
Manuscript prepared for Hydrol. Earth Syst. Sci.
with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls.
Date: 30 March 2016

A Bayesian Consistent Dual Ensemble Kalman Filter
for State-Parameter Estimation in Subsurface
Hydrology
B. Ait-El-Fquih 1, M.E. Gharamti 1,2, and I. Hoteit 1

1Department of Earth Sciences and Engineering, King Abdullah University of Science and
Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
2Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography, Nansen
Environmental and Remote Sensing Center (NERSC), Bergen 5006, Norway.

Correspondence to: I. Hoteit (ibrahim.hoteit@kaust.edu.sa)

Abstract. Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in

subsurface groundwater models. The EnKF sequentially integrates field data into simulation models

to obtain a better characterization of the model’s state and parameters. These are generally estimated

following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by

the model is followed by an update step with incoming observations. The Joint-EnKF directly up-5

dates the augmented state-parameter vector while the Dual-EnKF empirically employs two separate

filters, first estimating the parameters and then estimating the state based on the updated parameters.

To develop a Bayesian consistent dual approach and improve the state-parameters estimates and

their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the

state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF; the Dual-10

EnKFOSA. Compared with the standard Dual-EnKF, it imposes a new update step to the state, which

is shown to enhance the performance of the dual approach with almost no increase in the compu-

tational cost. Numerical experiments are conducted with a two-dimensional synthetic groundwater

aquifer model to investigate the performance and robustness of the proposed Dual-EnKFOSA, and

to evaluate its results against those of the Joint- and Dual-EnKFs. The proposed scheme is able to15

successfully recover both the hydraulic head and the aquifer conductivity, further providing reliable

estimates of their uncertainties. It is further found more robust to different assimilation settings, such

as the spatial and temporal distribution of the observations, and the level of noise in the data. Based

on our experimental setups, it yields up to 25% more accurate state and parameters estimates than

the joint and dual approaches.20

1 Introduction

In modern hydrology research, uncertainty quantification studies have focused on field applications,

including surface and subsurface water flow, contaminant transport, and reservoir engineering. The

1



motivations behind these studies were driven by the uncertain and stochastic nature of hydrological

systems. For instance, surface rainfall-runoff models that account for soil moisture and streamflows25

are subject to many uncertain parameters, such as free and tension water storage content, water

depletion rates, and melting threshold temperatures (Samuel et al., 2014). Groundwater flow mod-

els, on the other hand, depend on our knowledge of spatially variable aquifer properties, such as

porosity and hydraulic conductivity, which are often poorly known (Chen and Zhang, 2006; Hen-

dricks Franssen and Kinzelbach, 2008). In addition, contaminant transport models that investigate30

the migration of pollutants in subsurface aquifers are quite sensitive to reaction parameters like

sorption rates, radioactive decay, and biodegradation (Gharamti and Hoteit, 2014; Gharamti et al.,

2014b). To this end, it is important to study the variability of hydrological parameters and reduce

their associated uncertainties in order to obtain reliable simulations. To achieve this goal, hydrolo-

gists have resorted to various inverse and Monte Carlo-based statistical techniques with the standard35

procedure of pinpointing parameter values that, when integrated with the simulation models, allow

some system-response variables (e.g., hydraulic head, solute concentration) to fit given observations

(Vrugt et al., 2003; Valstar et al., 2004; Alcolea et al., 2006; Feyen et al., 2007; Hendricks Franssen

and Kinzelbach, 2009; Zhou et al., 2014). Recently, sequential data assimilation techniques, such as

the particle filter (PF), have been proposed to handle any type of statistical distribution, Gaussian or40

not, to properly deal with strongly nonlinear systems (Chang et al., 2012). The PF may require, how-

ever, a prohibitive number of particles (and thus model runs) to accurately sample the distribution

of the state and parameters, making this scheme computationally intensive for large-scale hydrolog-

ical applications (Doucet et al., 2001; Moradkhani et al., 2005a; Hoteit et al., 2008; Montzka et al.,

2011). This problem has been partially addressed by the popular ensemble Kalman filter (EnKF),45

which further provides robustness, efficiency and non-intrusive formulation (Reichle et al., 2002;

Vrugt et al., 2006; Zhou et al., 2011; Gharamti et al., 2013; Panzeri et al., 2014; Crestani et al., 2013;

McMillam et al., 2013; Erdal and Cirpka, 2015) to tackle the state-parameter estimation problem.

The EnKF is a filtering technique that is relatively simple to implement, even with complex non-

linear models, requiring only an observation operator that maps the state variables from the model50

space into the observation space. Compared with traditional inverse and direct optimization tech-

niques, which are generally based on least-squares-like formulations, the EnKF has the advantage

of being able to account for model errors that are not only present in the uncertain parameters but

also in the model structure and inputs, such as external forcings (Hendricks Franssen and Kinzel-

bach, 2008). In addition, and because of its sequential formulation, it does not require storing all55

past information about the states and parameters, leading to consequent savings in computational

cost (McLaughlin, 2002; Gharamti et al., 2014b).

The EnKF is widely used in surface and subsurface hydrological studies to tackle state-parameters

estimation problems (Zhou et al., 2014; Panzeri et al., 2014). Two approaches are usually considered

based on the joint and the dual estimation strategies. The standard joint approach concurrently esti-60
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mates the state and the parameters by augmenting (in the same vector) the state variables with the

unknown parameters, that do not vary in time. The parameters could also be set to follow an artifi-

cial evolution (random walk) before they get updated with incoming observations (Wan et al., 1999).

One of the early applications of the Joint-EnKF to subsurface groundwater flow models was given

by Chen and Zhang (2006). In their study, a conceptual subsurface flow system was considered and65

ensemble filtering was performed to estimate the transient pressure field alongside the hydraulic con-

ductivity. In a reservoir engineering application, Nævdal et al. (2005) considered a two-dimensional

North Sea field model and considered the joint estimation problem of the dynamic pressure and

saturation on top of the static permeability field. Groundwater contamination problems were also

tackled using the Joint-EnKF (e.g., Li et al., 2012; Gharamti and Hoteit, 2014), in which the hy-70

draulic head, contaminant concentration and spatially variable permeability and porosity parameters

were estimated for coupled groundwater flow and contaminant transport systems.

Several studies argued that the Joint-EnKF may suffer from important inconsistencies between

the estimated state and parameters that could degrade the filter performance, especially with large-

dimensional and strongly nonlinear systems (e.g., Moradkhani et al., 2005b; Chen and Zhang, 2006;75

Wen and Chen, 2007). One classical approach that has been proposed to tackle this issue is the so-

called dual filter which separately updates the state and parameters using two interactive EnKFs,

one acting on the state and the other on the parameters (Moradkhani et al., 2005b). The Dual-

EnKF has been applied to streamflow forecasting problems using rainfall-runoff models (e.g., Lü

et al., 2013; Samuel et al., 2014), subsurface contaminant (e.g., Tian et al., 2008; Lü et al., 2011;80

Gharamti et al., 2014b) and compositional flow models (e.g., Phale and Oliver, 2011; Gharamti et al.,

2014a), to cite but a few. Gharamti et al. (2014a) concluded that the dual scheme provides more

accurate state and parameters estimates than the joint scheme when implemented with large enough

ensembles. In terms of complexity, however, the dual scheme requires integrating the filter ensemble

twice with the numerical model at every assimilation cycle, and is therefore computationally more85

demanding. In related works, Gharamti et al. (2013) extended the dual filtering scheme to tackle

the state estimation problem of one-way coupled models, and to the framework of Hybrid-EnKF

(Gharamti et al., 2014b).

The dual filter has been basically introduced as a heuristic scheme and is not consistent with the

Bayesian filtering framework (Hendricks Franssen and Kinzelbach, 2008). A first attempt to build90

a Bayesian consistent dual-like filter was recently proposed by Gharamti et al. (2015) in which a

new Joint-EnKF scheme was derived following the one-step-ahead (OSA) smoothing formulation of

the Bayesian filtering problem. The new joint scheme reverses the order of the measurement-update

and the forecast- (or time-) update, leading to two Kalman-like update steps based on the current

observations; one for state smoothing and one for parameters updating.95

Motivated by the promising results of Gharamti et al. (2015), we follow here the same OSA

smoothing formulation to derive a new Dual-EnKF, which we refer to as the Dual-EnKFOSA here-
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after, generalizing the joint scheme of Gharamti et al. (2015) and, in particular, the standard Dual-

EnKF. Our goal is to derive a new Dual-EnKF-like algorithm that retains the separate formulation

of the state and parameters update steps, within a fully Bayesian framework. This not only allows100

us to derive a more general and efficient dual-like filtering scheme at practically no increase in the

computational cost, but also to explicitly put in context the conditions under which the (heuristic)

steps of the standard Dual-EnKF can be derived in a Bayesian setting. Synthetic numerical experi-

ments based on a groundwater flow model and estimating the hydraulic head and the conductivity

parameter field, are conducted to assess the performances of the proposed Dual-EnKFOSA and to105

compare them against the Joint- and the Dual-EnKFs, which we consider as references to evaluate

the behavior of the Dual-EnKFOSA. The numerical results suggest that the proposed scheme is ben-

eficial in terms of estimation accuracy compared to the two standard joint and dual schemes, and is

more robust to various experiment settings and observation scenarios.

The rest of the paper is organized as follows. Section 2 reviews the standard Joint- and Dual-110

EnKF strategies. The Dual-EnKFOSA is derived in Section 3 and its relation with the Joint- and

Dual-EnKFs is discussed. Section 4 presents a conceptual groundwater flow model and outlines the

experimental setup. Numerical results are presented and discussed in Section 5. Conclusions are

offered in Section 6, followed by an Appendix.

2 Joint and dual ensemble Kalman filtering115

2.1 Problem formulation

Consider a discrete-time state-parameter dynamical system: xn = Mn−1 (xn−1,θ)+ ηn−1

yn = Hnxn+ εn
, (1)

in which xn ∈ RNx and yn ∈ RNy denote the system state and the observation at time tn, of di-

mensions Nx and Ny respectively, and θ ∈ RNθ is the parameter vector of dimension Nθ.Mn is a120

nonlinear operator integrating the system state from time tn to tn+1, and the observational operator

at time tn, Hn, is assumed to be linear for simplicity; the proposed scheme can be easily extended

to the nonlinear case1. The model process noise, η = {ηn}n∈N, and the observation process noise,

ε= {εn}n∈N, are assumed to be independent, jointly independent and independent of x0 and θ,

which, in turn, are assumed to be independent. Let also ηn and εn be Gaussian with zero means and125

covariances Qn and Rn, respectively. Throughout the paper, y0:n
def
= {y0,y1, · · · ,yn}, and p(xn)

and p(xn|y0:l) stand for the prior probability density function (pdf) of xn and the posterior pdf of

xn given y0:l, respectively. All other used pdfs are defined in a similar way.

1The term Hnx
f,(m)
n is replaced by Hn(x

f,(m)
n ) in (26), and Hnξ

(m)
n is replaced by Hn(ξ

(m)
n ) in (34).
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We focus on the state-parameter filtering problem, say, the estimation at each time, tn, of the state,

xn, as well as the parameters vector, θ, from the history of the observations, y0:n. The standard130

solution of this problem is the a posteriori mean (AM):

Ep(xn|y0:n) [xn] =

∫
xnp(xn,θ|y0:n)dxndθ, (2)

Ep(θ|y0:n) [θ] =

∫
θp(xn,θ|y0:n)dxndθ, (3)

which minimizes the a posteriori mean square error. In practice, analytical computation of Eqs. (2)

and (3) is not feasible, mainly due to the nonlinear character of the system. The Joint- and Dual-135

EnKFs have been introduced as efficient schemes to compute approximations of (2) and (3). These

algorithms are reviewed in the next section.

2.2 The Joint- and Dual- EnKFs

2.2.1 The Joint-EnKF

The key idea behind the Joint-EnKF is to transform the state-parameter system (1) into a classical140

state-space system based on the augmented state, zn =
[
xTn θ

T
]T

, on which the classical EnKF can

be directly applied. The new augmented state-space system can be written as: zn = M̃n−1 (zn−1)+ η̃n−1

yn = H̃nzn+ εn
, (4)

in which M̃n−1 (zn−1) =

 Mn−1(zn−1)

θ

, η̃n−1 =
[
ηTn−1 0

]T
, H̃n = [Hn 0], with 0 a zero

matrix with appropriate dimensions. Starting at time tn−1 from an analysis ensemble of size Ne,145

{xa,(m)
n−1 ,θ

(m)
|n−1}

Ne

m=1
representing p(zn−1|y0:n−1), the EnKF uses the augmented state model (1st

Eq. of (4)) to compute the forecast ensemble, {xf,(m)
n ,θ

(m)
|n−1}

Ne

m=1
, approximating p(zn|y0:n−1). The

observation model (2nd Eq. of (4)) is then used to obtain the analysis ensemble, {xa,(m)
n ,θ

(m)
|n }

Ne

m=1
,

at time tn. Let, for an ensemble {r(m)}Nem=1, r̂ denote its empirical mean and Sr a matrix with Ne-

columns whose mth column is defined as
(
r(m)− r̂

)
. The Joint-EnKF steps can be summarized as150

follows:

• Forecast step: The parameters vector members, θ(m)
|n−1, are kept invariant, while the state vector

members, xa,(m)
n−1 , are integrated in time through the dynamical model as:

xf,(m)
n =Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n−1

)
+ η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1) . (5)

An approximation of the forecast state, x̂n|n−1, which is, by definition, the mean of p(xn|y0:n−1)155

(as in (2)), is given by the empirical mean of the forecast ensemble, x̂fn. The associated forecast

error covariance is estimated as Pxfn
= (Ne− 1)

−1
Sxfn

ST
xfn

.
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• Analysis step: Once a new observation is available, all members, xf,(m)
n and θ(m)

|n−1, are updated

as in the Kalman filter (KF):

yf,(m)
n = Hnx

f,(m)
n + ε(m)

n ; ε(m)
n ∼N (0,Rn), (6)160

xa,(m)
n = xf,(m)

n +Pxfn,y
f
n
P−1

yfn

(
yn−yf,(m)

n

)
︸ ︷︷ ︸

µ
(m)
n

, (7)

θ
(m)
|n = θ

(m)
|n−1 +Pθ|n−1,y

f
n
·µ(m)
n . (8)

The (cross-)covariances in Eqs. (7) and (8) are practically evaluated from the ensembles as:

Pxfn,y
f
n

= (Ne− 1)
−1

Sxfn
ST
yfn
, (9)

Pyfn
= (Ne− 1)

−1
Syfn

ST
yfn
, (10)165

Pθ|n−1,y
f
n

= (Ne− 1)
−1

Sθ|n−1
ST
yfn
. (11)

The analysis estimates, (2) and (3), and their error covariances, can thus be approximated

by the analysis ensemble means, x̂an and θ̂|n, and covariances Pxan = (Ne− 1)
−1

SxanS
T
xan

and

Pθ|n = (Ne− 1)
−1

Sθ|nS
T
θ|n

, respectively. Note that Pxfn,y
f
n
P−1

yfn
in (7) represents the Kalman

Gain, Pxfn
HT
n

[
HnPxfn

HT
n +Rn

]−1
. This statistical formulation of the Kalman Gain offers170

more flexibility to deal with nonlinear observational operators (Moradkhani et al., 2005b).

2.2.2 The Dual-EnKF

In contrast with the Joint-EnKF, the Dual-EnKF is empirically designed following a conditional

estimation strategy, operating as a succession of two EnKF-like filters. First, a (parameter) filter is

applied to compute {θ(m)
|n }

Ne

m=1
from {xa,(m)

n−1 ,θ
(m)
|n−1}

Ne

m=1
based on the following two steps.175

• Forecast step: The parameters ensemble, {θ(m)
|n−1}

Ne

m=1
, is kept invariant, while the state sam-

ples are integrated in time as in (5) to compute the forecast ensemble, {xf,(m)
n }

Ne

m=1.

• Analysis step: As in (6), the observation forecast ensemble {yf,(m)
n }

Ne

m=1 is computed from

{xf,(m)
n }

Ne

m=1. This is then used to update the parameters ensemble, {θ(m)
|n }

Ne

m=1
, following

(8).180

Another (state) filter is then applied to compute {xa,(m)
n }

Ne

m=1 from {xa,(m)
n−1 }

Ne

m=1
as well as the new

parameter ensemble, {θ(m)
|n }

Ne

m=1
, again in two steps that can be summarized as follows.

• Forecast step: Each member, xa,(m)
n−1 , is propagated in time with the dynamical model using

the updated parameters ensemble:

x̃f,(m)
n =Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n

)
. (12)185
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• Analysis step: As in the parameter filter, {ỹf,(m)
n }

Ne

m=1 is computed from {x̃f,(m)
n }

Ne

m=1 using

(6), which finally yields {xa,(m)
n }

Ne

m=1 as in (7).

To better understand how the Dual-EnKF differs from the Joint-EnKF, we focus on how the anal-

ysis members at time tn, namely, xa,(m)
n and θ(m)

|n , are obtained starting from their counterparts at

previous time, xa,(m)
n−1 and θ(m)

|n−1
. The parameters members, θ(m)

|n , are computed based on the same190

equation (8) in both algorithms. For the state members, xa,(m)
n , we have:

xa,(m)
n

Joint−EnKF
= Mn−1

(
x
a,(m)
n−1 ,θ

(m)
|n−1

)
+Pxfn,y

f
n
P−1

yfn

(
yn−yf,(m)

n

)
︸ ︷︷ ︸

µ
(m)
n

, (13)

xa,(m)
n

Dual−EnKF
= Mn−1(x

a,(m)
n−1 ,

θ
(m)

|n︷ ︸︸ ︷
θ
(m)
|n−1 +Pθ|n−1,y

f
n
·µ(m)
n )︸ ︷︷ ︸

x̃
f,(m)
n

+Px̃fn,ỹ
f
n
P−1

ỹfn

(
yn− ỹf,(m)

n

)
︸ ︷︷ ︸

µ̃
(m)
n

. (14)

For simplicity, we ignore here the process noise term, ηn, which is commonly applied in geophysics

applications. As one can see, the Joint-EnKF updates the state members using one Kalman-like cor-195

rection (term of µ(m)
n in (13)), while the Dual-EnKF applies two Kalman-like corrections. More

specifically, the Dual-EnKF updates first the parameters members, θ(m)
|n−1, as in the Joint-EnKF, lead-

ing to θ(m)
|n ; these are then used to propagate x

a,(m)
n−1 , with the model to provide the “forecast” mem-

bers x̃f,(m)
n . The x̃

f,(m)
n are finally updated using a Kalman-like correction (term of µ̃(m)

n in (14)),

to obtain the analysis members xa,(m)
n . Such a separation of the update steps is expected to provide200

more consistent estimates of the parameters. The dual-update framework was indeed shown to pro-

vide better performances than the Joint-EnKF, at the cost of increased computational burden (see for

instance, Moradkhani et al., 2005b; Samuel et al., 2014; Gharamti et al., 2014a).

2.2.3 Probabilistic formulation

Following a probabilistic formulation, the augmented state system (4) can be viewed as a continuous205

state Hidden Markov Chain (HMC) with transition density,

p(zn|zn−1) = p(xn|xn−1,θ)p(θ|θ) =Nxn (Mn−1 (xn−1,θ) ,Qn−1) , (15)

and likelihood,

p(yn|zn) = p(yn|xn) =Nyn (Hnxn,Rn) , (16)

where Nv(m,C) represents a Gaussian pdf of argument v and parameters (m,C).210

One can then easily verify that the Joint-EnKF can be derived from a direct application of two

classical results of random sampling (Properties 1 and 2 in Appendix A) on the following classical
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generic formulas:

p(zn|y0:n−1) =

∫
p(xn|xn−1,θ)p(zn−1|y0:n−1)dxn−1, (17)

p(yn|y0:n−1) =

∫
p(yn|xn)p(xn|y0:n−1)dxn, (18)215

p(zn|y0:n) =
p(zn,yn|y0:n−1)

p(yn|y0:n−1)
. (19)

Eq. (17) refers to a Markovian step (or time-update step) and uses the transition pdf, p(xn|xn−1,θ),
of the Markov chain, {zn}n, to compute the forecast pdf of zn from the previous analysis pdf. Eq.

(19) refers to a Bayesian step (or measurement-update step) since it uses the Bayes’ rule to update

the forecast pdf of zn using the current observation yn. Now, establishing the link between the Joint-220

EnKF and Eqs. (17)-(19), one can show that Property 1 and Eq. (17) lead to the forecast ensemble of

the state (5). Property 1 and Eq. (18) lead to the forecast ensemble of the observations (6). Property

2 and Eq. (19) then provide the analysis ensemble of the state (7) and the parameters (8).

Regarding the Dual-EnKF, the forecast ensemble of the state and observations in the parameter

filter can be obtained following the same process as in the Joint-EnKF. This is followed by the225

computation of the analysis ensemble of the parameters using Property 2 and

p(θ|y0:n) =
p(θ,yn|y0:n−1)

p(yn|y0:n−1)
. (20)

However, in the state filter, the ensemble, {x̃f,(m)
n }

Ne

m=1, obtained via Eq. (12) in the forecast step

does not represent the forecast pdf, p(xn|y0:n−1), since Eq. (12) involves θ(m)
|n rather than θ(m)

|n−1.

Accordingly, the Dual-EnKF is basically a heuristic algorithm in spite of its proven performance.230

3 One-step-ahead smoothing-based Dual-EnKF (Dual-EnKFOSA)

The classical (time-update, measurement-update) path (17)-(19) to compute the analysis pdf p(zn|y0:n)

from p(zn−1|y0:n−1), is not the only possible one. One may indeed reverse the order the time- and

measurement-update steps by involving the OSA smoothing pdf, p(zn−1|y0:n), between two succes-

sive analysis pdfs, p(zn−1|y0:n−1) and p(zn|y0:n). Desbouvries et al. (2011) considered the OSA235

smoothing-based filtering problem in low-dimensional state-space systems to derive a class of KF-

and PF-like algorithms for filtering the state. The more recent work of Lee and Farmer (2014) pro-

poses a number of algorithms to estimate both the system state and the model noise based on a

similar strategy. In the context of large-dimensional state-parameters filtering, we show in this sec-

tion that this leads to a new fully Bayesian consistent dual-like filtering scheme, the Dual-EnKFOSA,240

which, compared to the standard Dual-EnKF, not only introduces another Kalman-like update of the

state but also involves a (new) smoothing step that constraints the state with the future observa-

tion. Exploiting the future observation should be particularly beneficial in the context of the EnKF

as it includes more information in the estimation process that may help mitigating for the subopti-
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mal character of the EnKF-like methods, being formulated under a linear Gaussian framework, and245

usually implemented with limited ensembles and crude approximate noise statistics.

3.1 The one-step-ahead smoothing-based dual filtering algorithm

The analysis pdf, p(xn,θ|y0:n), can be computed from p(xn−1,θ|y0:n−1) in two steps:

• Smoothing step: The one-step-ahead smoothing pdf, p(xn−1,θ|y0:n), is first computed as,

p(xn−1,θ|y0:n)∝ p(yn|xn−1,θ,y0:n−1)p(xn−1,θ|y0:n−1), (21)250

with,

p(yn|xn−1,θ,y0:n−1) =

∫
p(yn|xn,xn−1,θ,y0:n−1)p(xn|xn−1,θ,y0:n−1)dxn,

=

∫
p(yn|xn)p(xn|xn−1,θ)dxn. (22)

Eq. (22) is derived from the fact that in the state-parameter model (1), the observation noise,

εn, and the model noise, ηn−1, are independent of (xn−1,θ) and past observations y0:n−1.255

The smoothing step (21) is indeed a measurement-update step since given y0:n−1, Eq. (21)

translates the computation of the posterior, p(xn−1,θ|yn), as a normalized product of the

prior, p(xn−1,θ), and the likelihood, p(yn|xn−1,θ) (note from (22) that p(yn|xn−1,θ,y0:n−1)

= p(yn|xn−1,θ)).

• Forecast step: The smoothing pdf at tn−1 is then used to compute the current analysis pdf,260

p(xn,θ|y0:n), as

p(xn,θ|y0:n) =

∫
p(xn|xn−1,θ,y0:n)p(xn−1,θ|y0:n)dxn−1, (23)

with,

p(xn|xn−1,θ,y0:n)∝ p(yn|xn)p(xn|xn−1,θ), (24)

which, in turn, arises from the fact that εn and ηn−1 are independent of (xn−1,θ) and y0:n−1265

(see smoothing step above). We note here that only the (marginal) analysis pdf of xn, p(xn|y0:n),

is of interest since the analysis pdf of θ has already been computed in the smoothing step.

From (24), p(xn|xn−1,θ,y0:n) = p(xn|xn−1,θ,yn). Thereby, there is a similarity between

Eq. (23) and the forecast step (17) in the sense that (23) can be seen as a forecast step once the

observation yn is known, i.e., (23) coincides with “(17) given the observation yn”. Accord-270

ingly, and without abuse of language, we refer to (23)-(24) as the forecast step.

3.2 Ensemble Formulation

Since it is not possible to derive the analytical solution of (21)-(24) because of the nonlinear char-

acter of the model, M(.), we use Properties 1 and 2 (see Appendix A) to propose an EnKF-like
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formulation, assuming that p(yn,zn−1|y0:n−1) is Gaussian for all n. This assumption implies that275

p(zn−1|y0:n−1), p(zn−1|y0:n) and p(yn|y0:n−1) are Gaussian.

3.2.1 Smoothing step

Starting at time tn−1, from an analysis ensemble, {xa,(m)
n−1 ,θ

(m)
|n−1
}
Ne

m=1
, one can use Property 1 in Eq.

(22) to sample the observation forecast ensemble, {yf,(m)
n }

Ne

m=1, as

xf,(m)
n = Mn−1(x

a,(m)
n−1 ,θ

(m)
|n−1)+ η

(m)
n−1, (25)280

yf,(m)
n = Hnx

f,(m)
n + ε(m)

n , (26)

with η(m)
n−1 ∼N (0,Qn−1) and ε(m)

n ∼N (0,Rn). Property 2 is then used in Eq. (21) to compute the

smoothing ensemble, {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
, as

x
s,(m)
n−1 = x

a,(m)
n−1 +Pxan−1,y

f
n
P−1

yfn

(
yn−yf,(m)

n

)
︸ ︷︷ ︸

ν
(m)
n

, (27)

θ
(m)
|n = θ

(m)
|n−1 +Pθ|n−1,y

f
n
· ν(m)
n . (28)285

The (cross-) covariances in equations (27) and (28) are defined and evaluated similarly to (9)-(11).

3.2.2 Forecast step

The analysis ensemble, {xa,(m)
n }

Ne

m=1, can be obtained from {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
using Property 1 in

Eq. (23), once the a posteriori transition pdf, p(xn|xn−1,θ,yn), is computed via Eq. (24). Further-

more, one can verify that Eq. (24) leads to a Gaussian pdf:290

p(xn|xn−1,θ,yn) =Nxn

(
Mn−1(xn−1,θ)+ K̃n (yn−HnMn−1(xn−1,θ)) ,Q̃n−1

)
, (29)

with K̃n =Qn−1H
T
n

[
HnQn−1H

T
n +Rn

]−1
and Q̃n−1 =Qn−1− K̃nHnQn−1. However, when

the state dimension, Nx, is very large, the computational cost of K̃n and Q̃n−1 (which may be

a non-diagonal matrix even when Qn−1 is diagonal) may become prohibitive. One way to avoid

this problem is to directly sample from p(xn|xn−1,θ,yn) without explicitly computing this pdf in295

(29). Let {x̃(m)
n (xn−1,θ)}

Ne

m=1 denotes an ensemble of samples drawn from p(xn|xn−1,θ,yn). The

notation x̃
(m)
n (xn−1,θ) refers to a function x̃

(m)
n of (xn−1,θ); similar notations hold for ξ̃(m)

n (.) and

ỹ
(m)
n (.) in (30) and (31), respectively. Using Properties 1 and 2, an explicit form of such samples

can be obtained as (see Appendix B),

ξ̃(m)
n (xn−1,θ) = Mn−1(xn−1,θ)+ η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1), (30)300

ỹ(m)
n (xn−1,θ) = Hnξ̃

(m)
n (xn−1,θ)+ ε(m)

n ; ε(m)
n ∼N (0,Rn), (31)

x̃(m)
n (xn−1,θ) = ξ̃(m)

n (xn−1,θ)+Pξ̃n,ỹnP
−1
ỹn

[
yn− ỹ(m)

n (xn−1,θ)
]
, (32)

where the (cross)-covariances, Pξ̃n,ỹn and Pỹn , are evaluated from the ensembles {ξ̃(m)
n (xn−1,θ)}

Ne

m=1

and {ỹ(m)
n (xn−1,θ)}

Ne

m=1, similarly to (9)-(11). Now, using Property 1 in Eq. (23), one can compute

10



an analysis ensemble, {xa,(m)
n }

Ne

m=1, from the smoothing ensemble, {xs,(m)
n−1 ,θ

(m)
|n }

Ne

m=1
, using the305

functional form (32). More precisely, we obtain, xa,(m)
n = x̃

(m)
n (x

s,(m)
n−1 ,θ

(m)
|n ), which is equivalent

to set xn−1 = x
s,(m)
n−1 and θ = θ

(m)
|n in (30)-(32).

3.2.3 Summary of the Dual-EnKFOSA algorithm

Starting from an analysis ensemble, {xa,(m)
n−1 ,θ

(m)
|n−1}

Ne

m=1
, at time tn−1, the updated ensemble of both

state and parameters at time tn is obtained with the following two steps:310

• Smoothing step: The state forecast ensemble, {xf,(m)
n }

Ne

m=1, is first computed by (25), and

then used to compute the observation forecast ensemble, {yf,(m)
n }

Ne

m=1, as in (26). This latter

is then used to compute the one-step-ahead smoothing ensemble of the state, {xs,(m)
n−1 }

Ne

m=1
,

and parameters, {θ(m)
|n }

Ne

m=1
, based on the Kalman-like updates (27) and (28), respectively.

• Forecast step: The analysis ensemble of the state {xa,(m)
n }

Ne

m=1 is obtained as:315

ξ(m)
n = Mn−1

(
x
s,(m)
n−1 ,θ

(m)
|n

)
+η

(m)
n−1; η

(m)
n−1 ∼N (0,Qn−1), (33)

ỹf,(m)
n = Hnξ

(m)
n + ε(m)

n ; ε(m)
n ∼N (0,Rn), (34)

xa,(m)
n = ξ(m)

n +Pξn,ỹfnP
−1
ỹfn

(yn− ỹf,(m)
n ), (35)

with Pξn,ỹfn = (Ne− 1)
−1

SξnS
T
ỹfn

and Pỹfn
= (Ne− 1)

−1
Sỹfn

ST
ỹfn

.

The proposed Dual-EnKFOSA is an ensemble Monte Carlo implementation, under the common320

Gaussian assumption, of the generic Bayesian filtering algorithm presented in Section 3.1. This

justifies its Bayesian consistency in contrast with the standard Dual-EnKF which, as discussed in

Section 2.2.3, lacks a probabilistic interpretation. In contrast with the Dual-EnKF which uses θ(m)
|n

and x
a,(m)
n−1 for computing x

a,(m)
n (see Eq. (14)), the proposed Dual-EnKFOSA uses θ(m)

|n and the

smoothed state members, xs,(m)
n−1 , which are the x

a,(m)
n−1 after an update with the current observation,325

yn, following (27). Therefore, when including the Kalman-like correction term as well, the obser-

vation, yn, is used three times in the Dual-EnKFOSA in a fully consistent Bayesian formulation,

compared to only twice in the Dual-EnKF. This means that the Dual-EnKFOSA exploits the obser-

vations more efficiently than the Dual-EnKF, which should provide more information for improved

and more consistent state and parameters estimates. Note that the Dual-EnKFOSA reduces to the330

Dual-EnKF in the particular case of a perfect model and x
s,(m)
n−1 = x

a,(m)
n−1 .

The Joint-EnKFOSA of Gharamti et al. (2015) has been derived following the same approach under

the assumption of independence between the state, xn, and its observation, yn, given the previous

state, xn−1, and parameters, θ (assumption (16) in (Gharamti et al., 2015)). This assumption has been

adopted to avoid evaluating the computationally demanding term p(xn|xn−1,θ,yn) and replace it335

with the more easily sampled state transition pdf, p(xn|xn−1,θ) =Nxn−1(Mn−1(xn−1,θ),Qn−1),

to draw the state analysis ensemble. Here, we propose a more efficient approach to directly sample
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the analysis ensemble without explicitly computing p(xn|xn−1,θ,yn) and without the need of any

additional assumption. The Joint-EnKFOSA is therefore a particular case of the Dual-EnKFOSA, in-

volving two Kalman-like updates only (those of the smoothing step), since in the forecast step, the340

state analysis members, xa,(m)
n , are computed from the smoothed members, (xs,(m)

n−1 ,θ
(m)
|n ), by inte-

grating them with the model and without any update with the current observation. More specifically,

Eqs. (33)-(35) above reduce in Gharamti et al. (2015) to Eq. (33) (i.e., xa,(m)
n = ξ

(m)
n ).

Despite the smoothing formulation of the Dual-EnKFOSA, this algorithm obviously addresses

the state forecast problem as well. As discussed in the smoothing step above, the (one-step-ahead)345

forecast members are inherently computed. The j-step-ahead forecast member, denoted by x
(m)
n+j|n

for j ≥ 2, can be computed following a recursive procedure where, for `= 2,3, · · · , j, one has

x
(m)
n+`|n =Mn+`−1(x

(m)
n+`−1|n,θ

(m)
|n )+ η

(m)
n+`−1, η

(m)
n+`−1 ∼N (0,Qn+`−1). (36)

3.3 Complexity of the Joint-EnKF, Dual-EnKF, and Dual-EnKFOSA

The computational complexity of the different state-parameter EnKF schemes can be split between350

the forecast (time-update) step and the analysis (measurement-update) step. The Joint-EnKF requires

Ne model runs (for forecasting the state ensemble) and Ne Kalman corrections (for updating the

forecast ensemble). This is practically doubled when using the Dual-EnKF, since the latter requires

2Ne model runs and 2Ne Kalman corrections; Ne corrections for each of the forecast state ensem-

ble and the forecast parameter ensemble. As presented in the previous section, the Dual-EnKFOSA355

smoothes the state estimate at the previous time step before updating the parameters and the state at

the current time. Thus, the Dual-EnKFOSA requires as many model runs (2Ne) as the Dual-EnKF,

and an additional Ne correction steps to apply smoothing. In large scale geophysical applications,

the correction step of the ensemble members is often computationally not significant compared to

the cost of integrating the model in the forecast step. The approximate computational complexity and360

memory storage for each algorithm are summarized in Table 1. The tabulated complexities for each

method are valid under the assumption that Ny�Nx, i.e., the number of state variables is much

larger than the number of observations. This is generally the case for subsurface flow applications

due to budget constraints given the consequent costs needed for drilling and maintaining subsurface

wells.365

4 Numerical experiments

4.1 Transient groundwater flow problem

We adopt in this study the subsurface flow problem of Bailey and Baù (2010). The system consists

of a two-dimensional (2D) transient flow with an areal aquifer area of 0.5 km2 (Figure 1). Constant

head boundaries of 20 m and 15 m are placed on the west and east ends of the aquifer, respectively,370
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with an average saturated thickness, b, of 25 m. The north and south boundaries are assumed to be

Neumann with no flow conditions (Figure 1). The mesh is discretized using a cell-centered finite

difference scheme with 10 m × 20 m rectangles, resulting in 2500 elements. The following 2D

saturated groundwater flow system is solved:

∂

∂x

(
Tx
∂h

∂x

)
+

∂

∂y

(
Ty
∂h

∂y

)
= S

∂h

∂t
+ q, (37)375

where T is the transmissivity [L2T−1], which is related to the conductivity,K, through T =Kb, h is

the hydraulic head [L], t is time [T], S is storativity [-], and q denotes the sources as recharge or sinks

due to pumping wells [LT−1]. Unconfined aquifer conditions are simulated by setting S = 0.20 to

represent the specific yield. A log-conductivity field is generated using the sequential Gaussian sim-

ulation toolbox, GCOSIM3D (Gómez-Hernández and Journel, 1993), with a mean of −13 log(m/s),380

a variance of 1.5 log(m2/s2), and a Gaussian variogram with a range equal to 250 m in the x-direction

and 500 m in the y-direction (Figure 1).

We consider a dynamically complex experimental setup that is similar to a real-world application

and is based on various time-dependent external forcings. The recharge is assumed spatially het-

erogenous and sampled using the GCOSIM3D toolbox (Gómez-Hernández and Journel, 1993) with385

statistical parameters shown in Table 2. Three different pumping wells (PW) are inserted within the

aquifer domain and can be seen in Figure 1 (square symbols). From these wells, transient pump-

ing of groundwater takes place with different daily values as plotted in the left panel of Figure 2.

The highest pumping rates are associated with PW2 with an average daily rate of 5.935× 10−7

m3/day. Smaller temporal variations in water pumping rates are assigned to PW1 and PW3. Three390

other monitoring wells (MW1, MW2, MW3) are also placed within the aquifer domain to evaluate

the groundwater flow filters estimates. We further assess the prediction skill of the model after data

assimilation using a control well (CW) placed in the middle of the aquifer (indicated by a diamond

symbol).

Prior to assimilation, a reference run is first conducted for each experimental setup using the pre-395

scribed parameters above, and is considered as the truth. We simulate the groundwater flow system

over a year-and-a-half period using the classical fourth-order Runge Kutta method with a time step of

12 hours. The initial hydraulic head configuration is obtained after a 2-years model spin-up starting

from a uniform 15 m head. Reference heterogenous recharge rates are used in the setup as explained

before. The water head changes (in m) after 18 months are displayed with contour lines in the left400

panel of Figure 3. One can notice larger variations in the water head in the lower left corner of the

aquifer domain, consistent with the high conductivity values in that region. The effects of transient

pumping in addition to the heterogenous recharge rates are also well observed in the vicinity of the

pumping wells.
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4.2 Assimilation Experiments405

To imitate a realistic setting, we impose various perturbations on the reference model and set our

goal to estimate the water head and the hydraulic conductivity fields using an imperfect forecast

model and perturbed data extracted from the reference (true) run. This experimental framework is

known as "twin-experiments". In the forecast model, we perturb both transient pumping and spatial

recharge rates. The perturbed recharge field, as compared to the reference recharge in Figure 2, is410

sampled with different variogram parameters as shown in Table 2. Pumping rates from PW1, PW2

and PW3 are perturbed by adding a Gaussian noise with mean zero and standard deviation equal to

20% of the reference transient rates. The flow field simulated by the forecast (perturbed) model after

18 months is shown in the right panel of Figure 3. Compared to the reference field, there are clear

spatial differences in the hydraulic head, especially around the first and second pumping wells.415

To demonstrate the effectiveness of the proposed Dual-EnKFOSA, we evaluate its performances

against the standard Joint- and Dual-EnKFs under different experimental scenarios. We further con-

duct a number of sensitivity experiments, changing: (1) the ensemble size, (2) the temporal frequency

of available observations, (3) the number of observation wells in the domain, and (4) the measure-

ment error. For the frequency of the observations, we consider 6 scenarios in which hydraulic head420

measurements are extracted from the reference run every 1, 3, 5, 10, 15, and 30 days. Of course,

x
a,(m)
n is equal to x

f,(m)
n when no observation is assimilated. We also test four different observa-

tional networks assuming 9, 15, 25 and 81 wells uniformly distributed throughout the aquifer domain

(Figure 3 displays two of these networks; with 9 and 25 wells). We evaluate the algorithms under 10

different scenarios in which the observations were perturbed with Gaussian noise of zero mean and a425

standard deviation equal to 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50, 1, 2 and 3 m. Such measurement

errors, which can be due to instruments errors, conversion of pressure to water head, or piezometer

well defects, are typical values (order of centimetres to meters) observed at real hydrologic sites

(Post and von Asmuth, 2013).

To initialise the filters, we follow Gharamti et al. (2014a) and perform a 5-years simulation run us-430

ing the perturbed forecast model starting from the mean hydraulic head of the reference run solution.

Then, we randomly select a set ofNe hydraulic head snapshots to form the initial state ensemble. By

doing so, the dynamic head changes that may occur in the aquifer are well represented by the initial

ensemble. The corresponding parameters’ realizations are sampled with the geostatistical software,

GCOSIM3D, using the same variogram parameters of the reference conductivity field but condi-435

tioned on two hard measurements as indicated by black crosses in Figure 1. The two data points

capture some parts of the high conductivity regions in the domain, and thus one should expect a poor

representation of the low conductivity areas in the initial log(K) ensemble. This is a challenging

case for the filters especially when a sparse observational network is considered. To ensure consis-

tency between the hydraulic heads and the conductivities at the beginning of the assimilation, we440
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conduct a spin-up of the whole state-parameters ensemble for a 6-months period using perturbed

recharge time-series for each ensemble member.

The filter estimates resulting from the different filters are evaluated based on their average absolute

forecast errors (AAE) and their average ensemble spread (AESP):

AAE = N−1x N−1e

Ne∑
j=1

Nx∑
i=1

∣∣∣∣xf,ej,i −xti

∣∣∣∣, (38)445

AESP = N−1x N−1e

Ne∑
j=1

Nx∑
i=1

∣∣∣∣xf,ej,i − x̂f,ei

∣∣∣∣, (39)

where xti is the reference “true" value of the variable at cell i, xf,ej,i is the forecast ensemble value

of the variable, and x̂f,ei is the forecast ensemble mean at location i. AAE measures the estimate-

truth misfit and AESP measures the ensemble spread, or the confidence in the estimated values

(Hendricks Franssen and Kinzelbach, 2008). We further assess the accuracy of the estimates by450

plotting the resulting field and variance maps of both hydraulic head and conductivities.

5 Results and Discussion

5.1 Sensitivity to the ensemble size

We first study the sensitivity of the three algorithms to the ensemble size, Ne. In realistic ground-

water applications, we would be restricted to small ensembles due to computational limitations.455

Obtaining accurate state and parameter estimates with small ensembles is thus desirable. We carry

the experiments using three ensemble sizes, Ne = 50, 100 and 300, and we fix the frequency of

the observations to half a day, the number of wells to nine (Figure 3, left observation network) and

the measurement error to 0.50 m. We plot the resulting AAE time series of the state and parame-

ters in Figure 4. As shown, the performance of the Joint-EnKF, Dual-EnKF, Joint-EnKFOSA and460

Dual-EnKFOSA improves as the ensemble size increases, reaching a mean AAE of 0.161, 0.160, and

0.156 m for Ne = 300, respectively. The Joint-EnKF and the Dual-EnKF exhibit similar behaviors,

with a slight advantage for the Dual-EnKF. As argued by Gharamti et al. (2014a), the Dual-EnKF

is generally expected to produce more accurate results only when large enough ensembles are used.

We have tested the Joint- and the Dual-EnKFs using 1000 members and found that the Dual-EnKF is465

around 9% more accurate in term of AAE. The proposed Dual-EnKFOSA provides the best estimates

in all tested scenarios. The Joint-EnKFOSA outperforms the Joint- and Dual-EnKFs, but is about 5%

less accurate than the Dual-EnKFOSA, especially after the first year of assimilation. On average,

with changing ensemble size, the Dual-EnKFOSA leads to about 7% improvement compared with

the standard joint and dual schemes. In terms of the conductivity estimates, the proposed scheme470

produces more accurate estimates for all three ensemble sizes. At the early assimilation stage, the
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four schemes seem to provide similar results, but this eventually changes after 6 months beyond

which the Dual-EnKFOSA clearly outperforms the other schemes.

We furthermore examined the estimated uncertainties about the forecast estimates by computing

the average spread of both the hydraulic head and conductivity ensembles. To do this, we evaluated475

the mean AESP of both variables and tabulated the results for the three ensemble sizes in Table 3.

For all schemes and as expected, the spread seems to increase as the ensemble size increases. The

Dual-EnKFOSA has the smallest mean AESP for all cases, suggesting more confidence in the head

and conductivity estimates.

One could also exploit the computed AAE and AESP to assess whether the filters suffer from the480

inbreeding problem. Filter inbreeding occurs when the variance of the state and parameters ensemble

is increasingly reduced over time. This may not only deteriorates the quality of the estimated filter

error covariance matrices, but also wrongly suggests more confidence in the forecast and strongly

limits the filter update by the incoming observation. One standard test for examining inbreeding

is to compute the ratio of the AAE to the AESP (Hendricks Franssen and Kinzelbach, 2008). In485

a well designed assimilation system (that does not suffer from inbreeding) such a ratio should be

close to one; in other words, the AAE and AESP are almost of the same order. Examining Figure

4 and Table 4, the ratio of the AAE to the AESP for the different tested ensemble sizes is, on-

average, very close to 1 for all three schemes, as reported in Table 4. This clearly suggests that no

filtering inbreeding issues are encountered in the present setup. This could be due to the imposed490

stochastic model errors (as described in Section 4), which seems to maintain enough spread in the

hydraulic head and conductivity ensembles. Another method for tackling the inbreeding problem is

to combine the EnKF with the so-called stochastic moments equations that govern the time evolution

of conditional expectations of the state and parameters as well as the associated covariances, as

suggested by Panzeri et al. (2013, 2015).495

In terms of computational cost, we note that our assimilation results were obtained using a 2.30

GHz MAC workstation and 4 cores for parallel looping while integrating the ensemble members. The

Joint-EnKF is the least intensive requiring 70.61 sec to perform a year-and-a-half assimilation run

using 50 members. The Dual-EnKF and Dual-EnKFOSA, on the other hand, require 75.37 and 77.04

sec, respectively. The Dual-EnKF is computationally more demanding than the Joint-EnKF because500

it includes an additional propagation step of the ensemble members as discussed in Section 3.3.

Likewise, the proposed Dual-EnKFOSA requires both an additional propagation step and an update

step of the state members. Its computational complexity is thus greater than the joint scheme and

roughly equivalent to that of the Dual-EnKF. Note that in the current setup the cost of integrating the

groundwater model is not very significant as compared to the cost of the update step. This is however505

usually not the case in large-scale hydrological applications.
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5.2 Sensitivity to the frequency of observations

In the second set of experiments, we test the filters’ behavior with different temporal frequency of

observations, i.e., the times at which head observations are assimilated. We implement the three

filters with 100 members and use data from nine observation wells perturbed with 0.10 m noise.510

Figure 5 plots the mean AAE of the hydraulic conductivity estimated using the three filters for

the six different observation frequency scenarios. The Dual- and Joint-EnKFs lead to comparable

performances, but the latter performs slightly better when data are assimilated more frequently, i.e.,

every five and three days. The performance of the proposed Dual-EnKFOSA, as seen from the plot,

is rather good and its estimates are more consistent with data than those computed by the other two515

filters. The best Dual-EnKFOSA results are obtained when assimilating data every 1, 3, and 5 days.

The improvements over the joint and the dual schemes decrease as the frequency of observations in

time decreases. The reason for this is related to the nature of the Dual-EnKFOSA algorithm, which

adds a one-step-ahead-smoothing to the analyzed head ensemble members before updating the fore-

cast parameters and the state samples. Therefore, the more data are available, the greater the number520

of applied smoothing steps, and hence the better the characterization of the state and parameters. To

illustrate, the smoothing step of the state ensemble enhances its statistics and eventually provides

more consistent state-parameters cross-correlations to better predict the data. When assimilating hy-

draulic head data on a daily basis, the proposed Dual-EnKFOSA leads to about 24% more accurate

conductivity estimates than the Joint and Dual-EnKFs.525

We also compared the hydraulic head estimates when changing the temporal frequency of ob-

servations. Similar to the parameters, the improvements of the Dual-EnKFOSA algorithm over the

other schemes become significant when more data are assimilated over time. Overall, the benefits

of the proposed scheme are more pronounced for the estimation of the parameters because the con-

ductivity values at all aquifer cells are indirectly updated using hydraulic head data, requiring more530

observations for efficient estimation.

One effective way to evaluate the estimates of the state is to examine the evolution of the reference

heads and the forecast ensemble members at various aquifer locations. For this, we plot in Figure 6

the true and the estimated time-series change in hydraulic head at the assigned monitoring wells as

they result from the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA. We use 100 ensemble mem-535

bers and assume the 9 data points are available every five days. At MW1, the performance of the

three filters is quite similar and they all successfully reduce the uncertainties and recover the true

evolution of the hydraulic head at that location. We note that between the 5th and the 9th month,

the Dual-EnKF seems to underestimate the reference values of the hydraulic head as compared to

the other two schemes. At MW2 and MW3, the ensemble spread of all three filters shrinks shortly540

after the start of assimilation, but remains larger than those at MW1. The proposed Dual-EnKFOSA

performs fairly well, providing a reasonable recovery of the reference trajectory at MW2 and MW3.

The ensemble head values obtained using the Joint- and the Dual-EnKFs at MW2 are less accurate.
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Furthermore, the Joint and the Dual-EnKF ensemble members tend to underestimate the reference

hydraulic head at MW3 over the first 6 months of assimilation. Beyond this, there is a clear overes-545

timation of the head values, especially by the Dual-EnKF, up to the end of the first year.

5.3 Sensitivity to the number of observations

We further examine the robustness of the proposed Dual-EnKFOSA against the Joint- and Dual-

EnKFs to different numbers of observation wells inside the aquifer domain. We thus compare our

earlier estimates resulting from only nine wells, five days observation frequency, and 0.10 m mea-550

surement error with a new set of estimates resulting from more dense observational networks with

15, 25 and 81 wells. Figure 7 plots the time-series curves of the AAE as they result from the four

observational scenarios for hydraulic head and conductivity. As shown, the behavior of the filters

improves as more data are assimilated. Clearly, the proposed scheme provides the best estimates

over the entire simulation window. More precisely, and towards the end of assimilation, the Dual-555

EnKFOSA with only nine data points exhibits less forecast errors for conductivity than does the

Dual-EnKF (and Joint-EnKF) with 81 data points. Likewise when assimilating head data from 15

and 25 wells, the proposed algorithm outperforms the Joint and Dual EnKFs and yields more accu-

rate hydraulic head estimates by the end of the simulation window.

To further assess the performance of the filters we analyze the spatial patterns of the estimated560

fields. To do so, we plot and interpret the ensemble mean of the conductivity as it results from the

three filters using nine observation wells. We compare the estimated fields after 18 months (Figure

8) with the reference conductivity. As can be seen, the Joint- and the Dual-EnKFs exhibit some

overshooting in the southern (low conductivity) and central regions of the domain. In contrast, the

Dual-EnKFOSA better delineates these regions and further provides reasonable estimates of the low565

conductivity area in the northwest part of the aquifer. In general and for all tested schemes, the esti-

mated conductivity field does not capture very well the spatial variability of the reference field. This

is due to the large model errors imposed on the recharge and pumping rates during the forecasts.

This limits the efficiency of the assimilation system, especially with the recovery of small scale con-

ductivity structures, but also allows for more straightforward assessment of the different techniques.570

5.4 Sensitivity to measurement errors

In the last set of sensitivity experiments, we fix the number of wells to nine, the observation fre-

quency to 5 days, and we use different measurement errors to perturb the observations. We plot

the results of ten different observational error scenarios in Figure 9 and compare the conductivity575

estimates obtained using the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA. In general, the per-

formance of the filters appears to degrade as the observations are perturbed with larger degree of

noise. All three filters exhibit similar performances with large observational error; i.e., 1, 2 and 3 m.
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This can be expected because larger observational errors decrease the impact of data assimilation,

and thus the estimation process is reduced to a model prediction only. The plot also suggests that580

the estimates of the Dual-EnKFOSA with 0.30 m measurement errors are better than those of the

Joint- and the Dual-EnKFs with 0.10 m error. With 0.10 m measurement error, the estimate of the

Dual-EnKFOSA is also approximately 12% better.

Finally, we investigated the time-evolution of the ensemble variance of the conductivity estimates

as they result from the Dual-EnKF and the Dual-EnKFOSA with 0.10 m measurement noise. Spa-585

tially, the ensemble variance maps provide insight about the uncertainty reduction due to data assim-

ilation. The initial map (left panel, Figure 10) exhibits zero variance at the sampled two locations and

increasing variance away from these locations. The ensemble spread of conductivity field from the

two filters (right panels, Figure 10) after 6 and 18 months is quite small and comparable. The Dual-

EnKFOSA, however, tends to maintain a larger variance towards the north edges than the Dual-EnKF,590

which in turn help increase the weight of the observations in this area.

5.5 Prediction capability assessment

To further assess the system performance in terms of parameters retrieval, we have integrated the

model in prediction mode (without assimilation) for an additional period of 18 months starting from

the end of the assimilation period. We plot in Figure 11, using the final estimates of the conductivity595

as they result from the three filters (after 18 months), the time evolution of the hydraulic head at the

control well (CW). The ensemble size is set to 100, observation frequency is 1 day, number of data

wells is 25 and measurement noise is 0.5 m. The reference head trajectory at the CW decreases from

17.5 to 16.9 m in the first 2 years, and then slightly increases to 17.2 m in the rest of the year. The

forecast ensemble members of the Joint-EnKF at this CW fail to capture to reference trajectory of600

the model. This is due to the large measurement noise imposed on the head data. The Dual-EnKF

performs slightly better and predicts hydraulic head values that are closer to the reference solution.

The performance of the Dual-EnKFOSA, as shown, is the closest to the reference head trajectory

and moreover, one of the forecast ensemble members successfully captures the true head evolution.

We further plot the absolute bias of the hydraulic head during the prediction phase, i.e., after 1.5605

years, using the three filtering schemes. As shown, the bias in the Joint-EnKF reaches about 0.6 m

after 3 years. On the other hand, the Dual-EnKFOSA and, to a lesser extent, the Dual-EnKF, clearly

lead to more accurate long term forecasts with smaller bias in the resulting hydraulic head estimates.

Similar tests was also conducted at other locations in the aquifer, all resulting in similar conclusions.

Finally, in order to demonstrate that our results are statistically robust, 10 other test cases with610

different reference conductivity and heterogeneous recharge maps were investigated. In each of these

cases, we sampled the reference fields by varying the variogram parameters, such as variance, x and

y ranges, etc. The pumping rates and the initial head configuration among the cases were also altered.

For all 10 test cases, we fixed the ensemble size to 100 and used data from nine observation wells
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every 3 days. We set the measurement error to 0.10 m. We plot the resulting conductivity estimates615

(mean AAE) from each case in Figure 12. The estimates of the three filters, as shown on the plot,

give a statistical evidence that the proposed scheme always provides more accurate estimates than

the Joint-/Dual-EnKF and is more robust to changing dynamics and experimental setups. Similar

results were obtained for the hydraulic head estimates. Averaging over all test cases, the proposed

scheme provides about 17% more accurate estimates in term of AAE than the standard Joint- and620

Dual-EnKFs.

6 Conclusions

We presented a one-step-ahead smoothing based dual ensemble Kalman filter (Dual-EnKFOSA) for

state-parameter estimation of subsurface groundwater flow models. The Dual-EnKFOSA is derived

using a Bayesian probabilistic formulation combined with two classical stochastic sampling proper-625

ties. It differs from the standard Joint-EnKF and Dual-EnKF in the fact that the order of the time-

update step of the state (forecast by the model) and the measurement-update step (correction by the

incoming observations) is inverted. Compared with the Dual-EnKF, this introduces a smoothing step

to the state by future observations, which seems to provide the model, at the time of forecasting,

with better and rather physically-consistent state and parameters ensembles.630

We tested the proposed Dual-EnKFOSA on a conceptual groundwater flow model in which we es-

timated the hydraulic head and spatially variable conductivity parameters. We conducted a number

of sensitivity experiments to evaluate the accuracy and the robustness of the proposed scheme and

to compare its performance against those of the standard Joint and Dual EnKFs. The experimental

results suggest that the Dual-EnKFOSA is more robust, successfully estimating the hydraulic head635

and the conductivity field under different modeling scenarios. Sensitivity analyses demonstrate that

when more observations are assimilated, the Dual-EnKFOSA becomes more effective and signifi-

cantly outperforms the standard Joint- and Dual-EnKF schemes. In addition, when using a sparse

observation network in the aquifer domain, the accuracy of the Dual-EnKFOSA estimates is bet-

ter preserved, unlike the Dual-EnKF, which seems to be more sensitive to the number of hydraulic640

wells. Moreover, the Dual-EnKFOSA results are shown to be more robust against observation noise.

On average, the Dual-EnKFOSA scheme leads to around 10% more accurate state and parameters

solutions than those resulting from the standard Joint- and Dual-EnKFs.

The proposed scheme is easy to implement and only requires minimal modifications to a standard

EnKF code. It is further computationally feasible, requiring only a marginal increase in the computa-645

tional cost compared to the Dual-EnKF. This scheme should therefore be beneficial to the hydrology

community given its consistency, high accuracy, and robustness to changing modeling conditions.

It could serve as an efficient estimation tool for real-world problems, such as groundwater, con-

taminant transport and reservoir monitoring, in which the available data are often sparse and noisy.
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Potential future research includes testing the Dual-EnKFOSA with realistic large-scale groundwa-650

ter, contaminant transport and reservoir monitoring problems. Furthermore, combining the proposed

state-parameter estimation scheme with other iterative and hybrid ensemble approaches may be a

promising direction for further improvements.

Appendix A

The following classical results of random sampling are extensively used in the derivation of the655

ensemble-based filtering algorithms presented in this paper.

Property 1 (Hierarchical sampling (Robert, 2007)). Assuming that one can sample from p(x1) and

p(x2|x1), then a sample, x∗2, from p(x2) can be drawn as follows:

1. x∗1 ∼ p(x1);

2. x∗2 ∼ p(x2|x∗1).660

Property 2 (Conditional sampling (Hoffman and Ribak, 1991)). Consider a Gaussian pdf, p(x,y),

with Pxy and Py denoting the cross-covariance of x and y and the covariance of y, respectively.

Then a sample, x∗, from p(x|y), can be drawn as follows:

1. (x̃, ỹ)∼ p(x,y);

2. x∗ = x̃+PxyP
−1
y [y− ỹ].665

Appendix B

We show here that the samples, x̃(m)
n (xn−1,θ), given in (32), are drawn from the a posteriori tran-

sition pdf, p(xn|xn−1,θ,yn). Lets start by showing how Eqs. (30)-(31) are obtained. According to

(15), on can show that the members, ξ̃(m)
n (xn−1,θ), given by (30), are samples from the transition

pdf, p(xn|xn−1,θ) =Nxn(Mn−1(xn−1,θ),Qn−1). Furthermore, one may use Property 1 in (22),670

which is recalled here,

p(yn|xn−1,θ) =
∫

p(yn|xn)︸ ︷︷ ︸
Nyn (Hnxn,Rn)

p(xn|xn−1,θ)︸ ︷︷ ︸
≈
{
ξ̃
(m)
n (xn−1,θ)

}Ne
m=1

dxn, (B1)

to obtain the members, ỹ(m)
n (xn−1,θ), given by (31); such members are, indeed, samples from

p(yn|xn−1,θ).
Now, using the samples ξ̃(m)

n (xn−1,θ) of p(xn|xn−1,θ) = p(xn|xn−1,θ,y0:n−1) and the samples675

ỹ
(m)
n (xn−1,θ) of p(yn|xn−1,θ) = p(yn|xn−1,θ,y0:n−1), one can apply Property 2 to the joint pdf,

p(xn,yn|xn−1,θ,y0:n−1), assuming it Gaussian, to show that the samples x̃(m)
n (xn−1,θ), given in

(32), are drawn from the a posteriori transition pdf, p(xn|xn−1,θ,y0:n) = p(xn|xn−1,θ,yn).
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Table 1. Approximate computational complexities of the Joint-EnKF, the Dual-EnKF, and the Dual-EnKFOSA

algorithms. Notations are as follows. Nx: number of state variables, Nθ: number of parameter variables, Ny:

number of observations, N : number of assimilation cycles, Ne: ensemble size, Cx: state model cost (=N2
x is

the linear KF), Cθ: parameter model cost (usually free ≡ identity), Cy: observation operator cost (=NyNx in

the linear KF), Sx: storage volume for one state vector, Sθ: storage volume for one parameter vector.

Algorithm Time-update Measurement-update Storage

Joint-EnKF NNe (Cx+ Cθ) NNe (Cy +NyNθ)+NN2
e (Nx+Nθ) 2NNe (Sx+Sθ)

Dual-EnKF NNe (2Cx+ Cθ) 2NNeCy +NN2
e (Nx+Nθ) 2NNe (Sx+Sθ)

Dual-EnKFOSA NNe (2Cx+ Cθ) 2NNeCy +NN2
e (2Nx+Nθ) 2NNe (Sx+Sθ)

Table 2. Parameters of the random functions for modeling the spatial distributions of the reference and perturbed

recharge fields. The ranges in x and y directions for the variorum model are given by λx and λy , respectively.

τ denotes the rotation angle of one clockwise rotation around the positive y-axis.

Recharge Mean Variance Variogram λx λy τ

Reference Field -20 (m3/day) 1.03 (m3/day)2 Gaussian 50 (m) 100 (m) 45◦

Perturbed Field -20 (m3/day) 1.21 (m3/day)2 Gaussian 50 (m) 50 (m) 45◦

Table 3. Mean average ensemble spread (AESP) of the water head and the hydraulic conductivity for three

different ensemble sizes. The reported values are given for the Joint-EnKF, Dual-EnKF, Joint-EnKFOSA and

the proposed Dual-EnKFOSA.

Hydraulic Head Conductivity

Ne = 50 Ne = 100 Ne = 300 Ne = 50 Ne = 100 Ne = 300

Joint-EnKF 0.12294 0.144 0.20014 1.0763 1.0144 0.95128

Dual-EnKF 0.1256 0.14469 0.20081 1.0745 1.0155 0.95129

Joint-EnKFOSA 0.12498 0.14484 0.2006 1.0264 0.97651 0.9084

Dual-EnKFOSA 0.11737 0.14125 0.18259 1.0388 0.90654 0.8791
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Table 4. Filter inbreeding indicator: Ratio of the mean average-absolute-error (AAE) and mean average-

ensemble-spread (AESP) of the water head and the hydraulic conductivity for three different ensemble sizes.

The reported values are given for the Joint-EnKF, Dual-EnKF and the proposed Dual-EnKFOSA.

Hydraulic Head Conductivity

Ne = 50 Ne = 100 Ne = 300 Ne = 50 Ne = 100 Ne = 300

Joint-EnKF 1.734 1.680 1.619 1.539 1.507 1.134

Dual-EnKF 1.449 1.443 1.360 1.123 1.123 0.834

Dual-EnKFOSA 0.805 0.802 0.854 0.793 0.792 0.801
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Figure 1. Plan view of the conceptual model for the 2D transient groundwater flow problem. East and west

boundaries are Dirichlet with a given prescribed hydraulic heads. North and south boundaries are impermeable

(no flow boundaries). The reference log-conductivity field was obtained using the sequential Gaussian simu-

lation code (Gómez-Hernández and Journel, 1993). A Gaussian variogram model is considered with a mean

of -13 log(m/s), variance of 1.5 log(m2/s2), and range equal to 250 m and 500 m in the x and y directions,

respectively. The black squares represent the pumping wells whereas the black circles denote the position of 3

monitoring wells. The black diamond is a control well. The two black crosses correspond to the locations where

the conductivity values were used to condition the geostatistical simulation.
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1993) with parameters given in Table 2.
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Figure 3. Groundwater flow contour maps obtained using the reference run (left panel) and the perturbed fore-

cast model (right panel) after 18 months of simulation. The well locations from which head data are extracted

are shown by black asterisks. In the left panel, we show the first network consisting of nine wells. In the right

panel, the other network with 25 wells is displayed.
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Figure 4. AAE time-series of the hydraulic head and conductivity using the Joint-EnKF, Dual-EnKF, Joint-

EnKFOSA and Dual-EnKFOSA. Results are shown for 3 scenarios in which assimilation of hydraulic head data

are obtained from nine wells every 0.5 days. The three experimental scenarios use 50, 100 and 300 ensemble

members with 0.50 m as the measurement error.
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Figure 5. Mean average absolute errors (AAE) of log-hydraulic conductivity, log(K), obtained using the Joint-

EnKF, Dual-EnKF, and Dual-EnKFOSA schemes. Results are shown for 6 different scenarios in which assimi-

lation of hydraulic head data are obtained from nine wells every 1, 3, 5, 10, 15 and 30 days. All 6 experimental

scenarios use 100 ensemble members and 0.10 m as the measurement error.
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Figure 6. Reference (dashed) and predicted (solid) hydraulic head evolution at monitoring wells MW1, MW2,

and MW3. Results are obtained using the Joint-EnKF and the Dual-EnKFOSA schemes with 100 members, 5

days as observation frequency, 9 observation wells, and 0.10 m of measurement noise.
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Figure 7. Time series of AAE of hydraulic head (left panel) and conductivity (right panel) using the Joint-EnKF,

Dual-EnKF and Dual-EnKFOSA schemes. Results are shown for 4 scenarios in which assimilation of hydraulic

head data are obtained from 9, 15, 25 and 81 wells (uniformly distributed throughout the aquifer domain) every

5 days. The four experimental scenarios use 100 ensemble members and 0.10 m as the measurement error. The

number of wells is denoted by p.
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Figure 8. Spatial maps of the reference, initial and recovered ensemble means of hydraulic conductivity using

the Joint-EnKF, Dual-EnKF, and Dual-EnKFOSA schemes. Results are shown for a scenario in which assimi-

lation of hydraulic head data is obtained from nine wells every five days. This experiment uses 100 ensemble

members and 0.10 m as the measurement error.
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Figure 9. Mean AAE of the hydraulic conductivity using the Joint-EnKF, Dual-EnKF and Dual-EnKFOSA

schemes. Results are shown for 10 different scenarios in which assimilation of hydraulic head data is per-

formed using 9 wells with measurement errors of 0.05, 0.10, 0.15, 0.20, 0.25, 0.3, 0.5, 1, 2 and 3 m. The four

experimental scenarios use 100 ensemble members and 5 days as observation frequency. The x-axis is displayed

in log scale.
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Figure 10. Left panel: Ensemble variance map of the initial conductivity field. Right sub-panels: Ensemble

variance maps of estimated conductivity after 6 and 18 month assimilation periods using the Dual-EnKF and

the proposed Dual-EnKFOSA schemes. These results are obtained with 100 members, 5 days of observation

frequency, 9 observation wells, and 0.10 m as measurement noise.
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Figure 11. Reference (dashed) and predicted (solid) hydraulic head evolution at the control well: CW. Results

are obtained using the Joint-EnKF, Dual-EnKF and the Dual-EnKFOSA schemes with 100 members, 1 day as

observation frequency, 25 observation wells, and 0.50 m of measurement noise. The last 18 months are purely

based on the forecast model prediction with no assimilation of data. In the bottom-right subplot, the absolute

bias of hydraulic head is evaluated for all schemes during the prediction phase only (i.e., after 1.5 years).
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Figure 12. Performance of the Joint-/Dual-EnKF and the proposed Dual-EnKFOSA schemes in 10 different test

cases (TC1, TC2, ...). Mean AAE of the conductivity estimates are displayed. These results are obtained with

100 members, 3 days of observation frequency, 9 observation wells, and 0.10 m as measurement noise.
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