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Hydrology and Earth System Sciences (HESS) paper number hess-2015-544
A Bayesian Consistent Dual Ensemble Kalman Filter for State-Parameter

Estimation in Subsurface Hydrology
by B. Ait-El-Fquih, M.E. Gharamti and I. Hoteit

- Reply to Referee #1 -

We would like to thank the referee for his/her valuable and constructive comments. These
greatly improved the quality of our manuscript and helped us clarify several points, which we
gratefully acknowledge. All the referee’s comments were considered in the revised manuscript
and detailed replies are given below.

General evaluation

C. This paper is of potential interest to HESS. In general, the paper is well written and
organised. The results support the proposed improved methodology. I have only one major
concern. This is the difference with the paper of Gharamti et al., 2015 in Journal of Hy-
drology. I understand that the methodology is already introduced there, and that now the
mathematical-statistical basis of it is improved. In addition a new rigorous synthetic study
was carried out. The authors should exactly point out what is new in this paper and motivate
why this warrants a new publication. If answered satisfactory, the paper can be published
with minor revisions.

R. We thank the referee for acknowledging our work and for the comment he/she raised.
The proposed Dual-EnKFOSA in this work results from the generic algorithm of Section
3.1 by applying two random sampling properties (see Appendix A) under the Gaussian
assumption. At each assimilation step of the Dual-EnKFOSA, the observed data are used
three times through Kalman-like updates: twice in the smoothing step (one for smoothing
the previous state as in Eq. (27) and one for updating the parameters as in Eq. (28)), and
once in the “forecast” step to compute the analysis of the current state as in Eq. (35).

The work in Gharamti et al. (2015) follows a similar approach and applies the same two
random sampling properties on the generic algorithm of Section 3.1, but under the following
assumption (beside the Gaussian assumption)1:

p(xn|xn−1, θ,yn) = p(xn|xn−1, θ), (1)

which is based on the fact that given the previous state, xn−1, and the parameters, θ, the
current state, xn, is independent of its observation, yn. Following this assumption, the
“forecast” step of the generic algorithm which is composed of a Bayesian step (24) followed

1Refer to Eq. (16) in Gharamti et al. (2015).
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by a propagation step (23), reduces to the propagation step (23). As stated in page 445 of
Gharamti et al. (2015), the assumption (1) has been adopted to compute the analysis pdf,
p(xn|y0:n), from the joint smoothing pdf, p(xn−1, θ|y0:n), based on Eq. (9) (or Eq. (23) in our
manuscript), by avoiding the use of the computationally demanding term p(xn|xn−1, θ,yn)
and replace it by the more easily sampled state transition pdf, p(xn|xn−1, θ). Here, we
propose a more efficient approach (see pages 10-11 and Appendix B) to directly sample from
the analysis pdf without explicitly computing p(xn|xn−1, θ,yn) and without the need of any
additional assumption.
Now, when applying the two random sampling properties (under the Gaussian assump-
tion), the Joint-EnKFOSA in Gharamti et al. (2015) shares the same smoothing step as the
Dual-EnKFOSA, which, as mentioned above, involves two Kalman-like updates. However, in
contrast with the Dual-EnKFOSA, the Joint-EnKFOSA does not involve a Kalman-like update
in the “forecast” step (because of the omission of the Bayesian step (24) from the generic
algorithm). In terms of computational cost, these algorithms have almost the same cost as
they require the same number of model runs; the only difference is one Kalman update for
each member which is generally computationally not consequent compared to the cost of
integrating the model. This further allows to explicitly put in context the conditions under
which the (heuristic) steps of the standard Dual-EnKF can be derived in a Bayesian setting.
To summarise, the proposed Dual-EnKFOSA is more general than the Joint-EnKFOSA of
Gharamti et al. (2015), inasmuch as it involves one more Kalman-like update. This was made
clearer in lines 332-343 of the revised manuscript. Moreover and as a way of illustrating the
difference between the two schemes, we have included additional experiments results using
the Joint-EnKFOSA. We showed that the proposed Dual-EnKFOSA slightly outperforms the
Joint-EnKFOSA (∼ 5% better accuracy). We further reported the average ensemble spread,
as estimated by the Joint-EnKFOSA, for both states and parameters in Table 1.

Detailed comments

C1. L40: “have been proposed” instead of “has been proposed”.

R1. Done. Thank you.

C2. L64: “was given” instead of “was carried”

R2. Done. Thank you.

C3. L99-L101: Rephrase.

R3. We have rephrased the sentence which now reads as follows: “Our goal is to derive a new
Dual-EnKF-like algorithm that retains the separate formulation of the state and parameters
update steps, within a fully Bayesian framework.”

C4. L109-L110: Change to: “(...) various experiment settings and observation scenarios.”
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R4. Done. Thank you.

C5. L122: this should be t(n-1) to t(n)?

R5. Based on our notation in system (1), our statement in L122 is correct: “Mn is a
nonlinear operator integrating the system state from time tn to tn+1”.

C6. L203-L206: This was not found in Song et al. (2015, VZJ). There Dual EnKF
performed worse, and only a rigorous Restart EnKF gave better results. Reformulate.

R6. We thank the referee for pointing this out. In fact, we have read the article by
Song et al. (2015) and we were aware of this study prior to our submission. The authors
tested the use of the Confirming Step EnKF, the restart EnKF and a modified variant
of the restart EnKF. Unlike the Joint and the Dual EnKFs, these filters only update the
parameters using a Kalman-type analysis. The state ensemble members, on the other hand,
are obtained after integrating the model. Comparing the Confirming-Step-EnKF of Wen
and Chen (2006), which we cite in the manuscript, to that of Song et al. (2015) may
not be that straightforward considering the differences between their models. On the one
hand, Wen and Chen (2006) worked with a reservoir simulator and Song et al. (2015)
used an unsaturated flow problem. It is possible that the efficiency of the Confirming-
Step becomes more pronounced in nonlinear reservoir systems and strongly heterogenous
subsurface formations, which is not the case in Song et al. (2015). To avoid the confusion,
we have removed the confirming-step EnKF reference from the discussion and reformulated
the sentence.

C7. L377-L378: The pumping rate is unfortunately unrealistic low. It would have been
better if the authors would have worked with a more realistic case.

R7. We fully understand the concern of the referee. The choice of the well pumping rates
was based on contributions from the initial head values in addition to the present recharge.
Starting from a uniform initial hydraulic head h0 = 15 m, the recharge and the pumping
rates eventually yield heterogeneous spatial distribution of h, varying between ∼ 13 to 20 m,
as shown in Figure 3. Increasing the pumping rates in our setup may, however, cause clear
suction of the groundwater (negative head) and the dynamics will be mainly dominated by
this forcing term. The considered rates create enough variability in space and time to test
the assimilations schemes. Thank you.

C8. L587-L592: I do not see many differences and these are probably related to the initial
conditions after the assimilation phase. Reconsider this text part.

R8. We are not sure what the referee exactly mean by the initial conditions at the end
of assimilation. In fact, after the assimilation phase we simply continue the simulation in
a prediction mode without assimilating any data. Thus, we don’t tamper or impose any
changes on the hydraulic head obtained after assimilation. In terms of the differences, we
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Figure 1: Absolute bias resulting from the three assimilation schemes during the prediction
phase at the control well.

disagree with the referee because the Joint-EnKF shows a clear overestimation of h at the
control well unlike the Dual-EnKF and more importantly the proposed Dual-EnKFOSA. To
illustrate, we evaluated the absolute bias during the prediction phase for the three schemes.
We plot the resulting curves in Figure 1. As shown, the bias suggested by the proposed
scheme is the smallest and around 0.5 m less than that of the Joint-EnKF. To support our
argument, we have included this figure in the manuscript and we interpreted the results
accordingly. Thank you.

C9. Caption Figure 1. Change to: “The reference log-conductivity field was obtained (...)”

R9. Done. Thank you.

C10. Caption Figure 9. Why does AAE not decrease for joint EnKF and dual EnKF for
small observation errors? Please comment.

R10. The referee is raising an interesting point here. The performance of the Joint-EnKF
and the Dual-EnKF clearly degrades when the observation error decreases, which might
seem as counterintuitive. However, the errors only increase from 1.05 to 1.06 which is not
significant. When the observational error decreases further to 0.1 m, the AAE of conductivity
decreases to approximately 1.04. To test this further, we examined the performance of the
filters with even smaller observation error, i.e., 0.05 m. We updated the figure in the revised
manuscript, accordingly. We notice that the performance of the Joint-EnKF and the Dual-
EnKF continue to improve reaching an AAE of around 1.01. Regarding the performance for
measurement errors between 0.1 and 0.15, this could possibly be due to statistical fluctuations
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related to this particular case and setup.

C11. Caption Figure 9: “are obtained” is not correct.

R11. Rephrased. Thank you.

C12. Caption Figure 10. Why do you use lines in the figures? The legend is not clear.

R12. The figure and its legend have been updated following the referee’s comment.
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Hydrology and Earth System Sciences (HESS) paper number hess-2015-544
A Bayesian Consistent Dual Ensemble Kalman Filter for State-Parameter

Estimation in Subsurface Hydrology
by B. Ait-El-Fquih, M.E. Gharamti and I. Hoteit

- Reply to Referee #2 -

We would like to thank the referee for carefully reviewing our work and for his/her construc-
tive comments. We have revised the manuscript taking into account all the referee comments
and suggestions whose detailed replies are given below.

Main concerns

C1. A one-step-ahead smoothing based dual EnKF is presented in the manuscript. The au-
thors compared results of the new method with standard joint and dual EnKF. As mentioned
by the authors, Gharamti et al (2015) proposed a new EnKF method too by combining the
one-step-ahead smoothing formulation (page 3). What will the result look like if these two
one-step-ahead based EnKF methods are compared? Also the dual EnKF OSA needs to be
better distinguished from the one by Gharamti et al (2015).

R1. We thank the referee for bringing this up. The referee raised two points:

• Comparison of the filtering schemes:

We have examined the performance of the Joint-EnKFOSA of Gharamti et al. (2015)
compared to the new filtering schemes in the first section of the results. We plot
the resulting state and parameter estimates on top of the previous ones in Figure 4
and Table 3. The Joint-EnKFOSA is found more reliable during the early assimilation
period but later and towards the end of assimilation, the proposed new scheme becomes
clearly more accurate.

• Differences between the algorithms:

The proposed Dual-EnKFOSA in this work results from the generic algorithm of Section
3.1 by applying two random sampling properties (see Appendix A) under the Gaussian
assumption. At each assimilation step of the Dual-EnKFOSA, the observed data are
used three times through Kalman-like updates: twice in the smoothing step (one for
smoothing the previous state as in Eq. (27) and one for updating the parameters as in
Eq. (28)), and once in the “forecast” step to compute the analysis of the current state
as in Eq. (35).

The work in Gharamti et al. (2015) follows a similar approach and applies the same
two random sampling properties on the generic algorithm of Section 3.1, but under the
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following assumption (beside the Gaussian assumption)2:

p(xn|xn−1, θ,yn) = p(xn|xn−1, θ), (2)

which is based on the fact that given the previous state, xn−1, and the parameters, θ,
the current state, xn, is independent of its observation, yn. Following this assumption,
the “forecast” step of the generic algorithm which is composed of a Bayesian step (24)
followed by a propagation step (23), reduces to the propagation step (23). As stated in
page 445 of Gharamti et al. (2015), the assumption (2) has been adopted to compute
the analysis pdf, p(xn|y0:n), from the joint smoothing pdf, p(xn−1, θ|y0:n), based on
Eq. (9) (or Eq. (23) in our manuscript), by avoiding the use of the computationally
demanding term p(xn|xn−1, θ,yn) and replace it by the more easily sampled state
transition pdf, p(xn|xn−1, θ). Here, we propose a more efficient approach (see pages
10-11 and Appendix B) to directly sample from the analysis pdf without explicitly
computing p(xn|xn−1, θ,yn) and without the need of any additional assumption.

Now, when applying the two random sampling properties (under the Gaussian assump-
tion), the Joint-EnKFOSA in Gharamti et al. (2015) shares the same smoothing step
as the Dual-EnKFOSA, which, as mentioned above, involves two Kalman-like updates.
However, in contrast with the Dual-EnKFOSA, the Joint-EnKFOSA does not involve
a Kalman-like update in the “forecast” step (because of the omission of the Bayesian
step (24) from the generic algorithm). In terms of computational cost, these algorithms
have almost the same cost as they require the same number of model runs; the only
difference is one Kalman update for each member which is generally computationally
not consequent compared to the cost of integrating the model. The differences between
the proposed Dual-EnKFOSA and the Joint-EnKFOSA of Gharamti et al. (2015) were
made clearer in lines 332-343 of the revised manuscript.

C2. Page 8. The authors talked about one-step-ahead smoothing function but did not
explain what is this function used for? What role does it play in the new algorithm dual
EnKF OSA and how does it work?

R2. We understand that the referee is referring to our statement (page 8, lines 245-
246): “...but also involves a (new) smoothing step that constraints the state with the future
observation.”. This suggests that compared to the standard Dual-EnKF, the proposed Dual-
EnKFOSA involves a new update step of the state using the future observation (hence the
term “one-step-ahead (OSA) smoothing”). This smoothing “function” is given by Eq. (27),
being a Kalman-like update of the state analysis members using the future observation. Line
317 of page 11 was updated to clarify the Kalman-like update character of the smoothing
“function”. Thank you.

C3. Page 11. The observation data are used three time in dual EnKF OSA rather than twice
as in the dual EnKF. The authors thus concluded that it is in a fully consistent Bayesian

2Refer to Eq. (16) in Gharamti et al. (2015).
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formulation. Please clarify the relationship between them. Also please relate this with the
comment on standard dual EnKF that the ensemble does not represent the forecast pdf (page
8 lines 231-233).

R3. We thank the referee for pointing this out. The proposed Dual-EnKFOSA is not
a fully Bayesian algorithm because the observed data are used three times, but because
this algorithm results from the generic (theoretically sound) Bayesian filtering algorithm
presented in Section 3.1 by applying two random sampling properties (see Appendix A), and
under the (commonly used) Gaussian assumption only. As stated in our reply R1 above, at
each assimilation time step of the resulting Dual-EnKFOSA, it turns out that the observed
data are used three times through Kalman-like updates: one for smoothing the previous state
(Eq. (27)), one for updating the parameters (Eq. (28)) and one for updating the current
state (Eq. (35)). Accordingly, the use of the observed data three times is a consequence of
the fully Bayesian character of the proposed scheme and not a cause. This was made clearer
in the text below Eq. (35).

Regarding our statement on standard Dual-EnKF that the ensemble does not represent
the forecast pdf and therefore it is a heuristic algorithm (page 8, lines 231-233), please
note that this is related to the (Bayesian consistent) Joint-EnKF and not to the Dual-
EnKFOSA. Indeed, as one can see from Sections 2.2.1 and 2.2.2, the Joint-EnKF and the
Dual-EnKF algorithms mainly differ in the state analysis step. The analysis members of the
state, x

a,(m)
n , are computed by the Joint-EnKF using a Kalman-like update of the forecast

members, x
f,(m)
n = Mn−1(x

a,(m)
n−1 , θ

(m)
|n−1) given in Eq. (5), while the Dual-EnKF computes

x
a,(m)
n following the same mechanism but using the members x̃

f,(m)
n = Mn−1(x

a,(m)
n−1 , θ

(m)
|n )

given in Eq. (12), instead of x
f,(m)
n . However, in contrast with x

f,(m)
n , the members x̃

f,(m)
n are

not samples from the forecast pdf (more generally, one does not know from which pdf x̃
f,(m)
n

are sampled) since they are obtained by integrating the model with the updated parameters,

θ
(m)
|n (along with x

a,(m)
n−1 ), instead of θ

(m)
|n−1. Despite that, these are used in the analysis step as

forecast members to compute the analysis members, x
a,(m)
n , following the same Kalman-like

update as in the Joint-EnKF, hence the heuristic nature of the Dual-EnKF.

Now, to relate that with the Dual-EnKFOSA, one can easily see that this latter reduces to the
Dual-EnKF in the particular case of a perfect model and in the absence of state smoothing
(i.e., when Eq. (27) vanishes and x

s,(m)
n−1 = x

a,(m)
n−1 in Eq. (33)). This was made clearer in page

11, lines 330-331 of the revised manuscript.

C4. Page 17 line 527-528 “The proposed dual EnKF OSA efficiently recovers the reference
trajectory of MW2 and MW3”. I think this statement is not so proper since the trajectory
or trend of the reference is not captured well by any method, including the dual EnKF OSA.
The reference is barely covered by the ensemble and the peak values are late in the ensemble
at MW3. But I agree that the dual EnKF OSA works better than the other two methods.

R4. We have relaxed our argument here and rephrased the sentence accordingly. The
sentence now reads as follows: “The proposed Dual-EnKFOSA performs fairly well, providing
a reasonable recovery of the reference trajectory at MW2 and MW3.”. Thank you.
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C5. Page 17 line 534 “We further examine ..... against the joint- and dual- EnKFs ....”
But in Figure 7 only the results by dual-EnKF and dual- EnKF OSA are shown. The results
by joint EnKF are not included.

R5. We thank the referee for pointing this out. We have now included the results from the
Joint-EnKF in Figure 7.

C6. Page 18 line 576 “the dual- EnKF OSA tends to maintain a larger variance at the
edges than the dual-EnKF, which in turn increases the impact of the observations”. I have
two questions on this: first, it is difficult to tell (Figure 10) the larger variance by dual-
EnKF OSA. Their results look pretty similar. Secondly, why will the variance of hydraulic
conductivity at the edge increase the impact of the observations (at 9 wells) which is not so
near from the edges? Furthermore, the boundary conditions are either no-flow or constant
head which have limited influence on observations. One suggestions on the color bar of the
figure: the white color does not appear in the bar but occupy a lot of area in the Figure and
the contours make the figure complicated.

R6. We have improved the quality of the figure. Essentially, we removed the contour
lines and kept the colouring. We further adjusted the colour bar to better emphasize the
different behaviours of the schemes. In terms of the larger variance at the north boundary,
we refer to the fact that an ensemble with larger spread (variance) is expected to fit more the
observations using a Kalman-based update. However, if the ensemble spread is very small
and the estimate is still far from the truth then the impact of assimilating future data would
be minimal.

Minor corrections

C1. Page 2 line 38, “Hendricks Franssen and Kinzelbach, 2009” instead of “Franssen and
Kinzelbach, 2009”. At the same time, please correct the item in the reference list (page 22).

R1. Done. Thank you.

C2. Page 5 line 150. “Let, for an ensemble ..., r denotes” should be “denote” instead of
“denotes”?

R2. Done, thank you.

C3. Page 10. The equation 25 looks exactly the same as equation 5. Is this correct?

R3. Yes, this is correct. However, mechanisms (5) and (25) are the same, but not their

“outputs”. In other words, the forecast members x
f,(m)
n resulting from (5) are not the same

as those obtained by (25) even when starting from the same “input” (x
a,(m)
n−1 , θ

(m)
|n−1) (which

is very unlikely). This is because the noise η
(m)
n−1 in (5) are different than those of (25) even

though they are sampled from the same Gaussian distribution N (0,Qn−1).
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C4. Figure 1, the black crosses represent hard measurements according to the text on Line
425. But it can also be added here to avoid any confusion.

R4. Done. Thank you.

C5. Title of the subsection 5.5 “further assessment of the dual- EnKF OSA scheme” does
not reflect the content. From the title we expect the result by dual- EnKF OSA only. But in
fact it still compares the results of three methods. It could be changed to “prediction capability
assessment” or something like this.

R5. We thank the referee for the comment. This title was changed as suggested.
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Abstract. Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in

subsurface groundwater models. The EnKF sequentially integrates field data into simulation models

to obtain a better characterization of the model’s state and parameters. These are generally estimated

following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by

the model is followed by an update step with incoming observations. The Joint-EnKF directly up-5

dates the augmented state-parameter vector while the Dual-EnKF empirically employs two separate

filters, first estimating the parameters and then estimating the state based on the updated parameters.

To develop a Bayesian consistent dual approach and improve the state-parameters estimates and

their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the

state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF; the Dual-10

EnKFOSA. Compared with the standard Dual-EnKF, it imposes a new update step to the state, which

is shown to enhance the performance of the dual approach with almost no increase in the compu-

tational cost. Numerical experiments are conducted with a two-dimensional synthetic groundwater

aquifer model . Assimilation experiments are performed to assess
:::::::::
investigate

:
the performance and

robustness of the proposed Dual-EnKFOSA, and to evaluate its results against those of the Joint- and15

Dual-EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the

aquifer conductivity, further providing reliable estimates of their uncertainties. It is further found

more robust to different assimilation settings, such as the spatial and temporal distribution of the

observations, and the level of noise in the data. Based on our experimental setups, it yields up to

25% more accurate state and parameters estimates than the joint and dual approaches.20

1 Introduction

In modern hydrology research, uncertainty quantification studies have focused on field applications,

including surface and subsurface water flow, contaminant transport, and reservoir engineering. The

1



motivations behind these studies were driven by the uncertain and stochastic nature of hydrological

systems. For instance, surface rainfall-runoff models that account for soil moisture and streamflows25

are subject to many uncertain parameters, such as free and tension water storage content, water

depletion rates, and melting threshold temperatures (Samuel et al., 2014). Groundwater flow mod-

els, on the other hand, depend on our knowledge of spatially variable aquifer properties, such as

porosity and hydraulic conductivity, which are often poorly known (Chen and Zhang, 2006; Hen-

dricks Franssen and Kinzelbach, 2008). In addition, contaminant transport models that investigate30

the migration of pollutants in subsurface aquifers are quite sensitive to reaction parameters like

sorption rates, radioactive decay, and biodegradation (Gharamti and Hoteit, 2014; Gharamti et al.,

2014b). To this end, it is important to study the variability of hydrological parameters and reduce

their associated uncertainties in order to obtain reliable simulations. To achieve this goal, hydrolo-

gists have resorted to various inverse and Monte Carlo-based statistical techniques with the standard35

procedure of pinpointing parameter values that, when integrated with the simulation models, allow

some system-response variables (e.g., hydraulic head, solute concentration) to fit given observations

(Vrugt et al., 2003; Valstar et al., 2004; Alcolea et al., 2006; Feyen et al., 2007; Hendricks Franssen

and Kinzelbach, 2009; Zhou et al., 2014). Recently, sequential data assimilation techniques, such as

the particle filter (PF), has
::::
have

:
been proposed to handle any type of statistical distribution, Gaus-40

sian or not, to properly deal with strongly nonlinear systems (Chang et al., 2012). The PF may

require, however, a prohibitive number of particles (and thus model runs) to accurately sample the

distribution of the state and parameters, making this scheme computationally intensive for large-

scale hydrological applications (Doucet et al., 2001; Moradkhani et al., 2005a; Hoteit et al., 2008;

Montzka et al., 2011). This problem has been partially addressed by the popular ensemble Kalman45

filter (EnKF), which further provides robustness, efficiency and non-intrusive formulation (Reichle

et al., 2002; Vrugt et al., 2006; Zhou et al., 2011; Gharamti et al., 2013; Panzeri et al., 2014; Crestani

et al., 2013; McMillam et al., 2013; Erdal and Cirpka, 2015) to tackle the state-parameter estimation

problem.

The EnKF is a filtering technique that is relatively simple to implement, even with complex non-50

linear models, requiring only an observation operator that maps the state variables from the model

space into the observation space. Compared with traditional inverse and direct optimization tech-

niques, which are generally based on least-squares-like formulations, the EnKF has the advantage

of being able to account for model errors that are not only present in the uncertain parameters but

also in the model structure and inputs, such as external forcings (Hendricks Franssen and Kinzel-55

bach, 2008). In addition, and because of its sequential formulation, it does not require storing all

past information about the states and parameters, leading to consequent savings in computational

cost (McLaughlin, 2002; Gharamti et al., 2014b).

The EnKF is widely used in surface and subsurface hydrological studies to tackle state-parameters

estimation problems (Zhou et al., 2014; Panzeri et al., 2014). Two approaches are usually consid-60
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ered based on the joint and the dual estimation strategies. The standard joint approach concurrently

estimates the state and the parameters by augmenting (in the same vector) the state variables with

the unknown parameters, that do not vary in time. The parameters could also be set to follow an

artificial evolution (random walk) before they get updated with incoming observations (Wan et al.,

1999). One of the early applications of the Joint-EnKF to subsurface groundwater flow models was65

carried
:::::
given by Chen and Zhang (2006). In their study, a conceptual subsurface flow system was

considered and ensemble filtering was performed to estimate the transient pressure field alongside

the hydraulic conductivity. In a reservoir engineering application, Nævdal et al. (2005) considered a

two-dimensional North Sea field model and considered the joint estimation problem of the dynamic

pressure and saturation on top of the static permeability field. Groundwater contamination problems70

were also tackled using the Joint-EnKF (e.g., Li et al., 2012; Gharamti and Hoteit, 2014), in which

the hydraulic head, contaminant concentration and spatially variable permeability and porosity pa-

rameters were estimated for coupled groundwater flow and contaminant transport systems.

Several studies argued that the Joint-EnKF may suffer from important inconsistencies between

the estimated state and parameters that could degrade the filter performance, especially with large-75

dimensional and strongly nonlinear systems (e.g., Moradkhani et al., 2005b; Chen and Zhang, 2006;

Wen and Chen, 2007). One classical approach that has been proposed to tackle this issue is the so-

called dual filter which separately updates the state and parameters using two interactive EnKFs, one

acting on the state and the other on the parameters (Moradkhani et al., 2005b). The Dual-EnKF has

been applied to streamflow forecasting problems using rainfall-runoff models (e.g., Lü et al., 2013;80

Samuel et al., 2014), subsurface contaminant (e.g., Tian et al., 2008; Lü et al., 2011; Gharamti et al.,

2014b) and compositional flow models (e.g., Phale and Oliver, 2011; Gharamti et al., 2014a), to

cite but a few. Gharamti et al. (2014a) concluded that the dual scheme provides more accurate state

and parameters estimates than the joint scheme when implemented with large enough ensembles. In

terms of complexity, however, the dual scheme requires integrating the filter ensemble twice with85

the numerical model at every assimilation cycle, and is therefore computationally more demanding.

In related works, Gharamti et al. (2013) extended the dual filtering scheme to tackle the state estima-

tion problem of one-way coupled models, and to the framework of Hybrid-EnKF (Gharamti et al.,

2014b).

The dual filter has been basically introduced as a heuristic scheme and is not consistent with the90

Bayesian filtering framework (Hendricks Franssen and Kinzelbach, 2008). A first attempt to build

a Bayesian consistent dual-like filter was recently proposed by Gharamti et al. (2015) in which a

new Joint-EnKF scheme was derived following the one-step-ahead (OSA) smoothing formulation of

the Bayesian filtering problem. The new joint scheme reverses the order of the measurement-update

and the forecast- (or time-) update, leading to two Kalman-like update steps based on the current95

observations; one for state smoothing and one for parameters updating.
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Motivated by the promising results of Gharamti et al. (2015), we follow here the same OSA

smoothing formulation to derive a new Dual-EnKF, which we refer to as the Dual-EnKFOSA here-

after, generalizing the joint scheme of Gharamti et al. (2015) and, in particular, the standard Dual-

EnKF. Our goal being
:
is
:
to derive a new Dual-EnKF-like algorithm that retains the separate formu-100

lation of the state and parameters update steps, without violating the Bayesian filtering formulation

of the state-parameter estimation problem
:::::
within

::
a
:::::
fully

:::::::::
Bayesian

::::::::::
framework. This not only allows

us to derive a more general and efficient dual-like filtering scheme at practically no increase in the

computational cost, but also to explicitly put in context the conditions under which the (heuristic)

steps of the standard Dual-EnKF can be derived in a Bayesian setting. Synthetic numerical experi-105

ments based on a groundwater flow model and estimating the hydraulic head and the conductivity

parameter field, are conducted to assess the performances of the proposed Dual-EnKFOSA and to

compare them against the Joint- and the Dual-EnKFs, which we consider as references to evaluate

the behavior of the Dual-EnKFOSA. The numerical results suggest that the proposed scheme is ben-

eficial in terms of estimation accuracy compared to the two standard joint and dual schemes, and110

is more robust to various experiments setting and observations
::::::::::
experiment

:::::::
settings

::::
and

:::::::::::
observation

scenarios.

The rest of the paper is organized as follows. Section 2 reviews the standard Joint- and Dual-

EnKF strategies. The Dual-EnKFOSA is derived in Section 3 and its relation with the Joint- and

Dual-EnKFs is discussed. Section 4 presents a conceptual groundwater flow model and outlines the115

experimental setup. Numerical results are presented and discussed in Section 5. Conclusions are

offered in Section 6, followed by an Appendix.

2 Joint and dual ensemble Kalman filtering

2.1 Problem formulation

Consider a discrete-time state-parameter dynamical system:120




xn = Mn−1 (xn−1,θ)+ ηn−1

yn = Hnxn+ εn
, (1)

in which xn ∈ RNx and yn ∈ RNy denote the system state and the observation at time tn, of di-

mensions Nx and Ny respectively, and θ ∈ RNθ is the parameter vector of dimension Nθ.Mn is a

nonlinear operator integrating the system state from time tn to tn+1, and the observational operator

at time tn, Hn, is assumed to be linear for simplicity; the proposed scheme can be easily extended125

to the nonlinear case1. The model process noise, η = {ηn}n∈N, and the observation process noise,

ε= {εn}n∈N, are assumed to be independent, jointly independent and independent of x0 and θ,

which, in turn, are assumed to be independent. Let also ηn and εn be Gaussian with zero means and

1The term Hnx
f,(m)
n is replaced by Hn(x

f,(m)
n ) in (26), and Hnξ

(m)
n is replaced by Hn(ξ

(m)
n ) in (34).
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covariances Qn and Rn, respectively. Throughout the paper, y0:n
def
= {y0,y1, · · · ,yn}, and p(xn)

and p(xn|y0:l) stand for the prior probability density function (pdf) of xn and the posterior pdf of130

xn given y0:l, respectively. All other used pdfs are defined in a similar way.

We focus on the state-parameter filtering problem, say, the estimation at each time, tn, of the state,

xn, as well as the parameters vector, θ, from the history of the observations, y0:n. The standard

solution of this problem is the a posteriori mean (AM):

Ep(xn|y0:n) [xn] =

∫
xnp(xn,θ|y0:n)dxndθ, (2)135

Ep(θ|y0:n) [θ] =

∫
θp(xn,θ|y0:n)dxndθ, (3)

which minimizes the a posteriori mean square error. In practice, analytical computation of Eqs. (2)

and (3) is not feasible, mainly due to the nonlinear character of the system. The Joint- and Dual-

EnKFs have been introduced as efficient schemes to compute approximations of (2) and (3). These

algorithms are reviewed in the next section.140

2.2 The Joint- and Dual- EnKFs

2.2.1 The Joint-EnKF

The key idea behind the Joint-EnKF is to transform the state-parameter system (1) into a classical

state-space system based on the augmented state, zn =
[
xTn θ

T
]T

, on which the classical EnKF can

be directly applied. The new augmented state-space system can be written as:145




zn = M̃n−1 (zn−1)+ η̃n−1

yn = H̃nzn+ εn
, (4)

in which M̃n−1 (zn−1) =


 Mn−1(zn−1)

θ


, η̃n−1 =

[
ηTn−1 0

]T
, H̃n = [Hn 0], with 0 a zero

matrix with appropriate dimensions. Starting at time tn−1 from an analysis ensemble of size Ne,

{xa,(m)
n−1 ,θ

(m)
|n−1}

Ne

m=1
representing p(zn−1|y0:n−1), the EnKF uses the augmented state model (1st

Eq. of (4)) to compute the forecast ensemble, {xf,(m)
n ,θ

(m)
|n−1}

Ne

m=1
, approximating p(zn|y0:n−1). The150

observation model (2nd Eq. of (4)) is then used to obtain the analysis ensemble, {xa,(m)
n ,θ

(m)
|n }

Ne

m=1
,

at time tn. Let, for an ensemble {r(m)}Nem=1, r̂ denotes
:::::
denote

:
its empirical mean and Sr a ma-

trix with Ne-columns whose mth column is defined as
(
r(m)− r̂

)
. The Joint-EnKF steps can be

summarized as follows:

• Forecast step: The parameters vector members, θ(m)
|n−1, are kept invariant, while the state vector155

members, xa,(m)
n−1 , are integrated in time through the dynamical model as:

xf,(m)
n =Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n−1

)
+ η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1) . (5)
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An approximation of the forecast state, x̂n|n−1, which is, by definition, the mean of p(xn|y0:n−1)

(as in (2)), is given by the empirical mean of the forecast ensemble, x̂fn. The associated forecast

error covariance is estimated as Pxfn
= (Ne− 1)

−1
Sxfn

ST
xfn

.160

• Analysis step: Once a new observation is available, all members, xf,(m)
n and θ(m)

|n−1, are updated

as in the Kalman filter (KF):

yf,(m)
n = Hnx

f,(m)
n + ε(m)

n ; ε(m)
n ∼N (0,Rn), (6)

xa,(m)
n = xf,(m)

n +Pxfn,y
f
n
P−1

yfn

(
yn−yf,(m)

n

)

︸ ︷︷ ︸
µ
(m)
n

, (7)

θ
(m)
|n = θ

(m)
|n−1 +Pθ|n−1,y

f
n
·µ(m)
n . (8)165

The (cross-)covariances in Eqs. (7) and (8) are practically evaluated from the ensembles as:

Pxfn,y
f
n

= (Ne− 1)
−1

Sxfn
ST
yfn
, (9)

Pyfn
= (Ne− 1)

−1
Syfn

ST
yfn
, (10)

Pθ|n−1,y
f
n

= (Ne− 1)
−1

Sθ|n−1
ST
yfn
. (11)

The analysis estimates, (2) and (3), and their error covariances, can thus be approximated170

by the analysis ensemble means, x̂an and θ̂|n, and covariances Pxan = (Ne− 1)
−1

SxanS
T
xan

and

Pθ|n = (Ne− 1)
−1

Sθ|nS
T
θ|n

, respectively. Note that Pxfn,y
f
n
P−1

yfn
in (7) represents the Kalman

Gain, Pxfn
HT
n

[
HnPxfn

HT
n +Rn

]−1
. This statistical formulation of the Kalman Gain offers

more flexibility to deal with nonlinear observational operators (Moradkhani et al., 2005b).

2.2.2 The Dual-EnKF175

In contrast with the Joint-EnKF, the Dual-EnKF is empirically designed following a conditional

estimation strategy, operating as a succession of two EnKF-like filters. First, a (parameter) filter is

applied to compute {θ(m)
|n }

Ne

m=1
from {xa,(m)

n−1 ,θ
(m)
|n−1}

Ne

m=1
based on the following two steps.

• Forecast step: The parameters ensemble, {θ(m)
|n−1}

Ne

m=1
, is kept invariant, while the state sam-

ples are integrated in time as in (5) to compute the forecast ensemble, {xf,(m)
n }

Ne

m=1.180

• Analysis step: As in (6), the observation forecast ensemble {yf,(m)
n }

Ne

m=1 is computed from

{xf,(m)
n }

Ne

m=1. This is then used to update the parameters ensemble, {θ(m)
|n }

Ne

m=1
, following

(8).

Another (state) filter is then applied to compute {xa,(m)
n }

Ne

m=1 from {xa,(m)
n−1 }

Ne

m=1
as well as the new

parameter ensemble, {θ(m)
|n }

Ne

m=1
, again in two steps that can be summarized as follows.185
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• Forecast step: Each member, xa,(m)
n−1 , is propagated in time with the dynamical model using

the updated parameters ensemble:

x̃f,(m)
n =Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n

)
. (12)

• Analysis step: As in the parameter filter, {ỹf,(m)
n }

Ne

m=1 is computed from {x̃f,(m)
n }

Ne

m=1 using

(6), which finally yields {xa,(m)
n }

Ne

m=1 as in (7).190

To better understand how the Dual-EnKF differs from the Joint-EnKF, we focus on how the anal-

ysis members at time tn, namely, xa,(m)
n and θ(m)

|n , are obtained starting from their counterparts at

previous time, xa,(m)
n−1 and θ(m)

|n−1
. The parameters members, θ(m)

|n , are computed based on the same

equation (8) in both algorithms. For the state members, xa,(m)
n , we have:

xa,(m)
n

Joint−EnKF
= Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n−1

)
+Pxfn,y

f
n
P−1

yfn

(
yn−yf,(m)

n

)

︸ ︷︷ ︸
µ
(m)
n

, (13)195

xa,(m)
n

Dual−EnKF
= Mn−1(x

a,(m)
n−1 ,

θ
(m)

|n︷ ︸︸ ︷
θ
(m)
|n−1 +Pθ|n−1,y

f
n
·µ(m)
n )

︸ ︷︷ ︸
x̃
f,(m)
n

+Px̃fn,ỹ
f
n
P−1

ỹfn

(
yn− ỹf,(m)

n

)

︸ ︷︷ ︸
µ̃
(m)
n

. (14)

For simplicity, we ignore here the process noise term, ηn, which is commonly applied in geophysics

applications. As one can see, the Joint-EnKF updates the state members using one Kalman-like cor-

rection (term of µ(m)
n in (13)), while the Dual-EnKF applies two Kalman-like corrections. More

specifically, the Dual-EnKF updates first the parameters members, θ(m)
|n−1, as in the Joint-EnKF,200

leading to θ
(m)
|n ; these are then used to propagate x

a,(m)
n−1 , with the model to provide the “fore-

cast” members x̃
f,(m)
n . The x̃

f,(m)
n are finally updated using a Kalman-like correction (term of

µ̃
(m)
n in (14)), to obtain the analysis members x

a,(m)
n . Such a separation of the update steps was

shown
::
is

::::::::
expected

:
to provide more consistent estimates of the parameters, especially for strongly

heterogeneous subsurface formations as suggested by in their confirming-step EnKF algorithm. The205

dual-update framework was further
::::::
indeed

:
shown to provide better performances than the Joint-

EnKF, at the cost of increased computational burden (see for instance, Moradkhani et al., 2005b;

Samuel et al., 2014; Gharamti et al., 2014a).

2.2.3 Probabilistic formulation

Following a probabilistic formulation, the augmented state system (4) can be viewed as a continuous210

state Hidden Markov Chain (HMC) with transition density,

p(zn|zn−1) = p(xn|xn−1,θ)p(θ|θ) =Nxn (Mn−1 (xn−1,θ) ,Qn−1) , (15)

and likelihood,

p(yn|zn) = p(yn|xn) =Nyn (Hnxn,Rn) , (16)
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where Nv(m,C) represents a Gaussian pdf of argument v and parameters (m,C).215

One can then easily verify that the Joint-EnKF can be derived from a direct application of two

classical results of random sampling (Properties 1 and 2 in Appendix A) on the following classical

generic formulas:

p(zn|y0:n−1) =

∫
p(xn|xn−1,θ)p(zn−1|y0:n−1)dxn−1, (17)

p(yn|y0:n−1) =

∫
p(yn|xn)p(xn|y0:n−1)dxn, (18)220

p(zn|y0:n) =
p(zn,yn|y0:n−1)
p(yn|y0:n−1)

. (19)

Eq. (17) refers to a Markovian step (or time-update step) and uses the transition pdf, p(xn|xn−1,θ),
of the Markov chain, {zn}n, to compute the forecast pdf of zn from the previous analysis pdf. Eq.

(19) refers to a Bayesian step (or measurement-update step) since it uses the Bayes’ rule to update

the forecast pdf of zn using the current observation yn. Now, establishing the link between the Joint-225

EnKF and Eqs. (17)-(19), one can show that Property 1 and Eq. (17) lead to the forecast ensemble of

the state (5). Property 1 and Eq. (18) lead to the forecast ensemble of the observations (6). Property

2 and Eq. (19) then provide the analysis ensemble of the state (7) and the parameters (8).

Regarding the Dual-EnKF, the forecast ensemble of the state and observations in the parameter

filter can be obtained following the same process as in the Joint-EnKF. This is followed by the230

computation of the analysis ensemble of the parameters using Property 2 and

p(θ|y0:n) =
p(θ,yn|y0:n−1)
p(yn|y0:n−1)

. (20)

However, in the state filter, the ensemble, {x̃f,(m)
n }

Ne

m=1, obtained via Eq. (12) in the forecast step

does not represent the forecast pdf, p(xn|y0:n−1), since Eq. (12) involves θ(m)
|n rather than θ(m)

|n−1.

Accordingly, the Dual-EnKF is basically a heuristic algorithm in spite of its proven performance.235

3 One-step-ahead smoothing-based Dual-EnKF (Dual-EnKFOSA)

The classical (time-update, measurement-update) path (17)-(19) to compute the analysis pdf p(zn|y0:n)

from p(zn−1|y0:n−1), is not the only possible one. One may indeed reverse the order the time- and

measurement-update steps by involving the OSA smoothing pdf, p(zn−1|y0:n), between two succes-

sive analysis pdfs, p(zn−1|y0:n−1) and p(zn|y0:n). Desbouvries et al. (2011) considered the OSA240

smoothing-based filtering problem in low-dimensional state-space systems to derive a class of KF-

and PF-like algorithms for filtering the state. The more recent work of Lee and Farmer (2014) pro-

poses a number of algorithms to estimate both the system state and the model noise based on a

similar strategy. In the context of large-dimensional state-parameters filtering, we show in this sec-

tion that this leads to a new fully Bayesian consistent dual-like filtering scheme, the Dual-EnKFOSA,245

which, compared to the standard Dual-EnKF, not only introduces another Kalman-like update of the
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state but also involves a (new) smoothing step that constraints the state with the future observa-

tion. Exploiting the future observation should be particularly beneficial in the context of the EnKF

as it includes more information in the estimation process that may help mitigating for the subopti-

mal character of the EnKF-like methods, being formulated under a linear Gaussian framework, and250

usually implemented with limited ensembles and crude approximate noise statistics.

3.1 The one-step-ahead smoothing-based dual filtering algorithm

The analysis pdf, p(xn,θ|y0:n), can be computed from p(xn−1,θ|y0:n−1) in two steps:

• Smoothing step: The one-step-ahead smoothing pdf, p(xn−1,θ|y0:n), is first computed as,

p(xn−1,θ|y0:n)∝ p(yn|xn−1,θ,y0:n−1)p(xn−1,θ|y0:n−1), (21)255

with,

p(yn|xn−1,θ,y0:n−1) =

∫
p(yn|xn,xn−1,θ,y0:n−1)p(xn|xn−1,θ,y0:n−1)dxn,

=

∫
p(yn|xn)p(xn|xn−1,θ)dxn. (22)

Eq. (22) is derived from the fact that in the state-parameter model (1), the observation noise,

εn, and the model noise, ηn−1, are independent of (xn−1,θ) and past observations y0:n−1.260

The smoothing step (21) is indeed a measurement-update step since given y0:n−1, Eq. (21)

translates the computation of the posterior, p(xn−1,θ|yn), as a normalized product of the

prior, p(xn−1,θ), and the likelihood, p(yn|xn−1,θ) (note from (22) that p(yn|xn−1,θ,y0:n−1)

= p(yn|xn−1,θ)).

• Forecast step: The smoothing pdf at tn−1 is then used to compute the current analysis pdf,265

p(xn,θ|y0:n), as

p(xn,θ|y0:n) =

∫
p(xn|xn−1,θ,y0:n)p(xn−1,θ|y0:n)dxn−1, (23)

with,

p(xn|xn−1,θ,y0:n)∝ p(yn|xn)p(xn|xn−1,θ), (24)

which, in turn, arises from the fact that εn and ηn−1 are independent of (xn−1,θ) and y0:n−1270

(see smoothing step above). We note here that only the (marginal) analysis pdf of xn, p(xn|y0:n),

is of interest since the analysis pdf of θ has already been computed in the smoothing step.

From (24), p(xn|xn−1,θ,y0:n) = p(xn|xn−1,θ,yn). Thereby, there is a similarity between

Eq. (23) and the forecast step (17) in the sense that (23) can be seen as a forecast step once the

observation yn is known, i.e., (23) coincides with “(17) given the observation yn”. Accord-275

ingly, and without abuse of language, we refer to (23)-(24) as the forecast step.
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3.2 Ensemble Formulation

Since it is not possible to derive the analytical solution of (21)-(24) because of the nonlinear char-

acter of the model, M(.), we use Properties 1 and 2 (see Appendix A) to propose an EnKF-like

formulation, assuming that p(yn,zn−1|y0:n−1) is Gaussian for all n. This assumption implies that280

p(zn−1|y0:n−1), p(zn−1|y0:n) and p(yn|y0:n−1) are Gaussian.

3.2.1 Smoothing step

Starting at time tn−1, from an analysis ensemble, {xa,(m)
n−1 ,θ

(m)
|n−1
}
Ne

m=1
, one can use Property 1 in Eq.

(22) to sample the observation forecast ensemble, {yf,(m)
n }

Ne

m=1, as

xf,(m)
n = Mn−1(x

a,(m)
n−1 ,θ

(m)
|n−1)+ η

(m)
n−1, (25)285

yf,(m)
n = Hnx

f,(m)
n + ε(m)

n , (26)

with η(m)
n−1 ∼N (0,Qn−1) and ε(m)

n ∼N (0,Rn). Property 2 is then used in Eq. (21) to compute the

smoothing ensemble, {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
, as

x
s,(m)
n−1 = x

a,(m)
n−1 +Pxan−1,y

f
n
P−1

yfn

(
yn−yf,(m)

n

)

︸ ︷︷ ︸
ν
(m)
n

, (27)

θ
(m)
|n = θ

(m)
|n−1 +Pθ|n−1,y

f
n
· ν(m)
n . (28)290

The (cross-) covariances in equations (27) and (28) are defined and evaluated similarly to (9)-(11).

3.2.2 Forecast step

The analysis ensemble, {xa,(m)
n }

Ne

m=1, can be obtained from {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
using Property 1 in

Eq. (23), once the a posteriori transition pdf, p(xn|xn−1,θ,yn), is computed via Eq. (24). Further-

more, one can verify that Eq. (24) leads to a Gaussian pdf:295

p(xn|xn−1,θ,yn) =Nxn

(
Mn−1(xn−1,θ)+ K̃n (yn−HnMn−1(xn−1,θ)) ,Q̃n−1

)
, (29)

with K̃n =Qn−1HT
n

[
HnQn−1HT

n +Rn

]−1
and Q̃n−1 =Qn−1− K̃nHnQn−1. However, when

the state dimension, Nx, is very large, the computational cost of K̃n and Q̃n−1 (which may be

a non-diagonal matrix even when Qn−1 is diagonal) may become prohibitive. One way to avoid

this problem is to directly sample from p(xn|xn−1,θ,yn) without explicitly computing this pdf in300

(29). Let {x̃(m)
n (xn−1,θ)}

Ne

m=1 denotes an ensemble of samples drawn from p(xn|xn−1,θ,yn). The

notation x̃
(m)
n (xn−1,θ) refers to a function x̃

(m)
n of (xn−1,θ); similar notations hold for ξ̃(m)

n (.) and

ỹ
(m)
n (.) in (30) and (31), respectively. Using Properties 1 and 2, an explicit form of such samples
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can be obtained as (see Appendix B),

ξ̃(m)
n (xn−1,θ) = Mn−1(xn−1,θ)+ η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1), (30)305

ỹ(m)
n (xn−1,θ) = Hnξ̃

(m)
n (xn−1,θ)+ ε(m)

n ; ε(m)
n ∼N (0,Rn), (31)

x̃(m)
n (xn−1,θ) = ξ̃(m)

n (xn−1,θ)+Pξ̃n,ỹnP
−1
ỹn

[
yn− ỹ(m)

n (xn−1,θ)
]
, (32)

where the (cross)-covariances, Pξ̃n,ỹn and Pỹn , are evaluated from the ensembles {ξ̃(m)
n (xn−1,θ)}

Ne

m=1

and {ỹ(m)
n (xn−1,θ)}

Ne

m=1, similarly to (9)-(11). Now, using Property 1 in Eq. (23), one can compute

an analysis ensemble, {xa,(m)
n }

Ne

m=1, from the smoothing ensemble, {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
, using the310

functional form (32). More precisely, we obtain, xa,(m)
n = x̃

(m)
n (x

s,(m)
n−1 ,θ

(m)
|n ), which is equivalent

to set xn−1 = x
s,(m)
n−1 and θ = θ

(m)
|n in (30)-(32).

3.2.3 Summary of the Dual-EnKFOSA algorithm

Starting from an analysis ensemble, {xa,(m)
n−1 ,θ

(m)
|n−1}

Ne

m=1
, at time tn−1, the updated ensemble of both

state and parameters at time tn is obtained with the following two steps:315

• Smoothing step: The state forecast ensemble, {xf,(m)
n }

Ne

m=1, is first computed by (25), and

then used to compute the observation forecast ensemble, {yf,(m)
n }

Ne

m=1, as in (26). This latter is

then used to compute the one-step-ahead smoothing ensemble of the state, {xs,(m)
n−1 }

Ne

m=1
, and

parameters, {θ(m)
|n }

Ne

m=1
, based on Eqs.

::
the

::::::::::::
Kalman-like

:::::::
updates (27) and (28), respectively.

• Forecast step: The analysis ensemble of the state {xa,(m)
n }

Ne

m=1 is obtained as:320

ξ(m)
n = Mn−1

(
x
s,(m)
n−1 ,θ

(m)
|n

)
+ η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1), (33)

ỹf,(m)
n = Hnξ

(m)
n + ε(m)

n ; ε(m)
n ∼N (0,Rn), (34)

xa,(m)
n = ξ(m)

n +Pξn,ỹfnP
−1
ỹfn

(yn− ỹf,(m)
n ), (35)

with Pξn,ỹfn = (Ne− 1)
−1

SξnS
T
ỹfn

and Pỹfn
= (Ne− 1)

−1
Sỹfn

ST
ỹfn

.

::::
The

::::::::
proposed

:::::::::::::::
Dual-EnKFOSA::

is
:::
an

:::::::::
ensemble

::::::
Monte

::::::
Carlo

:::::::::::::::
implementation,

:::::
under

::::
the

::::::::
common325

::::::::
Gaussian

:::::::::::
assumption,

:::
of

::::
the

:::::::
generic

:::::::::
Bayesian

::::::::
filtering

:::::::::
algorithm

:::::::::
presented

:::
in

:::::::
Section

::::
3.1.

:::::
This

:::::::
justifies

:::
its

::::::::
Bayesian

:::::::::::
consistency

:::
in

:::::::
contrast

:::::
with

:::
the

::::::::
standard

:::::::::::
Dual-EnKF

:::::::
which,

::
as

::::::::::
discussed

::
in

:::::::
Section

:::::
2.2.3,

:::::
lacks

::
a
:::::::::::
probabilistic

:::::::::::::
interpretation.

:
In contrast with the Dual-EnKF which uses θ(m)

|n
and x

a,(m)
n−1 for computing x

a,(m)
n (see Eq. (14)), the proposed Dual-EnKFOSA uses θ(m)

|n and the

smoothed state members, xs,(m)
n−1 , which are the x

a,(m)
n−1 after an update with the current observation,330

yn, following (27). Therefore, when including the Kalman-like correction term as well, the obser-

vation, yn, is used three times in the Dual-EnKFOSA in a fully consistent Bayesian formulation,

compared to only twice in the Dual-EnKF. This means that the Dual-EnKFOSA exploits the obser-

vations more efficiently than the Dual-EnKF, which should provide more information for improved
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and more consistent state and parameters estimates.
::::
Note

:::::
that

:::
the

:::::::::::::::
Dual-EnKFOSA :::::::

reduces
:::
to

:::
the335

::::::::::
Dual-EnKF

::
in
::::
the

:::::::::
particular

::::
case

::
of

::
a
::::::
perfect

::::::
model

::::
and

:::::::::::::::
x
s,(m)
n−1 = x

a,(m)
n−1 .

:

::::
The

::::::::::::::
Joint-EnKFOSA::

of
:
Gharamti et al. (2015)

:::
has

::::
been

:::::::
derived

:::::::::
following

:::
the

:::::
same

:::::::::
approach

:::::
under

:::
the

::::::::::
assumption

:::
of

::::::::::::
independence

::::::::
between

::::
the

:::::
state,

::::
xn,

:::
and

:::
its

:::::::::::
observation,

::::
yn,

::::::
given

:::
the

::::::::
previous

:::::
state,

:::::
xn−1,

::::
and

::::::::::
parameters,

::
θ
:::::::::::
(assumption

::::
(16)

::
in

:
(Gharamti et al., 2015)

:
).
:::::
This

::::::::::
assumption

:::
has

:::::
been

:::::::
adopted

::
to

::::::
avoid

:::::::::
evaluating

::::
the

:::::::::::::::
computationally

::::::::::
demanding

:::::
term

::::::::::::::::
p(xn|xn−1,θ,yn)::::

and
:::::::
replace

::
it340

::::
with

:::
the

:::::
more

::::::
easily

:::::::
sampled

:::::
state

:::::::::
transition

:::
pdf,

::::::::::::::
p(xn|xn−1,θ) :::::::::::::::::::::::::::::::

=Nxn−1
(Mn−1(xn−1,θ),Qn−1),

::
to

:::::
draw

:::
the

:::::
state

:::::::
analysis

::::::::::
ensemble.

:::::
Here,

:::
we

::::::::
propose

:
a
:::::
more

::::::::
efficient

:::::::::
approach

::
to

:::::::
directly

:::::::
sample

:::
the

:::::::
analysis

:::::::::
ensemble

:::::::
without

:::::::::
explicitly

::::::::::
computing

:::::::::::::::::
p(xn|xn−1,θ,yn)::::

and
:::::::
without

:::
the

:::::
need

::
of

::::
any

:::::::::
additional

:::::::::::
assumption.

::::
The

:::::::::::::::
Joint-EnKFOSA::

is
:::::::::

therefore
::
a
:::::::::
particular

:::::
case

::
of

::::
the

:::::::::::::::
Dual-EnKFOSA,

::::::::
involving

::::
two

::::::::::::
Kalman-like

:::::::
updates

:::::
only

::::::
(those

:::
of

:::
the

::::::::::
smoothing

:::::
step),

::::::
since

::
in

::::
the

:::::::
forecast

:::::
step,345

:::
the

:::::
state

::::::::
analysis

:::::::::
members,

:::::::
x
a,(m)
n ,

::::
are

:::::::::
computed

::::::
from

:::
the

::::::::::
smoothed

:::::::::
members,

::::::::::::::
(x
s,(m)
n−1 ,θ

(m)
|n ),

::
by

::::::::::
integrating

::::::
them

::::
with

::::
the

::::::
model

::::
and

::::::::
without

::::
any

:::::::
update

::::
with

::::
the

:::::::
current

:::::::::::
observation.

::::::
More

::::::::::
specifically,

:::::
Eqs.

::::::::
(33)-(35)

::::::
above

::::::
reduce

:::
in Gharamti et al. (2015)

::
to

:::
Eq.

::::
(33)

:::::
(i.e.,

::::::::::::::
x
a,(m)
n = ξ

(m)
n ).

:

Despite the smoothing formulation of the Dual-EnKFOSA, this algorithm obviously addresses

the state forecast problem as well. As discussed in the smoothing step above, the (one-step-ahead)350

forecast members are inherently computed. The j-step-ahead forecast member, denoted by x
(m)
n+j|n

for j ≥ 2, can be computed following a recursive procedure where, for `= 2,3, · · · , j, one has

x
(m)
n+`|n =Mn+`−1(x

(m)
n+`−1|n,θ

(m)
|n )+ η

(m)
n+`−1, η

(m)
n+`−1 ∼N (0,Qn+`−1). (36)

3.3 Complexity of the Joint-EnKF, Dual-EnKF, and Dual-EnKFOSA

The computational complexity of the different state-parameter EnKF schemes can be split between355

the forecast (time-update) step and the analysis (measurement-update) step. The Joint-EnKF requires

Ne model runs (for forecasting the state ensemble) and Ne Kalman corrections (for updating the

forecast ensemble). This is practically doubled when using the Dual-EnKF, since the latter requires

2Ne model runs and 2Ne Kalman corrections; Ne corrections for each of the forecast state ensem-

ble and the forecast parameter ensemble. As presented in the previous section, the Dual-EnKFOSA360

smoothes the state estimate at the previous time step before updating the parameters and the state at

the current time. Thus, the Dual-EnKFOSA requires as many model runs (2Ne) as the Dual-EnKF,

and an additional Ne correction steps to apply smoothing. In large scale geophysical applications,

the correction step of the ensemble members is often computationally not significant compared to

the cost of integrating the model in the forecast step. The approximate computational complexity and365

memory storage for each algorithm are summarized in Table 1. The tabulated complexities for each

method are valid under the assumption that Ny�Nx, i.e., the number of state variables is much

larger than the number of observations. This is generally the case for subsurface flow applications

due to budget constraints given the consequent costs needed for drilling and maintaining subsurface

wells.370
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4 Numerical experiments

4.1 Transient groundwater flow problem

We adopt in this study the subsurface flow problem of Bailey and Baù (2010). The system consists

of a two-dimensional (2D) transient flow with an areal aquifer area of 0.5 km2 (Figure 1). Constant

head boundaries of 20 m and 15 m are placed on the west and east ends of the aquifer, respectively,375

with an average saturated thickness, b, of 25 m. The north and south boundaries are assumed to be

Neumann with no flow conditions (Figure 1). The mesh is discretized using a cell-centered finite

difference scheme with 10 m × 20 m rectangles, resulting in 2500 elements. The following 2D

saturated groundwater flow system is solved:

∂

∂x

(
Tx
∂h

∂x

)
+

∂

∂y

(
Ty
∂h

∂y

)
= S

∂h

∂t
+ q, (37)380

where T is the transmissivity [L2T−1], which is related to the conductivity,K, through T =Kb, h is

the hydraulic head [L], t is time [T], S is storativity [-], and q denotes the sources as recharge or sinks

due to pumping wells [LT−1]. Unconfined aquifer conditions are simulated by setting S = 0.20 to

represent the specific yield. A log-conductivity field is generated using the sequential Gaussian sim-

ulation toolbox, GCOSIM3D (Gómez-Hernández and Journel, 1993), with a mean of −13 log(m/s),385

a variance of 1.5 log(m2/s2), and a Gaussian variogram with a range equal to 250 m in the x-direction

and 500 m in the y-direction (Figure 1).

We consider a dynamically complex experimental setup that is similar to a real-world application

and is based on various time-dependent external forcings. The recharge is assumed spatially het-

erogenous and sampled using the GCOSIM3D toolbox (Gómez-Hernández and Journel, 1993) with390

statistical parameters shown in Table 2. Three different pumping wells (PW) are inserted within the

aquifer domain and can be seen in Figure 1 (square symbols). From these wells, transient pump-

ing of groundwater takes place with different daily values as plotted in the left panel of Figure 2.

The highest pumping rates are associated with PW2 with an average daily rate of 5.935× 10−7

m3/day. Smaller temporal variations in water pumping rates are assigned to PW1 and PW3. Three395

other monitoring wells (MW1, MW2, MW3) are also placed within the aquifer domain to evaluate

the groundwater flow filters estimates. We further assess the prediction skill of the model after data

assimilation using a control well (CW) placed in the middle of the aquifer (indicated by a diamond

symbol).

Prior to assimilation, a reference run is first conducted for each experimental setup using the pre-400

scribed parameters above, and is considered as the truth. We simulate the groundwater flow system

over a year-and-a-half period using the classical fourth-order Runge Kutta method with a time step of

12 hours. The initial hydraulic head configuration is obtained after a 2-years model spin-up starting

from a uniform 15 m head. Reference heterogenous recharge rates are used in the setup as explained

before. The water head changes (in m) after 18 months are displayed with contour lines in the left405
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panel of Figure 3. One can notice larger variations in the water head in the lower left corner of the

aquifer domain, consistent with the high conductivity values in that region. The effects of transient

pumping in addition to the heterogenous recharge rates are also well observed in the vicinity of the

pumping wells.

4.2 Assimilation Experiments410

To imitate a realistic setting, we impose various perturbations on the reference model and set our

goal to estimate the water head and the hydraulic conductivity fields using an imperfect forecast

model and perturbed data extracted from the reference (true) run. This experimental framework is

known as "twin-experiments". In the forecast model, we perturb both transient pumping and spatial

recharge rates. The perturbed recharge field, as compared to the reference recharge in Figure 2, is415

sampled with different variogram parameters as shown in Table 2. Pumping rates from PW1, PW2

and PW3 are perturbed by adding a Gaussian noise with mean zero and standard deviation equal to

20% of the reference transient rates. The flow field simulated by the forecast (perturbed) model after

18 months is shown in the right panel of Figure 3. Compared to the reference field, there are clear

spatial differences in the hydraulic head, especially around the first and second pumping wells.420

To demonstrate the effectiveness of the proposed Dual-EnKFOSA, we evaluate its performances

against the standard Joint- and Dual-EnKFs under different experimental scenarios. We further con-

duct a number of sensitivity experiments, changing: (1) the ensemble size, (2) the temporal frequency

of available observations, (3) the number of observation wells in the domain, and (4) the measure-

ment error. For the frequency of the observations, we consider 6 scenarios in which hydraulic head425

measurements are extracted from the reference run every 1, 3, 5, 10, 15, and 30 days. Of course,

x
a,(m)
n is equal to x

f,(m)
n when no observation is assimilated. We also test four different observa-

tional networks assuming 9, 15, 25 and 81 wells uniformly distributed throughout the aquifer domain

(Figure 3 displays two of these networks; with 9 and 25 wells). We evaluate the algorithms under 9
::
10

different scenarios in which the observations were perturbed with Gaussian noise of zero mean and a430

standard deviation equal to
::::
0.05,

:
0.10, 0.15, 0.20, 0.25, 0.30, 0.50, 1, 2 and 3 m. Such measurement

errors, which can be due to instruments errors, conversion of pressure to water head, or piezometer

well defects, are typical values (order of centimetres to meters) observed at real hydrologic sites

(Post and von Asmuth, 2013).

To initialise the filters, we follow Gharamti et al. (2014a) and perform a 5-years simulation run us-435

ing the perturbed forecast model starting from the mean hydraulic head of the reference run solution.

Then, we randomly select a set ofNe hydraulic head snapshots to form the initial state ensemble. By

doing so, the dynamic head changes that may occur in the aquifer are well represented by the initial

ensemble. The corresponding parameters’ realizations are sampled with the geostatistical software,

GCOSIM3D, using the same variogram parameters of the reference conductivity field but condi-440

tioned on two hard measurements as indicated by black crosses in Figure 1. The two data points
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capture some parts of the high conductivity regions in the domain, and thus one should expect a poor

representation of the low conductivity areas in the initial log(K) ensemble. This is a challenging

case for the filters especially when a sparse observational network is considered. To ensure consis-

tency between the hydraulic heads and the conductivities at the beginning of the assimilation, we445

conduct a spin-up of the whole state-parameters ensemble for a 6-months period using perturbed

recharge time-series for each ensemble member.

The filter estimates resulting from the different filters are evaluated based on their average absolute

forecast errors (AAE) and their average ensemble spread (AESP):

AAE = N−1x N−1e

Ne∑

j=1

Nx∑

i=1

∣∣∣∣x
f,e
j,i −xti

∣∣∣∣, (38)450

AESP = N−1x N−1e

Ne∑

j=1

Nx∑

i=1

∣∣∣∣x
f,e
j,i − x̂f,ei

∣∣∣∣, (39)

where xti is the reference “true" value of the variable at cell i, xf,ej,i is the forecast ensemble value

of the variable, and x̂f,ei is the forecast ensemble mean at location i. AAE measures the estimate-

truth misfit and AESP measures the ensemble spread, or the confidence in the estimated values

(Hendricks Franssen and Kinzelbach, 2008). We further assess the accuracy of the estimates by455

plotting the resulting field and variance maps of both hydraulic head and conductivities.

5 Results and Discussion

5.1 Sensitivity to the ensemble size

We first study the sensitivity of the three algorithms to the ensemble size, Ne. In realistic ground-

water applications, we would be restricted to small ensembles due to computational limitations.460

Obtaining accurate state and parameter estimates with small ensembles is thus desirable. We carry

the experiments using three ensemble sizes, Ne = 50, 100 and 300, and we fix the frequency of

the observations to half a day, the number of wells to nine (Figure 3, left observation network) and

the measurement error to 0.50 m. We plot the resulting AAE time series of the state and parame-

ters in Figure 4. As shown, the performance of the Joint-EnKF, Dual-EnKF,
:::::::::::::::

Joint-EnKFOSA:
and465

Dual-EnKFOSA improves as the ensemble size increases, reaching a mean AAE of 0.161, 0.160,

and 0.156 m for Ne = 300, respectively. The Joint-EnKF and the Dual-EnKF exhibit similar behav-

iors, with a slight advantage for the Dual-EnKF. As suggested by
::::::
argued

:::
by Gharamti et al. (2014a),

the Dual-EnKF is generally expected to produce more accurate results only when large enough en-

sembles are used. We have tested the Joint- and the Dual-EnKFs using 1000 members and found470

that the Dual-EnKF is around 9% more accurate in term of AAE. The proposed Dual-EnKFOSA

provides the best estimates in all tested scenarios.
:::
The

:::::::::::::::
Joint-EnKFOSA:::::::::::

outperforms
:::
the

::::::
Joint-

::::
and

::::::::::::
Dual-EnKFs,

:::
but

::
is
::::::
about

:::
5%

::::
less

::::::::
accurate

:::::
than

:::
the

:::::::::::::::
Dual-EnKFOSA,

:::::::::
especially

:::::
after

:::
the

:::::
first

::::
year
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::
of

::::::::::::
assimilation. On average, with changing ensemble size, the Dual-EnKFOSA leads to about 7%

improvement compared with the
:::::::
standard

:
joint and dual schemes. In terms of the conductivity esti-475

mates, the proposed scheme produces more accurate estimates for all three ensemble sizes. At the

early assimilation stage, the three
::::
four schemes seem to provide similar results, but this eventually

changes after 6 months beyond which the Dual-EnKFOSA clearly outperforms the standard
:::::
other

schemes.

We furthermore examined the estimated uncertainties about the forecast estimates by computing480

the average spread of both the hydraulic head and conductivity ensembles. To do this, we evaluated

the mean AESP of both variables and tabulated the results for the three ensemble sizes in Table 3. For

all schemes and as expected, the spread seems to increase as the ensemble size increases. Compared

to the joint and the dual schemes, the
:::
The

:
Dual-EnKFOSA retains

::
has

:
the smallest mean AESP for

all cases, suggesting more confidence in the head and conductivity estimates.485

One could also exploit the computed AAE and AESP to assess whether the filters suffer from the

inbreeding problem. Filter inbreeding occurs when the variance of the state and parameters ensemble

is increasingly reduced over time. This may not only deteriorates the quality of the estimated filter

error covariance matrices, but also wrongly suggests more confidence in the forecast and strongly

limits the filter update by the incoming observation. One standard test for examining inbreeding490

is to compute the ratio of the AAE to the AESP (Hendricks Franssen and Kinzelbach, 2008). In

a well designed assimilation system (that does not suffer from inbreeding) such a ratio should be

close to one; in other words, the AAE and AESP are almost of the same order. Examining Figure

4 and Table 4, the ratio of the AAE to the AESP for the different tested ensemble sizes is, on-

average, very close to 1 for all three schemes, as reported in Table 4. This clearly suggests that no495

filtering inbreeding issues are encountered in the present setup. This could be due to the imposed

stochastic model errors (as described in Section 4), which seems to maintain enough spread in the

hydraulic head and conductivity ensembles. Another method for tackling the inbreeding problem is

to combine the EnKF with the so-called stochastic moments equations that govern the time evolution

of conditional expectations of the state and parameters as well as the associated covariances, as500

suggested by Panzeri et al. (2013, 2015).

In terms of computational cost, we note that our assimilation results were obtained using a 2.30

GHz MAC workstation and 4 cores for parallel looping while integrating the ensemble members. The

Joint-EnKF is the least intensive requiring 70.61 sec to perform a year-and-a-half assimilation run

using 50 members. The Dual-EnKF and Dual-EnKFOSA, on the other hand, require 75.37 and 77.04505

sec, respectively. The Dual-EnKF is computationally more demanding than the Joint-EnKF because

it includes an additional propagation step of the ensemble members as discussed in Section 3.3.

Likewise, the proposed Dual-EnKFOSA requires both an additional propagation step and an update

step of the state members. Its computational complexity is thus greater than the joint scheme and

roughly equivalent to that of the Dual-EnKF. Note that in the current setup the cost of integrating the510
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groundwater model is not very significant as compared to the cost of the update step. This is however

usually not the case in large-scale hydrological applications.

5.2 Sensitivity to the frequency of observations

In the second set of experiments, we test the filters’ behavior with different temporal frequency of

observations, i.e., the times at which head observations are assimilated. We implement the three515

filters with 100 members and use data from nine observation wells perturbed with 0.10 m noise.

Figure 5 plots the mean AAE of the hydraulic conductivity estimated using the three filters for

the six different observation frequency scenarios. The Dual- and Joint-EnKFs lead to comparable

performances, but the latter performs slightly better when data are assimilated more frequently, i.e.,

every five and three days. The performance of the proposed Dual-EnKFOSA, as seen from the plot,520

is rather good and its estimates are more consistent with data than those computed by the other two

filters. The best Dual-EnKFOSA results are obtained when assimilating data every 1, 3, and 5 days.

The improvements over the joint and the dual schemes decrease as the frequency of observations in

time decreases. The reason for this is related to the nature of the Dual-EnKFOSA algorithm, which

adds a one-step-ahead-smoothing to the analyzed head ensemble members before updating the fore-525

cast parameters and the state samples. Therefore, the more data are available, the greater the number

of applied smoothing steps, and hence the better the characterization of the state and parameters. To

illustrate, the smoothing step of the state ensemble enhances its statistics and eventually provides

more consistent state-parameters cross-correlations to better predict the data. When assimilating hy-

draulic head data on a daily basis, the proposed Dual-EnKFOSA leads to about 24% more accurate530

conductivity estimates than the Joint and Dual-EnKFs.

We also compared the hydraulic head estimates when changing the temporal frequency of ob-

servations. Similar to the parameters, the improvements of the Dual-EnKFOSA algorithm over the

other schemes become significant when more data are assimilated over time. Overall, the benefits

of the proposed scheme are more pronounced for the estimation of the parameters because the con-535

ductivity values at all aquifer cells are indirectly updated using hydraulic head data, requiring more

observations for efficient estimation.

One effective way to evaluate the estimates of the state is to examine the evolution of the reference

heads and the forecast ensemble members at various aquifer locations. For this, we plot in Figure 6

the true and the estimated time-series change in hydraulic head at the assigned monitoring wells as540

they result from the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA. We use 100 ensemble mem-

bers and assume the 9 data points are available every five days. At MW1, the performance of the

three filters is quite similar and they all successfully reduce the uncertainties and recover the true

evolution of the hydraulic head at that location. We note that between the 5th and the 9th month,

the Dual-EnKF seems to underestimate the reference values of the hydraulic head as compared to545

the other two schemes. At MW2 and MW3, the ensemble spread of all three filters shrinks shortly
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after the start of assimilation, but remains larger than those at MW1. The proposed Dual-EnKFOSA

efficiently recovers
::::::::
performs

:::::
fairly

:::::
well,

:::::::::
providing

::
a
::::::::::
reasonable

::::::::
recovery

::
of

:
the reference trajectory

of
:
at

:
MW2 and MW3. The ensemble head values obtained using the Joint- and the Dual-EnKFs

at MW2 are less accurate. Furthermore, the Joint and the Dual-EnKF ensemble members tend to550

underestimate the reference hydraulic head at MW3 over the first 6 months of assimilation. Beyond

this, there is a clear overestimation of the head values, especially by the Dual-EnKF, up to the end

of the first year.

5.3 Sensitivity to the number of observations

We further examine the robustness of the proposed Dual-EnKFOSA against the Joint- and Dual-555

EnKFs to different numbers of observation wells inside the aquifer domain. We thus compare our

earlier estimates resulting from only nine wells, five days observation frequency, and 0.10 m mea-

surement error with a new set of estimates resulting from more dense observational networks with

15, 25 and 81 wells. Figure 7 plots the time-series curves of the AAE as they result from the four

observational scenarios for hydraulic head and conductivity. As shown, the behavior of the filters560

improves as more data are assimilated. Clearly, the proposed scheme provides the best estimates

over the entire simulation window. More precisely, and towards the end of assimilation, the Dual-

EnKFOSA with only nine data points exhibits less forecast errors for conductivity than does the

Dual-EnKF
::::
(and

:::::::::::
Joint-EnKF)

:
with 81 data points. Likewise when assimilating head data from 15

and 25 wells, the proposed algorithm outperforms the Dual-EnKF
::::
Joint

::::
and

:::::
Dual

:::::::
EnKFs and yields565

more accurate hydraulic head estimates by the end of the simulation window.

To further assess the performance of the filters we analyze the spatial patterns of the estimated

fields. To do so, we plot and interpret the ensemble mean of the conductivity as it results from the

three filters using nine observation wells. We compare the estimated fields after 18 months (Figure

8) with the reference conductivity. As can be seen, the Joint- and the Dual-EnKFs exhibit some570

overshooting in the southern (low conductivity) and central regions of the domain. In contrast, the

Dual-EnKFOSA better delineates these regions and further provides reasonable estimates of the low

conductivity area in the northwest part of the aquifer. In general and for all tested schemes, the es-

timated conductivity field does not capture very well the spatial variability of the reference field.

This is due to the large model errors imposed on the recharge and pumping rates during the fore-575

casts. This limits the efficiency of the assimilation system, especially with the recovery of small

scale conductivity structures, but also allows for more straightforward assessment of the different

techniques.

5.4 Sensitivity to measurement errors

In the last set of sensitivity experiments, we fix the number of wells to nine, the observation fre-580

quency to 5 days, and we use different measurement errors to perturb the observations. We plot the
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results of nine
:::
ten different observational error scenarios in Figure 9 and compare the conductivity

estimates obtained using the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA. In general, the per-

formance of the filters appears to degrade as the observations are perturbed with larger degree of

noise. All three filters exhibit similar performances with large observational error; i.e., 1, 2 and 3 m.585

This can be expected because larger observational errors decrease the impact of data assimilation,

and thus the estimation process is reduced to a model prediction only. The plot also suggests that

the estimates of the Dual-EnKFOSA with 0.30 m measurement errors are better than those of the

Joint- and the Dual-EnKFs with 0.10 m error. With 0.10 m measurement error, the estimate of the

Dual-EnKFOSA is also approximately 12% better.590

Finally, we investigated the time-evolution of the ensemble variance of the conductivity estimates

as they result from the Dual-EnKF and the Dual-EnKFOSA with 0.10 m measurement noise. Spa-

tially, the ensemble variance maps provide insight about the uncertainty reduction due to data assim-

ilation. The initial map (left panel, Figure 10) exhibits zero variance at the sampled two locations

and increasing variance away from these locations. The ensemble spread of conductivity field from595

the two filters (right panels, Figure 10) after 6 and 18 months is quite small and comparable. The

Dual-EnKFOSA, however, tends to maintain a larger variance at the
:::::::
towards

:::
the

:::::
north

:
edges than the

Dual-EnKF, which in turn increases the impact
::::
help

::::::::
increase

:::
the

:::::::
weight of the observations

::
in

::::
this

::::
area.

5.5 Further assessments of the Dual-EnKFOSA scheme
:::::::::
Prediction

::::::::::
capability

:::::::::::
assessment600

To further assess the system performance in terms of parameters retrieval, we have integrated the

model in prediction mode (without assimilation) for an additional period of 18 months starting from

the end of the assimilation period. We plot in Figure 11, using the final estimates of the conductivity

as they result from the three filters (after 18 months), the time evolution of the hydraulic head at the

control well (CW). The ensemble size is set to 100, observation frequency is 1 day, number of data605

wells is 25 and measurement noise is 0.5 m. The reference head trajectory at the CW decreases from

17.5 to 16.9 m in the first 2 years, and then slightly increases to 17.2 m in the rest of the year. The

forecast ensemble members of the Joint-EnKF at this CW fail to capture to reference trajectory of

the model. This is due to the large measurement noise imposed on the head data. The Dual-EnKF

performs slightly better and predicts hydraulic head values that are closer to the reference solution.610

The performance of the Dual-EnKFOSA, as shown, is the closest to the reference head trajectory

and moreover, one of the forecast ensemble members successfully captures the true head evolution.

Similar verification
:::
We

::::::
further

:::::
plot

:::
the

::::::::
absolute

::::
bias

:::
of

:::
the

::::::::::
hydraulic

::::
head

:::::::
during

:::
the

::::::::::
prediction

::::::
phase,

:::
i.e.,

:::::
after

:::
1.5

::::::
years,

::::::
using

:::
the

:::::
three

:::::::
filtering

:::::::::
schemes.

:::
As

:::::::
shown,

:::
the

::::
bias

:::
in

:::
the

:::::::::::
Joint-EnKF

:::::::
reaches

:::::
about

::::
0.6

::
m

:::::
after

::
3

:::::
years.

::::
On

:::
the

::::::
other

:::::
hand,

:::
the

:::::::::::::::
Dual-EnKFOSA:::::

and,
::
to

::
a
:::::
lesser

:::::::
extent,615

:::
the

:::::::::::
Dual-EnKF,

::::::
clearly

:::::
lead

::
to

:::::
more

::::::::
accurate

::::
long

:::::
term

::::::::
forecasts

:::::
with

:::::::
smaller

::::
bias

::
in
::::

the
::::::::
resulting
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::::::::
hydraulic

:::::
head

:::::::::
estimates.

::::::::
Similar

::::
tests

:
was also conducted at other locations in the aquiferand all

resulted in similar results
:
,
::
all

::::::::
resulting

:::
in

::::::
similar

:::::::::::
conclusions.

Finally, in order to demonstrate that our results are statistically robust, 10 other test cases with

different reference conductivity and heterogeneous recharge maps were investigated. In each of these620

cases, we sampled the reference fields by varying the variogram parameters, such as variance, x and

y ranges, etc. The pumping rates and the initial head configuration among the cases were also altered.

For all 10 test cases, we fixed the ensemble size to 100 and used data from nine observation wells

every 3 days. We set the measurement error to 0.10 m. We plot the resulting conductivity estimates

(mean AAE) from each case in Figure 12. The estimates of the three filters, as shown on the plot,625

give a statistical evidence that the proposed scheme always provides more accurate estimates than

the Joint-/Dual-EnKF and is more robust to changing dynamics and experimental setups. Similar

results were obtained for the hydraulic head estimates. Averaging over all test cases, the proposed

scheme provides about 17% more accurate estimates in term of AAE than the standard Joint- and

Dual-EnKFs.630

6 Conclusions

We presented a one-step-ahead smoothing based dual ensemble Kalman filter (Dual-EnKFOSA) for

state-parameter estimation of subsurface groundwater flow models. The Dual-EnKFOSA is derived

using a Bayesian probabilistic formulation combined with two classical stochastic sampling proper-

ties. It differs from the standard Joint-EnKF and Dual-EnKF in the fact that the order of the time-635

update step of the state (forecast by the model) and the measurement-update step (correction by the

incoming observations) is inverted. Compared with the Dual-EnKF, this introduces a smoothing step

to the state by future observations, which seems to provide the model, at the time of forecasting,

with better and rather physically-consistent state and parameters ensembles.

We tested the proposed Dual-EnKFOSA on a conceptual groundwater flow model in which we es-640

timated the hydraulic head and spatially variable conductivity parameters. We conducted a number

of sensitivity experiments to evaluate the accuracy and the robustness of the proposed scheme and

to compare its performance against those of the standard Joint and Dual EnKFs. The experimental

results suggest that the Dual-EnKFOSA is more robust, successfully estimating the hydraulic head

and the conductivity field under different modeling scenarios. Sensitivity analyses demonstrate that645

when more observations are assimilated, the Dual-EnKFOSA becomes more effective and signifi-

cantly outperforms the standard Joint- and Dual-EnKF schemes. In addition, when using a sparse

observation network in the aquifer domain, the accuracy of the Dual-EnKFOSA estimates is bet-

ter preserved, unlike the Dual-EnKF, which seems to be more sensitive to the number of hydraulic

wells. Moreover, the Dual-EnKFOSA results are shown to be more robust against observation noise.650
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On average, the Dual-EnKFOSA scheme leads to around 10% more accurate state and parameters

solutions than those resulting from the standard Joint- and Dual-EnKFs.

The proposed scheme is easy to implement and only requires minimal modifications to a standard

EnKF code. It is further computationally feasible, requiring only a marginal increase in the computa-

tional cost compared to the Dual-EnKF. This scheme should therefore be beneficial to the hydrology655

community given its consistency, high accuracy, and robustness to changing modeling conditions.

It could serve as an efficient estimation tool for real-world problems, such as groundwater, con-

taminant transport and reservoir monitoring, in which the available data are often sparse and noisy.

Potential future research includes testing the Dual-EnKFOSA with realistic large-scale groundwa-

ter, contaminant transport and reservoir monitoring problems. Furthermore, combining the proposed660

state-parameter estimation scheme with other iterative and hybrid ensemble approaches may be a

promising direction for further improvements.

Appendix A

The following classical results of random sampling are extensively used in the derivation of the

ensemble-based filtering algorithms presented in this paper.665

Property 1 (Hierarchical sampling (Robert, 2007)). Assuming that one can sample from p(x1) and

p(x2|x1), then a sample, x∗2, from p(x2) can be drawn as follows:

1. x∗1 ∼ p(x1);

2. x∗2 ∼ p(x2|x∗1).

Property 2 (Conditional sampling (Hoffman and Ribak, 1991)). Consider a Gaussian pdf, p(x,y),670

with Pxy and Py denoting the cross-covariance of x and y and the covariance of y, respectively.

Then a sample, x∗, from p(x|y), can be drawn as follows:

1. (x̃, ỹ)∼ p(x,y);

2. x∗ = x̃+PxyP
−1
y [y− ỹ].

Appendix B675

We show here that the samples, x̃(m)
n (xn−1,θ), given in (32), are drawn from the a posteriori tran-

sition pdf, p(xn|xn−1,θ,yn). Lets start by showing how Eqs. (30)-(31) are obtained. According to

(15), on can show that the members, ξ̃(m)
n (xn−1,θ), given by (30), are samples from the transition

pdf, p(xn|xn−1,θ) =Nxn(Mn−1(xn−1,θ),Qn−1). Furthermore, one may use Property 1 in (22),
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which is recalled here,680

p(yn|xn−1,θ) =
∫

p(yn|xn)︸ ︷︷ ︸
Nyn (Hnxn,Rn)

p(xn|xn−1,θ)︸ ︷︷ ︸
≈
{
ξ̃
(m)
n (xn−1,θ)

}Ne
m=1

dxn, (B1)

to obtain the members, ỹ(m)
n (xn−1,θ), given by (31); such members are, indeed, samples from

p(yn|xn−1,θ).
Now, using the samples ξ̃(m)

n (xn−1,θ) of p(xn|xn−1,θ) = p(xn|xn−1,θ,y0:n−1) and the samples

ỹ
(m)
n (xn−1,θ) of p(yn|xn−1,θ) = p(yn|xn−1,θ,y0:n−1), one can apply Property 2 to the joint pdf,685

p(xn,yn|xn−1,θ,y0:n−1), assuming it Gaussian, to show that the samples x̃(m)
n (xn−1,θ), given in

(32), are drawn from the a posteriori transition pdf, p(xn|xn−1,θ,y0:n) = p(xn|xn−1,θ,yn).
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Table 1. Approximate computational complexities of the Joint-EnKF, the Dual-EnKF, and the Dual-EnKFOSA

algorithms. Notations are as follows. Nx: number of state variables, Nθ: number of parameter variables, Ny:

number of observations, N : number of assimilation cycles, Ne: ensemble size, Cx: state model cost (=N2
x is

the linear KF), Cθ: parameter model cost (usually free ≡ identity), Cy: observation operator cost (=NyNx in

the linear KF), Sx: storage volume for one state vector, Sθ: storage volume for one parameter vector.

Algorithm Time-update Measurement-update Storage

Joint-EnKF NNe (Cx+ Cθ) NNe (Cy +NyNθ)+NN2
e (Nx+Nθ) 2NNe (Sx+Sθ)

Dual-EnKF NNe (2Cx+ Cθ) 2NNeCy +NN2
e (Nx+Nθ) 2NNe (Sx+Sθ)

Dual-EnKFOSA NNe (2Cx+ Cθ) 2NNeCy +NN2
e (2Nx+Nθ) 2NNe (Sx+Sθ)

Table 2. Parameters of the random functions for modeling the spatial distributions of the reference and perturbed

recharge fields. The ranges in x and y directions for the variorum model are given by λx and λy , respectively.

τ denotes the rotation angle of one clockwise rotation around the positive y-axis.

Recharge Mean Variance Variogram λx λy τ

Reference Field -20 (m3/day) 1.03 (m3/day)2 Gaussian 50 (m) 100 (m) 45◦

Perturbed Field -20 (m3/day) 1.21 (m3/day)2 Gaussian 50 (m) 50 (m) 45◦

Table 3. Mean average ensemble spread (AESP) of the water head and the hydraulic conductivity for three

different ensemble sizes. The reported values are given for the Joint-EnKF, Dual-EnKF,
::::::::::::::

Joint-EnKFOSA and

the proposed Dual-EnKFOSA.

Hydraulic Head Conductivity

Ne = 50 Ne = 100 Ne = 300 Ne = 50 Ne = 100 Ne = 300

Joint-EnKF 0.12294 0.144 0.20014 1.0763 1.0144 0.95128

Dual-EnKF 0.1256 0.14469 0.20081 1.0745 1.0155 0.95129

:::::::::::::
Joint-EnKFOSA :::::::

0.12498
::::::
0.14484

::::::
0.2006

:::::
1.0264

: :::::::
0.97651

::::::
0.9084

Dual-EnKFOSA 0.11737 0.14125 0.18259 1.0388 0.90654 0.8791
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Table 4. Filter inbreeding indicator: Ratio of the mean average-absolute-error (AAE) and mean average-

ensemble-spread (AESP) of the water head and the hydraulic conductivity for three different ensemble sizes.

The reported values are given for the Joint-EnKF, Dual-EnKF and the proposed Dual-EnKFOSA.

Hydraulic Head Conductivity

Ne = 50 Ne = 100 Ne = 300 Ne = 50 Ne = 100 Ne = 300

Joint-EnKF 1.734 1.680 1.619 1.539 1.507 1.134

Dual-EnKF 1.449 1.443 1.360 1.123 1.123 0.834

Dual-EnKFOSA 0.805 0.802 0.854 0.793 0.792 0.801
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Figure 1. Plan view of the conceptual model for the 2D transient groundwater flow problem. East and west

boundaries are Dirichlet with a given prescribed hydraulic heads. North and south boundaries are impermeable

(no flow boundaries). The reference log-conductivity field
:::
was

:
obtained using the sequential Gaussian simu-

lation code (Gómez-Hernández and Journel, 1993). A Gaussian variogram model is considered with a mean

of -13 log(m/s), variance of 1.5 log(m2/s2), and range equal to 250 m and 500 m in the x and y directions,

respectively. The black squares represent the pumping wells whereas the black circles denote the position of 3

monitoring wells. The black diamond is a control well.
:::
The

:::
two

:::::
black

::::::
crosses

:::::::::
correspond

::
to
:::
the

::::::::
locations

:::::
where

::
the

:::::::::::
conductivity

:::::
values

::::
were

:::::
used

::
to

:::::::
condition

:::
the

:::::::::::
geostatistical

:::::::::
simulation.
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Figure 2. Left-Panel: Daily transient reference pumping rates from wells PW1, PW2 and PW3. Negative values

indicate pumping or groundwater that is being removed from the aquifer. Right-Panel: Reference heterogenous

spatial recharge values obtained using the sequential Gaussian simulation code (Gómez-Hernández and Journel,

1993) with parameters given in Table 2.
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Figure 3. Groundwater flow contour maps obtained using the reference run (left panel) and the perturbed fore-

cast model (right panel) after 18 months of simulation. The well locations from which head data are extracted

are shown by black asterisks. In the left panel, we show the first network consisting of nine wells. In the right

panel, the other network with 25 wells is displayed.
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Figure 4. AAE time-series of the hydraulic head and conductivity using the Joint-EnKF, Dual-EnKF
:
,

:::::::::::::
Joint-EnKFOSA and Dual-EnKFOSA. Results are shown for 3 scenarios in which assimilation of hydraulic

head data are obtained from nine wells every 0.5 days. The three experimental scenarios use 50, 100 and 300

ensemble members with 0.50 m as the measurement error.
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Figure 5. Mean average absolute errors (AAE) of log-hydraulic conductivity, log(K), obtained using the Joint-

EnKF, Dual-EnKF, and Dual-EnKFOSA schemes. Results are shown for 6 different scenarios in which assimi-

lation of hydraulic head data are obtained from nine wells every 1, 3, 5, 10, 15 and 30 days. All 6 experimental

scenarios use 100 ensemble members and 0.10 m as the measurement error.
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Figure 6. Reference (dashed) and predicted (solid) hydraulic head evolution at monitoring wells MW1, MW2,

and MW3. Results are obtained using the Joint-EnKF and the Dual-EnKFOSA schemes with 100 members, 5

days as observation frequency, 9 observation wells, and 0.10 m of measurement noise.
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Figure 7. Time series of AAE of hydraulic head (left panel) and conductivity (right panel) using the
::::::::::
Joint-EnKF,

Dual-EnKF and Dual-EnKFOSA schemes. Results are shown for 4 scenarios in which assimilation of hydraulic

head data are obtained from 9, 15, 25 and 81 wells (uniformly distributed throughout the aquifer domain) every

5 days. The four experimental scenarios use 100 ensemble members and 0.10 m as the measurement error. The

number of wells is denoted by p.
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Figure 8. Spatial maps of the reference, initial and recovered ensemble means of hydraulic conductivity using

the Joint-EnKF, Dual-EnKF, and Dual-EnKFOSA schemes. Results are shown for a scenario in which assimi-

lation of hydraulic head data is obtained from nine wells every five days. This experiment uses 100 ensemble

members and 0.10 m as the measurement error.

35



Observational error (m)

0
.0

5

0
.1

 

0
.1

5

0
.2

 
0

.2
5

0
.3

 

0
.5

 

1
  

 

2
  

 

3
  

 

m
e
a
n
 A

A
E

 (
lo

g
-m

/s
)

0.8

0.85

0.9

0.95

1

1.05

1.1
Conductivity Estimates

Joint-EnKF

Dual-EnKF

Dual-EnKF-OSA

Figure 9. Mean AAE of the hydraulic conductivity using the Joint-EnKF, Dual-EnKF and Dual-EnKFOSA

schemes. Results are shown for 9
::
10 different scenarios in which assimilation of hydraulic head data are

obtained from
:
is

:::::::::
performed

::::
using

:
9 wells with measurement errors of

::::
0.05,

:
0.10, 0.15, 0.20, 0.25, 0.3, 0.5, 1,

2 and 3 m. The four experimental scenarios use 100 ensemble members and 5 days as observation frequency.

:::
The

:::::
x-axis

::
is
::::::::
displayed

::
in
:::
log

:::::
scale.
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Figure 10. Left panel: Ensemble variance map of the initial conductivity field. Right sub-panels: Ensemble

variance maps of estimated conductivity after 6 and 18 month assimilation periods using the Dual-EnKF and

the proposed Dual-EnKFOSA schemes. These results are obtained with 100 members, 5 days of observation

frequency, 9 observation wells, and 0.10 m as measurement noise.
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Figure 11. Reference (dashed) and predicted (solid) hydraulic head evolution at the control well: CW. Results

are obtained using the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA schemes with 100 members, 1 day as

observation frequency, 25 observation wells, and 0.50 m of measurement noise. The last 18 months are purely

based on the forecast model prediction with no assimilation of data.
::
In
:::

the
:::::::::::

bottom-right
:::::::
subplot,

:::
the

:::::::
absolute

:::
bias

::
of
::::::::
hydraulic

::::
head

::
is
::::::::
evaluated

:::
for

::
all

::::::::
schemes

:::::
during

:::
the

::::::::
prediction

:::::
phase

::::
only

::::
(i.e.,

:::::
after

:::
1.5

:::::
years).
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Figure 12. Performance of the Joint-/Dual-EnKF and the proposed Dual-EnKFOSA schemes in 10 different test

cases (TC1, TC2, ...). Mean AAE of the conductivity estimates are displayed. These results are obtained with

100 members, 3 days of observation frequency, 9 observation wells, and 0.10 m as measurement noise.
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