
Editor Decision: Publish subject to minor revisions (Editor review) (03 Jun 2016) by Dr. Jim Freer 

Comments to the Author: 

The two reviewers agree the paper is a good contribution to the field of uncertainty evaluation of water 

quality models, the paper is on the whole well presented and I agree is fit for publication into HESS. The 

reviewers have clearly taken some time to read the paper thoroughly and their expertise on this matter 

is appreciated and equally where necessary the authors have responded well. I can see they will address 

all the points made by the reviewers in a satisfactory manner. However I have a few additional 

comments to make on the paper that I think need to be improved as well as the reviewer comments, 

these are generally minor but I think will improve the paper. However one is major and I think critical to 

address and was surprised this was not brought up in the review process (or I have miss-understood 

what has happened in the paper): 

 

My major comments are on the expressions of the uncertainty limits which are for this paper very large 

in both cases (flow and SRP). The question I put to the authors is how these errors can be justified (no 

comment is made to the extent of these in the paper and it is absolutely critical to the whole model 

evaluation conclusions drawn). First the authors have chosen a parametric regression approach to the 

uncertainties in discharge – so the first point is are the assumptions in this approach valid (perhaps they 

could relate to Coxon et al. 2015) which used a non-parametric approach. 39% errors need to be 

justified I believe. 

Secondly and more critically what the authors have done to calculate an ‘observational uncertainty’ 

value for the storm event behaviour is to use effectively a model error approach to their found 

discharge-concentration relationship (and perhaps pulled together from multiple events but not 100% 

clear and could do with some figures to better identify their approach). That is not daily observational 

error representation from the data they have. That is the error associated with using a simple expected 

relationship between discharge and concentration that will inevitably lead to much wider uncertainty 

limits than would be expected for a daily mean flow uncertainty value in my view. Furthermore they do 

not show how much this function is being used to extrapolate these errors elsewhere and if that can be 

justified to how these were lumped or otherwise in the first place. 

Surely a much more sensible approach to trying to characterise the mean error of SRP for a day when 

they have event information is to first derive the expected uncertainty in the measurements themselves 

(which the authors have) and then resample these for these events to gain the actual observational 

uncertainty mean daily limits. Then they would be able ‘in extrapolation’ to take the discharge-

concentration mean value and apply such limits to these. I would argue where there is data available to 

assess the actual mean daily uncertainty from high resolution samples then an appropriate method 

would show the range of uncertainty would be very different to those generated by the authors in this 

manuscript. I suggest this must be better evaluated before the paper is fit for publication. I further add 

their is no discussion of the chosen approach and any implications nor any comment as to how high the 

ranges of error are for the LoA compared to the general range of concentrations in the time series. 



Response 1: 

We extended the paragraph on discharge uncertainty to explain why it appeared to be so high: 

“This uncertainty interval is in the higher range of values found in other studies, e.g. Coxon et al. (2015) 

who found that mean discharge uncertainty was generally between 20% and 40% in 500 catchments of 

the United Kingdom. This relatively large uncertainty interval is due to the fact that it was derived from a 

prediction interval rather than a confidence interval (the 90% confidence interval of the log-log linear 

regression would be 14% of the mean discharge value during the study period). This choice of a 

relatively large acceptability interval counterbalances the fact than other sources of uncertainty (e.g. 

uncertainty in rainfall) were not accounted for in the discharge limits of acceptability. Moreover, the 

high percentage often represents a low absolute value because daily discharge was below 2 mm d-1 

during 78% of the time during the study period.” Page 12 line 3-13. 

About estimation of SRP load during storm events: a different empirical model was fit for each event 

separately and the models were not applied to multiple events. When a storm event was not monitored 

at high frequency, the model was not evaluated for this storm event. We amended the manuscript: 

“An empirical model was used to fit to each storm event monitored separately” page 13 line 16. 

And  

“During days with a storm event not monitored at high frequency with an autosampler, we considered 

that the grab sample data did not contain enough information to derive an acceptability interval for 

daily SRP load; hence simulated load was not evaluated for events not monitored at high frequency.” 

Page 14 lines 3-6. 

Similar to discharge, we added a sentence to comment on the fact that the large concentration 

uncertainty (in %) is actually small in absolute value : 

“As for discharge estimates, the high percentage represents a small absolute value (0.03 mg l-1) during 

baseflow periods.” Page 13 line 11-13. 

We disagree that the method suggested here is better than ours: 

First because observational concentration uncertainty for autosampler data is expected to be higher 

than just analytical uncertainty (because the samples are not filtered and analysed immediately when 

collected with an autosampler). A different method to assess uncertainty is used here to extend the 

acceptability interval with a 1 – 1.6 ratio (see manuscript). 

Second because the empirical model is necessary to assess daily (or 2-daily) mean SRP concentration 

during storm events because autosampler were not running from 00:00 am to 00:00 pm during days 

with a storm event. The data points collected are rather biased towards the storm events itself (usually 

during 12h), therefore extrapolation is needed to assess the mean daily (or 2-daily) concentration. This 



can be clearly seen from the storm event given as an example in Figure 4 or in the other storm events 

shown in the supplementary material. 

My other minor points include: 

1) The intro states ‘In this paper we strive to identify and quantify the different sources of uncertainty in 

the data when the required quality check tests have been performed’ – yes but it should be made clear 

there are only some of the observational uncertainties that are dealt with here, and indeed maybe not 

some of the main uncertainties…. 

Response 2: 

We agree. Other sources of uncertainty are mentioned in the Materials and methods. 

“Input data, such as weather and soil Olsen P data, also contained uncertainty which were not 

accounted for explicitly in the limits of acceptability due to a lack of data to quantifying them.” Page 11 

lines 23-25. 

See also response 1 about the large uncertainty interval. 

2) Whilst one approach to understanding observational uncertainties in water quality data is to compare 

when samples are taken this is not a full characterisation of the potential errors. 

Response 3: 

We agree and we acknowledged this in the manuscript. The two samples taken during the same day 

during baseflow periods also had different storage time and independent lab analysis to account for 

many sources of variability: 

“To assess uncertainty in daily SRP concentration related to sampling time, storage and measurement 

errors, a second grab sample was taken at a different time of the day (between 11:00 – 15:00 local time) 

in 36 instances during the study period. The second sample was analysed within 24h with the same 

method; this second dataset is referred to as verification dataset, as opposed to the reference dataset.” 

And indeed the estimated uncertainty is larger than that derived from a lab repeatability test: 

“This method encompasses all various sources of uncertainty, which results in prediction intervals much 

wider than what would result from a mere repeatability test: at the median concentration (0.02 mg l-1), 

estimated prediction interval was 166% with this method versus 57% with a repeatability test (Fig. 4).” 

3) The comments on page 8 about comparisons to TOPMODEL are to me confusing. It makes it sound 

like TOPMODEL did some form of explicit routing between ‘grouped’ hydrologically similar points, but it 

did not, and this is only available in Dynamic TOPMODEL (Beven and Freer, 2001). 

Response 4: 

We agree and we deleted this sentence on page 8. 



We also amended the discussion: 

“This could be achieved by grouping cells according to a hydrological similarity criterion like in the 

original TOPMODEL and Dynamic Topmodel (Beven and Freer, 2001; Metcalfe et al., 2015) and do the 

same for similarity in soil P content.” Page 19 line 13. 

4) It makes no sense to me why this whole simulation is being run at 20m resolution. What is the point 

of this in terms of the landscape controls that need to be captured and the importance of such local 

parameterisation and interaction between cells that is either possible or critical. I do not see any 

justification in the spatial data presented nor the simple hypotheses presented about SRP that such fine 

detail is required. I feel the authors need to justify this far better in the paper (given they end up with 

only 2 drainage classes!) 

Response 5: 

The DEM resolution must be high compared to hillslope length for TNT2 (or TOPMODEL) to run 

correctly. 

TNT2 is a fully distributed model, as explained in the materials and methods: “Based on these 

assumptions, TNT2 computes an explicit cell-to-cell routing of fluxes, using a D8 algorithm.”  

The two drainage classes determined values of hydrological parameters in the model but did not 

represent similar points grouped hydrologically. 

5) Justify better how so many parameters can be really fixed and made homogeneous over the model 

domain please. No comments are made on this except the values are related to literature (does that 

mean they are all deterministic and not expected to vary in space?) 

Response 6: 

In the reference cited the initial parameter range was not derived from only one application of the 

model but rather from many of them in different contexts (but mainly in the same region). So it is a 

relatively large initial parameter range. 

“Initial parameter ranges for the hydrological sub-model were based on literature-derived values from 

several previous studies in Western France (Moreau et al., 2013)” page 10 lines 1-3. 

6) 15,000 simulations for 12 parameters is actually quite a small set. Please can the authors make 

comments about the acceptability of this sampling design given the needs of GLUE to sample the space 

effectively and how they confirmed this provided an acceptable simulation set. 

Response 7: 

We added a sentence to acknowledge this. 

“The number of Monte Carlo realisations was constrained by the computation time required to run a 

spatially explicit model in this catchment.” Page 14 line 9-12. 



In the revised manuscript, this number was increased to 20,000 and results are similar to 15,000 runs. 

7) On page 13 the authors state ‘model runs must fall within the acceptability limits’ – that would ONLY 

be the case if all errors in observations had been taken into account, but here as the authors make clear 

they are not including all sources of uncertainties so there is no need for this to be the case in their 

study. 

Response 8: 

We agree. See reponse 1 and response 2. 

So given I have made perhaps the biggest critique of the paper on a point that I believe is fundamental 

to what has been evaluated I have put back the assessment to an editorial review for the improved 

manuscript, thanks, Jim Freer 
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Abstract 9 

We developed a parsimonious topography-based hydrologic model coupled with a soil 10 

biogeochemistry sub-model in order to improve understanding and prediction of Soluble 11 

Reactive Phosphorus (SRP) transfer in agricultural headwater catchments. The model 12 

structure aims to capture the dominant hydrological and biogeochemical processes identified 13 

from multiscale observations in a research catchment (Kervidy-Naizin, 5 km²). Groundwater 14 

fluctuations, responsible for the connection of soil SRP production zones to the stream, were 15 

simulated with a fully-distributed hydrologic model at 20 m resolution. The spatial variability 16 

of the soil phosphorus status and the temporal variability of soil moisture and temperature, 17 

which had previously been identified as key controlling factor of SRP solubilisation in soils, 18 

were included as part of an empirical soil biogeochemistry sub-model. The modelling 19 

approach included an analysis of the information contained in the calibration data and 20 

propagation of uncertainty in model predictions using a GLUE “limits of acceptability” 21 

framework. Overall, the model appeared to perform well given the uncertainty in the 22 

observational data, with a Nash-Sutcliffe efficiency on daily SRP loads between 0.1 and 0.8 23 

for acceptable models. The role of hydrological connectivity via groundwater fluctuation, and 24 

the role of increased SRP solubilisation following dry/hot periods were captured well. We 25 

conclude that in the absence of near continuous monitoring, the amount of information 26 

contained in the data is limited hence parsimonious models are more relevant than highly 27 

parameterised models. An analysis of uncertainty in the data is recommended for model 28 

calibration in order to provide reliable predictions.  29 



 2 

1 Introduction 1 

Excessive phosphorus (P) concentrations in freshwater bodies result in increased 2 

eutrophication risk worldwide (Carpenter et al., 1998; Schindler et al., 2008). Eutrophication 3 

restricts economic use of water and poses a serious health hazard to ecosystems and humans, 4 

due to the potential development of harmful cyanobacteria (Bradley et al., 2013; (Serrano et 5 

al., 2015). In western countries, reduction of point source P emissions in the last two decades 6 

has resulted in a proportionally increasing contribution of diffuse sources, mainly from 7 

agricultural origin (Alexander et al., 2008; Grizzetti et al., 2012; Dupas et al., 2015a).  Of 8 

particular concern are dissolved P forms, often measured as Soluble Reactive Phosphorus 9 

(SRP), because they are highly bioavailable and therefore a likely contributor to 10 

eutrophication. 11 

To reduce SRP transfer from agricultural soils it is important to identify the spatial origin of P 12 

sources in agricultural landscapes, the biogeochemical mechanisms causing SRP 13 

solubilisation in soils and and  the dominant transfer pathways, as well as the potential P 14 

resorption during transit.. Research catchments provide useful data to investigate SRP 15 

transport mechanisms: typically, the temporal variations in water quality parameters at the 16 

outlet, together with hydroclimatic variables, are investigated to infer spatial origin and 17 

dominant transfer pathways of SRP (Haygarth et al., 2012; Outram et al., 2014; Dupas et al., 18 

2015b; Mellander et al., 2015; Perks et al., 2015).  Hypotheses drawn from analysis of water 19 

quality time series can be further investigated through hillslope monitoring and/or laboratory 20 

experiments (Heathwaite and Dils, 2000; Siwek et al., 2013; Dupas et al., 2015c). When 21 

dominant processes are considered reasonably known, it is possible to develop computer 22 

models, for two main purposes: first, to validate scientific conceptual models, by testing 23 

whether model predictions can produce reasonable simulations compared to observations. Of 24 

particular interest is the possibility to test the capability of a computer model to upscale P 25 

processes observed at fine spatial resolution (soil column, hillslope) to a whole catchment. 26 

Second, if the models survive such validation tests, then they can be useful tools to simulate 27 

the response of a catchment system to a future perturbation such as changes in agricultural 28 

management and climate changes. 29 

However, process-based P models generally perform poorly compared to, for example, 30 

nitrogen models (Wade et al., 2002; Dean et al., 2009; Jackson-Blake et al., 2015a). This is of 31 

major concern because poor model performance suggests poor knowledge of dominant 32 
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processes at the catchment scale, and poor reliability of the modelling tools used to support 1 

management. The origin of poor model performance might be conceptual misrepresentations, 2 

structural imperfection, calibration problems, irrelevant model evaluation criteria and 3 

difficulties in properly assessing the information content of the available data when it is 4 

subject to epistemic error. All five causes of poor model performance are intertwined, e.g. 5 

model calibration strategy depends on model performance evaluation criteria, which depend 6 

on the way the information contained in the observation data is assessed (Beven and Smith, 7 

2015).  8 

A key issue in environmental modelling is the level of complexity one should seek to 9 

incorporate in a model structure. Several existing P transfer models, such as INCA (Wade et 10 

al., 2002), SWAT (Arnold et al., 1998) and HYPE (Lindstrom et al., 2010) seek to simulate 11 

many processes, with the view that complex models are necessary to understand processes 12 

and to predict the likely consequences of land-use or climate changes. However, these 13 

complex models include many parameters that need to be calibrated, while the amount of data 14 

available for calibration is often low. An imbalance between calibration requirement and the 15 

amount of available observation data can lead to equifinality issues, i.e. when many model 16 

structures or parameter sets lead to acceptable simulation results (Beven, 2006). A 17 

consequence of equifinality is the risk of unreliable prediction when an “optimal” set of 18 

parameters is used (Kirchner, 2006), and large uncertainty intervals when Monte Carlo 19 

simulations are performed (Dean et al., 2009).  In this situation, it will be worth exploring 20 

parsimonious models that aim to capture the dominant hydrological and biogeochemical 21 

processes controlling SRP transfer in agricultural catchment. For example, Hahn et al. (2013) 22 

used a soil-type based rainfall-runoff model (Lazzarotto et al., 2006) combined with an 23 

empirical model of soil SRP release derived from rainfall simulation experiments over soils 24 

with different P content and manure application level/timing (Hahn et al., 2012) to simulate 25 

daily SRP load from critical sources areas. 26 

A second key issue, linked to the question of model complexity, concerns model calibration 27 

and evaluation. Both calibration and evaluation require assessing the fit of model outputs with 28 

observation data. However, observation data are generally not directly comparable with model 29 

outputs, because of incommensurability issues and/or because they contain errors (Beven, 30 

2006; 2009). Typically, predicted daily concentrations and/or loads are evaluated against data 31 

from grab samples collected on a daily or weekly basis. The information content of these data 32 
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must be carefully evaluated to propagate uncertainty in the data into model predictions 1 

(Krueger et al., 2012). Uncertainty in grab sample data might stem from i) sampling 2 

frequency problems and ii) measurement problems (Lloyd et al., 2015). Grab sample data 3 

represent a snapshot of the concentration at a given time of the day, which can differ from the 4 

flow weighted mean daily concentration (McMillan et al. 2012), and a specific point in the 5 

stream cross-section, which can differ from the cross section mean concentration (Rode and 6 

Suhr, 2007). This difference between observation data and simulation output can be large 7 

during storm events in small agricultural catchments, as P concentrations can vary by several 8 

orders of magnitudes during the same day (Heathwaite and Dils, 2000; Sharpley et al., 2008). 9 

Model evaluation can be severely penalised by this difference, because many popular 10 

evaluation criteria such as the Nash-Sutcliffe efficiency (NSE) are sensitive to extreme values 11 

and errors in timing (Moriasi et al.,2007). During baseflow periods, it is more likely that grab 12 

sample data are comparable to flow-weighted mean daily concentrations, as concentrations 13 

vary little during the day and they are usually low in the absence of point sources. However, 14 

measurement errors are expected to occur at low concentrations, either due to too long storage 15 

times or laboratory imprecision when concentrations come close to detection/quantification 16 

limits (Jarvie et al., 2002; Moore and Locke, 2013). Uncertainty in the data can also relate to 17 

discharge measurement and input data (e.g. maps of soil P content and rainfall data). In this 18 

paper we strive to identify and quantify the different sources of uncertainty in the data when 19 

the required quality check tests have been performed. A Generalised Likelihood Uncertainty 20 

Estimation (GLUE) “limits of acceptability” approach (Beven, 2006; Beven and Smith, 2015) 21 

is used to calibrate/evaluate the model.  22 

This paper presents a dominant-process model that couples a topography-based hydrologic 23 

model with a soil biogeochemistry sub-model able to simulate daily discharge and SRP loads. 24 

The dominant processes included in the hydrologic and soil biogeochemistry sub-models have 25 

been identified in previous analyses of multiscale observational data, which have 26 

demonstrated on the one hand the control of groundwater fluctuation on connecting soil SRP 27 

production zones to the stream (Haygarth et al., 2012; Jordan et al., 2012; Dupas et al., 2015b; 28 

2015d; Mellander et al., 2015), and on the other hand the role of antecedent soil moisture and 29 

temperature conditions on SRP solubilisation in soils (Turner and Haygarth, 2001; Blackwell 30 

et al., 2009; Dupas et al., 2015c). Model development and application was performed in the 31 

Kervidy-Naizin catchment in western France with the objectives of: i) testing if the model 32 

was capable of capturing daily variation of SRP load, thus confirming hypotheses on 33 
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dominant processes; ii) develop a methodology to analyse and propagate uncertainty in the 1 

data into model prediction using a “limits of acceptability” approach. Model development and 2 

analysis of uncertainty in the data are interlinked in this approach. 3 

2 Material and methods 4 

2.1 Study catchment 5 

2.1.1 Site description 6 

Kervidy–Naizin is a small (4.94 km²) agricultural catchment located in central Brittany, 7 

Western France (48°N, 3°W). It belongs to the AgrHyS environmental research observatory 8 

(http://www6.inra.fr/ore_agrhys_eng), which studies the impact of agricultural activities and 9 

climate change on water quality (Molenat et al., 2008; Aubert et al., 2013; Salmon-Monviola 10 

et al., 2013; Humbert et al., 2014). The catchment (Fig. 1) is drained by a stream of second 11 

Strahler order, which generally dries up in August and September. The climate is temperate 12 

oceanic, with mean ± standard deviations of annual cumulative precipitation and specific 13 

discharge averaging of 854 ± 179 mm and 290 ± 106 mm, respectively, from 2000 to 2014. 14 

Mean annual ± standard deviation of temperature is 11.2 ± 0.6°C. Elevation ranges from 93 to 15 

135 m above sea level. Topography is gentle, with maximum slopes not exceeding 5%. The 16 

bedrock consists of impervious, locally fractured Brioverian schists and is capped by several 17 

metres of unconsolidated weathered material and silty, loamy soils. The hydrological 18 

behaviour is dominated by the development of a water table that varies seasonally along the 19 

hillslope. In the upland domain, consisting of well drained soils, the water table remains 20 

below the soil surface throughout the year, varying in depth from 1 to > 8 m. In the wetland 21 

domain, developed near the stream and consisting of hydromorphic soils, the water table is 22 

shallower, remaining near the soil surface generally from October to April each year. The 23 

land use is mostly agriculture, specifically arable crops and confined animal production (dairy 24 

cows and pigs). A farm survey conducted in 2013 led to the following land use subdivisions: 25 

35% cereal crops, 36% maize, 16% grassland and 13% other crops (rape seed, vegetables). 26 

Animal density was estimated as high as 13 livestock units ha
-1

 in 2010. Estimated soil P 27 

surplus wasis 13.1 kg P ha
-1

 yr
-1

 (Dupas et al., 2015b) and soil extractable P in 2013 (Olsen et 28 

al., 1954) wais 59 ± 31 mg P kg
-1

 (n = 89 samples). A survey targeting riparian areas 29 

highlighted the legacy of high soil P content in these currently unfertilized areas (Dupas et al., 30 
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2015c). No point source emissions weare recorded but scattered dwellings with septic tanks 1 

weare present in the catchment. 2 

2.1.2 Hydroclimatic and chemical monitoring 3 

Kervidy-Naizin was equipped with a weather station (Cimel Enerco 516i) located 1.1 km 4 

from the catchment outlet. It recorded hourly precipitation, air and soil temperatures, air 5 

humidity, global radiation, wind direction and speed, and estimates Penman 6 

evapotranspiration. Stream discharge was estimated at the outlet with a rating curve and stage 7 

measurements from a float-operator sensor (Thalimèdes OTT) upstream of a rectangular weir. 8 

To record both seasonal and within storm dynamics in P concentration, two monitoring 9 

strategies complemented each other from October 2013 to August 2015: a daily manual grab 10 

sampling at approximately the same time (between 16:00 – 18:00 local time) and automatic 11 

high frequency sampling during 14 storm events (autosampler ISCO 6712 Full-Size Portable 12 

Sampler, 24 one litre bottles filled every 30 min). The water samples were filtered on-site, 13 

immediately after grab sampling and after 1-2 days in the case of autosampling. They were 14 

analysed for SRP (ISO 15681) within a fortnight. To assess uncertainty in daily SRP 15 

concentration related to sampling time, storage and measurement errors, a second grab sample 16 

was taken at a different time of the day (between 11:00 – 15:00 local time) in 36 instances 17 

during the study period. The second sample was analysed within 24h with the same method; 18 

this second dataset is referred to as verification dataset, as opposed to the reference dataset. 19 

Among the 36 pairs of comparable daily samples, 12 were taken during storm events and 24 20 

during baseflow periods. To assess uncertainty in high frequency SRP concentration during 21 

storm events due to delayed filtration of autosampler bottles, 5 grab samples were taken 22 

during the course of 4 distinct storms and were filtered immediately. The same lab procedure 23 

was used to analyse SRP. 24 

2.1.3 Identification of dominant processes from multiscale observations 25 

Observations in the Kervidy-Naizin catchment have highlighted that the temporal variability 26 

in stream SRP concentrations could not be related to the calendar of agricultural practices, but 27 

rather to hydrological and biogeochemical processes (Dupas et al., 2015b). The primary 28 

control of hydrology on SRP transfer has also been evidenced in several other small 29 

agricultural catchments (e.g. Haygarth et al, 2012; Jordan et al., 2012; Mellander et al., 2015). 30 

In the Kervidy-Naizin catchment, groundwater fluctuations in valley bottom areas was 31 
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identified as the main driving factor of SRP transfer, through the hydrological connectivity it 1 

creates when it intercepts shallow soil layers (Dupas et al., 2015b).  2 

In-situ monitoring of soil pore water at 4 sites (15 cm and 50 cm depths) in the Kervidy-3 

Naizin catchment has shown that mean SRP concentration in soils was a linear function of 4 

Olsen P (Olsen et al., 1954). This reflects current knowledge that a soil P test, or alternatively 5 

estimation of a degree of P saturation, can be used to assess solubilisation in soils 6 

(Beauchemin and Simard, 1999; McDowell et al., 2002; Schoumans et al., 2015). This linear 7 

relationship derived from the data contrasts however with other studies, where threshold 8 

values above which SRP solubilisation increases greatly have been identified (Heckrath et al., 9 

1995; Maguire et al., 2002).  10 

Soluble Reactive Phosphorus solubilisation in soil varies seasonally according to antecedent 11 

conditions of temperature and soil moisture. Dry and/or hot conditions are favourable to 12 

accumulation of mobile P forms in soils, while water saturated conditions lead to their 13 

flushing (Turner et al., 2001; Blackwell et al., 2009; Dupas et al., 2015c).  14 

2.2 Description of the Topography-based Nutrient Transfer and 15 

Transformation – Phosphorus model (TNT2-P) 16 

TNT2 was originally developed as a process-based and spatially explicit model simulating 17 

water and nitrogen fluxes at a daily time step (Beaujouan et al., 2002) in meso-scale 18 

catchments (< 50 km
2
). TNT2-N has been widely used for operational objectives, to test the 19 

effect of mitigation options proposed by local stakeholders or public policy-makers (Moreau 20 

et al., 2012; Durand et al., 2015), on nitrate fluxes and concentrations in rivers.  21 

TNT2-P uses a modified version of the hydrological sub-model in TNT2-N, to which a P 22 

biogeochemistry sub-model was added to simulate SRP solubilisation in soils. 23 

2.2.1 Hydrological sub-model 24 

The assumptions in the hydrological sub-model are derived from TOPMODEL which has 25 

previously been applied to the Naizin catchment (Bruneau et al., 1995; Franks et al., 1998): 1) 26 

the effective hydraulic gradient of the saturated zone is approximated by the local topographic 27 

surface gradient (tan β). It is calculated in each cell of a Digital Elevation Model (DEM) at the 28 

beginning of the simulation; 2) the effective downslope transmissivity (parameter T) of the 29 

soil profile in each cell of the DEM is a function of the soil moisture deficit (Sd). Hydraulic 30 
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conductivity decreases exponentially with depth (parameter m, Fig. 2). Hence water fluxes (q) 1 

are computed as: 2 

               
  

 
         (1) 3 

Based on these assumptions, TNT2 computes an explicit cell-to-cell routing of fluxes, using a 4 

D8 algorithm. This explicit cell-to-cell routing of fluxes increases computation times 5 

compared to TOPMODEL, for which calculations are grouped according to a distribution of 6 

hydrologically similar points, but it allows taking account of spatial interactions between soil 7 

and groundwater, which has been shown to improve representation of nutrients fluxes and 8 

transformations (Beaujouan et al., 2002). 9 

To simulate SRP fluxes, the only modification to the hydrological sub-model aimed to 10 

compute water fluxes from each soil layer by integrating [1] between the maximum depth of 11 

the soil layer considered and: 12 

- estimated groundwater level, if the groundwater table is within the soil layer 13 

considered 14 

or  15 

- the minimum depth of the soil layer considered, if the groundwater table above the 16 

soil layer considered 17 

In this application of the TNT2-P model, 5 soil layers with a thickness of 10 cm are 18 

considered. Hence, 7 flow components are computed in the model: 19 

- overland flow on saturated surface 20 

- 5 sub-surface flow components, for each soil layer 21 

- deep flow, i.e. flow below the 5 soil layers 22 

2.2.2 Soil-P sub-model 23 

The soil-P sub-model is empirically derived from soil pore water monitoring data (Dupas et 24 

al., 2015c), specifically assuming that: 25 

- background SRP concentration in the soil pore water of a given layer is proportional to 26 

soil Olsen P; 27 

- seasonal increases in P availability compared to background conditions are determined 28 

by biogeochemical processes, controlled by antecedent temperature and soil moisture. 29 
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Data show that SRP availability in the soil pore water increases following periods of 1 

dry and hot conditions (Dupas et al., 2015c). 2 

Hence, SRP transfer is modelled with parameters that describe both mobilisation and transfer 3 

to the stream. A different parameter is used to simulate transfer via overland flow and sub-4 

surface flow. 5 

                                                      (2) 6 

                                                             (3) 7 

Where               and                  are SRP transfer via overland flow and sub-surface 8 

flow for a given soil layer respectively,            and               are water flows from the 9 

same pathways.                  and                     are coefficients which vary 10 

according to antecedent temperature and soil moisture conditions, such as: 11 

                                       (4) 12 

Where         is either                   or                    , and FT and FS are 13 

temperature and soil moisture factors, respectively. FT and FS are expressed as: 14 

        
                           

  
          (5) 15 

     (
                              

                     
)
  

          (6) 16 

Where T1, T2 and S1 are calibrated coefficients. The antecedent condition time length 17 

consists in a period of i=100 days. Both soil temperature and soil moisture are estimated by 18 

TNT2 soil module (Moreau et al., 2013). Because soil moisture in the deep soil layers can 19 

differ significantly from that of shallow soil layers, two values of FS are calculated for two 20 

soil depth 0-20 cm and 20-50 cm. The temperature factor FT was calculated as an average 21 

value for the entire soil profile 0-50 cm. Contrary to water fluxes, SRP fluxes are not routed 22 

cell-to-cell, because we lacked knowledge of the rate of SRP re-adsorption in downslope 23 

cells, and on the long term fate of re-adsorbed SRP. Hence, all the SRP emitted from each cell 24 

through overland flow and sub-surface flow reaches the stream on the same day. For deep 25 

flow, only the immediate riparian flux is used in determining SRP inputs to the river. 26 

No long-term depletion of the different P pools was modelled, because P export from the 27 

catchment was small compared to the size of soil and sub-soil P pools.  28 
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2.2.3 Input data and parameters 1 

Spatial input data include: 2 

- A DEM in raster format. Here, a 20 m resolution DEM was used, hence model 3 

calculations were made in 12348 grid cells covering a 4.94 km
2 

catchment. 4 

- A map of soils with homogeneous hydrological parameter value, in raster format. 5 

Here, two soil classes were considered by differentiating well-drained (86%) and 6 

poorly drained soils (14%) according to Curmi et al. (1998) (Fig. 1). 7 

- A map of surface Olsen P in raster format and description of decrease in P Olsen with 8 

depth for five soil layers between 0-50 cm. Here, the map of Olsen P in the 0-15 cm 9 

soil layer was obtained from statistical modelling with the rule-based regression 10 

algorithm CUBIST (Quinlan, 1992) using data from 198 soil samples (2013) in an 11 

area of 12 km² encompassing the 4.94 km² catchment (Matos-Moreira et al., 2015).  12 

To describe how P Olsen decreases with depth, land use information was used. In 13 

tilled fields, i.e. all crop rotations including arable crops, Olsen P was assumed to be 14 

constant between 0-30 cm and to decrease linearly with depth between 30-50 cm. In 15 

no-till fields, i.e. permanent pasture and woodland, Olsen P was assumed to decrease 16 

linearly with depth between 0-50 cm. An exponential decrease with depth is more 17 

commonly adopted in untilled land (e.g. Haygarth et al., 1998; Page et al., 2005), but a 18 

specific sampling in currently untilled areas in the Kervidy-Naizin catchment (Dupas 19 

et al., 2015c) has shown that a linear function is more appropriate, probably because 20 

of these areas having been ploughed in the past. 21 

Climate input data include minimum and maximum air temperature, precipitation, potential 22 

evapotranspiration, global radiation on a daily basis. The TNT2 model allows for several 23 

climate zones to be considered, in which case a raster map of climate zone must be provided 24 

to the model. Here, only one climate zone is considered. 25 

In total, the TNT2-P model includes 15 parameters for each soil type, i.e. 30 parameters in 26 

total if two soil drainage classes are considered. To reduce the number of model runs 27 

necessary to explore the parameter space using Monte Carlo simulations, several parameters 28 

were given fixed values, or a constant ratio between the two soil types was set (Table 1). In 29 

the hydrological sub-model, the parameters to vary were identified in a previous sensitivity 30 

analysis (Moreau et al., 2013). In the soil sub-model, all the parameters were varied.  31 
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Finally, only 12 parameters were varied independently. Initial parameter ranges for the 1 

hydrological sub-model were based on literature-derived values from several previous studies 2 

in Western France (Moreau et al., 2013) and those for the soil sub-model were based on a 3 

preliminary manual trial and error procedure. The SRP concentration for deep flow water was 4 

based on actual measurement of SRP in the weathered schist (Dupas et al., 2015c). A constant 5 

flux value for domestic sources was set at the 1% percentile of the daily flux between 2007 6 

and 2013 (Dupas et al., 2015b). 7 

2.3 Deriving limits of acceptability from data uncertainty assessment 8 

The Monte Carlo based Generalized Likelihood Uncertainty Estimation (GLUE) 9 

methodology has been widely used in hydrology and is described elsewhere (Beven and 10 

Freer, 2001a; Beven, 2006, 2009). Briefly, the rationale of GLUE is that many model 11 

structures and parameter sets can give “acceptable” results, according to one or several 12 

performance measures, due to equifinality. Hence, GLUE considers that all models that give 13 

acceptable results should be used for prediction. A key issue in GLUE is to decide on a 14 

performance threshold to define acceptable models; typically, modellers set a threshold value 15 

of a measure such as the Nash-Sutcliffe Efficiency based on their subjective appreciation of 16 

data uncertainty or on previously used values. To allow for a more explicit justification of the 17 

performance threshold values used, the limits of acceptability approach outlined by Beven 18 

(2006) relies on an assessment of uncertainty in the calibration/evaluation data. According to 19 

this approach, all model realisations that fall within the limits of acceptability are used for 20 

prediction, weighted by a score calculated based on overall performance. 21 

Details on how the limits of acceptability for daily discharge and daily SRP load were derived 22 

from uncertainty assessment of the observational data are presented below. Input data, such as 23 

weather and soil Olsen P data, also contained uncertainty which were not accounted for 24 

explicitly in the limits of acceptability due to a lack of data to quantifying them. 25 

2.3.1 Discharge 26 

Error in discharge measurement data was assessed from the original discharge measurements 27 

used to calibrate the stage-discharge rating curve (Carluer, 1998). The rating curve used in 28 

this study was: 29 

          
       (7) 30 
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Where Q is discharge, h is stage reading, h0 is stage reading at zero discharge, a and b are 1 

calibrated coefficients.  Limits of acceptability were defined as the 90% prediction interval of 2 

log-log linear regression (Fig. 3). The Estimated acceptability range estimated in this way was 3 

±39% on average.  This uncertainty interval is in the higher range of values found in other 4 

studies, e.g. Coxon et al. (2015) who found that mean discharge uncertainty was generally 5 

between 20% and 40% in 500 catchments of the United Kingdom. This relatively large 6 

uncertainty interval is due to the fact that it was derived from a prediction interval rather than 7 

a confidence interval (the 90% confidence interval of the log-log linear regression would be 8 

14% of the mean discharge value during the study period). This choice of a relatively large 9 

acceptability interval counterbalances the fact that other sources of uncertainty (e.g. 10 

uncertainty in rainfall) were not accounted for in the discharge limits of acceptability. 11 

Moreover, the high percentage often represents a low absolute value because daily discharge 12 

was below 2 mm d
-1

 during 78% of the time during the study period. For daily discharge 13 

values below 2 mm d
-1

, fixed acceptability limits were set at the 90% prediction interval for a 14 

stage measurement corresponding to 2 mm d
-1

. 15 

2.3.2 SRP load 16 

Uncertainty in “observed” daily load includes uncertainty in discharge (see 2.3.1.) and 17 

uncertainty in SRP concentration. Uncertainty in daily load was estimated summing up 18 

relative uncertainty assessed for discharge and SRP concentration. Uncertainty in SRP 19 

concentration stems from sampling frequency problems as one grab sample collected on a 20 

specific day is incommensurable with the mean daily concentration or load simulated by the 21 

model. Further, measurement errors exist that include the effect of storage time (Haygarth et 22 

al., 1995). During baseflow periods, measurement error was expected to be the main source of 23 

uncertainty because relative measurement error is large for low concentrations, especially 24 

when sample storage time exceeds 48h (Jarvie et al., 2002), while concentrations vary little. 25 

During storm events, sampling frequency was expected to be the main source of uncertainty 26 

because SRP concentration can vary by one order of magnitude within a few hours. 27 

Therefore, different acceptability limits were set for both flow conditions. We considered 28 

storms as events with > 20 l s
-1 

increase in discharge and the following 24h. 29 

During baseflow periods, the acceptability limits were derived from the 90% prediction 30 

interval of a linear regression model (y = a * x + b) linking pairs of data points sampled on the 31 

same day (reference sample between 16:00-18:00, verification sample between 11:00-15:00) 32 
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and analysed independently (within a fortnight for the reference sample and within 1-2 days 1 

for the verification sample). It was assumed that there was no systematic bias between the two 2 

datasets due to different sampling time. The reference SRP concentrations were on average 3 

13% lower than the verification value but this difference was not statistically significant 4 

(Mann-Whitney Rank Sum Test, p > 0.05). Hence, the expected underestimation of SRP 5 

concentration due to long sample storage appears to be overshadowed by other sources of 6 

uncertainty such as variability in SRP concentration during the day of sampling or analytical 7 

imprecision at low concentrations. This method encompasses all various sources of 8 

uncertainty, which results in prediction intervals much wider than what would result from a 9 

mere repeatability test: at the median concentration (0.02 mg l
-1

), estimated prediction interval 10 

was 166% with this method versus 57% with a repeatability test (Fig. 4). As for discharge 11 

estimates, the high percentage represents a small absolute value (0.03 mg l
-1

) during baseflow 12 

periods. 13 

During storm events, acceptability limits were derived from the 90% prediction interval of 14 

concentration discharge empirical models C= a*Q^b using high frequency autosampler data. 15 

An distinct empirical model was used to fit to each storm event monitored separately and a 16 

delay term was introduced manually in the empirical model when a time lag existed between 17 

concentration and discharge peaks. The empirical models were then applied to extrapolate 18 

concentration estimation during two days at 10 min resolution, for each of the 14 storm events 19 

monitored. Finally the 2-day mean “observed” load was estimated as the mean of 10 min 20 

loads and uncertainty limits were derived from the 90% prediction interval. In model 21 

evaluation, the mean of simulated loads during 2 consecutive days was evaluated against the 22 

2-day mean “observed” load for which prediction intervals have been calculated. A 2-day 23 

acceptability limit enables to cover the whole ofall the storm events to be covered (Fig. 5 and 24 

Supplement). A 2-day aggregation was necessary here because increased SRP load as a 25 

response to each storm event could occur either mainly during the day of the rainfall (if the 26 

rainfall occurred early in the morning) or mainly during the day following the rainfall (if the 27 

rainfall occurred late in the evening), and with the daily resolution of the input data and model 28 

simulation, the information about the timing of the rainfall event was not available to the 29 

model. 30 

When comparing autosampler data with data from immediately filtered samples, the ratio 31 

obtained had the ranged 1-1.6 (mean = 1.3), hence autosampler data were underestimates of 32 
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the true concentration,d arguably through adsorption or biological consumption. We used the 1 

mean ratio to correct all storm uncertainty intervals by 30% and the range values to extend the 2 

upper limit by 60%.  During days with a storm event not monitored at high frequency with an 3 

autosampler, we considered that the grab sample data did not contain enough information to 4 

derive an acceptability interval for daily SRP load; hence simulated load was not evaluated 5 

for events not monitored at high frequency.. 6 

2.3.3 Model runs and selection of acceptable models 7 

To explore the parameter space, 1520,000 Monte Carlo realisations were performed to 8 

simulate daily discharge and SRP load during the water years 2013-2014 and 2014-2015. The 9 

number of Monte Carlo realisations was constrained by the computation time required to run 10 

a spatially explicit model in this catchment but similarity of results were found over both 11 

15,000 and 20,000 runs. A 7-month initialisation period was run to reduce the impact of initial 12 

conditions on simulated results during the study period, from 1 October 2013 to 31 July 2015. 13 

To be considered acceptable, model runs must fall within the acceptability limits defined in 14 

2.3.1 and 2.3.2. More specifically, 100% of simulated daily discharge, 100% of simulated 15 

baseflow SRP load and 100% of simulated storm SRP load had to fall within the acceptability 16 

limits. Thus, 572 acceptability tests were performed for discharge, 378 for baseflow SRP load 17 

and 14 for storm SRP loads, i.e. 964 evaluation criteria.  18 

To evaluate the model performance in more detail, normalized scores were calculated during 19 

6 periods (Table 2). To calculate the scores, a difference was calculated between each of the 20 

daily simulated discharge, baseflow SRP load and 2-day storm SRP loads and the 21 

corresponding observation. This difference was then normalized by the width of the 22 

acceptability limit defined for that day, so the score has a value of 0 in the case of a perfect 23 

match with observation, -1 at the lower limit and +1 at the upper limit (Fig. 6a).  Finally, the 24 

median of this ratio was calculated for each of the 6 periods to investigate whether the model 25 

tended to underestimate or overestimate discharge and loads at different moments of the year 26 

and between the two years. 27 

Model runs were successively evaluated for discharge, baseflow SRP load and storm SRP 28 

load. To use the models for prediction, each accepted model was given a likelihood weight 29 

according to how well it has performed for each of the 964 evaluation criteria. Here the 30 

statistical deviation weight was used (truncated to 90% prediction interval)a triangular weight 31 
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was calculated for each evaluation criteria (Fig. 5 b)., with the base of the triangle 1 

corresponding to the acceptability limit. Calculated weights were then averaged for discharge, 2 

baseflow SRP load and storm SRP load respectively and the final likelihood was calculated as 3 

the sum product of all three averages. 4 

The model’s sensitivity to each hydrological and soil parameter was performed with a 5 

Hornberger-Spear-Young Generalised Sensitivity Analysis (HSY GSA, Whitehead and 6 

Young, 1979; Hornberger and Spear, 1981). For each evaluation criteria (daily discharge, 7 

daily baseflow SRP load, 2-day storm SRP load), the model runs were split into acceptable 8 

and non-acceptable runs according to the above-mentioned acceptability limits.  Then a 9 

Kolmogorov-Smirnov test is performed to assess whether the distribution of each of the three 10 

evaluation criteria differ between acceptable and non-acceptable models for each parameter. 11 

Because the Kolmogorov-Smirnov test might suggest that small differences in distribution are 12 

very significant when there are larger number of runs, this method is a qualitative guide to 13 

relative sensitivity. The p value of the Kolmogorov-Smirnov test is used to discriminate 14 

whether the model is critically sensitive (p<0.01 ‘***’), importantly sensitive (p<0.1 ‘*’) or 15 

insignificantly sensitive (p>0.1 ‘.’) to each parameter and for each of the three evaluation 16 

criteria. Because the Kolmogorov-Smirnov test might suggest that small differences in 17 

distribution are very significant when there are larger number of runs, this method is a 18 

qualitative guide to relative sensitivity. 19 

In addition to acceptability limit approach, a NSE (Moriasi et al., 2007) was calculated for 20 

daily discharge and daily load and concentration to allow comparison with other modelling 21 

studies where is has been taken as an evaluation criteria. 22 

3 Results 23 

3.1 Presentation of observation data and calculation of acceptability limits 24 

The two water years studied were highly contrasted in terms of hydrology and SRP loads. 25 

Water year 2013-2014 was the wettest in the last 10 years, with cumulative rainfall 1289 mm 26 

and cumulative runoff 716 mm. Water year 2014-2015 was an average year (5
th

 wettest in the 27 

last 10 years), with cumulative rainfall 677 mm and cumulative runoff 383 mm. Annual SRP 28 

load was 0.35 kg P ha
-1

 yr
-1 

in 2013-2014 and 0.17 kg P ha
-1

 yr
-1 

in 2014-2015, i.e. a 29 

difference 10% higher than that of discharge. Observed mean SRP concentration during the 30 

study period was 0.024 mg l
-1

. 31 
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Fig. 7 a and b shows acceptability limits for daily discharge and daily SRP loads. Note that 1 

acceptability limits for discharge were calculated every day, while acceptability limits for 2 

SRP load was calculated on a daily basis during baseflow periods and on a 2-day basis during 3 

storm events monitored at high frequency. No SRP load acceptability limit was calculated 4 

during storm events when no high frequency autosampler data was available. 5 

3.2 Model evaluation 6 

First, model runs were evaluated against acceptability limits defined for discharge (Fig. 7cFig. 7 

8a). 5,4794,120/1520,000 models fulfilled the selection criterion for discharge, i.e. they had 8 

100% of simulated daily discharge within the acceptability limits. The NSE estimated for  9 

these models ranged from 0.78 75 to 0.9293. The normalized scores calculated seasonally 10 

(Fig. 89a) show that simulated discharge is often overestimated in autumn and spring, and 11 

underestimated in winter. 12 

Then, model runs were evaluated against acceptability limits defined for SRP loads (Fig. 7d 13 

Fig. 8b). During baseflow periods, 4,9643,730/2015,000 models fulfilled the selection 14 

criterion for SRP loads, i.e. they had 100% of simulated daily SRP load within the 15 

acceptability limits. Among them, 1,5951,210 also fulfilled the previous selection criterion for 16 

discharge. Normalized scores for baseflow SRP load showed the same trend as for discharge 17 

(Fig. 9b8b), i.e. overestimation in autumn and spring, and underestimation in winter. During 18 

storm events, only 5 7 models fulfilled the selection criterion for SRP loads, i.e. they had 19 

14/14 of simulated 2-day storm SRP loads within the acceptability limits, but none of them 20 

also fulfilled the selection criteria for discharge and baseflow SRP loads. Two storm events 21 

were particularly difficult to simulate (number 2 and number 9, Fig. 9c8c), probably because 22 

their acceptability interval was very narrow as a result of only small changes in discharge and 23 

concentration. To obtain a reasonable number of acceptable models, we relaxed the selection 24 

criterion so that the acceptable models had to simulate 12/14 of storm loads within the 25 

acceptability limits, in addition to the selection criteria defined for discharge and baseflow 26 

SRP load: 418 539 models were then accepted. Estimated NSE of these 418 539 models 27 

ranged from 0.09 to 0.80 81 for daily load and from negative values to 0.53 for daily 28 

concentrations (this includes all data from the regular sampling).  29 
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3.3 Sensitivity analysis and prediction results 1 

According to the HSA generalised sensitivity analysis, simulated discharge was critically 2 

sensitive to 10 out of the 12 hydrological parameters varied. Simulated SRP load was 3 

critically sensitive to the sub-surface and overland flow parameters during baseflow periods 4 

and to the overland flow parameter during storm events. During baseflow periods, SRP load 5 

was insignificantly sensitive to the parameter associated with deep flow load. Both baseflow 6 

and storm SRP loads were critically sensitive to the parameter related to soil moisture and soil 7 

temperature dependent SRP solubilisation (S1, T1 and T2), in addition to respectively 11 12 8 

and 8 hydrological parameters. This identification of sensitive parameters can be used in 9 

future application of the TNT2-P model in the study catchment, as suggested by Whitehead 10 

and Hornberger (1984) and Wade et al. (2002b). 11 

Figure. 10 9 shows the daily discharge, SRP load and concentration as simulated by the 12 

acceptable models. Simulated SRP load during the water year 2013-2014 ranged 0.77 81 – 13 

3.258 kg P ha
-1

 yr
-1

 (median = 1.682 kg P ha
-1

 yr
-1

); simulated SRP load during the water year 14 

2014-2015 ranged 0.14 – 0.73 kg P ha
-1

 yr
-1

 (median = 0.342 kg P ha
-1

 yr
-1

). Best estimate of 15 

SRP load according to observation data was 0.35 kg P ha
-1

 yr
-1

 in 2013-2014 and 0.17 kg P 16 

ha
-1

 yr
-1

 in 2014-2015. According to the model, 4956 – 5561% (median = 528%) of water 17 

discharge and 6671 – 7075% (median = 672%) of SRP load occurred during storm events. 18 

Mean SRP concentrations during the two water years ranged 0.0143 – 0.0443 mg l
-1

 (median 19 

= 0.0298 mg l
-1

), while mean observed SRP concentration was 0.024 mg l
-1

. 20 

4 Discussion 21 

4.1 Role of hydrology and biogeochemistry in determining SRP transfer 22 

The fairly good performance of TNT2-P at simulating SRP loads confirms provides further 23 

support that the hydrological and biogeochemical processes included into the model are 24 

dominant controlling factors in the Kervidy-Naizin catchment (i.e. the modelling hypotheses 25 

could not be rejected based on this study). The primary control of hydrology in controlling 26 

connectivity between soils and streams has been highlighted by many studies analysing water 27 

quality time series at the outlet of agricultural catchments (Haygarth et al., 2012; Jordan et al., 28 

2012; Dupas et al., 2015c; Mellander et al., 2015). This modelling exercise also provides 29 

further supportconfirmed that SRP solubility was determined by the soil P Olsen content and 30 

could vary according to temperature and moisture conditions. The underlying processes have 31 
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not been identified precisely in the Kervidy-Naizin catchment: independent laboratory 1 

experiments have shown that microbial cell lysis resulting from alternating dry and water 2 

saturated periods in the soil could be the cause of increased SRP mobility (Turner and 3 

Haygarth, 2001; Blackwell et al., 2009). This could explain the moisture dependence of SRP 4 

solubility in the model. Furthermore, net mineralisation of soil organic phosphorus could 5 

explain the temperature dependence of SRP solubility in the model. These two hypotheses 6 

may explain increased SRP solubility in soils in periods of dry and hot conditions and will be 7 

further explored by incubation experiment with soils from the Kervidy-Naizin catchments. 8 

4.2 Potential improvements to the model structure according to modelling 9 

purpose 10 

The TNT2-P model was designed to test hypotheses about dominant processes and for this 11 

purpose, a parsimonious model structure was chosen to include only the processes which were 12 

to be tested. This parsimonious model structure might contain some conceptual 13 

misrepresentations due to oversimplification, and it might not include all the processes 14 

necessary for the purpose of evaluating management scenarios. This section discusses 15 

whether the simplifications made are acceptable in the context of different catchment types, 16 

and to which conditions the model could be made more complex by including additional 17 

routines for the purpose of evaluating management scenarios. 18 

From a conceptual point of view, the lack of cell-to-cell routing of SRP fluxes might result in 19 

erroneous results in some contexts. The fact that all the SRP emitted from each cell through 20 

overland flow and sub-surface flow reaches the stream on the same day is acceptable for the 21 

catchment studied because groundwater interception of shallow soil layers occurs in the 22 

riparian zone only, hence the signal of SRP mobilisation in these soils is generally transmitted 23 

to the stream (Dupas et al., 2015c). This simplification would not be acceptable in catchments 24 

where soil-groundwater interactions are taking place throughout the landscape, e.g. due to 25 

topographic depressions or poorly drained soils. In the latter type of catchment, transmission 26 

of the SRP mobilisation signal to the stream is more complex to comprehend (Haygarth et al., 27 

2012), hence a more complex model structure would be required. 28 

The reason for this simplification was that we lacked knowledge of SRP re-adsorption in 29 

downslope cells (or on suspended sediments in the stream network) and on the long-term fate 30 

of re-adsorbed SRP. For a more physically realistic representation of processes, it is likely 31 
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that an explicit representation of flow velocities and pathways would be necessary, along with 1 

an explicit representation of several soil P pools. However, such an explicit representation of 2 

processes contradicts the idea of a parsimonious model, which was adopted here for the 3 

purpose of identifying dominant processes. In this respect, TNT2-P is an aggregative model 4 

rather than a fully distributed model although it is based on a fully distributed hydrological 5 

model (Beaujouan et al., 2002). The current spatial distribution allows finer representation of 6 

soil-groundwater interactions (i.e. the extend of the riparian wetland area) than semi-7 

distributed models such as SWAT (Arnold et al., 1998), INCA-P (Wade et al., 2002) and 8 

HYPE (Lindstrom et al., 2010) but at higher computation cost. It would be interesting to test 9 

to which extent moving from an aggregative model with fully distributed information to a 10 

semi-distributed model would degrade the model performance and in the same time reduce 11 

computation cost.  This could be achieved by grouping cells according to a hydrological 12 

similarity criterion like in the original TOPMODEL and Dynamic Topmodel (Beven and 13 

Freer, 2001b; Metcalfe et al., 2015) and do the same for similarity in soil P content. 14 

If reducing the number of calculation units proved to reduce computation cost without 15 

degrading quality of prediction, it would be possible to include more parameters in the model, 16 

for example to simulate SRP re-absorption in downslope cells or include routines to simulate 17 

the evolution of soil P content under different management scenarios (Vadas et al., 2011; 18 

2012), and still perform a Monte-Carlo based analysis of uncertainty. The question of 19 

coupling or not such a soil P routine with the current TNT2-P model will depend on available 20 

data and on the length of available time series: studying the evolution of the soil P content 21 

requires at least a decade of soil observation data (Ringeval et al., 2014) and probably a 22 

longer period of stream data to account for the time delay for a perturbation in the catchment 23 

to become visible in the stream (Wall et al., 2013). Thus, the two years of daily stream SRP in 24 

the Kervidy-Naizin catchment are not enough to build a coupled soil-hydrology model with 25 

an elaborate soil P routine. Therefore, as things stand, it is more reasonable to generate new 26 

soil P Olsen maps with a separate model such as the APLE model (Vadas et al., 2012; 27 

Benskin et al., 2014) or the ‘soil P decline’ model used by Wall et al. (2013), and use these 28 

maps as input to TNT2-P. 29 

Because the current model can simulate response to rainfall, soil moisture and temperature, it 30 

could be used to test the effect of climate scenarios on SRP transfer. In Western France, and 31 

more generally in Western Europe, the climate for the next few decades is expected to consist 32 
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of hotter, drier summers and warmer, wetter winter (Jacob et al., 2007; Macleod et al., 2012; 1 

Salmon-Monviola et al., 2013) with increased frequency of high intensity rainfall events 2 

(Dequé 2007). In these conditions, SRP concentrations and load will seemingly increase 3 

compared to today’s climate as a result of both an increase in SRP solubility in soil due to 4 

higher temperature and more severe drought and an increase in transfer due to wetter winter 5 

and more frequent high intensity rainfall events. TNT2-P could be used to confirm and 6 

quantify the expected increase in SRP transfer from diffuse sources in future climate 7 

conditions. 8 

4.3 Improving information content in the data 9 

Despite relatively large uncertainty in the data used in this study, it was possible to build a 10 

parsimonious catchment model of SRP transfer for the purpose of testing hypotheses about 11 

dominant processes, namely the role of hydrology in controlling connectivity between soils 12 

and streams and the role of temperature and moisture conditions in controlling soil SRP 13 

solubilisation. However, the large uncertainties in the calibration data lead to large prediction 14 

uncertainty. For example, the SRP load estimated by the behavioural models from 2013 to 15 

2015 ranged from 0.485 to 1.992.0 kg P ha
-1

 yr
-1

; hence the width of the credibility interval 16 

was 1560% of the median (10.97 kg P ha
-1

 yr
-1

). Similarly, the mean SRP concentration 17 

estimated by the behavioural models from 2013 to 2015 ranged from 0.0134 to 0.0445 mg l
-1

; 18 

hence the width of the credibility interval was 10210% of the median (0.0289 mg l
-1

). The 19 

large uncertainty in the calibration data, along with a lack of long-term information, also 20 

prevents including more detailed processes in the soil routine. 21 

To reduce uncertainty in prediction and to build more complex models, several options exist 22 

to improve information content in the data. As stated by Jackson-Blake et al. (2015b), “the 23 

key to obtaining a realistic model simulation is ensuring that the natural variability in water 24 

chemistry is well represented by the monitoring data”. The monitoring strategy adopted in the 25 

Kervidy-Naizin catchment should theoretically enable to capture the natural variability in 26 

stream SRP concentration, because sampling took place during two contrasting water years, 27 

during different seasons and at a high frequency during 14 storm events. The analysis of 28 

uncertainty in the data shows that a large part of uncertainty in “observed” SRP concentration 29 

originates from sample storage, both unfiltered between the time of autosampling and manual 30 

filtration and between filtration and analysis. This is due to SRP being non-conservative. 31 

Thus, there is room for improvement in reducing storage time, without increasing further the 32 
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monitoring frequency. In this respect, the primary interest of investing in high frequency 1 

bankside analysers would lie in their ability to analyse water samples immediately in addition 2 

to providing near continuous data. Because bankside analysers perform measurements in 3 

relatively homogeneous conditions, unlike the manual and autosampler data for which storage 4 

time of filtered and unfiltered samples vary, a finer quantification of uncertainty in the 5 

measurement data would be possible (e.g. Lloyd et al., 2015). 6 

5 Conclusion 7 

The TNT2-P model was capable of capturing daily variation of SRP loads, thus confirming 8 

the dominant processes identified in previous analyses of observation data in the Kervidy-9 

Naizin catchment. The role of hydrology in controlling connectivity between soils and 10 

streams, and the role of soil Olsen P, soil moisture and temperature in controlling SRP 11 

solubility have been confirmed. The lack of any representation of the short-term effect of 12 

management practices did not seem to penalize the model’s performance. Their long-term 13 

effect on the soil Olsen P could be simulated with an independent model or through an 14 

additional sub-model if a longer period of data was available to calibrate it. The modelling 15 

approach presented in this paper included an assessment of the information content in the 16 

data, and propagation of uncertainty in the model’s prediction. The information content of the 17 

data was sufficient to explore dominant processes, but the relatively large uncertainty in SRP 18 

concentrations would seemingly limit the possibility for including more detailed processes 19 

into the model. Data from near continuous bankside analyser will probably allow calibrating 20 

more detailed models in the near future. 21 
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 30 

Table 1: Initial parameter ranges in the hydrological and soil phosphorus sub models. 1 

 Abbrevi

ation 

Unit Hydrologica

l (H), 

Phosphorus 

model (P) 

Range 

poorly 

drained soils 

(min-max) 

Range well 

drained soils 

(min-max) 

Lateral transmissivity at 

saturation 

T m
2
 d

-1
 H 4-8 -> x1.5 

Exponential decay rate of 

hydraulic conductivity 

with depth 

m m
2
 d

-1
 H 0.02-0.2 0.02-0.2 

Soil depth ho m H 0.3-0.8 -> x1 

Drainage porosity of soil po cm
3
 cm

-

3
 

H 0.1-0.4 -> x1 

Regolith layer thickness h1 m H 5-10 -> x4 

Exponent for evaporation 

limit 

Α - H 8 (fixed) -> x1 

kRC parameter for 

capillary rise 

kRC - H 0.001 (fixed) -> x1 

n parameter for capillarity 

rise 

N - H 2.5 (fixed) -> x1 

Drainage porosity of 

regolith layer 

p1 cm
3
 cm

-

3
 

H 0.01-0.05 -> x1 

Background P release 

coefficient for subsurface 

flow 

Coef SRP 

overland 

- P 0-0.015 -> x1 

Background P release 

coefficient for overland 

flow 

Coef SRP 

sub-surface 

- P 0-0.25 -> x1 

Temperature coefficient 1 T1 - P 5-10 -> x1 

Temperature coefficient 2 T2 - P 2-10 -> x1 



 31 

Soil moisture coefficient S1 - P 0-2 -> x1 

SRP concentration in deep 

flow 

SRP_de

ep 

mg l
-1

 P 0-0.007 -> x1 

 1 

Table 2: Starting and ending dates of periods studied 2 

Name Starting date Ending date 

Autumn 2013 01 October 2013 31 December 2013 

Winter 2014 01 January 2014 31 March 2014 

Spring 2014 01 April 2014 31 July 2014 

Autumn 2014 01 October 2014 31 December 2014 

Winter 2015 01 January 2015 31 March 2015 

Spring 2015 01 April 2015 31 July 2015 

 3 

  4 
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Table 3: Sensitivity analysis of the model to 18 model parameters (insignificant ., important *, 1 

critical ***). Parameters significations are detailed in Table 1. 2 

 3 

 discharge baseflow SRP load storm SRP load 

T (poorly drained soils) . *** *** 

m (poorly drained soils) *** *** *** 

ho (poorly drained soils) *** *** . 

po (poorly drained soils) *** *** *** 

h1 (poorly drained soils) *** *** . 

p1 (poorly drained soils) *** *** *** 

T (well drained soils)  . *** *** 

m (well drained soils)  *** *** *** 

ho (well drained soils)  *** *** . 

po (well drained soils)  *** *** *** 

h1 (well drained soils)  *** *** . 

p1 (well drained soils)  *** *** *** 

Coef_sub-surface . *** . 

Coef_overland . *** *** 

SRP_deep . . . 

S1 . *** *** 

T1 . *** *** 

T2 . *** *** 

 4 

 5 
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 1 

Fig. 1. Soil drainage classes in the Kervidy-Naizin catchment, Curmi et al. (1998) 2 

 3 

Fig. 2. Description of soil hydraulic properties and phosphorus content with depth 4 
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 1 

Fig. 3 : Rating curve in Kervidy-Naizin; acceptability bounds derived from 90% prediction 2 

interval (blue line: fitting regression; black dots: 90% prediction interval). Red dots represent 3 

the original discharge measurements used to calibrate the stage-discharge rating curve 4 

(Carluer, 1998). 5 

 6 



 35 

Fig. 4: a) linear regression model linking the reference data and a verification dataset; b) 1 

measurement error as estimated from a repeatability test performed by the lab in charge of 2 

producing reference data (blue line: fitting regression; black dots: 90% prediction interval). 3 

 4 

 5 

Fig. 5: Example of an empirical concentration – discharge model; acceptability bounds 6 

derived from 90% prediction interval. Red circles represent the SRP measurements. 7 

 8 

 9 

Fig. 6 : a) normalized scores; b) triangular weighting function 10 



 36 

 1 

 2 



 37 

Fig. 7: Acceptability limits for daily discharge (a) and SRP load (b). Blue lines represent best estimates; black lines represent the acceptability 1 

limits. Storm loads acceptability limits are represented by vertical blue lines. And example of 50 model runs simulating discharge (c) and 2 

daily load (d). Black vertical lines represent the starting and ending dates for each season (table 2).  3 
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 1 

 2 

Fig. 98: Normalized score for daily discharge (a), baseflow SRP load (b) and storm SRP load 3 

(c). 4 

 5 
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 1 

Fig. 109: Median and 95% credibility interval for daily discharge (a), SRP load (b) and SRP 2 

concentration (c). Red circles represent observational data. 3 
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