 10 

generation in the Histosols at the Zhurucay basin, in combination with low annual changes in 11 

the environmental conditions, we consider our results from the LCA provide robust MTTs 12 

estimates in our study site. 13 

4.3 Controls on baseflow MTT variability  14 

We found significant correlations (R2 ≥ 0.78, p < 0.05) between catchment slope dependent 15 

indexes and MTT using a subset of the main stream catchments (Table 7 and Figure 6). 16 

Results of the correlation analysis indicate that: 1) the higher the average slope of the 17 

catchments, the shorter their MTTs; 2) the higher the percent of area corresponding to slopes 18 

between 0% and 20%, the longer the MTT; and 3) the higher the percent of area 19 

corresponding to slopes between 20% and 40%, the shorter the MTT. These results indicate a 20 

clear control of the catchments’ slopes in the Zhurucay basin´s MTTs. Locally, the same 21 

topographical features were found to control low flow generation. Mosquera et al. (2015) 22 

attributed the latter to expected contributions from the water originated in the slopes (Andosol 23 

soils) during low flow generation as a result of the gravitational potential of the water that 24 

drains downslope from these soils. These authors also found that wetlands (Histosols soils 25 

located near the streams) control the generation of moderate and high flows. Although we did 26 

not find significant correlations with other landscape features, vegetation showed expected 27 

trends in relation to MTT. That is, catchments with higher proportion of cushion plants 28 

(wetlands) (R2 = 0.29, p = 0.35) have longer MTTs and an inverse relation with tussock grass 29 
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vegetation (R2 = 0.31, p = 0.33). In another tropical system of catchments in Colombia, a 1 

catchment with higher areal proportion of wetlands was found to prolong the water MTTs, but 2 

appeared to reduce water yield (Roa-García et al., 2011). Although these authors did not 3 

report the slope of the catchments, we can infer that the catchment with the highest proportion 4 

of wetlands – as they form in flat areas – is also the catchment with the lowest gradients. 5 

Therefore, their observations might result from the combination of the deeper soil 6 

development (> 10 m) with high water retention capacity and low saturated hydraulic 7 

conductivity, perhaps in combination with low slope gradients. This would support the result 8 

of our study, where the catchments with the lower slopes and higher proportion of wetlands 9 

present the longer MTTs.  10 

In other latitudes, in 20 Scottish catchments with different geomorphologies and climate, 11 

MTT variability was controlled by the areal proportion of peat soils and no influence of 12 

catchments’ slopes was found (Hrachowitz et al., 2009a). As such, and given the similarities 13 

between these soils and our Histosol soils (Andean wetlands), we hypothesized MTT 14 

variability to be controlled by the areal extent of wetlands. Even though we found that MTT 15 

variability is rather mainly controlled by topography in our tropical alpine site, a small trend 16 

of wetlands’ cover to increase MTT was also identified. Although the later relation is not 17 

statistically significant, the latter most likely results from the influence of topography on 18 

Histosol soils (wetlands) formation, where the formation of this soil mainly occurs in 19 

catchments with lower slopes where water accumulation is favored. This finding indirectly 20 

suggests that wetlands influence MTT spatial variability to a lesser extent. Therefore, it 21 

appears that although relatively similar processes control the ecohydrology of both 22 

ecosystems, controls on MTT variability cannot be extended from one ecosystem to the other. 23 

MTT variability was also found to be controlled by the proportion of wetlands in cold snow 24 

dominated boreal catchments in Sweden for the MTT of spring snowmelt water (Lyon et al., 25 

2010). These authors attributed this effect to the formation of shallow ice acting as 26 

impermeable barriers above the wetlands, and thus changing the flow paths of water. 27 

Nevertheless, because of the different climate and geological features between their 28 

catchments and ours, we did not find wetlands as major controls on MTT variability. 29 
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Other slope topographic indexes – e.g., flow path length (L), flow path gradient (G), and the 1 

ratio between both (L/G) (e.g., McGuire et al., 2005; Tetzlaff et al., 2009) – have been 2 

identified as controls of MTT variability in catchments in other latitudes. Although these 3 

landscape features did not significantly explain MTT variability in the Zhurucay basin, the 4 

L/G ratio was reported as the major control of MTT variability (R2 = 0.91) in steep temperate 5 

catchments in the central western Cascades of Oregon (McGuire et al., 2005), suggesting that 6 

this relation “reflects the hydraulic driving force of catchment-scale transport (i.e., Darcy’s 7 

law)”. Similarly to our study site, they also found average slope of these catchments to be one 8 

of the most important individual controls on MTT, explaining 78% of the MTT variability. 9 

Recently, topography was also identified as a major control on the MTT of 12 TMCF 10 

catchments in eastern Mexico (Muñoz-Villers et al., 2016). Results from these studies reflect 11 

that the integrated effect of catchment slope on MTT variation can be identified in distinct 12 

geological and hydropedological provinces. The latter also suggests that rather than using a 13 

predictor which indicates more local effects of hydraulic force driving in the stream channel 14 

(e.g., L/G), catchment slope might be a better measure to compare catchment functioning as it 15 

integrates the hydrologic connectivity of hillslope, riparian, and stream areas.  16 

The topographic controls on MTT in the Zhurucay basin indicate that water resides for a 17 

longer time in catchments having lower slope gradients. These results also indicate that in 18 

catchments having higher areal proportions of low gradients and lower areal proportions of 19 

steeper gradients coupled with higher wetlands coverage, water resides longer in the shallow 20 

reservoir of the soils. The control of the proportion of steeper gradients in MTT variability 21 

suggests that the gravitational potential of water draining downslope in the Andosol soils also 22 

indirectly influences MTTs. Therefore, it is our interpretation that the hydrology of this 23 

ecosystem is mainly dominated by the interplay of two factors: 1) the high storage capacity in 24 

the shallow organic horizon of the porous páramo soils and 2) the catchment slope. Factor 1 25 

driving the high water retention capacity and factor 2 controlling the high regulation capacity 26 

of the ecosystem, and thus, maintaining a sustained delivery of water to the streams along the 27 

year. Without the interplay storage-slope, water would remain stored in the soils, and perhaps 28 

the delivery of water towards the streams would be dominated by saturated overland flow 29 
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(SOF), affecting the regulation capacity of the ecosystem. Nevertheless, SOF rarely occurs in 1 

the Zhurucay basin (Mosquera et al., 2015). 2 

Mean electrical conductivity (MEC) was also found to be significantly correlated with MTT 3 

using all catchments of the nested system in the basin (Figure 7). The regression analysis, 4 

showed strong correlation, with MEC increasing as MTT increases. As EC is an intrinsic 5 

property of water, due to the time it spends in contact with the surrounding pore space, rather 6 

than a control on MTT variability, this result indicates that this property might be used as a 7 

proxy to estimate MTT spatial variability. The well-defined connection between MTT and 8 

MEC most likely resulting from the relatively homogenous geology of the Zhurucay basin. To 9 

our knowledge, there are no studies that have identified similar (or different) relations 10 

between MEC and MTT in other biomes.  11 

Given that estimating MTT using isotope tracer methodologies is financially expensive due to 12 

the logistical set up of a monitoring network and the processes of data collection and analysis, 13 

finding proxies (i.e., predictors) which allow inferring MTTs at lower operational costs is 14 

critical to improve water resources management. In this sense, the strong relation between 15 

MEC and MTT indicates that MEC could be used as a relatively inexpensive and directly 16 

measurable proxy for MTT in this wet Andean páramo catchment. Therefore, although this 17 

result cannot be expanded beyond páramo areas, perhaps not even beyond the study site, it 18 

seems that it is worth evaluating whether or not MTTs can be inferred from MEC in other 19 

hydrologic systems. Nevertheless, one should be careful that EC measurements can be 20 

relatively variable over time. As a result, a single measurement of EC is most likely not 21 

enough to provide robust MTT estimates. Therefore, longer EC measurement records are 22 

recommended to reduce MEC variability and provide more robust MTT estimates. 23 

5 Conclusions 24 

The baseflow MTT evaluation using a LCA indicated that the EM best describes the 25 

subsurface transport of water in the basin. This result indicates efficient mixing in the high 26 

organic and porous wet Andean páramo soils and a simple subsurface transition of rainfall 27 

water towards the streams. MTT estimations showed relatively short MTTs linked to 28 

relatively short subsurface flow paths. Therefore, we confirm that the hydrologic system of 29 
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the tropical alpine biome of the Zhurucay basin is dominated by shallow subsurface flow. 1 

MTT estimations showed that catchment M7, located at a flat hilltop at the outlet of a wetland 2 

which remains ponded year-round and disconnected from the slopes – most likely as a result 3 

of the eutrophication of a lagoon – showed a particularly low MTT (0.15 yr – 53 days) in 4 

relation to the MTT in all of the other catchments (0.40-73 yr, 156-250 days) in which the 5 

morphology corresponds to U-shaped valleys, with the wetlands located at the valley bottoms 6 

near the streams and connected to the slopes. Two headwater catchments, M3 and M4, 7 

showed the longest MTTs, related to a small contribution from a spring shallowly sourced. 8 

These results indicate that in this páramo ecosystem, the geomorphology of the wetlands and 9 

geology to a lesser extent, influence the responsiveness of the streams to precipitation inputs. 10 

Correlation analysis between landscape variables and MTT indicates that MTT variability is 11 

mainly explained by the slope of the catchments, and a related influence of vegetation to a 12 

lesser extent. Catchments with the steepest average slopes and lower proportion of wetlands 13 

have the shortest MTTs. The lack of significant correlations between the MTTs and 14 

hydrological response variables (runoff coefficient and specific discharge rates) indicate that 15 

neither water yield, nor streamflow rates control the time water resides in the subsurface of 16 

the páramo soils. These results indicate that the interplay between the high storage capacity of 17 

the páramo soils and the slope of the catchments define the ecosystem’s high regulation 18 

capacity. Mean electrical conductivity (MEC) of stream waters – with the oldest waters 19 

presenting the highest MECs – seems to be a promising proxy of MTT in system of 20 

catchments under homogeneous geological conditions. Finally, we want to highlight the 21 

usefulness of a nested monitoring system for acquiring better process-based hydrologic 22 

functioning understanding. For instance, if M3, M4, and/or M7 catchments would not have 23 

been monitored, the influence of geology and/or geomorphology on catchment hydrological 24 

response could not have been identified and important information about the whole ecosystem 25 

functioning would remain unknown.  26 
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Table 1. Models considered to describe water mean transit time (MTT) in the study area and 1 

their transit time distribution (TTD) functions, parameters, and range of initial parameters. 2 

Model Transit time distribution (g(τ)) 
Parameter(s) 

range 

Exponential model (EM) 
1

𝜏
exp (

−𝑡

𝜏
) 𝜏 [0 − 65] 

Exponential-piston model (EPM) 

𝜂

𝜏
exp (−

𝑡 ∙ 𝜂

𝜏
+ 𝜂 − 1)  for 𝑡 ≥ 𝜏 (1 − 𝜂−1 

𝜏 [0 − 65] 

𝜂 [0.5 − 4] 

Dispersion model (DM) 
(

4𝜋𝐷𝑝𝑡

𝜏
)

−1/2

𝑡 −1 exp [− (1 −
𝑡

𝜏
)

2

(
𝜏

4𝐷𝑝𝑡
)] 

𝜏 [0 − 65] 

𝐷𝑝 [0.5 − 4] 

Gamma model (GM) 

𝜏𝛼−1

𝛽𝛼Γ(𝛼)
exp−𝜏/𝛽 

𝛼 [0.01 − 4] 
 𝛽 [0 − 500] 

𝜏 = 𝛼 · 𝛽  

Two parallel linear reservoir 

(TPLR) 

𝜑

𝜏𝑓
exp (

−𝑡

𝜏𝑓
) +

1 − 𝜑

𝜏𝑓
exp (

−𝑡

𝜏𝑠
) 

 

𝜏𝑠 [0 − 65] 

𝜏𝑓 [0 − 8] 

𝜑 [0 − 1] 

τ = tracer’s mean transit time (MTT) [months]; η = parameter that indicates the percentage of 3 

contribution of each flow type [-]; Dp = dispersion parameter [-]; α = shape parameter [-]; β = 4 

scale parameter [-]; τf and τs = transit time of fast and slow flows in months; φ = flow partition 5 

parameter between fast and slow flow reservoirs [%]. [-] Indicates parameters are unitless.   6 
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Table 4. Statistics of the δ18O isotopic composition in precipitation and streamflow used as 1 

input data for the MTT modeling. 2 

Sampling  Altitude   δ18O (‰) 

Station  (m a.s.l.) na Average SEb Max  Min  

M1 3840 123 –10.6 0.06 –9.0 –12.6 

M2 3840 124 –10.4 0.07 –8.8 –12.6 

M3 3800 121 –10.7 0.05 –8.8 –12.1 

M4 3800 122 –10.6 0.05 –8.7 –11.9 

M5 3800 118 –10.5 0.06 –9.1 –12.8 

M6 3780 121 –10.3 0.06 –8.9 –12.2 

M7 3820 121 –8.9 0.15 –6.2 –13.9 

M8 3700 118 –10.0 0.06 –8.3 –11.6 

Upper Precip. 3779 137 –10.2 0.32 –1.2 –25.0 

Middle Precip. 3700 134 –10.1 0.32 –2.7 –20.0 

a n: number of samples collected. 3 

b SE: Standard error. 4 
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Table 7. Coefficient of determination (R2) between the mean transit time (MTT) and i) 1 

landscape features and ii) hydrological variables for each of the catchments. Catchments M3 2 

and M4 (additional spring water source, see Figure 1) and M7 (at a flat hilltop disconnected 3 

from the hillslopes) are not included in the regressions; except for electrical conductivity, i.e., 4 

all catchments are considered (Figure 7). 5 

L
a
n
d
sc

a
p
e
 f

e
a
tu

re
s 

Vegetation    

H
y
d
ro

lo
g
ic

 v
a
ri

a
b
le

s 

General features    

Cushion plant 0.29 (0.35) Runoff coefficient 0.25 (0.39) 

Tussock grass – 0.31 (0.33)  Total runoff 0.21 (0.44) 

   Precipitation – 0.17 (0.48) 

Soil Type   Average specific discharge 0.21 (0.44) 

Histosol 0.13 (0.56)    
Andosol – 0.13 (0.55) Streamflow rates   

   Q99 0.42 (0.24) 

Geologic formation  Q90 0.18 (0.48) 

Quimsacocha  0.04 (0.75) Q80 0.06 (0.68) 

Turi 0.12 (0.57) Q70 0.09 (0.63) 

Quaternary deposits – 0.51 (0.18) Q60 0.06 (0.68) 

   Q50 0.01 (0.86) 

Topographic features  Q40 0.10 (0.61) 

Average slope – 0.78 (0.05) Q30 – 0.02 (0.82) 

Slope 0%–20% 0.85 (0.03) Q20 – 0.14 (0.53) 

Slope 20%–40% – 0.90 (0.01) Q10 – 0.61 (0.12) 

Area 0.13 (0.56) Q5 – 0.62 (0.11)  

TWI – 0.03 (0.79)    

Flow path length (L) 0.23 (0.42) Water intrinsic properties   

Flow path gradient (G) – 0.20 (0.45) Electrical conductivity 0.89 (< 0.001) 

L/G 0.23 (0.45)      

Signs indicate positive (no sign) or negative (–) correlation between parameters. 6 

Values in bold are statistically significant to a 95% level of confidence (p < 0.05). Values in 7 

parenthesis are the p-values of the correlations. 8 

a TWI = Topographic wetness index (Beven and Kirby, 1979). 9 

10 
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 1 

Figure 1. Location of the study area, and the isotopic monitoring stations in the Zhurucay 2 

observatory for: Streamflow (M), and Precipitation (P). SW is a spring water source upstream 3 

the outlet of catchments M3 and M4. 4 
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 1 

Figure 2. a) Hourly precipitation and unit area streamflow; b) δ18O isotopic composition in 2 

precipitation and streamflow for 3 years (May 2011-May 2014); and c) electrical conductivity 3 

for 2 years (May 2012-May 2014) at the catchment outlet (M8, see location in Figure 2). The 4 

size of the bubbles in plot b) indicates the relative cumulative rainfall in millimeters for each 5 

collected sample.  6 
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 1 

 2 

Figure 3. Fitted results of the five lumped parameter models used to simulate the temporal 3 

variability in the δ18O streamflow composition at the outlet of the basin (M8). (a) Exponential 4 
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model (EM); (b) exponential-piston model (EPM); (c) dispersion model (DM); (d) gamma 1 

model (GM); and (e) two parallel linear reservoir model (TPLR). The open circles represent 2 

the observed isotopic composition in streamflow; the black line represents the best simulated 3 

isotopic composition in streamflow according to the KGE (Gupta et al., 2009) objective 4 

function; and the blue shaded area corresponds to the 5-95% confidence limits of the possible 5 

solutions from the parameter sets within the range of behavioral solutions, i.e., solutions 6 

which yield at least 95% KGE.  7 
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 1 

Figure 4. Monte Carlo simulations of the fitted parameters of the five lumped parameter 2 

models used to simulate the δ18O streamflow composition at the outlet of the basin (M8). a) 3 
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EM; b) EPM; c) DM; d) GM; and e) TPLR. The (-) symbol in the x-axes denotes that fitting 1 

parameter is dimensionless. Horizontal red lines indicate threshold of behavioral solutions (at 2 

least 0.95 of maximum KGE).  3 
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Figure 5. Fitted results and Monte Carlo simulations of the fitted parameters of the 2 

exponential model (EM) used to simulate the δ18O streamflow composition in the catchments: 3 

a) M3; b) M6; and c) M7. The open circles represent the observed isotopic composition in 4 

streamflow; the red crosses represent the isotopic composition in precipitation; the black line 5 

represents the best simulated isotopic composition in streamflow according to the KGE 6 

objective function; and the blue shaded area corresponds to the 5-95% confidence limits of 7 

the possible solutions from the MTT fitting parameters within the range of behavioral 8 

solutions, i.e., solutions which yield at least 95% KGE. Panels on the right represent the 9 

explored parameter range for the MTT parameter and the KGEs associated to each of them.  10 
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 1 

Figure 6. Correlations between mean transit time (MTT) and topographic indexes of the 2 

catchments: a) average catchment slope; b) catchment area with slopes between 0% and 20%; 3 

and c) catchment area with slopes between 20% and 40%. Catchments M3 and M4 (additional 4 
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spring water source, see Figure 1) and M7 (at a flat hilltop disconnected from the hillslopes) 1 

are not included in the regressions. Solid lines are linear regressions and dashed lines are the 2 

90% confidence intervals of the regressions. * Indicates variables are normalized by their 3 

means. 4 

  5 
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 1 

Figure 7. Correlation between mean transit time (MTT) and mean electrical conductivity 2 

(MEC) for weekly measurements of stream water samples collected during three years (June 3 

2012-June 2015). Solid line is the linear regression and the dashed lines are the 90% 4 

confidence intervals of the regression. * Indicates variables are normalized by their means. 5 


