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Abstract 9 

We developed a parsimonious topography-based hydrologic model coupled with a soil 10 

biogeochemistry sub-model in order to improve understanding and prediction of Soluble 11 

Reactive Phosphorus (SRP) transfer in agricultural headwater catchments. The model 12 

structure aims to capture the dominant hydrological and biogeochemical processes identified 13 

from multiscale observations in a research catchment (Kervidy-Naizin, 5 km²). Groundwater 14 

fluctuations, responsible for the connection of soil SRP production zones to the stream, were 15 

simulated with a fully-distributed hydrologic model at 20 m resolution. The spatial variability 16 

of the soil phosphorus content and the temporal variability of soil moisture and temperature, 17 

which had previously been identified as key controlling factors of SRP solubilisation in soils, 18 

were included as part of an empirical soil biogeochemistry sub-model. The modelling 19 

approach included an analysis of the information contained in the calibration data and 20 

propagation of uncertainty in model predictions using a GLUE “limits of acceptability” 21 

framework. Overall, the model appeared to perform well given the uncertainty in the 22 

observational data, with a Nash-Sutcliffe efficiency on daily SRP loads between 0.1 and 0.8 23 

for acceptable models. The role of hydrological connectivity via groundwater fluctuation, and 24 

the role of increased SRP solubilisation following dry/hot periods were captured well. We 25 

conclude that in the absence of near continuous monitoring, the amount of information 26 

contained in the data is limited hence parsimonious models are more relevant than highly 27 

parameterised models. An analysis of uncertainty in the data is recommended for model 28 

calibration in order to provide reliable predictions.  29 
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1 Introduction 30 

Excessive phosphorus (P) concentrations in freshwater bodies result in increased 31 

eutrophication risk worldwide (Carpenter et al., 1998; Schindler et al., 2008). Eutrophication 32 

restricts economic use of water and poses a serious hazard to ecosystems and humans  33 

(Serrano et al., 2015). In western countries, reduction of point source P emissions in the last 34 

two decades has resulted in a proportionally increasing contribution of diffuse sources, mainly 35 

from agricultural origin (Alexander et al., 2008; Grizzetti et al., 2012; Dupas et al., 2015a).  36 

Of particular concern are dissolved P forms, often measured as Soluble Reactive Phosphorus 37 

(SRP), because they are highly bioavailable and therefore a likely contributor to 38 

eutrophication. 39 

To reduce SRP transfer from agricultural soils it is important to identify the spatial origin of P 40 

sources in agricultural landscapes, the biogeochemical mechanisms causing SRP 41 

solubilisation in soils and the dominant transfer pathways, as well as the potential P resorption 42 

during transit. Research catchments provide useful data to investigate SRP transport 43 

mechanisms: typically, the temporal variations in water quality parameters at the outlet, 44 

together with hydroclimatic variables, are investigated to infer spatial origin and dominant 45 

transfer pathways of SRP (Haygarth et al., 2012; Outram et al., 2014; Dupas et al., 2015b; 46 

Mellander et al., 2015; Perks et al., 2015).  Hypotheses drawn from analysis of water quality 47 

time series can be further investigated through hillslope monitoring and/or laboratory 48 

experiments (Heathwaite and Dils, 2000; Siwek et al., 2013; Dupas et al., 2015c). When 49 

dominant processes are considered reasonably known, it is possible to develop computer 50 

models, for two main purposes: first, to validate scientific conceptual models, by testing 51 

whether model predictions can produce reasonable simulations compared to observations. Of 52 

particular interest is the possibility of testing the capability of a computer model to upscale P 53 

processes observed at fine spatial resolution (soil column, hillslope) to a whole catchment. 54 

Secondly, if the models survive such validation tests, then they can be useful tools to simulate 55 

the response of a catchment system to a future perturbation such as changes in agricultural 56 

management and climate changes. 57 

However, process-based P models generally perform poorly compared to, for example, 58 

nitrogen models (Wade et al., 2002; Dean et al., 2009; Jackson-Blake et al., 2015a). This is of 59 

major concern because poor model performance suggests poor knowledge of dominant 60 

processes at the catchment scale, and poor reliability of the modelling tools used to support 61 
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management. The origin of poor model performance might be conceptual misrepresentations, 62 

structural imperfection, calibration problems, irrelevant model evaluation criteria and 63 

difficulties in properly assessing the information content of the available data when it is 64 

subject to epistemic error. All five causes of poor model performance are intertwined, e.g. 65 

model calibration strategy depends on model performance evaluation criteria, which depend 66 

on the way the information contained in the observation data is assessed (Beven and Smith, 67 

2015).  68 

A key issue in environmental modelling is the level of complexity one should seek to 69 

incorporate in a model structure. Several existing P transfer models, such as INCA (Wade et 70 

al., 2002), SWAT (Arnold et al., 1998) and HYPE (Lindstrom et al., 2010) seek to simulate 71 

many processes, with the view that complex models are necessary to understand processes 72 

and to predict the likely consequences of land-use or climate changes. However, these 73 

complex models include many parameters that need to be calibrated, while the amount of data 74 

available for calibration is often low. An imbalance between calibration requirement and the 75 

amount of available observation data can lead to equifinality issues, i.e. when many model 76 

structures or parameter sets lead to acceptable simulation results (Beven, 2006). A 77 

consequence of equifinality is the risk of unreliable prediction when an “optimal” set of 78 

parameters is used (Kirchner, 2006), and large uncertainty intervals when Monte Carlo 79 

simulations are performed (Dean et al., 2009).  In this situation, it will be worth exploring 80 

parsimonious models that aim to capture the dominant hydrological and biogeochemical 81 

processes controlling SRP transfer in agricultural catchment. For example, Hahn et al. (2013) 82 

used a soil-type based rainfall-runoff model (Lazzarotto et al., 2006) combined with an 83 

empirical model of soil SRP release derived from rainfall simulation experiments over soils 84 

with different P content and manure application level/timing (Hahn et al., 2012) to simulate 85 

daily SRP load from critical sources areas. 86 

A second key issue, linked to the question of model complexity, concerns model calibration 87 

and evaluation. Both calibration and evaluation require assessing the fit of model outputs with 88 

observation data. However, observation data are generally not directly comparable with model 89 

outputs, because of incommensurability issues and/or because they contain errors (Beven, 90 

2006; 2009). Typically, predicted daily concentrations and/or loads are evaluated against data 91 

from grab samples collected on a daily or weekly basis. The information content of these data 92 

must be carefully evaluated to propagate uncertainty in the data into model predictions 93 
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(Krueger et al., 2012). Uncertainty in grab sample data might stem from i) sampling 94 

frequency problems and ii) measurement problems (Lloyd et al., 2016). Grab sample data 95 

represent a specific point in the stream cross-section, which can differ from the cross section 96 

mean concentration (Rode and Suhr, 2007), and a snapshot of the concentration at a given 97 

time of the day, which can differ from the flow weighted mean daily concentration (McMillan 98 

et al. 2012). This difference between observation data and simulation output can be large 99 

during storm events in small agricultural catchments, as P concentrations can vary by several 100 

orders of magnitudes during the same day (Heathwaite and Dils, 2000; Sharpley et al., 2008). 101 

Model evaluation can be severely penalised by this difference, because many popular 102 

evaluation criteria such as the Nash-Sutcliffe efficiency (NSE) are sensitive to extreme values 103 

and errors in timing (Moriasi et al., 2007). During baseflow periods, it is more likely that grab 104 

sample data are comparable to flow-weighted mean daily concentrations, as concentrations 105 

vary little during the day and they are usually low in the absence of point sources. However, 106 

measurement errors are expected to occur at low concentrations, either due to too long storage 107 

times or laboratory imprecision when concentrations come close to detection/quantification 108 

limits (Jarvie et al., 2002; Moore and Locke, 2013). Uncertainty in the data can also relate to 109 

discharge measurement and input data (e.g. maps of soil P content and rainfall data). In this 110 

paper we strive to identify and quantify the different sources of uncertainty in the data when 111 

the required quality check tests have been performed (on the discharge and SRP concentration 112 

data). A Generalised Likelihood Uncertainty Estimation (GLUE) “limits of acceptability” 113 

approach (Beven, 2006; Beven and Smith, 2015) is used to calibrate/evaluate the model.  114 

This paper presents a dominant-process model that couples a topography-based hydrologic 115 

model with a soil biogeochemistry sub-model able to simulate daily discharge and SRP loads. 116 

The dominant processes included in the hydrologic and soil biogeochemistry sub-models have 117 

been identified in previous analyses of multiscale observational data, which have 118 

demonstrated on the one hand the control of groundwater fluctuation on connecting soil SRP 119 

production zones to the stream (Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015b; 120 

2015d; Mellander et al., 2015), and on the other hand the role of antecedent soil moisture and 121 

temperature conditions on SRP solubilisation in soils (Turner and Haygarth, 2001; Blackwell 122 

et al., 2009; Dupas et al., 2015c). Model development and application were performed in the 123 

Kervidy-Naizin catchment in western France with the objectives of: i) testing if the model 124 

was capable of capturing daily variation of SRP load, thus confirming hypotheses on 125 
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dominant processes; ii) develop a methodology to analyse and propagate uncertainty in the 126 

data into model prediction using a “limits of acceptability” approach.  127 

2 Material and methods 128 

2.1 Study catchment 129 

2.1.1 Site description 130 

Kervidy–Naizin is a small (4.94 km²) agricultural catchment located in central Brittany, 131 

Western France (48°N, 3°W). It belongs to the AgrHyS environmental research observatory 132 

(http://www6.inra.fr/ore_agrhys_eng), which studies the impact of agricultural activities and 133 

climate change on water quality (Molenat et al., 2008; Aubert et al., 2013; Salmon-Monviola 134 

et al., 2013). The catchment (Fig. 1) is drained by a stream of second Strahler order, which 135 

generally dries up in August and September. The climate is temperate oceanic, with mean ± 136 

standard deviations of annual cumulative precipitation and specific discharge of 854 ± 179 137 

mm and 290 ± 106 mm, respectively, from 2000 to 2014. Mean annual ± standard deviation 138 

of temperature is 11.2 ± 0.6°C. Elevation ranges from 93 to 135 m above sea level. 139 

Topography is gentle, with maximum slopes not exceeding 5%. The bedrock consists of 140 

impervious, locally fractured Brioverian schists and is capped by several metres of 141 

unconsolidated weathered material and silty, loamy soils. The hydrological behaviour is 142 

dominated by the development of a water table that varies seasonally along the hillslope. In 143 

the upland domain, consisting of well drained soils, the water table remains below the soil 144 

surface throughout the year, varying in depth from 1 to > 8 m. In the wetland domain, 145 

developed near the stream and consisting of hydromorphic soils, the water table is shallower, 146 

remaining near the soil surface generally from October to April each year. The land use is 147 

mostly agriculture, specifically arable crops and confined animal production (dairy cows and 148 

pigs). A farm survey conducted in 2013 led to the following land use subdivisions: 35% 149 

cereal crops, 36% maize, 16% grassland and 13% other crops (rape seed, vegetables). Animal 150 

density was estimated as high as 13 livestock units ha
-1

 in 2010. Estimated soil P surplus was 151 

13.1 kg P ha
-1

 yr
-1

 (Dupas et al., 2015b) and soil extractable P in 2013 (Olsen et al., 1954) was 152 

59 ± 31 mg P kg
-1

 (n = 89 samples). A survey targeting riparian areas highlighted the legacy 153 

of high soil P content in these currently unfertilized areas (Dupas et al., 2015c). No point 154 

source emissions were recorded but scattered dwellings with septic tanks were present in the 155 

catchment. 156 
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2.1.2 Hydroclimatic and chemical monitoring 157 

Kervidy-Naizin was equipped with a weather station (Cimel Enerco 516i) located 1.1 km 158 

from the catchment outlet. It recorded hourly precipitation, air and soil temperatures, air 159 

humidity, global radiation, wind direction and speed, that are used to estimate Penman 160 

evapotranspiration. Stream discharge was estimated at the outlet with a rating curve and stage 161 

measurements from a float-operator sensor (Thalimèdes OTT) upstream of a rectangular weir. 162 

To record both seasonal and within storm dynamics in P concentration, two monitoring 163 

strategies complemented each other from October 2013 to August 2015: a daily manual grab 164 

sampling at approximately the same time (between 16:00 – 18:00 local time) and automatic 165 

high frequency sampling during 14 storm events (autosampler ISCO 6712 Full-Size Portable 166 

Sampler, 24 one litre bottles filled every 30 min). The water samples were filtered on-site, 167 

immediately after grab sampling and after 1-2 days in the case of autosampling. They were 168 

analysed for SRP (ISO 15681) within a fortnight. To assess uncertainty in daily SRP 169 

concentration related to sampling time, storage and measurement errors, a second grab sample 170 

was taken at a different time of the day (between 11:00 – 15:00 local time) in 36 instances 171 

during the study period. The second sample was analysed within 24h with the same method; 172 

this second dataset is referred to as verification dataset, as opposed to the reference dataset. 173 

Among the 36 pairs of comparable daily samples, 12 were taken during storm events and 24 174 

during baseflow periods. To assess uncertainty in high frequency SRP concentration during 175 

storm events due to delayed filtration of autosampler bottles, 5 grab samples were taken 176 

during the course of 4 distinct storms and were filtered immediately. The same lab procedure 177 

was used to analyse SRP. 178 

2.1.3 Identification of dominant processes from multiscale observations 179 

Observations in the Kervidy-Naizin catchment have highlighted that the temporal variability 180 

in stream SRP concentrations could not be related to the calendar of agricultural practices, but 181 

rather to hydrological and biogeochemical processes (Dupas et al., 2015b). The primary 182 

control of hydrology on SRP transfer has also been evidenced in several other small 183 

agricultural catchments (e.g. Haygarth et al, 2012; Jordan et al., 2012; Mellander et al., 2015). 184 

In the Kervidy-Naizin catchment, the groundwater fluctuation in valley bottom areas was 185 

identified as the main driving factor of SRP transfer, through the hydrological connectivity it 186 

creates when the saturated zone intercepts shallow soil layers (Dupas et al., 2015b).  187 
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In-situ monitoring of soil pore water at 4 sites (15 cm and 50 cm depths) in the Kervidy-188 

Naizin catchment has shown that mean SRP concentration in soils is a linear function of 189 

Olsen P (Olsen et al., 1954). This reflects current knowledge that a soil P test, or alternatively 190 

estimation of a degree of P saturation, can be used to assess solubilisation in soils 191 

(Beauchemin and Simard, 1999; McDowell et al., 2002; Schoumans et al., 2015). This linear 192 

relationship derived from the data contrasts however with other studies, where threshold 193 

values above which SRP solubilisation increases greatly have been identified (Heckrath et al., 194 

1995; Maguire et al., 2002).  195 

Soluble Reactive Phosphorus solubilisation in soil varies seasonally according to antecedent 196 

conditions of temperature and soil moisture. Dry and/or hot conditions are favourable to the 197 

accumulation of mobile P forms in soils, while water saturated conditions lead to their 198 

flushing (Turner et al., 2001; Blackwell et al., 2009; Dupas et al., 2015c).  199 

2.2 Description of the Topography-based Nutrient Transfer and 200 

Transformation – Phosphorus model (TNT2-P) 201 

TNT2 was originally developed as a process-based and spatially explicit model simulating 202 

water and nitrogen fluxes at a daily time step (Beaujouan et al., 2002) in meso-scale 203 

catchments (< 50 km
2
). TNT2-N has been widely used for operational objectives, to test the 204 

effect of mitigation options proposed by local stakeholders or public policy-makers (Moreau 205 

et al., 2012; Durand et al., 2015), on nitrate fluxes and concentrations in rivers.  206 

TNT2-P uses a modified version of the hydrological sub-model in TNT2-N, to which a P 207 

biogeochemistry sub-model was added to simulate SRP solubilisation in soils. 208 

2.2.1 Hydrological sub-model 209 

The assumptions in the hydrological sub-model are derived from TOPMODEL which has 210 

previously been applied to the Kervidy-Naizin catchment (Bruneau et al., 1995; Franks et al., 211 

1998): 1) the effective hydraulic gradient of the saturated zone is approximated by the local 212 

topographic surface gradient (tan β). It is calculated in each cell of a Digital Elevation Model 213 

(DEM) at the beginning of the simulation; 2) the effective downslope transmissivity 214 

(parameter T) of the soil profile in each cell of the DEM is a function of the soil moisture 215 

deficit (Sd). Hydraulic conductivity is assumed to decrease exponentially with depth 216 

(parameter m, Fig. 2). Hence water fluxes (q) are computed as: 217 
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         (1) 218 

Based on these assumptions, TNT2 computes an explicit cell-to-cell routing of fluxes, using a 219 

D8 algorithm.  220 

To simulate SRP fluxes, the hydrological sub-model is used to compute water fluxes from 221 

each soil layer by integrating [1] between the maximum depth of the soil layer considered and 222 

either: 223 

- estimated groundwater level, if the groundwater table is within the soil layer 224 

considered 225 

or  226 

- the minimum depth of the soil layer considered, if the groundwater table above the 227 

soil layer considered 228 

In this application of the TNT2-P model, 5 soil layers with a thickness of 10 cm are 229 

considered. Hence, 7 flow components are computed in the model: 230 

- overland flow on any saturated surfaces 231 

- 5 sub-surface flow components, one for each soil layer 232 

- deep flow, i.e. flow below the 5 soil layers 233 

2.2.2 Soil-P sub-model 234 

The soil-P sub-model is empirically derived from soil pore water monitoring data (Dupas et 235 

al., 2015c), specifically assuming that: 236 

- background SRP concentration in the soil pore water of a given layer is proportional to 237 

soil Olsen P; 238 

- seasonal increases in P availability compared to background conditions are determined 239 

by biogeochemical processes, controlled by antecedent temperature and soil moisture. 240 

Data show that SRP availability in the soil pore water increases following periods of 241 

dry and hot conditions (Dupas et al., 2015c). 242 

Hence, SRP transfer is modelled with parameters that describe both mobilisation and transfer 243 

to the stream. A different parameter is used to simulate transfer via overland flow and sub-244 

surface flow. 245 

                                                      (2) 246 
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                                                             (3) 247 

Where               and                  are SRP transfer via overland flow and sub-surface 248 

flow for a given soil layer respectively,            and               are water flows from the 249 

same pathways.                  and                     are coefficients which vary 250 

according to antecedent temperature and soil moisture conditions, such as: 251 

                                       (4) 252 

Where         is either                   or                    , and FT and FS are 253 

temperature and soil moisture factors, respectively. FT and FS are expressed as: 254 

        
                           

  
          (5) 255 

     (
                              

                     
)
  

          (6) 256 

Where T1, T2 and S1 are parameters to be calibrated. The antecedent condition time length 257 

consists in a period of i=100 days. Both soil temperature and soil moisture are estimated by 258 

the TNT2 soil module (Moreau et al., 2013). Because soil moisture in the deep soil layers can 259 

differ significantly from that of shallow soil layers, two values of FS are calculated for two 260 

soil depth ranges 0-20 cm and 20-50 cm. The temperature factor FT was calculated as an 261 

average value for the entire 0-50 cm soil profile. Contrary to the water fluxes, SRP fluxes are 262 

not routed cell-to-cell, because we lack knowledge of the rate of SRP re-adsorption in 263 

downslope cells, and of the long term fate of re-adsorbed SRP. Hence, all the SRP emitted 264 

from each cell through overland flow and sub-surface flow reaches the stream on the same 265 

day. For deep flow, only the immediate riparian flux is used in determining SRP inputs to the 266 

river. 267 

No long-term depletion of the different P pools was modelled, because annual P export from 268 

the catchment was small compared to the size of soil and sub-soil P pools. 269 

2.2.3 Input data and parameters 270 

Spatial input data required for TNT2-P include: 271 

- A DEM in raster format. Here, a 20 m resolution DEM was used, hence model 272 

calculations were made in 12348 grid cells covering a 4.94 km
2 

catchment. 273 

- A map of soil units that could be assumed to have homogeneous hydrological 274 

parameter values, in raster format. Here, two soil classes were considered by 275 
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differentiating well-drained (86%) and poorly-drained soils (14%) according to Curmi 276 

et al. (1998) (Fig. 1). Experimental determination of saturated hydraulic conductivity 277 

(29 soil cores) by Curmi et al. (1998) showed significantly different values for soils 278 

classified as well-drained and poorly-drained in the Kervidy-Naizin catchment. The 279 

two units were treated as homogeneous, lacking information about the detailed 280 

variability in soil hydraulic characteristics at the model grid scale. 281 

- A map of surface Olsen P in raster format and description of decrease in Olsen P with 282 

depth for five soil layers between 0-50 cm. Here, the map of Olsen P in the 0-15 cm 283 

soil layer was obtained from statistical modelling with the rule-based regression 284 

algorithm CUBIST (Quinlan, 1992) using data from 198 soil samples (2013) in an 285 

area of 12 km² encompassing the 4.94 km² catchment (Matos-Moreira et al., 2015).  286 

To describe how Olsen P decreases with depth, land use information was used. In 287 

tilled fields, i.e. all crop rotations including arable crops, Olsen P was assumed to be 288 

constant between 0-30 cm and to decrease linearly with depth between 30-50 cm. In 289 

no-till fields, i.e. permanent pasture and woodland, Olsen P was assumed to decrease 290 

linearly with depth between 0-50 cm. An exponential decrease with depth is more 291 

commonly adopted in untilled land (e.g. Haygarth et al., 1998; Page et al., 2005), but a 292 

specific sampling in currently untilled areas in the Kervidy-Naizin catchment (Dupas 293 

et al., 2015c) has shown that a linear function is more appropriate, probably because 294 

of these areas having been ploughed in the past. A previous study has shown that soil 295 

Olsen P was the most important factor controlling SRP solubilisation in soils of the 296 

Kervidy-Naizin catchment (see section 2.1.3.), so other parameters in the soil-P sub-297 

model (section 2.2.2.) were treated as homogeneous in the catchment (the soil 298 

classification into well-drained and poorly-drained soils only concerned hydrological 299 

parameters). 300 

A 20 m resolution was chosen for the DEM and the soil Olsen P raster map to allow a detailed 301 

representation of the interaction of the groundwater table (as simulated by the hydrological 302 

model) and the soil Olsen P (as given by the soil Olsen P map). Indeed the soil saturation and 303 

soil Olsen P can be very different in a narrow zone close to the stream compared to upslope 304 

due to the presence of a 5 to 50 m unfertilized buffer zone with lower Olsen P compared to 305 

fertilized fields. The Olsen P value close to the stream has a determining influence on SRP 306 
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transfer, because this area is the most frequently connected to the stream, so a coarser 307 

resolution of the raster maps would degrade representation of the system. 308 

Climate input data include minimum and maximum air temperature, precipitation, potential 309 

evapotranspiration, global radiation on a daily basis. The TNT2 model allows for several 310 

climate zones to be considered, in which case a raster map of climate zone must be provided 311 

to the model. Here, only one climate zone is considered. 312 

In total, the TNT2-P model includes 15 parameters for each soil type, i.e. 30 parameters in 313 

total if two soil drainage classes are considered. To reduce the number of model runs 314 

necessary to explore the parameter space using Monte Carlo simulations, several parameters 315 

were given fixed values, or a constant ratio between the two soil types was set (Table 1). In 316 

the hydrological sub-model, the parameters to vary were identified in a previous sensitivity 317 

analysis (Moreau et al., 2013). In the soil sub-model, all the parameters were varied. 318 

Finally, only 12 parameters were varied independently (see Table 1). Initial parameter ranges 319 

for the hydrological sub-model were based on values from several previous studies in 320 

Western France (Moreau et al., 2013) and those for the soil sub-model were based on a 321 

preliminary manual trial and error procedure. The SRP concentration for deep flow water was 322 

based on actual measurement of SRP in the weathered schist (Dupas et al., 2015c). A constant 323 

flux value for domestic sources was set at the 1% percentile of the daily flux between 2007 324 

and 2013 (Dupas et al., 2015b). 325 

2.3 Deriving limits of acceptability from data uncertainty assessment 326 

The Monte Carlo based Generalized Likelihood Uncertainty Estimation (GLUE) 327 

methodology has been widely used in hydrology and is described elsewhere (Beven and 328 

Freer, 2001a; Beven, 2006, 2009). Briefly, the rationale of GLUE is that many model 329 

structures and parameter sets can give “acceptable” results, according to one or several 330 

performance measures. Hence, GLUE considers that all models that give acceptable results 331 

should be used for prediction. A key issue in GLUE is to decide on a performance threshold 332 

to define acceptable models; typically, modellers set a threshold value of a measure such as 333 

the Nash-Sutcliffe Efficiency based on their subjective appreciation of data uncertainty or on 334 

previously used values. To allow for a more explicit justification of the performance threshold 335 

values used, the limits of acceptability approach outlined by Beven (2006) relies on an 336 

assessment of uncertainty in the calibration/evaluation data. According to this approach, all 337 
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model realisations that fall within the limits of acceptability are used for prediction, weighted 338 

by a score calculated based on overall performance. 339 

Details on how the limits of acceptability for daily discharge and daily SRP load were derived 340 

from uncertainty assessment of the observational data are presented below. Input data, such as 341 

weather and soil Olsen P data, also contained uncertainties which were not accounted for 342 

explicitly in the limits of acceptability due to a lack of data to quantify them. 343 

2.3.1 Discharge 344 

Error in discharge measurement data was assessed from the original discharge measurements 345 

used to calibrate the stage-discharge rating curve (Carluer, 1998). The rating curve used in 346 

this study was: 347 

          
       (7) 348 

Where Q is discharge, h is stage reading, h0 is stage reading at zero discharge, a and b are 349 

calibrated coefficients.  Limits of acceptability were defined as the 90% prediction interval of 350 

log-log linear regression (Fig. 3). The acceptability range estimated in this way was ±39% on 351 

average.  This uncertainty interval is in the higher range of values found in other studies, e.g. 352 

Coxon et al. (2015) who found that mean discharge uncertainty was generally between 20% 353 

and 40% in 500 catchments of the United Kingdom. This relatively large uncertainty interval 354 

is due to the fact that it was derived from a prediction interval rather than a confidence 355 

interval (the 90% confidence interval of the log-log linear regression would be 14% of the 356 

mean discharge value during the study period). A prediction interval is an interval in which 357 

future observations will likely fall, while a confidence interval is an interval in which the 358 

mean of repeated observation will likely fall. Because in the TNT2-P model´s evaluation, we 359 

want each observation to fall in the acceptability interval (section 2.3.3.), a prediction interval 360 

was more appropriate. For daily discharge values below 2 mm d
-1

, fixed acceptability limits 361 

were set at the 90% prediction interval for a stage measurement corresponding to 2 mm d
-1

. 362 

2.3.2 SRP load 363 

Uncertainty in “observed” daily load includes uncertainty in discharge (see 2.3.1.) and 364 

uncertainty in SRP concentration. The acceptability limit for daily load was estimated 365 

summing up relative uncertainty assessed for discharge and SRP concentration (in 366 

percentage). Uncertainty in SRP concentration stems from sampling frequency problems as 367 
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one grab sample collected on a specific day is incommensurable with the mean daily 368 

concentration or load simulated by the model. Further, measurement errors exist that include 369 

the effect of storage time (Haygarth et al., 1995). During baseflow periods, measurement error 370 

was expected to be the main source of uncertainty because relative measurement error is large 371 

for low concentrations, especially when sample storage time exceeds 48h (Jarvie et al., 2002), 372 

while concentrations vary little. During storm events, sampling frequency was expected to be 373 

the main source of uncertainty because SRP concentration can vary by one order of 374 

magnitude within a few hours. Therefore, different acceptability limits were set for both flow 375 

conditions. We considered storms as events with > 20 l s
-1 

increase in discharge and the 376 

following 24h. 377 

During baseflow periods, the acceptability limits were derived from the 90% prediction 378 

interval of a linear regression model (y = a * x + b) linking pairs of data points sampled on the 379 

same day (reference sample between 16:00-18:00, verification sample between 11:00-15:00) 380 

and analysed independently (within a fortnight for the reference sample and within 1-2 days 381 

for the verification sample). It was assumed that there was no systematic bias between the two 382 

datasets due to different sampling time. The reference SRP concentrations were on average 383 

13% lower than the verification value but this difference was not statistically significant 384 

(Mann-Whitney Rank Sum Test, p > 0.05). This method encompasses all various sources of 385 

uncertainty, which results in prediction intervals much wider than what would result from a 386 

mere repeatability test: at the median concentration (0.02 mg l
-1

), estimated prediction interval 387 

was 166% with this method versus 57% with a repeatability test (Fig. 4). As for discharge 388 

estimates, the high percentage represents a small absolute value (0.03 mg l
-1

) during baseflow 389 

periods. 390 

During storm events, acceptability limits were derived from the 90% prediction interval of 391 

concentration discharge statistical models (C = a*Q^b) using high frequency autosampler 392 

data. Two reasons led us to use a statistical model (which also implies the assumption that 393 

errors are aleatory and temporally independent): i) the measurement uncertainty as assessed 394 

by the laboratory repetition test was an underestimate of the real uncertainty of autosampler 395 

data, because it does not include other major sources of error such as delayed filtration and 396 

sample decay during storage; ii) it was necessary to extrapolate the sub-daily observation to 397 

the daily resolution of the model. The limits of this choice will be discussed in section 4.3. An 398 

empirical model was used to fit to each storm event monitored separately and a delay term 399 
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was introduced manually in the empirical model when a time lag existed between 400 

concentration and discharge peaks. The empirical models were then applied to extrapolate 401 

concentration estimation during two days at 10 min resolution, for each of the 14 storm events 402 

monitored. Finally the 2-day mean “observed” load was estimated as the mean of 10 min 403 

loads and uncertainty limits were derived from the 90% prediction interval. In model 404 

evaluation, the mean of simulated loads during 2 consecutive days was evaluated against the 405 

2-day mean “observed” load for which prediction intervals have been calculated. A 2-day 406 

acceptability limit enables all the storm events to be covered (Fig. 5 and Supplement). A 2-407 

day aggregation was necessary here because increased SRP load as a response to each storm 408 

event could occur either mainly during the day of the rainfall (if the rainfall occurred early in 409 

the morning) or mainly during the day following the rainfall (if the rainfall occurred late in 410 

the evening), and with the daily resolution of the input data and model simulation, the 411 

information about the timing of the rainfall event was not available to the model. 412 

When comparing autosampler data with data from immediately filtered samples, the ratio 413 

obtained had the range 1-1.6 (mean = 1.3), hence autosampler data were underestimates of the 414 

true concentration, arguably through adsorption or biological consumption. We used the mean 415 

ratio to correct all storm acceptability intervals by 30% and the range values to extend the 416 

upper limit by 60%.  During days with a storm event not monitored at high frequency with an 417 

autosampler, we considered that the grab sample data did not contain enough information to 418 

derive an acceptability interval for daily SRP load; hence simulated load was not evaluated 419 

for events not monitored at high frequency. 420 

2.3.3 Model runs and selection of acceptable models 421 

To explore the parameter space, 20,000 Monte Carlo realisations were performed to simulate 422 

daily discharge and SRP load during the water years 2013-2014 and 2014-2015. The number 423 

of Monte Carlo realisations was constrained by the computation time required to run a 424 

spatially explicit model in this catchment. A 7-month initialisation period was run to reduce 425 

the impact of initial conditions on simulated results during the study period, from 1 October 426 

2013 to 31 July 2015. 427 

To be considered acceptable, model runs must fall within the acceptability limits defined in 428 

2.3.1 and 2.3.2. More specifically, 100% of simulated daily discharge, 100% of simulated 429 

baseflow SRP load and 100% of simulated storm SRP load had to fall within the acceptability 430 
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limits. Thus, 572 acceptability tests were performed for discharge, 378 for baseflow SRP load 431 

and 14 for storm SRP loads, i.e. 964 evaluation criteria.  432 

To evaluate the model performance in more detail, normalized scores were calculated during 433 

6 periods (Table 2). To calculate the scores, a difference was calculated between each of the 434 

daily simulated discharge, baseflow SRP load and 2-day storm SRP loads and the 435 

corresponding observation. This difference was then normalized by the width of the 436 

acceptability limit defined for that day, so the score has a value of 0 in the case of a perfect 437 

match with observation, -1 at the lower limit and +1 at the upper limit (Fig. 6a).  Finally, the 438 

median of this ratio was calculated for each of the 6 periods to investigate whether the model 439 

tended to underestimate or overestimate discharge and loads at different moments of the year 440 

and between the two years. 441 

Model runs were successively evaluated for discharge, baseflow SRP load and storm SRP 442 

load. To use the models for prediction, each accepted model was given a likelihood weight 443 

according to how well it has performed for each of the 964 evaluation criteria. Here the 444 

statistical deviation weight was used (truncated to 90% prediction interval) (Fig. 5b). To 445 

“combine” the weights derived from the rating curve and the SRP concentration statistical 446 

models, a kernel density estimate (with Gaussian smoothing kernel) was computed to fit 447 

10,000 realisations of the multiplied error models. Calculated weights were then averaged for 448 

discharge, baseflow SRP load and storm SRP load respectively and the final likelihood was 449 

calculated as the product of all three averages. 450 

The model’s sensitivity to each hydrological and soil parameter was performed with a 451 

Hornberger-Spear-Young Generalised Sensitivity Analysis (HSY GSA, Whitehead and 452 

Young, 1979; Hornberger and Spear, 1981). For each evaluation criteria (daily discharge, 453 

daily baseflow SRP load, 2-day storm SRP load), the model runs were split into acceptable 454 

and non-acceptable runs according to the above-mentioned acceptability limits.  Then a 455 

Kolmogorov-Smirnov test was performed to assess whether the distribution of each of the 456 

three evaluation criteria differ between acceptable and non-acceptable models for each 457 

parameter. Because the Kolmogorov-Smirnov test might suggest that small differences in 458 

distribution are very significant when there are larger number of runs, this method is a 459 

qualitative guide to relative sensitivity. The p value of the Kolmogorov-Smirnov test is used 460 

to discriminate whether the model is critically sensitive (p<0.01 ‘***’), importantly sensitive 461 
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(p<0.1 ‘*’) or insignificantly sensitive (p>0.1 ‘.’) to each parameter and for each of the three 462 

evaluation criteria.  463 

In addition to acceptability limit approach, a NSE (Moriasi et al., 2007) was calculated for 464 

daily discharge and daily load and concentration to allow comparison with other modelling 465 

studies where it has been taken as an evaluation criterion. 466 

3 Results 467 

3.1 Presentation of observation data and calculation of acceptability limits 468 

The two water years studied were highly contrasted in terms of hydrology and SRP loads. 469 

Water year 2013-2014 was the wettest in the last 10 years, with cumulative rainfall 1289 mm 470 

and cumulative runoff 716 mm. Water year 2014-2015 was an average year (5
th

 wettest in the 471 

last 10 years), with cumulative rainfall 677 mm and cumulative runoff 383 mm. Annual SRP 472 

load was 0.35 kg P ha
-1

 yr
-1 

in 2013-2014 and 0.17 kg P ha
-1

 yr
-1 

in 2014-2015, i.e. a 473 

difference 10% higher than that of discharge. Observed mean SRP concentration during the 474 

study period was 0.024 mg l
-1

. 475 

Fig. 7 a and b show acceptability limits for daily discharge and daily SRP loads. Note that 476 

acceptability limits for discharge were calculated every day, while acceptability limits for 477 

SRP load was calculated on a daily basis during baseflow periods and on a 2-day basis during 478 

storm events monitored at high frequency. No SRP load acceptability limit was calculated 479 

during storm events when no high frequency autosampler data was available. 480 

3.2 Model evaluation 481 

First, model runs were evaluated against acceptability limits defined for discharge (Fig. 7c). 482 

5,479/20,000 models fulfilled the selection criterion for discharge, i.e. they had 100% of 483 

simulated daily discharge within the acceptability limits. The NSE estimated for these models 484 

ranged from 0.75 to 0.93. The normalized scores calculated seasonally (Fig. 8a) show that 485 

simulated discharge is often overestimated in autumn and spring, and underestimated in 486 

winter. 487 

Then, model runs were evaluated against acceptability limits defined for SRP loads (Fig. 7d ). 488 

During baseflow periods, 4,964/20,000 models fulfilled the selection criterion for SRP loads, 489 

i.e. they had 100% of simulated daily SRP load within the acceptability limits. Among them, 490 
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1,595 also fulfilled the previous selection criterion for discharge. Normalized scores for 491 

baseflow SRP load showed the same trend as for discharge (Fig. 8b), i.e. overestimation in 492 

autumn and spring, and underestimation in winter. During storm events, only 7 models 493 

fulfilled the selection criterion for SRP loads, i.e. they had 14/14 of simulated 2-day storm 494 

SRP loads within the acceptability limits, but none of them also fulfilled the selection criteria 495 

for discharge and baseflow SRP loads. Two storm events were particularly difficult to 496 

simulate (number 2 and number 9, Fig. 8c), probably because their acceptability interval was 497 

very narrow as a result of only small changes in discharge and concentration. To obtain a 498 

reasonable number of acceptable models, we relaxed the selection criterion so that the 499 

acceptable models had to simulate 12/14 of storm loads within the acceptability limits, in 500 

addition to the selection criteria defined for discharge and baseflow SRP load: 539 models 501 

were then accepted. Estimated NSE of these 539 models ranged from 0.09 to 0.81 for daily 502 

load and from negative values to 0.53 for daily concentrations (this includes all data from the 503 

regular sampling).  504 

3.3 Sensitivity analysis and prediction results 505 

According to the HSA generalised sensitivity analysis, simulated discharge was critically 506 

sensitive to 10 out of the 12 hydrological parameters varied. Simulated SRP load was 507 

critically sensitive to the sub-surface and overland flow parameters during baseflow periods 508 

and to the overland flow parameter during storm events. During baseflow periods, SRP load 509 

was insignificantly sensitive to the parameter associated with deep flow load. Both baseflow 510 

and storm SRP loads were critically sensitive to the parameter related to soil moisture and soil 511 

temperature dependent SRP solubilisation (S1, T1 and T2), in addition to respectively 12 and 512 

8 hydrological parameters. This identification of sensitive parameters can be used in future 513 

application of the TNT2-P model in the study catchment, as suggested by Whitehead and 514 

Hornberger (1984) and Wade et al. (2002b). 515 

Figure 9 shows the daily discharge, SRP load and concentration as simulated by the 516 

acceptable models. Simulated SRP load during the water year 2013-2014 ranged 0.81 – 3.25 517 

kg P ha
-1

 yr
-1

 (median = 1.68 kg P ha
-1

 yr
-1

); simulated SRP load during the water year 2014-518 

2015 ranged 0.14 – 0.73 kg P ha
-1

 yr
-1

 (median = 0.34 kg P ha
-1

 yr
-1

). Best estimate of SRP 519 

load according to observation data was 0.35 kg P ha
-1

 yr
-1

 in 2013-2014 and 0.17 kg P ha
-1

 yr
-1

 520 

in 2014-2015. According to the model, 49 – 55% (median = 52%) of water discharge and 66 – 521 

70% (median = 67%) of SRP load occurred during storm events. Mean SRP concentrations 522 
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during the two water years ranged 0.014 – 0.044 mg l
-1

 (median = 0.029 mg l
-1

), while mean 523 

observed SRP concentration was 0.024 mg l
-1

. 524 

4 Discussion 525 

4.1 Role of hydrology and biogeochemistry in determining SRP transfer 526 

The fairly good performance of TNT2-P at simulating SRP loads provides further support that 527 

the hydrological and biogeochemical processes included into the model are dominant 528 

controlling factors in the Kervidy-Naizin catchment (i.e. the modelling hypotheses could not 529 

be rejected based on these results, expect for two storm events). The primary control of 530 

hydrology in controlling connectivity between soils and streams has been highlighted by 531 

many studies analysing water quality time series at the outlet of agricultural catchments 532 

(Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015c; Mellander et al., 2015). This 533 

modelling exercise also provides further support that SRP solubility can be satisfactorily 534 

represented by the soil Olsen P content and could vary according to temperature and moisture 535 

conditions. The underlying processes have not been identified precisely in the Kervidy-Naizin 536 

catchment: independent laboratory experiments have shown that microbial cell lysis resulting 537 

from alternating dry and water saturated periods in the soil could be the cause of increased 538 

SRP mobility (Turner and Haygarth, 2001; Blackwell et al., 2009). This could explain the 539 

moisture dependence of SRP solubility in the model. Furthermore, net mineralisation of soil 540 

organic phosphorus could explain the temperature dependence of SRP solubility in the model. 541 

These two hypotheses may explain increased SRP solubility in soils in periods of dry and hot 542 

conditions and will be further explored by incubation experiment with soils from the Kervidy-543 

Naizin catchments. 544 

4.2 Potential improvements to the model structure according to modelling 545 

purpose 546 

The TNT2-P model was designed to test hypotheses about dominant processes and for this 547 

purpose, a parsimonious model structure was chosen to include only the processes which were 548 

to be tested. This parsimonious model structure might contain some conceptual 549 

misrepresentations due to oversimplification, and it might not include all the processes 550 

necessary for the purpose of evaluating management scenarios. This section discusses 551 

whether the simplifications made are acceptable in the context of different catchment types, 552 
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and to which conditions the model could be made more complex by including additional 553 

routines for the purpose of evaluating management scenarios. 554 

From a conceptual point of view, the lack of cell-to-cell routing of SRP fluxes might result in 555 

erroneous results in some contexts. The fact that all the SRP emitted from each cell through 556 

overland flow and sub-surface flow reaches the stream on the same day is generally 557 

acceptable for the catchment studied because groundwater interception of shallow soil layers 558 

occurs in the riparian zone only, hence the signal of SRP mobilisation in these soils is 559 

generally transmitted to the stream (Dupas et al., 2015c). This simplification, however, does 560 

not seem to be acceptable for all the storm events in the study catchment, as the SRP load 561 

evaluation criteria had to be relaxed to obtain acceptable model results. It would also not be 562 

acceptable in catchments where soil-groundwater interactions are taking place throughout the 563 

landscape, e.g. due to topographic depressions or poorly drained soils. In the latter type of 564 

catchment, transmission of the SRP mobilisation signal to the stream is more complex 565 

(Haygarth et al., 2012); hence a more complex model structure would be required. 566 

The reason for this simplification was that we lacked knowledge of SRP re-adsorption in 567 

downslope cells (or on suspended sediments in the stream network) and on the long-term fate 568 

of re-adsorbed SRP. For a more physically realistic representation of processes, it is likely 569 

that an explicit representation of flow velocities and pathways would be necessary, along with 570 

an explicit representation of several soil P pools. However, such an explicit representation of 571 

processes contradicts the idea of a parsimonious model, which was adopted here for the 572 

purpose of identifying dominant processes. In this respect, TNT2-P is an aggregative model 573 

rather than a fully distributed model although it is based on a fully distributed hydrological 574 

model (Beaujouan et al., 2002). The current spatial distribution allows finer representation of 575 

soil-groundwater interactions (i.e. the time varying extent of the riparian wetland area) than 576 

semi-distributed models such as SWAT (Arnold et al., 1998), INCA-P (Wade et al., 2002) 577 

and HYPE (Lindstrom et al., 2010) but at higher computational cost. It would be interesting to 578 

test to what extent moving from an aggregative model with fully distributed information to a 579 

semi-distributed model would degrade the model performance while reducing computational 580 

cost. This could be achieved by grouping cells according to a hydrological similarity criterion 581 

like in  Dynamic Topmodel (Beven and Freer, 2001b; Metcalfe et al., 2015) and do the same 582 

for similarity in soil P content. Reducing computation time is critical in the context of a 583 

GLUE analysis because this method requires the parameter space to be sampled adequately to 584 



 20 

identify those models to be considered acceptable. This is debatable here because 12 585 

parameters were varied and only 20,000 model runs were performed. It is therefore possible 586 

that some regions of the parameter space with acceptable models might not have been 587 

sampled. 588 

If reducing the number of calculation units proved to reduce computational cost without 589 

degrading quality of prediction, it would be possible to include more parameters in the model, 590 

for example to simulate SRP re-absorption in downslope cells or include routines to simulate 591 

the evolution of soil P content under different management scenarios (Vadas et al., 2011; 592 

2012), and still perform a Monte-Carlo based analysis of uncertainty. The question of 593 

coupling or not such a soil P routine with the current TNT2-P model will depend on available 594 

data and on the length of available time series: studying the evolution of the soil P content 595 

requires at least a decade of soil observation data (Ringeval et al., 2014) and probably a 596 

longer period of stream data to account for the time delay for a perturbation in the catchment 597 

to become visible in the stream (Wall et al., 2013). Thus, the two years of daily stream SRP in 598 

the Kervidy-Naizin catchment are not enough to build a coupled soil-hydrology model with 599 

an elaborate soil P routine. Therefore, as things stand, it is more reasonable to generate new 600 

soil Olsen P maps with a separate model such as the APLE model (Vadas et al., 2012; 601 

Benskin et al., 2014) or the ‘soil P decline’ model used by Wall et al. (2013), and use these 602 

maps as input to TNT2-P. 603 

Because the current model can simulate response to rainfall, soil moisture and temperature, it 604 

could be used to test the effect of climate scenarios on SRP transfer. In Western France, and 605 

more generally in Western Europe, the climate for the next few decades is expected to consist 606 

of hotter, drier summers and warmer, wetter winter (Jacob et al., 2007; Macleod et al., 2012; 607 

Salmon-Monviola et al., 2013) with increased frequency of high intensity rainfall events 608 

(Dequé 2007). In these conditions, SRP concentrations and load will seemingly increase 609 

compared to today’s climate as a result of both an increase in SRP solubility in soil due to 610 

higher temperature and more severe drought and an increase in transfer due to wetter winter 611 

and more frequent high intensity rainfall events. TNT2-P could be used to confirm and 612 

quantify the expected increase in SRP transfer from diffuse sources in future climate 613 

scenarios, and to determine whether those predicted changes are significant relative to the 614 

uncertainty in predictions under current climate variability. 615 
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4.3 Improving information content in the data 616 

Despite relatively large uncertainty in the data used in this study, it was possible to build a 617 

parsimonious catchment model of SRP transfer for the purpose of testing hypotheses about 618 

dominant processes, namely the role of hydrology in controlling connectivity between soils 619 

and streams and the role of temperature and moisture conditions in controlling soil SRP 620 

solubilisation. However, the large uncertainties in the calibration data lead to large prediction 621 

uncertainty. For example, the SRP load estimated by the behavioural models from 2013 to 622 

2015 ranged from 0.48 to 1.99 kg P ha
-1

 yr
-1

; hence the width of the credibility interval was 623 

150% of the median (1.0 kg P ha
-1

 yr
-1

). Similarly, the mean SRP concentration estimated by 624 

the behavioural models from 2013 to 2015 ranged from 0.014 to 0.044 mg l
-1

; hence the width 625 

of the credibility interval was 102% of the median (0.029 mg l
-1

). The large uncertainty in the 626 

calibration data, along with a lack of long-term information, also prevents including more 627 

detailed processes in the soil routine. 628 

To reduce uncertainty in prediction and to build more complex models, several options exist 629 

to improve information content in the data. As stated by Jackson-Blake et al. (2015b), “the 630 

key to obtaining a realistic model simulation is ensuring that the natural variability in water 631 

chemistry is well represented by the monitoring data”. The monitoring strategy adopted in the 632 

Kervidy-Naizin catchment should theoretically enable to capture the natural variability in 633 

stream SRP concentration, because sampling took place during two contrasting water years, 634 

during different seasons and at a high frequency during 14 storm events. The analysis of 635 

uncertainty in the data shows that a large part of uncertainty in “observed” SRP concentration 636 

originates from sample storage, both unfiltered between the time of autosampling and manual 637 

filtration and between filtration and analysis. This is due to SRP being non-conservative. 638 

Thus, there is room for improvement in reducing storage time, without increasing further the 639 

monitoring frequency. In this respect, the primary interest of investing in high frequency 640 

bankside analysers would lie in their ability to analyse water samples immediately in addition 641 

to providing near continuous data. Because bankside analysers perform measurements in 642 

relatively homogeneous conditions, unlike the manual and autosampler data for which storage 643 

time of filtered and unfiltered samples vary, a finer quantification of uncertainty in the 644 

measurement data would be possible (e.g. Lloyd et al., 2016). 645 

Finally, alternative methods to statistical models could be used to derive acceptability limits 646 

(in this study three statistical models are used: the rating curve, the SRP concentration 647 
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uncertainty during baseflow periods and the storm event interpolation model) because 648 

statistical models have at least three shortcomings: i) they lump the uncertainty linked to the 649 

timing of sampling, the immediate or delayed filtration of the samples, the storage time and 650 

the analytical error; ii) the formula chosen adds error to the already existing measurement 651 

errors because empirical models are not perfect representation of the system dynamics; iii) 652 

they assume a parametric distribution and temporally independent errors which are not always 653 

verified in practice. As an alternative, non-parametric methods could be used, but these 654 

methods generally require a large number of data points and they are not suitable for 655 

extrapolation to extreme values. 656 

5 Conclusion 657 

The TNT2-P model was capable of capturing daily variation of SRP loads, thus confirming 658 

the dominant processes identified in previous analyses of observation data in the Kervidy-659 

Naizin catchment. The role of hydrology in controlling connectivity between soils and 660 

streams, and the role of soil Olsen P, soil moisture and temperature in controlling SRP 661 

solubility have been confirmed. The lack of any representation of the short-term effect of 662 

management practices did not seem to penalize the model’s performance. Their long-term 663 

effect on the soil Olsen P could be simulated with an independent model or through an 664 

additional sub-model if a longer period of data was available to calibrate it. The modelling 665 

approach presented in this paper included an assessment of the information content in the 666 

data, and propagation of uncertainty in the model’s prediction. The information content of the 667 

data was sufficient to explore dominant processes, but the relatively large uncertainty in SRP 668 

concentrations would seemingly limit the possibility for including more detailed processes 669 

into the model. Data from near continuous bankside analyser will probably allow calibrating 670 

more detailed models in the near future. 671 
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Table 1: Initial parameter ranges in the hydrological and soil phosphorus sub models. 905 

 Abbrevi

ation 

Unit Hydrologica

l (H), 

Phosphorus 

model (P) 

Range 

poorly 

drained soils 

(min-max) 

Range well 

drained soils 

(min-max) 

Lateral transmissivity at 

saturation 

T m
2
 d

-1
 H 4-8 -> x1.5 

Exponential decay rate of 

hydraulic conductivity 

with depth 

m m
2
 d

-1
 H 0.02-0.2 0.02-0.2 

Soil depth ho m H 0.3-0.8 -> x1 

Drainage porosity of soil po cm
3
 cm

-

3
 

H 0.1-0.4 -> x1 

Regolith layer thickness h1 m H 5-10 -> x4 

Exponent for evaporation 

limit 

Α - H 8 (fixed) -> x1 

kRC parameter for 

capillary rise 

kRC - H 0.001 (fixed) -> x1 

n parameter for capillarity 

rise 

N - H 2.5 (fixed) -> x1 

Drainage porosity of 

regolith layer 

p1 cm
3
 cm

-

3
 

H 0.01-0.05 -> x1 

Background P release 

coefficient for subsurface 

flow 

Coef SRP 

overland 

- P 0-0.015 -> x1 

Background P release 

coefficient for overland 

flow 

Coef SRP 

sub-surface 

- P 0-0.25 -> x1 

Temperature coefficient 1 T1 - P 5-10 -> x1 

Temperature coefficient 2 T2 - P 2-10 -> x1 
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Soil moisture coefficient S1 - P 0-2 -> x1 

SRP concentration in deep 

flow 

SRP_de

ep 

mg l
-1

 P 0-0.007 -> x1 

 906 

Table 2: Starting and ending dates of periods studied 907 

Name Starting date Ending date 

Autumn 2013 01 October 2013 31 December 2013 

Winter 2014 01 January 2014 31 March 2014 

Spring 2014 01 April 2014 31 July 2014 

Autumn 2014 01 October 2014 31 December 2014 

Winter 2015 01 January 2015 31 March 2015 

Spring 2015 01 April 2015 31 July 2015 

 908 

  909 
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Table 3: Sensitivity analysis of the model to 18 model parameters (insignificant ., important *, 910 

critical ***). Parameters significations are detailed in Table 1. 911 

 912 

 discharge baseflow SRP load storm SRP load 

T (poorly drained soils) . *** *** 

m (poorly drained soils) *** *** *** 

ho (poorly drained soils) *** *** . 

po (poorly drained soils) *** *** *** 

h1 (poorly drained soils) *** *** . 

p1 (poorly drained soils) *** *** *** 

T (well drained soils)  . *** *** 

m (well drained soils)  *** *** *** 

ho (well drained soils)  *** *** . 

po (well drained soils)  *** *** *** 

h1 (well drained soils)  *** *** . 

p1 (well drained soils)  *** *** *** 

Coef_sub-surface . *** . 

Coef_overland . *** *** 

SRP_deep . . . 

S1 . *** *** 

T1 . *** *** 

T2 . *** *** 

 913 

 914 
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 915 

Fig. 1. Soil drainage classes in the Kervidy-Naizin catchment, Curmi et al. (1998) 916 

 917 

Fig. 2. Description of soil hydraulic properties and phosphorus content with depth 918 
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 919 

Fig. 3 : Rating curve in Kervidy-Naizin; acceptability bounds derived from 90% prediction 920 

interval (blue line: fitting regression; black dots: 90% prediction interval). Red dots represent 921 

the original discharge measurements used to calibrate the stage-discharge rating curve 922 

(Carluer, 1998). 923 

 924 
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Fig. 4: a) linear regression model linking the reference data and a verification dataset; b) 925 

measurement error as estimated from a repeatability test performed by the lab in charge of 926 

producing reference data (blue line: fitting regression; black dots: 90% prediction interval). 927 

 928 

 929 

Fig. 5: Example of an empirical concentration – discharge model; acceptability bounds 930 

derived from 90% prediction interval. Red circles represent the SRP measurements. 931 

 932 

 933 

Fig. 6 : a) normalized scores; b) weighting function 934 
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 38 

Fig. 7: Acceptability limits for daily discharge (a) and SRP load (b). Blue lines represent best estimates; black lines represent the acceptability 1 

limits. Storm loads acceptability limits are represented by vertical blue lines. And example of 50 model runs simulating discharge (c) and 2 

daily load (d). Black vertical lines represent the starting and ending dates for each season (table 2).  3 
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 1 

 2 

Fig. 8: Normalized score for daily discharge (a), baseflow SRP load (b) and storm SRP load 3 

(c). 4 

 5 
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 1 

Fig. 9: Median and 95% credibility interval for daily discharge (a), SRP load (b) and SRP 2 

concentration (c). Red circles represent observational data. 3 
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