
Thanks for your response to the author’s reviews and my own. But in fact I am not really yet in 

agreement with some of the rather quick justifications you have made to the manuscript on the basis of 

points I have raised so I would like these clarifying further please before I accept this for publication. 

These issues are important because if under the ‘limits of acceptability’ the methods are not clear how 

limits are quantified then in some sense they have no value as part of a considered experimental design. 

 

Thank you for reading our manuscript one more time and for your suggestion to improve it. I realise that 

I had not understood properly some of the comments in your previous review, hopefully these 

responses will answer your questions. 

Rémi Dupas  

1) The authors haven’t really justified either the use of using ‘prediction intervals’, nor that the error 

assumptions justify the parameteric approach chosen, on the basis of the observed information they 

have for the rating curve definition. I feel the authors need to deal with these matters better than they 

have done at the moment in formulation of GLUE LoA or discussion. Furthermore there is no clear 

rationale as to why a non-linear transformation in rainfall errors (not analysed) would in fact be a 

surrogate for using this parametric approach having wide uncertainties on the output as some kind of 

counter balance. I do not think that is well considered as written nor does it deal with the potential 

differences that might occur if the rainfall errors were . The same goes again for the discharge-

concentration uncertainty. What is the proof the parameteric ‘prediction interval’ error model used 

relates to the observed error characteristics? – these are both important to get right and/or discuss the 

limitations/assumptions in them being used! 

Response 1:  

 In the previous version of the manuscript we justified the choice of a prediction interval rather 

than a confidence interval based on the fact that some sources of uncertainty were not included 

(rainfall, DEM, etc.) therefore we chose the largest interval among the two possible ones. This 

cannot be fully justified unless we analyse error in rainfall (and I do not have good data to do 

that) and in other sources of error (including those we have not thought about). Now we justify 

our choice more simply by saying that a prediction interval is an interval in which future 

observations will likely fall (whereas a confidence interval is an interval in which the mean of 

repeated observation will likely fall). Because in the TNT2-P model´s evaluation, we want 

observations to fall in the acceptability interval, a prediction interval is more appropriate. 

 

Lines 363-367: “A prediction interval is an interval in which future observations will likely fall, 

while a confidence interval is an interval in which the mean of repeated observation will likely 

fall. Because in the TNT2-P model´s evaluation, we want each observation to fall in the 

acceptability interval (section 2.3.3.), a prediction interval was more appropriate.” 

 



Of course this justification will only convince the reader if he is convinced that using statistical 

models was a good choice, which we justified as best as we can in the second point of this 

response.  

 

 We have added a new discussion paragraph to discuss the drawbacks of using statistical models 

(three statistical models are used to derive acceptability limits: the rating curve, the SRP 

concentration uncertainty during baseflow period and the storm event interpolation model). 

 

Lines 661-671: “Finally, alternative methods to statistical models could be used to derive 

acceptability limits (in this study three statistical models are used: the rating curve, the SRP 

concentration uncertainty during baseflow periods and the storm event interpolation model) 

because statistical models have at least three shortcomings: i) they lump the uncertainty linked 

to the timing of sampling, the immediate or delayed filtration of the samples, the storage time 

and the analytical error; ii) the formula chosen adds error to the already existing measurement 

errors because empirical models are not perfect representation of the system dynamics; iii) they 

assume a parametric distribution and temporally independent errors which are not always 

verified in practice. As an alternative, non-parametric methods could be used, but these 

methods generally require a large number of data points and they are not suitable for 

extrapolation to extreme values.” 

 

 The last criticism in this comment concerns the “What is the proof the parameteric ‘prediction 

interval’ error model used relates to the observed error characteristics”. A detailed response on 

the statistical C-Q model is given in comment 3, but we can already say here that we know that 

the analytical error is an underestimate of the true error in observation (which also includes 

delayed filtration and analysis) and that the statistical model adds some error related to the 

extrapolation.  

2) I don’t understand in the authors response what ‘We disagree that the method suggested here is 

better than ours’ is referring to. For a start I am not sure I stated a method was ‘better’, and secondly it 

is not at all clear what the context of this response is. So I would like that clarifying please. Perhaps it 

relates to 1) above…… but then it talks about discharge-concentration curves. 

Response 2:  

This was a response to the comment “Surely a much more sensible approach…” where it was suggested 

that we should consider analytical uncertainty rather than a C-Q model to assess uncertainty in SRP load 

during storm events (if I understood the comment). 

The response was in two parts: 

 The measurement uncertainty as assessed by the laboratory repetition test is an underestimate 

of the real uncertainty of autosampler data. The real uncertainty includes, in addition to 



analytical uncertainty, the issue of samples not immediately filtered and the effect of sample 

storage. 

 We need a statistical model to extrapolate the concentration data from 12h of measurements to 

a 2-day mean concentration. This model will introduce more error (but this model´s error 

reflects the missing information originating from the fact that autosampler data did not cover 

the 2-day period which we use for evaluation). 

We added the paragraph: 

Lines 403-409: “Two reasons led us to use a statistical model (which also implies the assumption that 

errors are aleatory and temporally independent): i) the measurement uncertainty as assessed by the 

laboratory repetition test was an underestimate of the real uncertainty of autosampler data, because it 

does not include other major sources of error such as delayed filtration and sample decay during 

storage; ii) it was necessary to extrapolate the sub-daily observation to the daily resolution of the 

model. The limits of this choice will be discussed in section 4.3.” 

Concerning SRP concentration uncertainty during baseflow periods, analytical uncertainty is also an 

underestimate of the true uncertainty (because other sources of uncertainty such as timing of the grab 

sampling during the day, or sample storage also play a role), and this was the reason for the use of 

another statistical model. This was already explained in details in the manuscript. 

As acknowledged and discussed in the discussion (see response 1) this choice has several limits which 

we believe will be solved in part with bankside analyser data, for which observation error will be easier 

to evaluate. 

3) I’m sorry but I am not going to let this issue go of how you derive your load concentration 

uncertainties and at least make it clearer to the reader what you are doing because at the moment it 

does not seem consistent or it is certainly not written in a way that makes this year. To be clear from 

what I can read, you have constructed ‘parametric prediction uncertainty limits’ from the rating curve 

information. But then you actually do not use these in any way (as far as I can tell) to construct the load 

uncertainty estimates. You introduce a new model (and a very simple one at that), applied to every 

storm with a manually applied lag and you gain some very wide uncertainty bounds. Now there are good 

reasons why in that case the uncertainties will be large, and particularly if that very simple model is not 

good at describing the dynamics of the discharge-concentration dynamics. If fact as prediction 

uncertainties it could be argued it is significantly increasing what the potential error limits are in the 

observations of load. I understand that you need a ‘model’ (although I can still see other ways of doing 

this) because you wish to extrapolate beyond where you have ISCO samples over days. But that does not 

mean that you should attempt to be clear exactly what is being done, if that simple model is fit for 

purpose, the potential issues of increasing load uncertainty estimates over reasonable values if the 

model is not a description of the system and where you have data if you resampled the expected SRP 

uncertainties and the discharge uncertainties you have already calculated then what does that look like 

for the periods you can do this, that finally be clear that you do not seem to be using the uncertainties 

you have found in discharge to in any way quantify the prediction limits for this simple discharge-



concentration model but instead use standard statistical errors that are yet to be proven. To me this is 

currently not very clear and not necessarily consistent and it needs to be better explained and 

discussed…… 

Response 3:  

 The reason why we used statistical models (one for the baseflow periods, one for the storm 

events) is explained in response 2, and we hope to convince the reader that it was a good choice 

considering the fact that analytical uncertainty is an underestimate of the true uncertainty and 

considering the need of extrapolation to the daily resolution of the model. The limits of this 

choice are now discussed in more details (see response 1). 

 The method to derive load acceptability intervals from the 90% prediction interval of discharge 

and SRP concentration is given in the sentence: “The acceptability limit for daily load was 

estimated summing up relative uncertainty assessed for discharge and SRP concentration (in 

percentage).” 

We also had to “combine” the weights for discharge and SRP concentration, both being derived 

from the statistical model´s error distribution. The method to do this was missing in the 

manuscript, so added the information: 

Line 458-460: “To “combine” the weights derived from the rating curve and the SRP 

concentration statistical models, a kernel density estimate (with Gaussian smoothing kernel) 

was computed to fit 10,000 realisations of the multiplied error models.” 

 One last critic in this comment concerns the fact that if the C-Q models used to extrapolate SRP 

during storm events are bad models, the uncertainty interval will inevitably be large. This is true 

and the reader can make his own opinion on this by looking at the results for each individual 

model in the supplementary material. We have added a paragraph in the discussion to 

acknowledge this and to present the perspective that with a bankside analyser (running since 

April 2016 in this catchment) future work will not require such statistical models because near 

continuous data will be available and characterization of measurement error will be easier (no 

difference in the filtration protocol for grab samples and ISCO samples, no delay before analysis 

and constant analytical error). 

Finally the acceptability intervals for storm event loads are also quite large because we stretched the 

intervals by a factor of 1 -1.6 based on the data we have which show that delayed filtration of 

autosampler data is causing an apparent loss of SRP. 

Lines 424-428: “When comparing autosampler data with data from immediately filtered samples, the 

ratio obtained had the range 1-1.6 (mean = 1.3), hence autosampler data were underestimates of the 

true concentration, arguably through adsorption or biological consumption. We used the mean ratio to 

correct all storm uncertainty intervals by 30% and the range values to extend the upper limit by 60%. “ 

4) Regarding my minor point 1) noted previously the introduction still states ‘In this paper we strive to 

identify and quantify the different sources of uncertainty in the data when the required quality check 



tests have been performed’. Again this needs to be clarified there what the limits of this is in the paper 

(so only discharge and the P data) 

Response 4:  

We have added this precision in the introduction: “discharge and SRP concentration data” 

5) I do not see how the response to my minor point 5 on the application of homogeneous parameters 

across the domain has been answered in the response given.  

Response 5:  

Sorry I had misunderstood this comment. 

For the hydrological parameters, we decided to use two soils classes according to the soil map of Curmi 

et al. (1998) because these authors have measured the hydraulic conductivity for 29 soil cubes in the 

two soil classes and they appeared to be different (see the following figure extracted from Curmi et al. 

1998). 

 

We added the sentence: 

Lines 383-387: “Experimental determination of saturated hydraulic conductivity (29 soil cores) by Curmi 

et al. (1998) showed significantly different values for soils classified as well-drained and poorly-drained 

in the Kervidy-Naizin catchment. The two units were treated as homogeneous, lacking information 

about the detailed variability in soil hydraulic characteristics at the model grid scale.” 

For the soil-P model, parameters were considered homogeneous because a previous study in the same 

catchment showed that the most important factor controlling SRP solubilisation in soils was P Olsen (see 

section 2.1.3 “Identification of dominant processes”) therefore we concentrated our effort on producing 



a high resolution map of P Olsen (which is an input data to the model) but the parameters to relate this 

P Olsen to SRP concentration in the soil solution can be considered constant. 

We added the sentence: 

Line 301-306: “A previous study has shown that soil Olsen P was the most important factor controlling 

SRP solubilisation in soils of the Kervidy-Naizin catchment (see section 2.1.3.), so other parameters in 

the soil-P sub-model (section 2.2.2.) were treated as homogeneous in the catchment (the soil 

classification into well-drained and poorly-drained soils only concerned hydrological parameters).” 

6) I think it needs to be justified far better than the response to minor point 6) is somehow justified for 

such a sparse sample. I’m not going to accept as a scientific evaluation that going from 15,000 – 20,000 

simulations ‘looked similar’ without any justification of what that means. Nor that recognizes that one of 

the standpoints of using an approach such as GLUE is that the parameter space can be well sampled, or 

that if a sparse sample must be used there are experimental designs that improve the efficiency of 

sampling. In effect the authors have a parameter space they are trying to sample that even if they took 2 

mid points on each axis this would require 2**30 simulations which is over 1 billion runs. So what 

convergence would be seen between 15-20K runs! Again the authors appear not to have recognized this 

at all and the response was not useful in my view and needs to be better justified if they are using GLUE. 

Response 6:  

We acknowledge 20,000 simulation is a low number and also the fact that the argument that going from 

15,000 to 20,000 simulation gave similar results is more a qualitatively appreciation than a real scientific 

demonstration. We deleted the second part of the sentence (about the 15,000 to 20,000 test) but we 

maintained the first part where we state that the number of simulations was constrained by 

computation time. 

Several techniques are proposed in the manuscript to solve this problem (some we applied and some we 

present as perspective): 

 First, not all 30 parameters were varied, only 12, and this was already explained so we did not 

change the paragraph: 

 

Lines 320-325: “To reduce the number of model runs necessary to explore the parameter space 

using Monte Carlo simulations, several parameters were given fixed values, or a constant ratio 

between the two soil types was set (Table 1). In the hydrological sub-model, the parameters to 

vary were identified in a previous sensitivity analysis (Moreau et al., 2013). In the soil sub-

model, all the parameters were varied. Finally, only 12 parameters were varied independently.” 

 

 As a perspective (and this was suggested by the reviewer Paul Whitehead), we suggest to use 

the result of our own sensitivity analysis to vary even less parameters in future applications of 

the model: 

 



Line 463-465: “This identification of sensitive parameters can be used in future application of 

the TNT2-P model in the study catchment, as suggested by Whitehead and Hornberger (1984) 

and Wade et al. (2002b).” 

 

 Also as a perspective we suggest a method to reduce computation time by introducing the 

concept of hydrological and chemical similarity. The following paragraph was extended to 

address this comment (additional sentences are underlined): 

 

Lines 593-603: “It would be interesting to test to what extent moving from an aggregative model 

with fully distributed information to a semi-distributed model would degrade the model 

performance while reducing computational cost. This could be achieved by grouping cells 

according to a hydrological similarity criterion like in  Dynamic Topmodel (Beven and Freer, 

2001b; Metcalfe et al., 2015) and do the same for similarity in soil P content. Reducing 

computation time is critical in the context of a GLUE analysis because this method requires the 

parameter space to be sampled adequately to identify those models to be considered 

acceptable. This is debatable here because 12 parameters were varied and only 20,000 model 

runs were performed. It is therefore possible that some regions of the parameter space with 

acceptable models might not have been sampled.” 

7) Similar issues of not really providing a useful response go with the response to minor point 4) and 5). 

First there is still seemingly no analyses of why 20m DEM resolution is needed that is explicitly written in 

the model setup, so if somehow the hillslope characterization is being lost if the resolution was lower 

then in what way is some critical threshold being reached for the D8 sharing downslope? How has that 

been confirmed given the simplifications in general in the model? I still don’t see how this all squares 

with the authors own statement that the main SRP transportation processes are controlled 

hydrologically by valley bottom groundwater fluctuations (between page 6-7).  

Response 7:  

We have added the argument: 

Lines 307-314: “A 20 m resolution was chosen for the DEM and the soil Olsen P raster map to allow a 

detailed representation of the interaction of the groundwater table (as simulated by the hydrological 

model) and the soil Olsen P (as given by the soil Olsen P map). Indeed the soil saturation and soil Olsen P 

can be very different in a narrow zone close to the stream compared to upslope due to the presence of 

a 5 to 50 m unfertilized buffer zone with lower Olsen P compared to fertilized fields. The Olsen P value 

close to the stream has a determining influence on SRP transfer, because this area is the most 

frequently connected to the stream, so a coarser resolution of the raster maps would degrade 

representation of the system.” 

Similarly to the criticism on the number of simulation and the number of soil hydrological classes, the 

only way to demonstrate that 20m resolution is really important would be to make a formal sensitivity 

analysis, which we did not do because i) we had already some expert knowledge on the best resolution 



(see the references about old applications of TOPMODEL in the catchment Bruneau et al., 1995; Franks 

et al, 1998 and all the TNT2 papers), the dominant processes to include, etc and ii) we were already 

constrained by calculation times to test all the different alternative possibilities. 

Regarding minor point 5) here is nothing in the additional sentence added that at all discusses how 

these parameters are homogeneous across the catchment to the level they have been applied. No 

evidence is provided to say why that is realistic in the fully distributed model design or why 2 classes are 

the dominant hydrological-chemical classifications. This again needs to be improved and the responses 

were quite weak. 

Response 8:  

I have understood the criticism now and additional justification is given in response 5. 
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Abstract 9 

We developed a parsimonious topography-based hydrologic model coupled with a soil 10 

biogeochemistry sub-model in order to improve understanding and prediction of Soluble 11 

Reactive Phosphorus (SRP) transfer in agricultural headwater catchments. The model 12 

structure aims to capture the dominant hydrological and biogeochemical processes identified 13 

from multiscale observations in a research catchment (Kervidy-Naizin, 5 km²). Groundwater 14 

fluctuations, responsible for the connection of soil SRP production zones to the stream, were 15 

simulated with a fully-distributed hydrologic model at 20 m resolution. The spatial variability 16 

of the soil phosphorus contentstatus and the temporal variability of soil moisture and 17 

temperature, which had previously been identified as key controlling factors of SRP 18 

solubilisation in soils, were included as part of an empirical soil biogeochemistry sub-model. 19 

The modelling approach included an analysis of the information contained in the calibration 20 

data and propagation of uncertainty in model predictions using a GLUE “limits of 21 

acceptability” framework. Overall, the model appeared to perform well given the uncertainty 22 

in the observational data, with a Nash-Sutcliffe efficiency on daily SRP loads between 0.1 and 23 

0.8 for acceptable models. The role of hydrological connectivity via groundwater fluctuation, 24 

and the role of increased SRP solubilisation following dry/hot periods were captured well. We 25 

conclude that in the absence of near continuous monitoring, the amount of information 26 

contained in the data is limited hence parsimonious models are more relevant than highly 27 

parameterised models. An analysis of uncertainty in the data is recommended for model 28 

calibration in order to provide reliable predictions.  29 
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1 Introduction 30 

Excessive phosphorus (P) concentrations in freshwater bodies result in increased 31 

eutrophication risk worldwide (Carpenter et al., 1998; Schindler et al., 2008). Eutrophication 32 

restricts economic use of water and poses a serious health hazard to ecosystems and humans, 33 

due to the potential development of harmful cyanobacteria (Bradley et al., 2013; (Serrano et 34 

al., 2015). In western countries, reduction of point source P emissions in the last two decades 35 

has resulted in a proportionally increasing contribution of diffuse sources, mainly from 36 

agricultural origin (Alexander et al., 2008; Grizzetti et al., 2012; Dupas et al., 2015a).  Of 37 

particular concern are dissolved P forms, often measured as Soluble Reactive Phosphorus 38 

(SRP), because they are highly bioavailable and therefore a likely contributor to 39 

eutrophication. 40 

To reduce SRP transfer from agricultural soils it is important to identify the spatial origin of P 41 

sources in agricultural landscapes, the biogeochemical mechanisms causing SRP 42 

solubilisation in soils and and  the dominant transfer pathways, as well as the potential P 43 

resorption during transit.. Research catchments provide useful data to investigate SRP 44 

transport mechanisms: typically, the temporal variations in water quality parameters at the 45 

outlet, together with hydroclimatic variables, are investigated to infer spatial origin and 46 

dominant transfer pathways of SRP (Haygarth et al., 2012; Outram et al., 2014; Dupas et al., 47 

2015b; Mellander et al., 2015; Perks et al., 2015).  Hypotheses drawn from analysis of water 48 

quality time series can be further investigated through hillslope monitoring and/or laboratory 49 

experiments (Heathwaite and Dils, 2000; Siwek et al., 2013; Dupas et al., 2015c). When 50 

dominant processes are considered reasonably known, it is possible to develop computer 51 

models, for two main purposes: first, to validate scientific conceptual models, by testing 52 

whether model predictions can produce reasonable simulations compared to observations. Of 53 

particular interest is the possibility to of testing the capability of a computer model to upscale 54 

P processes observed at fine spatial resolution (soil column, hillslope) to a whole catchment. 55 

Secondly, if the models survive such validation tests, then they can be useful tools to simulate 56 

the response of a catchment system to a future perturbation such as changes in agricultural 57 

management and climate changes. 58 

However, process-based P models generally perform poorly compared to, for example, 59 

nitrogen models (Wade et al., 2002; Dean et al., 2009; Jackson-Blake et al., 2015a). This is of 60 

major concern because poor model performance suggests poor knowledge of dominant 61 
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processes at the catchment scale, and poor reliability of the modelling tools used to support 62 

management. The origin of poor model performance might be conceptual misrepresentations, 63 

structural imperfection, calibration problems, irrelevant model evaluation criteria and 64 

difficulties in properly assessing the information content of the available data when it is 65 

subject to epistemic error. All five causes of poor model performance are intertwined, e.g. 66 

model calibration strategy depends on model performance evaluation criteria, which depend 67 

on the way the information contained in the observation data is assessed (Beven and Smith, 68 

2015).  69 

A key issue in environmental modelling is the level of complexity one should seek to 70 

incorporate in a model structure. Several existing P transfer models, such as INCA (Wade et 71 

al., 2002), SWAT (Arnold et al., 1998) and HYPE (Lindstrom et al., 2010) seek to simulate 72 

many processes, with the view that complex models are necessary to understand processes 73 

and to predict the likely consequences of land-use or climate changes. However, these 74 

complex models include many parameters that need to be calibrated, while the amount of data 75 

available for calibration is often low. An imbalance between calibration requirement and the 76 

amount of available observation data can lead to equifinality issues, i.e. when many model 77 

structures or parameter sets lead to acceptable simulation results (Beven, 2006). A 78 

consequence of equifinality is the risk of unreliable prediction when an “optimal” set of 79 

parameters is used (Kirchner, 2006), and large uncertainty intervals when Monte Carlo 80 

simulations are performed (Dean et al., 2009).  In this situation, it will be worth exploring 81 

parsimonious models that aim to capture the dominant hydrological and biogeochemical 82 

processes controlling SRP transfer in agricultural catchment. For example, Hahn et al. (2013) 83 

used a soil-type based rainfall-runoff model (Lazzarotto et al., 2006) combined with an 84 

empirical model of soil SRP release derived from rainfall simulation experiments over soils 85 

with different P content and manure application level/timing (Hahn et al., 2012) to simulate 86 

daily SRP load from critical sources areas. 87 

A second key issue, linked to the question of model complexity, concerns model calibration 88 

and evaluation. Both calibration and evaluation require assessing the fit of model outputs with 89 

observation data. However, observation data are generally not directly comparable with model 90 

outputs, because of incommensurability issues and/or because they contain errors (Beven, 91 

2006; 2009). Typically, predicted daily concentrations and/or loads are evaluated against data 92 

from grab samples collected on a daily or weekly basis. The information content of these data 93 
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must be carefully evaluated to propagate uncertainty in the data into model predictions 94 

(Krueger et al., 2012). Uncertainty in grab sample data might stem from i) sampling 95 

frequency problems and ii) measurement problems (Lloyd et al., 20152016). Grab sample 96 

data represent a specific point in the stream cross-section, which can differ from the cross 97 

section mean concentration (Rode and Suhr, 2007), and a snapshot of the concentration at a 98 

given time of the day, which can differ from the flow weighted mean daily concentration 99 

(McMillan et al. 2012). This difference between observation data and simulation output can 100 

be large during storm events in small agricultural catchments, as P concentrations can vary by 101 

several orders of magnitudes during the same day (Heathwaite and Dils, 2000; Sharpley et al., 102 

2008). Model evaluation can be severely penalised by this difference, because many popular 103 

evaluation criteria such as the Nash-Sutcliffe efficiency (NSE) are sensitive to extreme values 104 

and errors in timing (Moriasi et al., 2007). During baseflow periods, it is more likely that grab 105 

sample data are comparable to flow-weighted mean daily concentrations, as concentrations 106 

vary little during the day and they are usually low in the absence of point sources. However, 107 

measurement errors are expected to occur at low concentrations, either due to too long storage 108 

times or laboratory imprecision when concentrations come close to detection/quantification 109 

limits (Jarvie et al., 2002; Moore and Locke, 2013). Uncertainty in the data can also relate to 110 

discharge measurement and input data (e.g. maps of soil P content and rainfall data). In this 111 

paper we strive to identify and quantify the different sources of uncertainty in the data when 112 

the required quality check tests have been performed (on the discharge and SRP concentration 113 

data). A Generalised Likelihood Uncertainty Estimation (GLUE) “limits of acceptability” 114 

approach (Beven, 2006; Beven and Smith, 2015) is used to calibrate/evaluate the model.  115 

This paper presents a dominant-process model that couples a topography-based hydrologic 116 

model with a soil biogeochemistry sub-model able to simulate daily discharge and SRP loads. 117 

The dominant processes included in the hydrologic and soil biogeochemistry sub-models have 118 

been identified in previous analyses of multiscale observational data, which have 119 

demonstrated on the one hand the control of groundwater fluctuation on connecting soil SRP 120 

production zones to the stream (Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015b; 121 

2015d; Mellander et al., 2015), and on the other hand the role of antecedent soil moisture and 122 

temperature conditions on SRP solubilisation in soils (Turner and Haygarth, 2001; Blackwell 123 

et al., 2009; Dupas et al., 2015c). Model development and application wereas performed in 124 

the Kervidy-Naizin catchment in western France with the objectives of: i) testing if the model 125 

was capable of capturing daily variation of SRP load, thus confirming hypotheses on 126 
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dominant processes; ii) develop a methodology to analyse and propagate uncertainty in the 127 

data into model prediction using a “limits of acceptability” approach. Model development and 128 

analysis of uncertainty in the data are interlinked in this approach. 129 

2 Material and methods 130 

2.1 Study catchment 131 

2.1.1 Site description 132 

Kervidy–Naizin is a small (4.94 km²) agricultural catchment located in central Brittany, 133 

Western France (48°N, 3°W). It belongs to the AgrHyS environmental research observatory 134 

(http://www6.inra.fr/ore_agrhys_eng), which studies the impact of agricultural activities and 135 

climate change on water quality (Molenat et al., 2008; Aubert et al., 2013; Salmon-Monviola 136 

et al., 2013; Humbert et al., 2014). The catchment (Fig. 1) is drained by a stream of second 137 

Strahler order, which generally dries up in August and September. The climate is temperate 138 

oceanic, with mean ± standard deviations of annual cumulative precipitation and specific 139 

discharge averaging of 854 ± 179 mm and 290 ± 106 mm, respectively, from 2000 to 2014. 140 

Mean annual ± standard deviation of temperature is 11.2 ± 0.6°C. Elevation ranges from 93 to 141 

135 m above sea level. Topography is gentle, with maximum slopes not exceeding 5%. The 142 

bedrock consists of impervious, locally fractured Brioverian schists and is capped by several 143 

metres of unconsolidated weathered material and silty, loamy soils. The hydrological 144 

behaviour is dominated by the development of a water table that varies seasonally along the 145 

hillslope. In the upland domain, consisting of well drained soils, the water table remains 146 

below the soil surface throughout the year, varying in depth from 1 to > 8 m. In the wetland 147 

domain, developed near the stream and consisting of hydromorphic soils, the water table is 148 

shallower, remaining near the soil surface generally from October to April each year. The 149 

land use is mostly agriculture, specifically arable crops and confined animal production (dairy 150 

cows and pigs). A farm survey conducted in 2013 led to the following land use subdivisions: 151 

35% cereal crops, 36% maize, 16% grassland and 13% other crops (rape seed, vegetables). 152 

Animal density was estimated as high as 13 livestock units ha
-1

 in 2010. Estimated soil P 153 

surplus wasis 13.1 kg P ha
-1

 yr
-1

 (Dupas et al., 2015b) and soil extractable P in 2013 (Olsen et 154 

al., 1954) wais 59 ± 31 mg P kg
-1

 (n = 89 samples). A survey targeting riparian areas 155 

highlighted the legacy of high soil P content in these currently unfertilized areas (Dupas et al., 156 
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2015c). No point source emissions weare recorded but scattered dwellings with septic tanks 157 

weare present in the catchment. 158 

2.1.2 Hydroclimatic and chemical monitoring 159 

Kervidy-Naizin was equipped with a weather station (Cimel Enerco 516i) located 1.1 km 160 

from the catchment outlet. It recorded hourly precipitation, air and soil temperatures, air 161 

humidity, global radiation, wind direction and speed, that are used toand estimates Penman 162 

evapotranspiration. Stream discharge was estimated at the outlet with a rating curve and stage 163 

measurements from a float-operator sensor (Thalimèdes OTT) upstream of a rectangular weir. 164 

To record both seasonal and within storm dynamics in P concentration, two monitoring 165 

strategies complemented each other from October 2013 to August 2015: a daily manual grab 166 

sampling at approximately the same time (between 16:00 – 18:00 local time) and automatic 167 

high frequency sampling during 14 storm events (autosampler ISCO 6712 Full-Size Portable 168 

Sampler, 24 one litre bottles filled every 30 min). The water samples were filtered on-site, 169 

immediately after grab sampling and after 1-2 days in the case of autosampling. They were 170 

analysed for SRP (ISO 15681) within a fortnight. To assess uncertainty in daily SRP 171 

concentration related to sampling time, storage and measurement errors, a second grab sample 172 

was taken at a different time of the day (between 11:00 – 15:00 local time) in 36 instances 173 

during the study period. The second sample was analysed within 24h with the same method; 174 

this second dataset is referred to as verification dataset, as opposed to the reference dataset. 175 

Among the 36 pairs of comparable daily samples, 12 were taken during storm events and 24 176 

during baseflow periods. To assess uncertainty in high frequency SRP concentration during 177 

storm events due to delayed filtration of autosampler bottles, 5 grab samples were taken 178 

during the course of 4 distinct storms and were filtered immediately. The same lab procedure 179 

was used to analyse SRP. 180 

2.1.3 Identification of dominant processes from multiscale observations 181 

Observations in the Kervidy-Naizin catchment have highlighted that the temporal variability 182 

in stream SRP concentrations could not be related to the calendar of agricultural practices, but 183 

rather to hydrological and biogeochemical processes (Dupas et al., 2015b). The primary 184 

control of hydrology on SRP transfer has also been evidenced in several other small 185 

agricultural catchments (e.g. Haygarth et al, 2012; Jordan et al., 2012; Mellander et al., 2015). 186 

In the Kervidy-Naizin catchment, the groundwater fluctuations in valley bottom areas was 187 
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identified as the main driving factor of SRP transfer, through the hydrological connectivity it 188 

creates when the saturated zoneit intercepts shallow soil layers (Dupas et al., 2015b).  189 

In-situ monitoring of soil pore water at 4 sites (15 cm and 50 cm depths) in the Kervidy-190 

Naizin catchment has shown that mean SRP concentration in soils was is a linear function of 191 

Olsen P (Olsen et al., 1954). This reflects current knowledge that a soil P test, or alternatively 192 

estimation of a degree of P saturation, can be used to assess solubilisation in soils 193 

(Beauchemin and Simard, 1999; McDowell et al., 2002; Schoumans et al., 2015). This linear 194 

relationship derived from the data contrasts however with other studies, where threshold 195 

values above which SRP solubilisation increases greatly have been identified (Heckrath et al., 196 

1995; Maguire et al., 2002).  197 

Soluble Reactive Phosphorus solubilisation in soil varies seasonally according to antecedent 198 

conditions of temperature and soil moisture. Dry and/or hot conditions are favourable to the 199 

accumulation of mobile P forms in soils, while water saturated conditions lead to their 200 

flushing (Turner et al., 2001; Blackwell et al., 2009; Dupas et al., 2015c).  201 

2.2 Description of the Topography-based Nutrient Transfer and 202 

Transformation – Phosphorus model (TNT2-P) 203 

TNT2 was originally developed as a process-based and spatially explicit model simulating 204 

water and nitrogen fluxes at a daily time step (Beaujouan et al., 2002) in meso-scale 205 

catchments (< 50 km
2
). TNT2-N has been widely used for operational objectives, to test the 206 

effect of mitigation options proposed by local stakeholders or public policy-makers (Moreau 207 

et al., 2012; Durand et al., 2015), on nitrate fluxes and concentrations in rivers.  208 

TNT2-P uses a modified version of the hydrological sub-model in TNT2-N, to which a P 209 

biogeochemistry sub-model was added to simulate SRP solubilisation in soils. 210 

2.2.1 Hydrological sub-model 211 

The assumptions in the hydrological sub-model are derived from TOPMODEL which has 212 

previously been applied to the Kervidy-Naizin catchment (Bruneau et al., 1995; Franks et al., 213 

1998): 1) the effective hydraulic gradient of the saturated zone is approximated by the local 214 

topographic surface gradient (tan β). It is calculated in each cell of a Digital Elevation Model 215 

(DEM) at the beginning of the simulation; 2) the effective downslope transmissivity 216 

(parameter T) of the soil profile in each cell of the DEM is a function of the soil moisture 217 
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deficit (Sd). Hydraulic conductivity is assumed to decreases exponentially with depth 218 

(parameter m, Fig. 2). Hence water fluxes (q) are computed as: 219 

               
  

 
         (1) 220 

Based on these assumptions, TNT2 computes an explicit cell-to-cell routing of fluxes, using a 221 

D8 algorithm. This explicit cell-to-cell routing of fluxes increases computation times 222 

compared to TOPMODEL, for which calculations are grouped according to a distribution of 223 

hydrologically similar points, but it allows taking account of spatial interactions between soil 224 

and groundwater, which has been shown to improve representation of nutrients fluxes and 225 

transformations (Beaujouan et al., 2002). 226 

To simulate SRP fluxes, the only modification to the hydrological sub-model is used aimed to 227 

compute water fluxes from each soil layer by integrating [1] between the maximum depth of 228 

the soil layer considered and either: 229 

- estimated groundwater level, if the groundwater table is within the soil layer 230 

considered 231 

or  232 

- the minimum depth of the soil layer considered, if the groundwater table above the 233 

soil layer considered 234 

In this application of the TNT2-P model, 5 soil layers with a thickness of 10 cm are 235 

considered. Hence, 7 flow components are computed in the model: 236 

- overland flow on any saturated surfaces 237 

- 5 sub-surface flow components, one for each soil layer 238 

- deep flow, i.e. flow below the 5 soil layers 239 

2.2.2 Soil-P sub-model 240 

The soil-P sub-model is empirically derived from soil pore water monitoring data (Dupas et 241 

al., 2015c), specifically assuming that: 242 

- background SRP concentration in the soil pore water of a given layer is proportional to 243 

soil Olsen P; 244 

- seasonal increases in P availability compared to background conditions are determined 245 

by biogeochemical processes, controlled by antecedent temperature and soil moisture. 246 



 9 

Data show that SRP availability in the soil pore water increases following periods of 247 

dry and hot conditions (Dupas et al., 2015c). 248 

Hence, SRP transfer is modelled with parameters that describe both mobilisation and transfer 249 

to the stream. A different parameter is used to simulate transfer via overland flow and sub-250 

surface flow. 251 

                                                      (2) 252 

                                                             (3) 253 

Where               and                  are SRP transfer via overland flow and sub-surface 254 

flow for a given soil layer respectively,            and               are water flows from the 255 

same pathways.                  and                     are coefficients which vary 256 

according to antecedent temperature and soil moisture conditions, such as: 257 

                                       (4) 258 

Where         is either                   or                    , and FT and FS are 259 

temperature and soil moisture factors, respectively. FT and FS are expressed as: 260 

        
                           

  
          (5) 261 

     (
                              

                     
)
  

          (6) 262 

Where T1, T2 and S1 are parameters to be calibrated coefficients. The antecedent condition 263 

time length consists in a period of i=100 days. Both soil temperature and soil moisture are 264 

estimated by the TNT2 soil module (Moreau et al., 2013). Because soil moisture in the deep 265 

soil layers can differ significantly from that of shallow soil layers, two values of FS are 266 

calculated for two soil depth ranges 0-20 cm and 20-50 cm. The temperature factor FT was 267 

calculated as an average value for the entire 0-50 cm soil profile 0-50 cm. Contrary to the 268 

water fluxes, SRP fluxes are not routed cell-to-cell, because we lacked knowledge of the rate 269 

of SRP re-adsorption in downslope cells, and on of the long term fate of re-adsorbed SRP. 270 

Hence, all the SRP emitted from each cell through overland flow and sub-surface flow 271 

reaches the stream on the same day. For deep flow, only the immediate riparian flux is used in 272 

determining SRP inputs to the river. 273 

No long-term depletion of the different P pools was modelled, because annual P export from 274 

the catchment was small compared to the size of soil and sub-soil P pools.  275 
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2.2.3 Input data and parameters 276 

Spatial input data required for TNT2-P include: 277 

- A DEM in raster format. Here, a 20 m resolution DEM was used, hence model 278 

calculations were made in 12348 grid cells covering a 4.94 km
2 

catchment. 279 

- A map of soils units that could be assumed to havewith homogeneous hydrological 280 

parameter values, in raster format. Here, two soil classes were considered by 281 

differentiating well-drained (86%) and poorly poorly-drained soils (14%) according to 282 

Curmi et al. (1998) (Fig. 1). Experimental determination of saturated hydraulic 283 

conductivity (29 soil cores) by Curmi et al. (1998) showed significantly different 284 

values for soils classified as well-drained and poorly-drained in the Kervidy-Naizin 285 

catchment. The two units were treated as homogeneous, lacking information about the 286 

detailed variability in soil hydraulic characteristics at the model grid scale. 287 

- A map of surface Olsen P in raster format and description of decrease in P OlsenOlsen 288 

P with depth for five soil layers between 0-50 cm. Here, the map of Olsen P in the 0-289 

15 cm soil layer was obtained from statistical modelling with the rule-based regression 290 

algorithm CUBIST (Quinlan, 1992) using data from 198 soil samples (2013) in an 291 

area of 12 km² encompassing the 4.94 km² catchment (Matos-Moreira et al., 2015).  292 

To describe how P OlsenOlsen P decreases with depth, land use information was used. 293 

In tilled fields, i.e. all crop rotations including arable crops, Olsen P was assumed to 294 

be constant between 0-30 cm and to decrease linearly with depth between 30-50 cm. 295 

In no-till fields, i.e. permanent pasture and woodland, Olsen P was assumed to 296 

decrease linearly with depth between 0-50 cm. An exponential decrease with depth is 297 

more commonly adopted in untilled land (e.g. Haygarth et al., 1998; Page et al., 2005), 298 

but a specific sampling in currently untilled areas in the Kervidy-Naizin catchment 299 

(Dupas et al., 2015c) has shown that a linear function is more appropriate, probably 300 

because of these areas having been ploughed in the past. A previous study has shown 301 

that soil Olsen P was the most important factor controlling SRP solubilisation in soils 302 

of the Kervidy-Naizin catchment (see section 2.1.3.), so other parameters in the soil-P 303 

sub-model (section 2.2.2.) were treated as homogeneous in the catchment (the soil 304 

classification into well-drained and poorly-drained soils only concerned hydrological 305 

parameters). 306 
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A 20 m resolution was chosen for the DEM and the soil Olsen P raster map to allow a detailed 307 

representation of the interaction of the groundwater table (as simulated by the hydrological 308 

model) and the soil Olsen P (as given by the soil Olsen P map). Indeed the soil saturation and 309 

soil Olsen P can be very different in a narrow zone close to the stream compared to upslope 310 

due to the presence of a 5 to 50 m unfertilized buffer zone with lower Olsen P compared to 311 

fertilized fields. The Olsen P value close to the stream has a determining influence on SRP 312 

transfer, because this area is the most frequently connected to the stream, so a coarser 313 

resolution of the raster maps would degrade representation of the system. 314 

Climate input data include minimum and maximum air temperature, precipitation, potential 315 

evapotranspiration, global radiation on a daily basis. The TNT2 model allows for several 316 

climate zones to be considered, in which case a raster map of climate zone must be provided 317 

to the model. Here, only one climate zone is considered. 318 

In total, the TNT2-P model includes 15 parameters for each soil type, i.e. 30 parameters in 319 

total if two soil drainage classes are considered. To reduce the number of model runs 320 

necessary to explore the parameter space using Monte Carlo simulations, several parameters 321 

were given fixed values, or a constant ratio between the two soil types was set (Table 1). In 322 

the hydrological sub-model, the parameters to vary were identified in a previous sensitivity 323 

analysis (Moreau et al., 2013). In the soil sub-model, all the parameters were varied..  324 

Finally, only 12 parameters were varied independently (see Table 1). Initial parameter ranges 325 

for the hydrological sub-model were based on literature-derived values from several previous 326 

studies in Western France (Moreau et al., 2013) and those for the soil sub-model were based 327 

on a preliminary manual trial and error procedure. The SRP concentration for deep flow water 328 

was based on actual measurement of SRP in the weathered schist (Dupas et al., 2015c). A 329 

constant flux value for domestic sources was set at the 1% percentile of the daily flux between 330 

2007 and 2013 (Dupas et al., 2015b). 331 

2.3 Deriving limits of acceptability from data uncertainty assessment 332 

The Monte Carlo based Generalized Likelihood Uncertainty Estimation (GLUE) 333 

methodology has been widely used in hydrology and is described elsewhere (Beven and 334 

Freer, 2001a; Beven, 2006, 2009). Briefly, the rationale of GLUE is that many model 335 

structures and parameter sets can give “acceptable” results, according to one or several 336 

performance measures, due to equifinality. Hence, GLUE considers that all models that give 337 
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acceptable results should be used for prediction. A key issue in GLUE is to decide on a 338 

performance threshold to define acceptable models; typically, modellers set a threshold value 339 

of a measure such as the Nash-Sutcliffe Efficiency based on their subjective appreciation of 340 

data uncertainty or on previously used values. To allow for a more explicit justification of the 341 

performance threshold values used, the limits of acceptability approach outlined by Beven 342 

(2006) relies on an assessment of uncertainty in the calibration/evaluation data. According to 343 

this approach, all model realisations that fall within the limits of acceptability are used for 344 

prediction, weighted by a score calculated based on overall performance. 345 

Details on how the limits of acceptability for daily discharge and daily SRP load were derived 346 

from uncertainty assessment of the observational data are presented below. Input data, such as 347 

weather and soil Olsen P data, also contained uncertainties which were not accounted for 348 

explicitly in the limits of acceptability due to a lack of data to quantify them. 349 

2.3.1 Discharge 350 

Error in discharge measurement data was assessed from the original discharge measurements 351 

used to calibrate the stage-discharge rating curve (Carluer, 1998). The rating curve used in 352 

this study was: 353 

          
       (7) 354 

Where Q is discharge, h is stage reading, h0 is stage reading at zero discharge, a and b are 355 

calibrated coefficients.  Limits of acceptability were defined as the 90% prediction interval of 356 

log-log linear regression (Fig. 3). The Estimated acceptability range estimated in this way was 357 

±39% on average.  This uncertainty interval is in the higher range of values found in other 358 

studies, e.g. Coxon et al. (2015) who found that mean discharge uncertainty was generally 359 

between 20% and 40% in 500 catchments of the United Kingdom. This relatively large 360 

uncertainty interval is due to the fact that it was derived from a prediction interval rather than 361 

a confidence interval (the 90% confidence interval of the log-log linear regression would be 362 

14% of the mean discharge value during the study period). A prediction interval is an interval 363 

in which future observations will likely fall, while a confidence interval is an interval in 364 

which the mean of repeated observation will likely fall. Because in the TNT2-P model´s 365 

evaluation, we want each observation to fall in the acceptability interval (section 2.3.3.), a 366 

prediction interval was more appropriate. For daily discharge values below 2 mm d
-1

, fixed 367 
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acceptability limits were set at the 90% prediction interval for a stage measurement 368 

corresponding to 2 mm d
-1

. 369 

2.3.2 SRP load 370 

Uncertainty in “observed” daily load includes uncertainty in discharge (see 2.3.1.) and 371 

uncertainty in SRP concentration. The acceptability limit forUncertainty in daily load was 372 

estimated summing up relative uncertainty assessed for discharge and SRP concentration (in 373 

percentage). Uncertainty in SRP concentration stems from sampling frequency problems as 374 

one grab sample collected on a specific day is incommensurable with the mean daily 375 

concentration or load simulated by the model. Further, measurement errors exist that include 376 

the effect of storage time (Haygarth et al., 1995). During baseflow periods, measurement error 377 

was expected to be the main source of uncertainty because relative measurement error is large 378 

for low concentrations, especially when sample storage time exceeds 48h (Jarvie et al., 2002), 379 

while concentrations vary little. During storm events, sampling frequency was expected to be 380 

the main source of uncertainty because SRP concentration can vary by one order of 381 

magnitude within a few hours. Therefore, different acceptability limits were set for both flow 382 

conditions. We considered storms as events with > 20 l s
-1 

increase in discharge and the 383 

following 24h. 384 

During baseflow periods, the acceptability limits were derived from the 90% prediction 385 

interval of a linear regression model (y = a * x + b) linking pairs of data points sampled on the 386 

same day (reference sample between 16:00-18:00, verification sample between 11:00-15:00) 387 

and analysed independently (within a fortnight for the reference sample and within 1-2 days 388 

for the verification sample). It was assumed that there was no systematic bias between the two 389 

datasets due to different sampling time. The reference SRP concentrations were on average 390 

13% lower than the verification value but this difference was not statistically significant 391 

(Mann-Whitney Rank Sum Test, p > 0.05). Hence, the expected underestimation of SRP 392 

concentration due to long sample storage appears to be overshadowed by other sources of 393 

uncertainty such as variability in SRP concentration during the day of sampling or analytical 394 

imprecision at low concentrations. This method encompasses all various sources of 395 

uncertainty, which results in prediction intervals much wider than what would result from a 396 

mere repeatability test: at the median concentration (0.02 mg l
-1

), estimated prediction interval 397 

was 166% with this method versus 57% with a repeatability test (Fig. 4). As for discharge 398 
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estimates, the high percentage represents a small absolute value (0.03 mg l
-1

) during baseflow 399 

periods. 400 

During storm events, acceptability limits were derived from the 90% prediction interval of 401 

concentration discharge empirical statistical models (C = a*Q^b) using high frequency 402 

autosampler data. Two reasons led us to use a statistical model (which also implies the 403 

assumption that errors are aleatory and temporally independent): i) the measurement 404 

uncertainty as assessed by the laboratory repetition test was an underestimate of the real 405 

uncertainty of autosampler data, because it does not include other major sources of error such 406 

as delayed filtration and sample decay during storage; ii) it was necessary to extrapolate the 407 

sub-daily observation to the daily resolution of the model. The limits of this choice will be 408 

discussed in section 4.3. An distinct empirical model was used to fit to each storm event 409 

monitored separately and a delay term was introduced manually in the empirical model when 410 

a time lag existed between concentration and discharge peaks. The empirical models were 411 

then applied to extrapolate concentration estimation during two days at 10 min resolution, for 412 

each of the 14 storm events monitored. Finally the 2-day mean “observed” load was estimated 413 

as the mean of 10 min loads and uncertainty limits were derived from the 90% prediction 414 

interval. In model evaluation, the mean of simulated loads during 2 consecutive days was 415 

evaluated against the 2-day mean “observed” load for which prediction intervals have been 416 

calculated. A 2-day acceptability limit enables to cover the whole ofall the storm events to be 417 

covered (Fig. 5 and Supplement). A 2-day aggregation was necessary here because increased 418 

SRP load as a response to each storm event could occur either mainly during the day of the 419 

rainfall (if the rainfall occurred early in the morning) or mainly during the day following the 420 

rainfall (if the rainfall occurred late in the evening), and with the daily resolution of the input 421 

data and model simulation, the information about the timing of the rainfall event was not 422 

available to the model. 423 

When comparing autosampler data with data from immediately filtered samples, the ratio 424 

obtained had the ranged 1-1.6 (mean = 1.3), hence autosampler data were underestimates of 425 

the true concentration,d arguably through adsorption or biological consumption. We used the 426 

mean ratio to correct all storm uncertainty acceptability intervals by 30% and the range values 427 

to extend the upper limit by 60%.  During days with a storm event not monitored at high 428 

frequency with an autosampler, we considered that the grab sample data did not contain 429 
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enough information to derive an acceptability interval for daily SRP load; hence simulated 430 

load was not evaluated for events not monitored at high frequency.. 431 

2.3.3 Model runs and selection of acceptable models 432 

To explore the parameter space, 1520,000 Monte Carlo realisations were performed to 433 

simulate daily discharge and SRP load during the water years 2013-2014 and 2014-2015. The 434 

number of Monte Carlo realisations was constrained by the computation time required to run 435 

a spatially explicit model in this catchment. A 7-month initialisation period was run to reduce 436 

the impact of initial conditions on simulated results during the study period, from 1 October 437 

2013 to 31 July 2015. 438 

To be considered acceptable, model runs must fall within the acceptability limits defined in 439 

2.3.1 and 2.3.2. More specifically, 100% of simulated daily discharge, 100% of simulated 440 

baseflow SRP load and 100% of simulated storm SRP load had to fall within the acceptability 441 

limits. Thus, 572 acceptability tests were performed for discharge, 378 for baseflow SRP load 442 

and 14 for storm SRP loads, i.e. 964 evaluation criteria.  443 

To evaluate the model performance in more detail, normalized scores were calculated during 444 

6 periods (Table 2). To calculate the scores, a difference was calculated between each of the 445 

daily simulated discharge, baseflow SRP load and 2-day storm SRP loads and the 446 

corresponding observation. This difference was then normalized by the width of the 447 

acceptability limit defined for that day, so the score has a value of 0 in the case of a perfect 448 

match with observation, -1 at the lower limit and +1 at the upper limit (Fig. 6a).  Finally, the 449 

median of this ratio was calculated for each of the 6 periods to investigate whether the model 450 

tended to underestimate or overestimate discharge and loads at different moments of the year 451 

and between the two years. 452 

Model runs were successively evaluated for discharge, baseflow SRP load and storm SRP 453 

load. To use the models for prediction, each accepted model was given a likelihood weight 454 

according to how well it has performed for each of the 964 evaluation criteria. Here the 455 

statistical deviation weight was used (truncated to 90% prediction interval)a triangular weight 456 

was calculated for each evaluation criteria (Fig. 5 b)., with the base of the triangle 457 

corresponding to the acceptability limit. To “combine” the weights derived from the rating 458 

curve and the SRP concentration statistical models, a kernel density estimate (with Gaussian 459 

smoothing kernel) was computed to fit 10,000 realisations of the multiplied error models. 460 
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Calculated weights were then averaged for discharge, baseflow SRP load and storm SRP load 461 

respectively and the final likelihood was calculated as the sum product of all three averages. 462 

The model’s sensitivity to each hydrological and soil parameter was performed with a 463 

Hornberger-Spear-Young Generalised Sensitivity Analysis (HSY GSA, Whitehead and 464 

Young, 1979; Hornberger and Spear, 1981). For each evaluation criteria (daily discharge, 465 

daily baseflow SRP load, 2-day storm SRP load), the model runs were split into acceptable 466 

and non-acceptable runs according to the above-mentioned acceptability limits.  Then a 467 

Kolmogorov-Smirnov test is was performed to assess whether the distribution of each of the 468 

three evaluation criteria differ between acceptable and non-acceptable models for each 469 

parameter. Because the Kolmogorov-Smirnov test might suggest that small differences in 470 

distribution are very significant when there are larger number of runs, this method is a 471 

qualitative guide to relative sensitivity. The p value of the Kolmogorov-Smirnov test is used 472 

to discriminate whether the model is critically sensitive (p<0.01 ‘***’), importantly sensitive 473 

(p<0.1 ‘*’) or insignificantly sensitive (p>0.1 ‘.’) to each parameter and for each of the three 474 

evaluation criteria. Because the Kolmogorov-Smirnov test might suggest that small 475 

differences in distribution are very significant when there are larger number of runs, this 476 

method is a qualitative guide to relative sensitivity. 477 

In addition to acceptability limit approach, a NSE (Moriasi et al., 2007) was calculated for 478 

daily discharge and daily load and concentration to allow comparison with other modelling 479 

studies where is it has been taken as an evaluation criterion. 480 

3 Results 481 

3.1 Presentation of observation data and calculation of acceptability limits 482 

The two water years studied were highly contrasted in terms of hydrology and SRP loads. 483 

Water year 2013-2014 was the wettest in the last 10 years, with cumulative rainfall 1289 mm 484 

and cumulative runoff 716 mm. Water year 2014-2015 was an average year (5
th

 wettest in the 485 

last 10 years), with cumulative rainfall 677 mm and cumulative runoff 383 mm. Annual SRP 486 

load was 0.35 kg P ha
-1

 yr
-1 

in 2013-2014 and 0.17 kg P ha
-1

 yr
-1 

in 2014-2015, i.e. a 487 

difference 10% higher than that of discharge. Observed mean SRP concentration during the 488 

study period was 0.024 mg l
-1

. 489 

Fig. 7 a and b shows acceptability limits for daily discharge and daily SRP loads. Note that 490 

acceptability limits for discharge were calculated every day, while acceptability limits for 491 
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SRP load was calculated on a daily basis during baseflow periods and on a 2-day basis during 492 

storm events monitored at high frequency. No SRP load acceptability limit was calculated 493 

during storm events when no high frequency autosampler data was available. 494 

3.2 Model evaluation 495 

First, model runs were evaluated against acceptability limits defined for discharge (Fig. 7cFig. 496 

8a). 5,4794,120/1520,000 models fulfilled the selection criterion for discharge, i.e. they had 497 

100% of simulated daily discharge within the acceptability limits. The NSE estimated for 498 

thesefor these models ranged from 0.78 75 to 0.9293. The normalized scores calculated 499 

seasonally (Fig. 89a) show that simulated discharge is often overestimated in autumn and 500 

spring, and underestimated in winter. 501 

Then, model runs were evaluated against acceptability limits defined for SRP loads (Fig. 7d 502 

Fig. 8b). During baseflow periods, 4,9643,730/2015,000 models fulfilled the selection 503 

criterion for SRP loads, i.e. they had 100% of simulated daily SRP load within the 504 

acceptability limits. Among them, 1,5951,210 also fulfilled the previous selection criterion for 505 

discharge. Normalized scores for baseflow SRP load showed the same trend as for discharge 506 

(Fig. 9b8b), i.e. overestimation in autumn and spring, and underestimation in winter. During 507 

storm events, only 5 7 models fulfilled the selection criterion for SRP loads, i.e. they had 508 

14/14 of simulated 2-day storm SRP loads within the acceptability limits, but none of them 509 

also fulfilled the selection criteria for discharge and baseflow SRP loads. Two storm events 510 

were particularly difficult to simulate (number 2 and number 9, Fig. 9c8c), probably because 511 

their acceptability interval was very narrow as a result of only small changes in discharge and 512 

concentration. To obtain a reasonable number of acceptable models, we relaxed the selection 513 

criterion so that the acceptable models had to simulate 12/14 of storm loads within the 514 

acceptability limits, in addition to the selection criteria defined for discharge and baseflow 515 

SRP load: 418 539 models were then accepted. Estimated NSE of these 418 539 models 516 

ranged from 0.09 to 0.80 81 for daily load and from negative values to 0.53 for daily 517 

concentrations (this includes all data from the regular sampling).  518 

3.3 Sensitivity analysis and prediction results 519 

According to the HSA generalised sensitivity analysis, simulated discharge was critically 520 

sensitive to 10 out of the 12 hydrological parameters varied. Simulated SRP load was 521 
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critically sensitive to the sub-surface and overland flow parameters during baseflow periods 522 

and to the overland flow parameter during storm events. During baseflow periods, SRP load 523 

was insignificantly sensitive to the parameter associated with deep flow load. Both baseflow 524 

and storm SRP loads were critically sensitive to the parameter related to soil moisture and soil 525 

temperature dependent SRP solubilisation (S1, T1 and T2), in addition to respectively 11 12 526 

and 8 hydrological parameters. This identification of sensitive parameters can be used in 527 

future application of the TNT2-P model in the study catchment, as suggested by Whitehead 528 

and Hornberger (1984) and Wade et al. (2002b). 529 

Figure. 10 9 shows the daily discharge, SRP load and concentration as simulated by the 530 

acceptable models. Simulated SRP load during the water year 2013-2014 ranged 0.77 81 – 531 

3.258 kg P ha
-1

 yr
-1

 (median = 1.682 kg P ha
-1

 yr
-1

); simulated SRP load during the water year 532 

2014-2015 ranged 0.14 – 0.73 kg P ha
-1

 yr
-1

 (median = 0.342 kg P ha
-1

 yr
-1

). Best estimate of 533 

SRP load according to observation data was 0.35 kg P ha
-1

 yr
-1

 in 2013-2014 and 0.17 kg P 534 

ha
-1

 yr
-1

 in 2014-2015. According to the model, 4956 – 5561% (median = 528%) of water 535 

discharge and 6671 – 7075% (median = 672%) of SRP load occurred during storm events. 536 

Mean SRP concentrations during the two water years ranged 0.0143 – 0.0443 mg l
-1

 (median 537 

= 0.0298 mg l
-1

), while mean observed SRP concentration was 0.024 mg l
-1

. 538 

4 Discussion 539 

4.1 Role of hydrology and biogeochemistry in determining SRP transfer 540 

The fairly good performance of TNT2-P at simulating SRP loads confirms provides further 541 

support that the hydrological and biogeochemical processes included into the model are 542 

dominant controlling factors in the Kervidy-Naizin catchment (i.e. the modelling hypotheses 543 

could not be rejected based on these results, expect for two storm events). The primary 544 

control of hydrology in controlling connectivity between soils and streams has been 545 

highlighted by many studies analysing water quality time series at the outlet of agricultural 546 

catchments (Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015c; Mellander et al., 547 

2015). This modelling exercise also provides further supportconfirmed that SRP solubility can 548 

be satisfactorily represented bywas determined by the soil P OlsenOlsen P content and could 549 

vary according to temperature and moisture conditions. The underlying processes have not 550 

been identified precisely in the Kervidy-Naizin catchment: independent laboratory 551 

experiments have shown that microbial cell lysis resulting from alternating dry and water 552 
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saturated periods in the soil could be the cause of increased SRP mobility (Turner and 553 

Haygarth, 2001; Blackwell et al., 2009). This could explain the moisture dependence of SRP 554 

solubility in the model. Furthermore, net mineralisation of soil organic phosphorus could 555 

explain the temperature dependence of SRP solubility in the model. These two hypotheses 556 

may explain increased SRP solubility in soils in periods of dry and hot conditions and will be 557 

further explored by incubation experiment with soils from the Kervidy-Naizin catchments. 558 

4.2 Potential improvements to the model structure according to modelling 559 

purpose 560 

The TNT2-P model was designed to test hypotheses about dominant processes and for this 561 

purpose, a parsimonious model structure was chosen to include only the processes which were 562 

to be tested. This parsimonious model structure might contain some conceptual 563 

misrepresentations due to oversimplification, and it might not include all the processes 564 

necessary for the purpose of evaluating management scenarios. This section discusses 565 

whether the simplifications made are acceptable in the context of different catchment types, 566 

and to which conditions the model could be made more complex by including additional 567 

routines for the purpose of evaluating management scenarios. 568 

From a conceptual point of view, the lack of cell-to-cell routing of SRP fluxes might result in 569 

erroneous results in some contexts. The fact that all the SRP emitted from each cell through 570 

overland flow and sub-surface flow reaches the stream on the same day is generally 571 

acceptable for the catchment studied because groundwater interception of shallow soil layers 572 

occurs in the riparian zone only, hence the signal of SRP mobilisation in these soils is 573 

generally transmitted to the stream (Dupas et al., 2015c). This simplification, however, does 574 

not seem to be acceptable for all the storm events in the study catchment, as the SRP load 575 

evaluation criteria had to be relaxed to obtain acceptable model results. It would also not be 576 

acceptable in catchments where soil-groundwater interactions are taking place throughout the 577 

landscape, e.g. due to topographic depressions or poorly drained soils. In the latter type of 578 

catchment, transmission of the SRP mobilisation signal to the stream is more complex to 579 

comprehend (Haygarth et al., 2012),; hence a more complex model structure would be 580 

required. 581 

The reason for this simplification was that we lacked knowledge of SRP re-adsorption in 582 

downslope cells (or on suspended sediments in the stream network) and on the long-term fate 583 
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of re-adsorbed SRP. For a more physically realistic representation of processes, it is likely 584 

that an explicit representation of flow velocities and pathways would be necessary, along with 585 

an explicit representation of several soil P pools. However, such an explicit representation of 586 

processes contradicts the idea of a parsimonious model, which was adopted here for the 587 

purpose of identifying dominant processes. In this respect, TNT2-P is an aggregative model 588 

rather than a fully distributed model although it is based on a fully distributed hydrological 589 

model (Beaujouan et al., 2002). The current spatial distribution allows finer representation of 590 

soil-groundwater interactions (i.e. the time varying extent of the riparian wetland area) than 591 

semi-distributed models such as SWAT (Arnold et al., 1998), INCA-P (Wade et al., 2002) 592 

and HYPE (Lindstrom et al., 2010) but at higher computational cost. It would be interesting to 593 

test to whatich extent moving from an aggregative model with fully distributed information to 594 

a semi-distributed model would degrade the model performance whileand in the same time 595 

reducinge computational cost.  This could be achieved by grouping cells according to a 596 

hydrological similarity criterion like in the original TOPMODEL and Dynamic Topmodel 597 

(Beven and Freer, 2001b; Metcalfe et al., 2015) and do the same for similarity in soil P 598 

content. Reducing computation time is critical in the context of a GLUE analysis because this 599 

method requires the parameter space to be sampled adequately to identify those models to be 600 

considered acceptable. This is debatable here because 12 parameters were varied and only 601 

20,000 model runs were performed. It is therefore possible that some regions of the parameter 602 

space with acceptable models might not have been sampled. 603 

If reducing the number of calculation units proved to reduce computational cost without 604 

degrading quality of prediction, it would be possible to include more parameters in the model, 605 

for example to simulate SRP re-absorption in downslope cells or include routines to simulate 606 

the evolution of soil P content under different management scenarios (Vadas et al., 2011; 607 

2012), and still perform a Monte-Carlo based analysis of uncertainty. The question of 608 

coupling or not such a soil P routine with the current TNT2-P model will depend on available 609 

data and on the length of available time series: studying the evolution of the soil P content 610 

requires at least a decade of soil observation data (Ringeval et al., 2014) and probably a 611 

longer period of stream data to account for the time delay for a perturbation in the catchment 612 

to become visible in the stream (Wall et al., 2013). Thus, the two years of daily stream SRP in 613 

the Kervidy-Naizin catchment are not enough to build a coupled soil-hydrology model with 614 

an elaborate soil P routine. Therefore, as things stand, it is more reasonable to generate new 615 

soil P OlsenOlsen P maps with a separate model such as the APLE model (Vadas et al., 2012; 616 
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Benskin et al., 2014) or the ‘soil P decline’ model used by Wall et al. (2013), and use these 617 

maps as input to TNT2-P. 618 

Because the current model can simulate response to rainfall, soil moisture and temperature, it 619 

could be used to test the effect of climate scenarios on SRP transfer. In Western France, and 620 

more generally in Western Europe, the climate for the next few decades is expected to consist 621 

of hotter, drier summers and warmer, wetter winter (Jacob et al., 2007; Macleod et al., 2012; 622 

Salmon-Monviola et al., 2013) with increased frequency of high intensity rainfall events 623 

(Dequé 2007). In these conditions, SRP concentrations and load will seemingly increase 624 

compared to today’s climate as a result of both an increase in SRP solubility in soil due to 625 

higher temperature and more severe drought and an increase in transfer due to wetter winter 626 

and more frequent high intensity rainfall events. TNT2-P could be used to confirm and 627 

quantify the expected increase in SRP transfer from diffuse sources in future climate 628 

scenarios, and to determine whether those predicted changes are significant relative to the 629 

uncertainty in predictions under current climate variability.conditions. 630 

4.3 Improving information content in the data 631 

Despite relatively large uncertainty in the data used in this study, it was possible to build a 632 

parsimonious catchment model of SRP transfer for the purpose of testing hypotheses about 633 

dominant processes, namely the role of hydrology in controlling connectivity between soils 634 

and streams and the role of temperature and moisture conditions in controlling soil SRP 635 

solubilisation. However, the large uncertainties in the calibration data lead to large prediction 636 

uncertainty. For example, the SRP load estimated by the behavioural models from 2013 to 637 

2015 ranged from 0.485 to 1.992.0 kg P ha
-1

 yr
-1

; hence the width of the credibility interval 638 

was 1560% of the median (1.00.97 kg P ha
-1

 yr
-1

). Similarly, the mean SRP concentration 639 

estimated by the behavioural models from 2013 to 2015 ranged from 0.0134 to 0.0445 mg l
-1

; 640 

hence the width of the credibility interval was 10210% of the median (0.0289 mg l
-1

). The 641 

large uncertainty in the calibration data, along with a lack of long-term information, also 642 

prevents including more detailed processes in the soil routine. 643 

To reduce uncertainty in prediction and to build more complex models, several options exist 644 

to improve information content in the data. As stated by Jackson-Blake et al. (2015b), “the 645 

key to obtaining a realistic model simulation is ensuring that the natural variability in water 646 

chemistry is well represented by the monitoring data”. The monitoring strategy adopted in the 647 
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Kervidy-Naizin catchment should theoretically enable to capture the natural variability in 648 

stream SRP concentration, because sampling took place during two contrasting water years, 649 

during different seasons and at a high frequency during 14 storm events. The analysis of 650 

uncertainty in the data shows that a large part of uncertainty in “observed” SRP concentration 651 

originates from sample storage, both unfiltered between the time of autosampling and manual 652 

filtration and between filtration and analysis. This is due to SRP being non-conservative. 653 

Thus, there is room for improvement in reducing storage time, without increasing further the 654 

monitoring frequency. In this respect, the primary interest of investing in high frequency 655 

bankside analysers would lie in their ability to analyse water samples immediately in addition 656 

to providing near continuous data. Because bankside analysers perform measurements in 657 

relatively homogeneous conditions, unlike the manual and autosampler data for which storage 658 

time of filtered and unfiltered samples vary, a finer quantification of uncertainty in the 659 

measurement data would be possible (e.g. Lloyd et al., 20152016). 660 

Finally, alternative methods to statistical models could be used to derive acceptability limits 661 

(in this study three statistical models are used: the rating curve, the SRP concentration 662 

uncertainty during baseflow periods and the storm event interpolation model) because 663 

statistical models have at least three shortcomings: i) they lump the uncertainty linked to the 664 

timing of sampling, the immediate or delayed filtration of the samples, the storage time and 665 

the analytical error; ii) the formula chosen adds error to the already existing measurement 666 

errors because empirical models are not perfect representation of the system dynamics; iii) 667 

they assume a parametric distribution and temporally independent errors which are not always 668 

verified in practice. As an alternative, non-parametric methods could be used, but these 669 

methods generally require a large number of data points and they are not suitable for 670 

extrapolation to extreme values. 671 

5 Conclusion 672 

The TNT2-P model was capable of capturing daily variation of SRP loads, thus confirming 673 

the dominant processes identified in previous analyses of observation data in the Kervidy-674 

Naizin catchment. The role of hydrology in controlling connectivity between soils and 675 

streams, and the role of soil Olsen P, soil moisture and temperature in controlling SRP 676 

solubility have been confirmed. The lack of any representation of the short-term effect of 677 

management practices did not seem to penalize the model’s performance. Their long-term 678 

effect on the soil Olsen P could be simulated with an independent model or through an 679 
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additional sub-model if a longer period of data was available to calibrate it. The modelling 680 

approach presented in this paper included an assessment of the information content in the 681 

data, and propagation of uncertainty in the model’s prediction. The information content of the 682 

data was sufficient to explore dominant processes, but the relatively large uncertainty in SRP 683 

concentrations would seemingly limit the possibility for including more detailed processes 684 

into the model. Data from near continuous bankside analyser will probably allow calibrating 685 

more detailed models in the near future. 686 
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Table 1: Initial parameter ranges in the hydrological and soil phosphorus sub models. 925 

 Abbrevi

ation 

Unit Hydrologica

l (H), 

Phosphorus 

model (P) 

Range 

poorly 

drained soils 

(min-max) 

Range well 

drained soils 

(min-max) 

Lateral transmissivity at 

saturation 

T m
2
 d

-1
 H 4-8 -> x1.5 

Exponential decay rate of 

hydraulic conductivity 

with depth 

m m
2
 d

-1
 H 0.02-0.2 0.02-0.2 

Soil depth ho m H 0.3-0.8 -> x1 

Drainage porosity of soil po cm
3
 cm

-

3
 

H 0.1-0.4 -> x1 

Regolith layer thickness h1 m H 5-10 -> x4 

Exponent for evaporation 

limit 

Α - H 8 (fixed) -> x1 

kRC parameter for 

capillary rise 

kRC - H 0.001 (fixed) -> x1 

n parameter for capillarity 

rise 

N - H 2.5 (fixed) -> x1 

Drainage porosity of 

regolith layer 

p1 cm
3
 cm

-

3
 

H 0.01-0.05 -> x1 

Background P release 

coefficient for subsurface 

flow 

Coef SRP 

overland 

- P 0-0.015 -> x1 

Background P release 

coefficient for overland 

flow 

Coef SRP 

sub-surface 

- P 0-0.25 -> x1 

Temperature coefficient 1 T1 - P 5-10 -> x1 

Temperature coefficient 2 T2 - P 2-10 -> x1 
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Soil moisture coefficient S1 - P 0-2 -> x1 

SRP concentration in deep 

flow 

SRP_de

ep 

mg l
-1

 P 0-0.007 -> x1 

 926 

Table 2: Starting and ending dates of periods studied 927 

Name Starting date Ending date 

Autumn 2013 01 October 2013 31 December 2013 

Winter 2014 01 January 2014 31 March 2014 

Spring 2014 01 April 2014 31 July 2014 

Autumn 2014 01 October 2014 31 December 2014 

Winter 2015 01 January 2015 31 March 2015 

Spring 2015 01 April 2015 31 July 2015 

 928 
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Table 3: Sensitivity analysis of the model to 18 model parameters (insignificant ., important *, 930 

critical ***). Parameters significations are detailed in Table 1. 931 

 932 

 discharge baseflow SRP load storm SRP load 

T (poorly drained soils) . *** *** 

m (poorly drained soils) *** *** *** 

ho (poorly drained soils) *** *** . 

po (poorly drained soils) *** *** *** 

h1 (poorly drained soils) *** *** . 

p1 (poorly drained soils) *** *** *** 

T (well drained soils)  . *** *** 

m (well drained soils)  *** *** *** 

ho (well drained soils)  *** *** . 

po (well drained soils)  *** *** *** 

h1 (well drained soils)  *** *** . 

p1 (well drained soils)  *** *** *** 

Coef_sub-surface . *** . 

Coef_overland . *** *** 

SRP_deep . . . 

S1 . *** *** 

T1 . *** *** 

T2 . *** *** 

 933 

 934 
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 935 

Fig. 1. Soil drainage classes in the Kervidy-Naizin catchment, Curmi et al. (1998) 936 

 937 

Fig. 2. Description of soil hydraulic properties and phosphorus content with depth 938 
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 939 

Fig. 3 : Rating curve in Kervidy-Naizin; acceptability bounds derived from 90% prediction 940 

interval (blue line: fitting regression; black dots: 90% prediction interval). Red dots represent 941 

the original discharge measurements used to calibrate the stage-discharge rating curve 942 

(Carluer, 1998). 943 

 944 
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Fig. 4: a) linear regression model linking the reference data and a verification dataset; b) 945 

measurement error as estimated from a repeatability test performed by the lab in charge of 946 

producing reference data (blue line: fitting regression; black dots: 90% prediction interval). 947 

 948 

 949 

Fig. 5: Example of an empirical concentration – discharge model; acceptability bounds 950 

derived from 90% prediction interval. Red circles represent the SRP measurements. 951 

 952 

 953 

Fig. 6 : a) normalized scores; b) triangular weighting function 954 
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Fig. 7: Acceptability limits for daily discharge (a) and SRP load (b). Blue lines represent best estimates; black lines represent the acceptability 1 

limits. Storm loads acceptability limits are represented by vertical blue lines. And example of 50 model runs simulating discharge (c) and 2 

daily load (d). Black vertical lines represent the starting and ending dates for each season (table 2).  3 
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 2 

Fig. 98: Normalized score for daily discharge (a), baseflow SRP load (b) and storm SRP load 3 

(c). 4 

 5 
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 1 

Fig. 109: Median and 95% credibility interval for daily discharge (a), SRP load (b) and SRP 2 

concentration (c). Red circles represent observational data. 3 

 4 


