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Abstract 9 

We developed a parsimonious topography-based hydrologic model coupled with a soil 10 

biogeochemistry sub-model in order to improve understanding and prediction of Soluble 11 

Reactive Phosphorus (SRP) transfer in agricultural headwater catchments. The model 12 

structure aims to capture the dominant hydrological and biogeochemical processes identified 13 

from multiscale observations in a research catchment (Kervidy-Naizin, 5 km²). Groundwater 14 

fluctuations, responsible for the connection of soil SRP production zones to the stream, were 15 

simulated with a fully-distributed hydrologic model at 20 m resolution. The spatial variability 16 

of the soil phosphorus status and the temporal variability of soil moisture and temperature, 17 

which had previously been identified as key controlling factor of SRP solubilisation in soils, 18 

were included as part of an empirical soil biogeochemistry sub-model. The modelling 19 

approach included an analysis of the information contained in the calibration data and 20 

propagation of uncertainty in model predictions using a GLUE “limits of acceptability” 21 

framework. Overall, the model appeared to perform well given the uncertainty in the 22 

observational data, with a Nash-Sutcliffe efficiency on daily SRP loads between 0.1 and 0.8 23 

for acceptable models. The role of hydrological connectivity via groundwater fluctuation, and 24 

the role of increased SRP solubilisation following dry/hot periods were captured well. We 25 

conclude that in the absence of near continuous monitoring, the amount of information 26 

contained in the data is limited hence parsimonious models are more relevant than highly 27 

parameterised models. An analysis of uncertainty in the data is recommended for model 28 

calibration in order to provide reliable predictions.  29 
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1 Introduction 1 

Excessive phosphorus (P) concentrations in freshwater bodies result in increased 2 

eutrophication risk worldwide (Carpenter et al., 1998; Schindler et al., 2008). Eutrophication 3 

restricts economic use of water and poses a serious hazard to ecosystems and humans  4 

(Serrano et al., 2015). In western countries, reduction of point source P emissions in the last 5 

two decades has resulted in a proportionally increasing contribution of diffuse sources, mainly 6 

from agricultural origin (Alexander et al., 2008; Grizzetti et al., 2012; Dupas et al., 2015a).  7 

Of particular concern are dissolved P forms, often measured as Soluble Reactive Phosphorus 8 

(SRP), because they are highly bioavailable and therefore a likely contributor to 9 

eutrophication. 10 

To reduce SRP transfer from agricultural soils it is important to identify the spatial origin of P 11 

sources in agricultural landscapes, the biogeochemical mechanisms causing SRP 12 

solubilisation in soils and the dominant transfer pathways, as well as the potential P resorption 13 

during transit. Research catchments provide useful data to investigate SRP transport 14 

mechanisms: typically, the temporal variations in water quality parameters at the outlet, 15 

together with hydroclimatic variables, are investigated to infer spatial origin and dominant 16 

transfer pathways of SRP (Haygarth et al., 2012; Outram et al., 2014; Dupas et al., 2015b; 17 

Mellander et al., 2015; Perks et al., 2015).  Hypotheses drawn from analysis of water quality 18 

time series can be further investigated through hillslope monitoring and/or laboratory 19 

experiments (Heathwaite and Dils, 2000; Siwek et al., 2013; Dupas et al., 2015c). When 20 

dominant processes are considered reasonably known, it is possible to develop computer 21 

models, for two main purposes: first, to validate scientific conceptual models, by testing 22 

whether model predictions can produce reasonable simulations compared to observations. Of 23 

particular interest is the possibility to test the capability of a computer model to upscale P 24 

processes observed at fine spatial resolution (soil column, hillslope) to a whole catchment. 25 

Second, if the models survive such validation tests, then they can be useful tools to simulate 26 

the response of a catchment system to a future perturbation such as changes in agricultural 27 

management and climate changes. 28 

However, process-based P models generally perform poorly compared to, for example, 29 

nitrogen models (Wade et al., 2002; Dean et al., 2009; Jackson-Blake et al., 2015a). This is of 30 

major concern because poor model performance suggests poor knowledge of dominant 31 

processes at the catchment scale, and poor reliability of the modelling tools used to support 32 



 3 

management. The origin of poor model performance might be conceptual misrepresentations, 1 

structural imperfection, calibration problems, irrelevant model evaluation criteria and 2 

difficulties in properly assessing the information content of the available data when it is 3 

subject to epistemic error. All five causes of poor model performance are intertwined, e.g. 4 

model calibration strategy depends on model performance evaluation criteria, which depend 5 

on the way the information contained in the observation data is assessed (Beven and Smith, 6 

2015).  7 

A key issue in environmental modelling is the level of complexity one should seek to 8 

incorporate in a model structure. Several existing P transfer models, such as INCA (Wade et 9 

al., 2002), SWAT (Arnold et al., 1998) and HYPE (Lindstrom et al., 2010) seek to simulate 10 

many processes, with the view that complex models are necessary to understand processes 11 

and to predict the likely consequences of land-use or climate changes. However, these 12 

complex models include many parameters that need to be calibrated, while the amount of data 13 

available for calibration is often low. An imbalance between calibration requirement and the 14 

amount of available observation data can lead to equifinality issues, i.e. when many model 15 

structures or parameter sets lead to acceptable simulation results (Beven, 2006). A 16 

consequence of equifinality is the risk of unreliable prediction when an “optimal” set of 17 

parameters is used (Kirchner, 2006), and large uncertainty intervals when Monte Carlo 18 

simulations are performed (Dean et al., 2009).  In this situation, it will be worth exploring 19 

parsimonious models that aim to capture the dominant hydrological and biogeochemical 20 

processes controlling SRP transfer in agricultural catchment. For example, Hahn et al. (2013) 21 

used a soil-type based rainfall-runoff model (Lazzarotto et al., 2006) combined with an 22 

empirical model of soil SRP release derived from rainfall simulation experiments over soils 23 

with different P content and manure application level/timing (Hahn et al., 2012) to simulate 24 

daily SRP load from critical sources areas. 25 

A second key issue, linked to the question of model complexity, concerns model calibration 26 

and evaluation. Both calibration and evaluation require assessing the fit of model outputs with 27 

observation data. However, observation data are generally not directly comparable with model 28 

outputs, because of incommensurability issues and/or because they contain errors (Beven, 29 

2006; 2009). Typically, predicted daily concentrations and/or loads are evaluated against data 30 

from grab samples collected on a daily or weekly basis. The information content of these data 31 

must be carefully evaluated to propagate uncertainty in the data into model predictions 32 
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(Krueger et al., 2012). Uncertainty in grab sample data might stem from i) sampling 1 

frequency problems and ii) measurement problems (Lloyd et al., 2015). Grab sample data 2 

represent a snapshot of the concentration at a given time of the day, which can differ from the 3 

flow weighted mean daily concentration (McMillan et al. 2012), and a specific point in the 4 

stream cross-section, which can differ from the cross section mean concentration (Rode and 5 

Suhr, 2007). This difference between observation data and simulation output can be large 6 

during storm events in small agricultural catchments, as P concentrations can vary by several 7 

orders of magnitudes during the same day (Heathwaite and Dils, 2000; Sharpley et al., 2008). 8 

Model evaluation can be severely penalised by this difference, because many popular 9 

evaluation criteria such as the Nash-Sutcliffe efficiency (NSE) are sensitive to extreme values 10 

and errors in timing (Moriasi et al.,2007). During baseflow periods, it is more likely that grab 11 

sample data are comparable to flow-weighted mean daily concentrations, as concentrations 12 

vary little during the day and they are usually low in the absence of point sources. However, 13 

measurement errors are expected to occur at low concentrations, either due to too long storage 14 

times or laboratory imprecision when concentrations come close to detection/quantification 15 

limits (Jarvie et al., 2002; Moore and Locke, 2013). Uncertainty in the data can also relate to 16 

discharge measurement and input data (e.g. maps of soil P content and rainfall data). In this 17 

paper we strive to identify and quantify the different sources of uncertainty in the data when 18 

the required quality check tests have been performed. A Generalised Likelihood Uncertainty 19 

Estimation (GLUE) “limits of acceptability” approach (Beven, 2006; Beven and Smith, 2015) 20 

is used to calibrate/evaluate the model.  21 

This paper presents a dominant-process model that couples a topography-based hydrologic 22 

model with a soil biogeochemistry sub-model able to simulate daily discharge and SRP loads. 23 

The dominant processes included in the hydrologic and soil biogeochemistry sub-models have 24 

been identified in previous analyses of multiscale observational data, which have 25 

demonstrated on the one hand the control of groundwater fluctuation on connecting soil SRP 26 

production zones to the stream (Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015b; 27 

2015d; Mellander et al., 2015), and on the other hand the role of antecedent soil moisture and 28 

temperature conditions on SRP solubilisation in soils (Turner and Haygarth, 2001; Blackwell 29 

et al., 2009; Dupas et al., 2015c). Model development and application was performed in the 30 

Kervidy-Naizin catchment in western France with the objectives of: i) testing if the model 31 

was capable of capturing daily variation of SRP load, thus confirming hypotheses on 32 

dominant processes; ii) develop a methodology to analyse and propagate uncertainty in the 33 
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data into model prediction using a “limits of acceptability” approach. Model development and 1 

analysis of uncertainty in the data are interlinked in this approach. 2 

2 Material and methods 3 

2.1 Study catchment 4 

2.1.1 Site description 5 

Kervidy–Naizin is a small (4.94 km²) agricultural catchment located in central Brittany, 6 

Western France (48°N, 3°W). It belongs to the AgrHyS environmental research observatory 7 

(http://www6.inra.fr/ore_agrhys_eng), which studies the impact of agricultural activities and 8 

climate change on water quality (Molenat et al., 2008; Aubert et al., 2013; Salmon-Monviola 9 

et al., 2013; Humbert et al., 2014). The catchment (Fig. 1) is drained by a stream of second 10 

Strahler order, which generally dries up in August and September. The climate is temperate 11 

oceanic, with mean ± standard deviations of annual cumulative precipitation and specific 12 

discharge of 854 ± 179 mm and 290 ± 106 mm, respectively, from 2000 to 2014. Mean 13 

annual ± standard deviation of temperature is 11.2 ± 0.6°C. Elevation ranges from 93 to 135 14 

m above sea level. Topography is gentle, with maximum slopes not exceeding 5%. The 15 

bedrock consists of impervious, locally fractured Brioverian schists and is capped by several 16 

metres of unconsolidated weathered material and silty, loamy soils. The hydrological 17 

behaviour is dominated by the development of a water table that varies seasonally along the 18 

hillslope. In the upland domain, consisting of well drained soils, the water table remains 19 

below the soil surface throughout the year, varying in depth from 1 to > 8 m. In the wetland 20 

domain, developed near the stream and consisting of hydromorphic soils, the water table is 21 

shallower, remaining near the soil surface generally from October to April each year. The 22 

land use is mostly agriculture, specifically arable crops and confined animal production (dairy 23 

cows and pigs). A farm survey conducted in 2013 led to the following land use subdivisions: 24 

35% cereal crops, 36% maize, 16% grassland and 13% other crops (rape seed, vegetables). 25 

Animal density was estimated as high as 13 livestock units ha
-1

 in 2010. Estimated soil P 26 

surplus was 13.1 kg P ha
-1

 yr
-1

 (Dupas et al., 2015b) and soil extractable P in 2013 (Olsen et 27 

al., 1954) was 59 ± 31 mg P kg
-1

 (n = 89 samples). A survey targeting riparian areas 28 

highlighted the legacy of high soil P content in these currently unfertilized areas (Dupas et al., 29 

2015c). No point source emissions were recorded but scattered dwellings with septic tanks 30 

were present in the catchment. 31 
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2.1.2 Hydroclimatic and chemical monitoring 1 

Kervidy-Naizin was equipped with a weather station (Cimel Enerco 516i) located 1.1 km 2 

from the catchment outlet. It recorded hourly precipitation, air and soil temperatures, air 3 

humidity, global radiation, wind direction and speed, and estimates Penman 4 

evapotranspiration. Stream discharge was estimated at the outlet with a rating curve and stage 5 

measurements from a float-operator sensor (Thalimèdes OTT) upstream of a rectangular weir. 6 

To record both seasonal and within storm dynamics in P concentration, two monitoring 7 

strategies complemented each other from October 2013 to August 2015: a daily manual grab 8 

sampling at approximately the same time (between 16:00 – 18:00 local time) and automatic 9 

high frequency sampling during 14 storm events (autosampler ISCO 6712 Full-Size Portable 10 

Sampler, 24 one litre bottles filled every 30 min). The water samples were filtered on-site, 11 

immediately after grab sampling and after 1-2 days in the case of autosampling. They were 12 

analysed for SRP (ISO 15681) within a fortnight. To assess uncertainty in daily SRP 13 

concentration related to sampling time, storage and measurement errors, a second grab sample 14 

was taken at a different time of the day (between 11:00 – 15:00 local time) in 36 instances 15 

during the study period. The second sample was analysed within 24h with the same method; 16 

this second dataset is referred to as verification dataset, as opposed to the reference dataset. 17 

Among the 36 pairs of comparable daily samples, 12 were taken during storm events and 24 18 

during baseflow periods. To assess uncertainty in high frequency SRP concentration during 19 

storm events due to delayed filtration of autosampler bottles, 5 grab samples were taken 20 

during the course of 4 distinct storms and were filtered immediately. The same lab procedure 21 

was used to analyse SRP. 22 

2.1.3 Identification of dominant processes from multiscale observations 23 

Observations in the Kervidy-Naizin catchment have highlighted that the temporal variability 24 

in stream SRP concentrations could not be related to the calendar of agricultural practices, but 25 

rather to hydrological and biogeochemical processes (Dupas et al., 2015b). The primary 26 

control of hydrology on SRP transfer has also been evidenced in several other small 27 

agricultural catchments (e.g. Haygarth et al, 2012; Jordan et al., 2012; Mellander et al., 2015). 28 

In the Kervidy-Naizin catchment, groundwater fluctuations in valley bottom areas was 29 

identified as the main driving factor of SRP transfer, through the hydrological connectivity it 30 

creates when it intercepts shallow soil layers (Dupas et al., 2015b).  31 
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In-situ monitoring of soil pore water at 4 sites (15 cm and 50 cm depths) in the Kervidy-1 

Naizin catchment has shown that mean SRP concentration in soils was a linear function of 2 

Olsen P (Olsen et al., 1954). This reflects current knowledge that a soil P test, or alternatively 3 

estimation of a degree of P saturation, can be used to assess solubilisation in soils 4 

(Beauchemin and Simard, 1999; McDowell et al., 2002; Schoumans et al., 2015). This linear 5 

relationship derived from the data contrasts however with other studies, where threshold 6 

values above which SRP solubilisation increases greatly have been identified (Heckrath et al., 7 

1995; Maguire et al., 2002).  8 

Soluble Reactive Phosphorus solubilisation in soil varies seasonally according to antecedent 9 

conditions of temperature and soil moisture. Dry and/or hot conditions are favourable to 10 

accumulation of mobile P forms in soils, while water saturated conditions lead to their 11 

flushing (Turner et al., 2001; Blackwell et al., 2009; Dupas et al., 2015c).  12 

2.2 Description of the Topography-based Nutrient Transfer and 13 

Transformation – Phosphorus model (TNT2-P) 14 

TNT2 was originally developed as a process-based and spatially explicit model simulating 15 

water and nitrogen fluxes at a daily time step (Beaujouan et al., 2002) in meso-scale 16 

catchments (< 50 km
2
). TNT2-N has been widely used for operational objectives, to test the 17 

effect of mitigation options proposed by local stakeholders or public policy-makers (Moreau 18 

et al., 2012; Durand et al., 2015), on nitrate fluxes and concentrations in rivers.  19 

TNT2-P uses a modified version of the hydrological sub-model in TNT2-N, to which a P 20 

biogeochemistry sub-model was added to simulate SRP solubilisation in soils. 21 

2.2.1 Hydrological sub-model 22 

The assumptions in the hydrological sub-model are derived from TOPMODEL which has 23 

previously been applied to the Naizin catchment (Bruneau et al., 1995; Franks et al., 1998): 1) 24 

the effective hydraulic gradient of the saturated zone is approximated by the local topographic 25 

surface gradient (tan β). It is calculated in each cell of a Digital Elevation Model (DEM) at the 26 

beginning of the simulation; 2) the effective downslope transmissivity (parameter T) of the 27 

soil profile in each cell of the DEM is a function of the soil moisture deficit (Sd). Hydraulic 28 

conductivity decreases exponentially with depth (parameter m, Fig. 2). Hence water fluxes (q) 29 

are computed as: 30 
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         (1) 1 

Based on these assumptions, TNT2 computes an explicit cell-to-cell routing of fluxes, using a 2 

D8 algorithm.  3 

To simulate SRP fluxes, the only modification to the hydrological sub-model aimed to 4 

compute water fluxes from each soil layer by integrating [1] between the maximum depth of 5 

the soil layer considered and: 6 

- estimated groundwater level, if the groundwater table is within the soil layer 7 

considered 8 

or  9 

- the minimum depth of the soil layer considered, if the groundwater table above the 10 

soil layer considered 11 

In this application of the TNT2-P model, 5 soil layers with a thickness of 10 cm are 12 

considered. Hence, 7 flow components are computed in the model: 13 

- overland flow on saturated surface 14 

- 5 sub-surface flow components, for each soil layer 15 

- deep flow, i.e. flow below the 5 soil layers 16 

2.2.2 Soil-P sub-model 17 

The soil-P sub-model is empirically derived from soil pore water monitoring data (Dupas et 18 

al., 2015c), specifically assuming that: 19 

- background SRP concentration in the soil pore water of a given layer is proportional to 20 

soil Olsen P; 21 

- seasonal increases in P availability compared to background conditions are determined 22 

by biogeochemical processes, controlled by antecedent temperature and soil moisture. 23 

Data show that SRP availability in the soil pore water increases following periods of 24 

dry and hot conditions (Dupas et al., 2015c). 25 

Hence, SRP transfer is modelled with parameters that describe both mobilisation and transfer 26 

to the stream. A different parameter is used to simulate transfer via overland flow and sub-27 

surface flow. 28 

                                                      (2) 29 
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                                                             (3) 1 

Where               and                  are SRP transfer via overland flow and sub-surface 2 

flow for a given soil layer respectively,            and               are water flows from the 3 

same pathways.                  and                     are coefficients which vary 4 

according to antecedent temperature and soil moisture conditions, such as: 5 

                                       (4) 6 

Where         is either                   or                    , and FT and FS are 7 

temperature and soil moisture factors, respectively. FT and FS are expressed as: 8 

        
                           

  
          (5) 9 

     (
                              

                     
)
  

          (6) 10 

Where T1, T2 and S1 are calibrated coefficients. The antecedent condition time length 11 

consists in a period of i=100 days. Both soil temperature and soil moisture are estimated by 12 

TNT2 soil module (Moreau et al., 2013). Because soil moisture in the deep soil layers can 13 

differ significantly from that of shallow soil layers, two values of FS are calculated for two 14 

soil depth 0-20 cm and 20-50 cm. The temperature factor FT was calculated as an average 15 

value for the entire soil profile 0-50 cm. Contrary to water fluxes, SRP fluxes are not routed 16 

cell-to-cell, because we lacked knowledge of the rate of SRP re-adsorption in downslope 17 

cells, and on the long term fate of re-adsorbed SRP. Hence, all the SRP emitted from each cell 18 

through overland flow and sub-surface flow reaches the stream on the same day. For deep 19 

flow, only the immediate riparian flux is used in determining SRP inputs to the river. 20 

No long-term depletion of the different P pools was modelled, because P export from the 21 

catchment was small compared to the size of soil and sub-soil P pools. 22 

2.2.3 Input data and parameters 23 

Spatial input data include: 24 

- A DEM in raster format. Here, a 20 m resolution DEM was used, hence model 25 

calculations were made in 12348 grid cells covering a 4.94 km
2 

catchment. 26 

- A map of soils with homogeneous hydrological parameter value, in raster format. 27 

Here, two soil classes were considered by differentiating well-drained (86%) and 28 

poorly drained soils (14%) according to Curmi et al. (1998) (Fig. 1). 29 
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- A map of surface Olsen P in raster format and description of decrease in P Olsen with 1 

depth for five soil layers between 0-50 cm. Here, the map of Olsen P in the 0-15 cm 2 

soil layer was obtained from statistical modelling with the rule-based regression 3 

algorithm CUBIST (Quinlan, 1992) using data from 198 soil samples (2013) in an 4 

area of 12 km² encompassing the 4.94 km² catchment (Matos-Moreira et al., 2015).  5 

To describe how P Olsen decreases with depth, land use information was used. In 6 

tilled fields, i.e. all crop rotations including arable crops, Olsen P was assumed to be 7 

constant between 0-30 cm and to decrease linearly with depth between 30-50 cm. In 8 

no-till fields, i.e. permanent pasture and woodland, Olsen P was assumed to decrease 9 

linearly with depth between 0-50 cm. An exponential decrease with depth is more 10 

commonly adopted in untilled land (e.g. Haygarth et al., 1998; Page et al., 2005), but a 11 

specific sampling in currently untilled areas in the Kervidy-Naizin catchment (Dupas 12 

et al., 2015c) has shown that a linear function is more appropriate, probably because 13 

of these areas having been ploughed in the past. 14 

Climate input data include minimum and maximum air temperature, precipitation, potential 15 

evapotranspiration, global radiation on a daily basis. The TNT2 model allows for several 16 

climate zones to be considered, in which case a raster map of climate zone must be provided 17 

to the model. Here, only one climate zone is considered. 18 

In total, the TNT2-P model includes 15 parameters for each soil type, i.e. 30 parameters in 19 

total if two soil drainage classes are considered. To reduce the number of model runs 20 

necessary to explore the parameter space using Monte Carlo simulations, several parameters 21 

were given fixed values, or a constant ratio between the two soil types was set (Table 1). In 22 

the hydrological sub-model, the parameters to vary were identified in a previous sensitivity 23 

analysis (Moreau et al., 2013). In the soil sub-model, all the parameters were varied.  24 

Finally, only 12 parameters were varied independently. Initial parameter ranges for the 25 

hydrological sub-model were based on values from several previous studies in Western 26 

France (Moreau et al., 2013) and those for the soil sub-model were based on a preliminary 27 

manual trial and error procedure. The SRP concentration for deep flow water was based on 28 

actual measurement of SRP in the weathered schist (Dupas et al., 2015c). A constant flux 29 

value for domestic sources was set at the 1% percentile of the daily flux between 2007 and 30 

2013 (Dupas et al., 2015b). 31 
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2.3 Deriving limits of acceptability from data uncertainty assessment 1 

The Monte Carlo based Generalized Likelihood Uncertainty Estimation (GLUE) 2 

methodology has been widely used in hydrology and is described elsewhere (Beven and 3 

Freer, 2001a; Beven, 2006, 2009). Briefly, the rationale of GLUE is that many model 4 

structures and parameter sets can give “acceptable” results, according to one or several 5 

performance measures, due to equifinality. Hence, GLUE considers that all models that give 6 

acceptable results should be used for prediction. A key issue in GLUE is to decide on a 7 

performance threshold to define acceptable models; typically, modellers set a threshold value 8 

of a measure such as the Nash-Sutcliffe Efficiency based on their subjective appreciation of 9 

data uncertainty or on previously used values. To allow for a more explicit justification of the 10 

performance threshold values used, the limits of acceptability approach outlined by Beven 11 

(2006) relies on an assessment of uncertainty in the calibration/evaluation data. According to 12 

this approach, all model realisations that fall within the limits of acceptability are used for 13 

prediction, weighted by a score calculated based on overall performance. 14 

Details on how the limits of acceptability for daily discharge and daily SRP load were derived 15 

from uncertainty assessment of the observational data are presented below. Input data, such as 16 

weather and soil Olsen P data, also contained uncertainty which were not accounted for 17 

explicitly in the limits of acceptability due to a lack of data to quantifying them. 18 

2.3.1 Discharge 19 

Error in discharge measurement data was assessed from the original discharge measurements 20 

used to calibrate the stage-discharge rating curve (Carluer, 1998). The rating curve used in 21 

this study was: 22 

          
       (7) 23 

Where Q is discharge, h is stage reading, h0 is stage reading at zero discharge, a and b are 24 

calibrated coefficients.  Limits of acceptability were defined as the 90% prediction interval of 25 

log-log linear regression (Fig. 3). The acceptability range estimated in this way was ±39% on 26 

average.  This uncertainty interval is in the higher range of values found in other studies, e.g. 27 

Coxon et al. (2015) who found that mean discharge uncertainty was generally between 20% 28 

and 40% in 500 catchments of the United Kingdom. This relatively large uncertainty interval 29 

is due to the fact that it was derived from a prediction interval rather than a confidence 30 

interval (the 90% confidence interval of the log-log linear regression would be 14% of the 31 
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mean discharge value during the study period). This choice of a relatively large acceptability 1 

interval counterbalances the fact that other sources of uncertainty (e.g. uncertainty in rainfall) 2 

were not accounted for in the discharge limits of acceptability. Moreover, the high percentage 3 

often represents a low absolute value because daily discharge was below 2 mm d
-1

 during 4 

78% of the time during the study period. For daily discharge values below 2 mm d
-1

, fixed 5 

acceptability limits were set at the 90% prediction interval for a stage measurement 6 

corresponding to 2 mm d
-1

. 7 

2.3.2 SRP load 8 

Uncertainty in “observed” daily load includes uncertainty in discharge (see 2.3.1.) and 9 

uncertainty in SRP concentration. Uncertainty in daily load was estimated summing up 10 

relative uncertainty assessed for discharge and SRP concentration. Uncertainty in SRP 11 

concentration stems from sampling frequency problems as one grab sample collected on a 12 

specific day is incommensurable with the mean daily concentration or load simulated by the 13 

model. Further, measurement errors exist that include the effect of storage time (Haygarth et 14 

al., 1995). During baseflow periods, measurement error was expected to be the main source of 15 

uncertainty because relative measurement error is large for low concentrations, especially 16 

when sample storage time exceeds 48h (Jarvie et al., 2002), while concentrations vary little. 17 

During storm events, sampling frequency was expected to be the main source of uncertainty 18 

because SRP concentration can vary by one order of magnitude within a few hours. 19 

Therefore, different acceptability limits were set for both flow conditions. We considered 20 

storms as events with > 20 l s
-1 

increase in discharge and the following 24h. 21 

During baseflow periods, the acceptability limits were derived from the 90% prediction 22 

interval of a linear regression model (y = a * x + b) linking pairs of data points sampled on the 23 

same day (reference sample between 16:00-18:00, verification sample between 11:00-15:00) 24 

and analysed independently (within a fortnight for the reference sample and within 1-2 days 25 

for the verification sample). It was assumed that there was no systematic bias between the two 26 

datasets due to different sampling time. The reference SRP concentrations were on average 27 

13% lower than the verification value but this difference was not statistically significant 28 

(Mann-Whitney Rank Sum Test, p > 0.05). Hence, the expected underestimation of SRP 29 

concentration due to long sample storage appears to be overshadowed by other sources of 30 

uncertainty such as variability in SRP concentration during the day of sampling or analytical 31 

imprecision at low concentrations. This method encompasses all various sources of 32 
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uncertainty, which results in prediction intervals much wider than what would result from a 1 

mere repeatability test: at the median concentration (0.02 mg l
-1

), estimated prediction interval 2 

was 166% with this method versus 57% with a repeatability test (Fig. 4). As for discharge 3 

estimates, the high percentage represents a small absolute value (0.03 mg l
-1

) during baseflow 4 

periods. 5 

During storm events, acceptability limits were derived from the 90% prediction interval of 6 

concentration discharge empirical models C= a*Q^b using high frequency autosampler data. 7 

An empirical model was used to fit to each storm event monitored separately and a delay term 8 

was introduced manually in the empirical model when a time lag existed between 9 

concentration and discharge peaks. The empirical models were then applied to extrapolate 10 

concentration estimation during two days at 10 min resolution, for each of the 14 storm events 11 

monitored. Finally the 2-day mean “observed” load was estimated as the mean of 10 min 12 

loads and uncertainty limits were derived from the 90% prediction interval. In model 13 

evaluation, the mean of simulated loads during 2 consecutive days was evaluated against the 14 

2-day mean “observed” load for which prediction intervals have been calculated. A 2-day 15 

acceptability limit enables all the storm events to be covered (Fig. 5 and Supplement). A 2-16 

day aggregation was necessary here because increased SRP load as a response to each storm 17 

event could occur either mainly during the day of the rainfall (if the rainfall occurred early in 18 

the morning) or mainly during the day following the rainfall (if the rainfall occurred late in 19 

the evening), and with the daily resolution of the input data and model simulation, the 20 

information about the timing of the rainfall event was not available to the model. 21 

When comparing autosampler data with data from immediately filtered samples, the ratio 22 

obtained had the range 1-1.6 (mean = 1.3), hence autosampler data were underestimates of the 23 

true concentration, arguably through adsorption or biological consumption. We used the mean 24 

ratio to correct all storm uncertainty intervals by 30% and the range values to extend the 25 

upper limit by 60%.  During days with a storm event not monitored at high frequency with an 26 

autosampler, we considered that the grab sample data did not contain enough information to 27 

derive an acceptability interval for daily SRP load; hence simulated load was not evaluated 28 

for events not monitored at high frequency. 29 

2.3.3 Model runs and selection of acceptable models 30 

To explore the parameter space, 20,000 Monte Carlo realisations were performed to simulate 31 

daily discharge and SRP load during the water years 2013-2014 and 2014-2015. The number 32 
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of Monte Carlo realisations was constrained by the computation time required to run a 1 

spatially explicit model in this catchment but similarity of results were found over both 2 

15,000 and 20,000 runs. A 7-month initialisation period was run to reduce the impact of initial 3 

conditions on simulated results during the study period, from 1 October 2013 to 31 July 2015. 4 

To be considered acceptable, model runs must fall within the acceptability limits defined in 5 

2.3.1 and 2.3.2. More specifically, 100% of simulated daily discharge, 100% of simulated 6 

baseflow SRP load and 100% of simulated storm SRP load had to fall within the acceptability 7 

limits. Thus, 572 acceptability tests were performed for discharge, 378 for baseflow SRP load 8 

and 14 for storm SRP loads, i.e. 964 evaluation criteria.  9 

To evaluate the model performance in more detail, normalized scores were calculated during 10 

6 periods (Table 2). To calculate the scores, a difference was calculated between each of the 11 

daily simulated discharge, baseflow SRP load and 2-day storm SRP loads and the 12 

corresponding observation. This difference was then normalized by the width of the 13 

acceptability limit defined for that day, so the score has a value of 0 in the case of a perfect 14 

match with observation, -1 at the lower limit and +1 at the upper limit (Fig. 6a).  Finally, the 15 

median of this ratio was calculated for each of the 6 periods to investigate whether the model 16 

tended to underestimate or overestimate discharge and loads at different moments of the year 17 

and between the two years. 18 

Model runs were successively evaluated for discharge, baseflow SRP load and storm SRP 19 

load. To use the models for prediction, each accepted model was given a likelihood weight 20 

according to how well it has performed for each of the 964 evaluation criteria. Here the 21 

statistical deviation weight was used (truncated to 90% prediction interval) (Fig. 5b). 22 

Calculated weights were then averaged for discharge, baseflow SRP load and storm SRP load 23 

respectively and the final likelihood was calculated as the product of all three averages. 24 

The model’s sensitivity to each hydrological and soil parameter was performed with a 25 

Hornberger-Spear-Young Generalised Sensitivity Analysis (HSY GSA, Whitehead and 26 

Young, 1979; Hornberger and Spear, 1981). For each evaluation criteria (daily discharge, 27 

daily baseflow SRP load, 2-day storm SRP load), the model runs were split into acceptable 28 

and non-acceptable runs according to the above-mentioned acceptability limits.  Then a 29 

Kolmogorov-Smirnov test is performed to assess whether the distribution of each of the three 30 

evaluation criteria differ between acceptable and non-acceptable models for each parameter. 31 

Because the Kolmogorov-Smirnov test might suggest that small differences in distribution are 32 
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very significant when there are larger number of runs, this method is a qualitative guide to 1 

relative sensitivity. The p value of the Kolmogorov-Smirnov test is used to discriminate 2 

whether the model is critically sensitive (p<0.01 ‘***’), importantly sensitive (p<0.1 ‘*’) or 3 

insignificantly sensitive (p>0.1 ‘.’) to each parameter and for each of the three evaluation 4 

criteria.  5 

In addition to acceptability limit approach, a NSE (Moriasi et al., 2007) was calculated for 6 

daily discharge and daily load and concentration to allow comparison with other modelling 7 

studies where is has been taken as an evaluation criteria. 8 

3 Results 9 

3.1 Presentation of observation data and calculation of acceptability limits 10 

The two water years studied were highly contrasted in terms of hydrology and SRP loads. 11 

Water year 2013-2014 was the wettest in the last 10 years, with cumulative rainfall 1289 mm 12 

and cumulative runoff 716 mm. Water year 2014-2015 was an average year (5
th

 wettest in the 13 

last 10 years), with cumulative rainfall 677 mm and cumulative runoff 383 mm. Annual SRP 14 

load was 0.35 kg P ha
-1

 yr
-1 

in 2013-2014 and 0.17 kg P ha
-1

 yr
-1 

in 2014-2015, i.e. a 15 

difference 10% higher than that of discharge. Observed mean SRP concentration during the 16 

study period was 0.024 mg l
-1

. 17 

Fig. 7 a and b show acceptability limits for daily discharge and daily SRP loads. Note that 18 

acceptability limits for discharge were calculated every day, while acceptability limits for 19 

SRP load was calculated on a daily basis during baseflow periods and on a 2-day basis during 20 

storm events monitored at high frequency. No SRP load acceptability limit was calculated 21 

during storm events when no high frequency autosampler data was available. 22 

3.2 Model evaluation 23 

First, model runs were evaluated against acceptability limits defined for discharge (Fig. 7c). 24 

5,479/20,000 models fulfilled the selection criterion for discharge, i.e. they had 100% of 25 

simulated daily discharge within the acceptability limits. The NSE estimated for  these models 26 

ranged from 0.75 to 0.93. The normalized scores calculated seasonally (Fig. 8a) show that 27 

simulated discharge is often overestimated in autumn and spring, and underestimated in 28 

winter. 29 
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Then, model runs were evaluated against acceptability limits defined for SRP loads (Fig. 7d ). 1 

During baseflow periods, 4,964/20,000 models fulfilled the selection criterion for SRP loads, 2 

i.e. they had 100% of simulated daily SRP load within the acceptability limits. Among them, 3 

1,595 also fulfilled the previous selection criterion for discharge. Normalized scores for 4 

baseflow SRP load showed the same trend as for discharge (Fig. 8b), i.e. overestimation in 5 

autumn and spring, and underestimation in winter. During storm events, only 7 models 6 

fulfilled the selection criterion for SRP loads, i.e. they had 14/14 of simulated 2-day storm 7 

SRP loads within the acceptability limits, but none of them also fulfilled the selection criteria 8 

for discharge and baseflow SRP loads. Two storm events were particularly difficult to 9 

simulate (number 2 and number 9, Fig. 8c), probably because their acceptability interval was 10 

very narrow as a result of only small changes in discharge and concentration. To obtain a 11 

reasonable number of acceptable models, we relaxed the selection criterion so that the 12 

acceptable models had to simulate 12/14 of storm loads within the acceptability limits, in 13 

addition to the selection criteria defined for discharge and baseflow SRP load: 539 models 14 

were then accepted. Estimated NSE of these 539 models ranged from 0.09 to 0.81 for daily 15 

load and from negative values to 0.53 for daily concentrations (this includes all data from the 16 

regular sampling).  17 

3.3 Sensitivity analysis and prediction results 18 

According to the HSA generalised sensitivity analysis, simulated discharge was critically 19 

sensitive to 10 out of the 12 hydrological parameters varied. Simulated SRP load was 20 

critically sensitive to the sub-surface and overland flow parameters during baseflow periods 21 

and to the overland flow parameter during storm events. During baseflow periods, SRP load 22 

was insignificantly sensitive to the parameter associated with deep flow load. Both baseflow 23 

and storm SRP loads were critically sensitive to the parameter related to soil moisture and soil 24 

temperature dependent SRP solubilisation (S1, T1 and T2), in addition to respectively 12 and 25 

8 hydrological parameters. This identification of sensitive parameters can be used in future 26 

application of the TNT2-P model in the study catchment, as suggested by Whitehead and 27 

Hornberger (1984) and Wade et al. (2002b). 28 

Figure 9 shows the daily discharge, SRP load and concentration as simulated by the 29 

acceptable models. Simulated SRP load during the water year 2013-2014 ranged 0.81 – 3.25 30 

kg P ha
-1

 yr
-1

 (median = 1.68 kg P ha
-1

 yr
-1

); simulated SRP load during the water year 2014-31 

2015 ranged 0.14 – 0.73 kg P ha
-1

 yr
-1

 (median = 0.34 kg P ha
-1

 yr
-1

). Best estimate of SRP 32 
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load according to observation data was 0.35 kg P ha
-1

 yr
-1

 in 2013-2014 and 0.17 kg P ha
-1

 yr
-1

 1 

in 2014-2015. According to the model, 49 – 55% (median = 52%) of water discharge and 66 – 2 

70% (median = 67%) of SRP load occurred during storm events. Mean SRP concentrations 3 

during the two water years ranged 0.014 – 0.044 mg l
-1

 (median = 0.029 mg l
-1

), while mean 4 

observed SRP concentration was 0.024 mg l
-1

. 5 

4 Discussion 6 

4.1 Role of hydrology and biogeochemistry in determining SRP transfer 7 

The fairly good performance of TNT2-P at simulating SRP loads provides further support that 8 

the hydrological and biogeochemical processes included into the model are dominant 9 

controlling factors in the Kervidy-Naizin catchment (i.e. the modelling hypotheses could not 10 

be rejected based on this study). The primary control of hydrology in controlling connectivity 11 

between soils and streams has been highlighted by many studies analysing water quality time 12 

series at the outlet of agricultural catchments (Haygarth et al., 2012; Jordan et al., 2012; 13 

Dupas et al., 2015c; Mellander et al., 2015). This modelling exercise also provides further 14 

support that SRP solubility was determined by the soil P Olsen content and could vary 15 

according to temperature and moisture conditions. The underlying processes have not been 16 

identified precisely in the Kervidy-Naizin catchment: independent laboratory experiments 17 

have shown that microbial cell lysis resulting from alternating dry and water saturated periods 18 

in the soil could be the cause of increased SRP mobility (Turner and Haygarth, 2001; 19 

Blackwell et al., 2009). This could explain the moisture dependence of SRP solubility in the 20 

model. Furthermore, net mineralisation of soil organic phosphorus could explain the 21 

temperature dependence of SRP solubility in the model. These two hypotheses may explain 22 

increased SRP solubility in soils in periods of dry and hot conditions and will be further 23 

explored by incubation experiment with soils from the Kervidy-Naizin catchments. 24 

4.2 Potential improvements to the model structure according to modelling 25 

purpose 26 

The TNT2-P model was designed to test hypotheses about dominant processes and for this 27 

purpose, a parsimonious model structure was chosen to include only the processes which were 28 

to be tested. This parsimonious model structure might contain some conceptual 29 

misrepresentations due to oversimplification, and it might not include all the processes 30 
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necessary for the purpose of evaluating management scenarios. This section discusses 1 

whether the simplifications made are acceptable in the context of different catchment types, 2 

and to which conditions the model could be made more complex by including additional 3 

routines for the purpose of evaluating management scenarios. 4 

From a conceptual point of view, the lack of cell-to-cell routing of SRP fluxes might result in 5 

erroneous results in some contexts. The fact that all the SRP emitted from each cell through 6 

overland flow and sub-surface flow reaches the stream on the same day is acceptable for the 7 

catchment studied because groundwater interception of shallow soil layers occurs in the 8 

riparian zone only, hence the signal of SRP mobilisation in these soils is generally transmitted 9 

to the stream (Dupas et al., 2015c). This simplification would not be acceptable in catchments 10 

where soil-groundwater interactions are taking place throughout the landscape, e.g. due to 11 

topographic depressions or poorly drained soils. In the latter type of catchment, transmission 12 

of the SRP mobilisation signal to the stream is more complex to comprehend (Haygarth et al., 13 

2012), hence a more complex model structure would be required. 14 

The reason for this simplification was that we lacked knowledge of SRP re-adsorption in 15 

downslope cells (or on suspended sediments in the stream network) and on the long-term fate 16 

of re-adsorbed SRP. For a more physically realistic representation of processes, it is likely 17 

that an explicit representation of flow velocities and pathways would be necessary, along with 18 

an explicit representation of several soil P pools. However, such an explicit representation of 19 

processes contradicts the idea of a parsimonious model, which was adopted here for the 20 

purpose of identifying dominant processes. In this respect, TNT2-P is an aggregative model 21 

rather than a fully distributed model although it is based on a fully distributed hydrological 22 

model (Beaujouan et al., 2002). The current spatial distribution allows finer representation of 23 

soil-groundwater interactions (i.e. the extend of the riparian wetland area) than semi-24 

distributed models such as SWAT (Arnold et al., 1998), INCA-P (Wade et al., 2002) and 25 

HYPE (Lindstrom et al., 2010) but at higher computation cost. It would be interesting to test 26 

to which extent moving from an aggregative model with fully distributed information to a 27 

semi-distributed model would degrade the model performance and in the same time reduce 28 

computation cost.  This could be achieved by grouping cells according to a hydrological 29 

similarity criterion like in  Dynamic Topmodel (Beven and Freer, 2001b; Metcalfe et al., 30 

2015) and do the same for similarity in soil P content. 31 
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If reducing the number of calculation units proved to reduce computation cost without 1 

degrading quality of prediction, it would be possible to include more parameters in the model, 2 

for example to simulate SRP re-absorption in downslope cells or include routines to simulate 3 

the evolution of soil P content under different management scenarios (Vadas et al., 2011; 4 

2012), and still perform a Monte-Carlo based analysis of uncertainty. The question of 5 

coupling or not such a soil P routine with the current TNT2-P model will depend on available 6 

data and on the length of available time series: studying the evolution of the soil P content 7 

requires at least a decade of soil observation data (Ringeval et al., 2014) and probably a 8 

longer period of stream data to account for the time delay for a perturbation in the catchment 9 

to become visible in the stream (Wall et al., 2013). Thus, the two years of daily stream SRP in 10 

the Kervidy-Naizin catchment are not enough to build a coupled soil-hydrology model with 11 

an elaborate soil P routine. Therefore, as things stand, it is more reasonable to generate new 12 

soil P Olsen maps with a separate model such as the APLE model (Vadas et al., 2012; 13 

Benskin et al., 2014) or the ‘soil P decline’ model used by Wall et al. (2013), and use these 14 

maps as input to TNT2-P. 15 

Because the current model can simulate response to rainfall, soil moisture and temperature, it 16 

could be used to test the effect of climate scenarios on SRP transfer. In Western France, and 17 

more generally in Western Europe, the climate for the next few decades is expected to consist 18 

of hotter, drier summers and warmer, wetter winter (Jacob et al., 2007; Macleod et al., 2012; 19 

Salmon-Monviola et al., 2013) with increased frequency of high intensity rainfall events 20 

(Dequé 2007). In these conditions, SRP concentrations and load will seemingly increase 21 

compared to today’s climate as a result of both an increase in SRP solubility in soil due to 22 

higher temperature and more severe drought and an increase in transfer due to wetter winter 23 

and more frequent high intensity rainfall events. TNT2-P could be used to confirm and 24 

quantify the expected increase in SRP transfer from diffuse sources in future climate 25 

conditions. 26 

4.3 Improving information content in the data 27 

Despite relatively large uncertainty in the data used in this study, it was possible to build a 28 

parsimonious catchment model of SRP transfer for the purpose of testing hypotheses about 29 

dominant processes, namely the role of hydrology in controlling connectivity between soils 30 

and streams and the role of temperature and moisture conditions in controlling soil SRP 31 

solubilisation. However, the large uncertainties in the calibration data lead to large prediction 32 
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uncertainty. For example, the SRP load estimated by the behavioural models from 2013 to 1 

2015 ranged from 0.48 to 1.99 kg P ha
-1

 yr
-1

; hence the width of the credibility interval was 2 

150% of the median (1 kg P ha
-1

 yr
-1

). Similarly, the mean SRP concentration estimated by 3 

the behavioural models from 2013 to 2015 ranged from 0.014 to 0.044 mg l
-1

; hence the width 4 

of the credibility interval was 102% of the median (0.029 mg l
-1

). The large uncertainty in the 5 

calibration data, along with a lack of long-term information, also prevents including more 6 

detailed processes in the soil routine. 7 

To reduce uncertainty in prediction and to build more complex models, several options exist 8 

to improve information content in the data. As stated by Jackson-Blake et al. (2015b), “the 9 

key to obtaining a realistic model simulation is ensuring that the natural variability in water 10 

chemistry is well represented by the monitoring data”. The monitoring strategy adopted in the 11 

Kervidy-Naizin catchment should theoretically enable to capture the natural variability in 12 

stream SRP concentration, because sampling took place during two contrasting water years, 13 

during different seasons and at a high frequency during 14 storm events. The analysis of 14 

uncertainty in the data shows that a large part of uncertainty in “observed” SRP concentration 15 

originates from sample storage, both unfiltered between the time of autosampling and manual 16 

filtration and between filtration and analysis. This is due to SRP being non-conservative. 17 

Thus, there is room for improvement in reducing storage time, without increasing further the 18 

monitoring frequency. In this respect, the primary interest of investing in high frequency 19 

bankside analysers would lie in their ability to analyse water samples immediately in addition 20 

to providing near continuous data. Because bankside analysers perform measurements in 21 

relatively homogeneous conditions, unlike the manual and autosampler data for which storage 22 

time of filtered and unfiltered samples vary, a finer quantification of uncertainty in the 23 

measurement data would be possible (e.g. Lloyd et al., 2015). 24 

5 Conclusion 25 

The TNT2-P model was capable of capturing daily variation of SRP loads, thus confirming 26 

the dominant processes identified in previous analyses of observation data in the Kervidy-27 

Naizin catchment. The role of hydrology in controlling connectivity between soils and 28 

streams, and the role of soil Olsen P, soil moisture and temperature in controlling SRP 29 

solubility have been confirmed. The lack of any representation of the short-term effect of 30 

management practices did not seem to penalize the model’s performance. Their long-term 31 

effect on the soil Olsen P could be simulated with an independent model or through an 32 



 21 

additional sub-model if a longer period of data was available to calibrate it. The modelling 1 

approach presented in this paper included an assessment of the information content in the 2 

data, and propagation of uncertainty in the model’s prediction. The information content of the 3 

data was sufficient to explore dominant processes, but the relatively large uncertainty in SRP 4 

concentrations would seemingly limit the possibility for including more detailed processes 5 

into the model. Data from near continuous bankside analyser will probably allow calibrating 6 

more detailed models in the near future. 7 
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Table 1: Initial parameter ranges in the hydrological and soil phosphorus sub models. 1 

 Abbrevi

ation 

Unit Hydrologica

l (H), 

Phosphorus 

model (P) 

Range 

poorly 

drained soils 

(min-max) 

Range well 

drained soils 

(min-max) 

Lateral transmissivity at 

saturation 

T m
2
 d

-1
 H 4-8 -> x1.5 

Exponential decay rate of 

hydraulic conductivity 

with depth 

m m
2
 d

-1
 H 0.02-0.2 0.02-0.2 

Soil depth ho m H 0.3-0.8 -> x1 

Drainage porosity of soil po cm
3
 cm

-

3
 

H 0.1-0.4 -> x1 

Regolith layer thickness h1 m H 5-10 -> x4 

Exponent for evaporation 

limit 

Α - H 8 (fixed) -> x1 

kRC parameter for 

capillary rise 

kRC - H 0.001 (fixed) -> x1 

n parameter for capillarity 

rise 

N - H 2.5 (fixed) -> x1 

Drainage porosity of 

regolith layer 

p1 cm
3
 cm

-

3
 

H 0.01-0.05 -> x1 

Background P release 

coefficient for subsurface 

flow 

Coef SRP 

overland 

- P 0-0.015 -> x1 

Background P release 

coefficient for overland 

flow 

Coef SRP 

sub-surface 

- P 0-0.25 -> x1 

Temperature coefficient 1 T1 - P 5-10 -> x1 

Temperature coefficient 2 T2 - P 2-10 -> x1 
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Soil moisture coefficient S1 - P 0-2 -> x1 

SRP concentration in deep 

flow 

SRP_de

ep 

mg l
-1

 P 0-0.007 -> x1 

 1 

Table 2: Starting and ending dates of periods studied 2 

Name Starting date Ending date 

Autumn 2013 01 October 2013 31 December 2013 

Winter 2014 01 January 2014 31 March 2014 

Spring 2014 01 April 2014 31 July 2014 

Autumn 2014 01 October 2014 31 December 2014 

Winter 2015 01 January 2015 31 March 2015 

Spring 2015 01 April 2015 31 July 2015 

 3 

  4 
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Table 3: Sensitivity analysis of the model to 18 model parameters (insignificant ., important *, 1 

critical ***). Parameters significations are detailed in Table 1. 2 

 3 

 discharge baseflow SRP load storm SRP load 

T (poorly drained soils) . *** *** 

m (poorly drained soils) *** *** *** 

ho (poorly drained soils) *** *** . 

po (poorly drained soils) *** *** *** 

h1 (poorly drained soils) *** *** . 

p1 (poorly drained soils) *** *** *** 

T (well drained soils)  . *** *** 

m (well drained soils)  *** *** *** 

ho (well drained soils)  *** *** . 

po (well drained soils)  *** *** *** 

h1 (well drained soils)  *** *** . 

p1 (well drained soils)  *** *** *** 

Coef_sub-surface . *** . 

Coef_overland . *** *** 

SRP_deep . . . 

S1 . *** *** 

T1 . *** *** 

T2 . *** *** 

 4 

 5 
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 1 

Fig. 1. Soil drainage classes in the Kervidy-Naizin catchment, Curmi et al. (1998) 2 

 3 

Fig. 2. Description of soil hydraulic properties and phosphorus content with depth 4 
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 1 

Fig. 3 : Rating curve in Kervidy-Naizin; acceptability bounds derived from 90% prediction 2 

interval (blue line: fitting regression; black dots: 90% prediction interval). Red dots represent 3 

the original discharge measurements used to calibrate the stage-discharge rating curve 4 

(Carluer, 1998). 5 

 6 



 35 

Fig. 4: a) linear regression model linking the reference data and a verification dataset; b) 1 

measurement error as estimated from a repeatability test performed by the lab in charge of 2 

producing reference data (blue line: fitting regression; black dots: 90% prediction interval). 3 

 4 

 5 

Fig. 5: Example of an empirical concentration – discharge model; acceptability bounds 6 

derived from 90% prediction interval. Red circles represent the SRP measurements. 7 

 8 

 9 

Fig. 6 : a) normalized scores; b) weighting function 10 
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 1 

 2 



 37 

Fig. 7: Acceptability limits for daily discharge (a) and SRP load (b). Blue lines represent best estimates; black lines represent the acceptability 1 

limits. Storm loads acceptability limits are represented by vertical blue lines. And example of 50 model runs simulating discharge (c) and 2 

daily load (d). Black vertical lines represent the starting and ending dates for each season (table 2).  3 



 38 

 1 

 2 

Fig. 8: Normalized score for daily discharge (a), baseflow SRP load (b) and storm SRP load 3 

(c). 4 
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 1 

Fig. 9: Median and 95% credibility interval for daily discharge (a), SRP load (b) and SRP 2 

concentration (c). Red circles represent observational data. 3 
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