

- ¹ Flood risk reduction and flow buffering as ecosystem services:
- 2 a flow persistence indicator for watershed health
- 3
- 4 Meine van Noordwijk^{1,2}, Lisa Tanika¹, Betha Lusiana¹
- 5 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia}
- 6 [2] {Wageningen University, Plant Production Systems, Wageningen, the Netherlands }
- 7 Correspondence to: Meine van Noordwijk (<u>m.vannoordwijk@cgiar.org</u>)

1 Abstract

2 Flood damage depends on location and adaptation of human presence and activity to 3 inherent variability of river flow. Reduced predictability of river flow is a common 4 sign of degrading watersheds associated with increased flooding risk and reduced dry-5 season flows. The dimensionless FlowPer parameter (F_p), representing predictability, 6 is key to a parsimonious recursive model of river flow, $Q_t = F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})$, 7 with Q, P and E expressed in mm d⁻¹. F_p varies between 0 and 1, and can be derived 8 from a time-series of measured (or modeled) river flow data. The spatially averaged 9 precipitation term Pt and preceding cumulative evapotranspiration since previous rain 10 Etx are treated as constrained but unknown, stochastic variables. A decrease in Fp from 0.9 to 0.8 means peak flow doubling from 10 to 20% of peak rainfall (minus its 11 12 accompanying E_{tx}) and, in a numerical example, an increase in expected flood duration by 3 days. We compared F_p estimates from four meso-scale watersheds in 13 14 Indonesia and Thailand, with varying climate, geology and land cover history, at a 15 decadal time scale. Wet-season (3-monthly) Fp values are lower than dry-season 16 values in climates with pronounced seasonality. A wet-season F_p value above 0.7 was 17 achievable in forest-agroforestry mosaic case studies. Interannual variability in Fp is 18 large relative to effects of land cover change; multiple years of paired-plot data are 19 needed to reject no-change null-hypotheses. While empirical evidence at scale is 20 understandably scarce, Fp trends over time serve as a holistic scale-dependent 21 performance indicator of degrading/recovering watershed health.

22 1 Introduction

23 Degradation of watersheds and its consequences for river flow regime and flooding intensity 24 are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et al., 2013). Current watershed rehabilitation programs that focus on increasing tree cover in upper 25 26 watersheds are only partly aligned with current scientific evidence of effects of large-scale 27 tree planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van 28 Noordwijk et al., 2007, 2015; Verbist et al 2010). The relationship between floods and change 29 in forest quality and quantity, and the availability of evidence for such a relationship at 30 various scales has been widely discussed over the past decades (Andréassian, 2004; 31 Bruijnzeel, 2004; Bradshaw et al., 2007; van Dijk et al., 2009). The ratio between peak and 32 average flow decreases between from headwater streams to main rivers in a predictable

manner; while mean annual discharge scales with (area)^{1.0}, maximum river flow scales with 1 (area)^{0.7} on average (Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The 2 3 determinants of peak flows are thus scale-dependent, with space-time correlations in rainfall 4 interacting with subcatchment-level flow buffering in peakflows at any point along the river. 5 Whether and where peakflows lead to flooding depends on the capacity of the rivers to pass 6 on peakflows towards downstream lakes or the sea, assisted by riparian buffer areas with 7 sufficient storage capacity (Baldasarre et al., 2013). Well-studied effects of forest conversion 8 on peak flows in small upper stream catchments (Alila et al., 2009) do not necessarily 9 translate to flooding downstream. As summarized by Beck et al. (2013) meso- to macroscale 10 catchment studies (>1 and >10 000 km², respectively) in the tropics, subtropics, and warm 11 temperate regions have mostly failed to demonstrate a clear relationship between river flow 12 and change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack 13 of effect, however. A recent econometric study for Peninsular Malaysia by Tan-Soo et al. 14 (2014) concluded that, after appropriate corrections for space-time correlates in the data-set 15 for 31 meso- and macroscale basins (554-28,643 km²), conversion of inland rain forest to monocultural plantations of oil palm or rubber increased the number of flooding days 16 17 reported, but not the number of flood events, while conversion of wetland forests to urban 18 areas reduced downstream flood duration. This study may be the first credible empirical 19 evidence at this scale. The difference between results for flood duration and flood frequency 20 and the result for draining wetland forests warrant further scrutiny. Consistency of these 21 findings with river flow models based on a water balance and likely pathways of water under 22 the influence of change in land cover and land use has yet to be shown. Two recent studies for 23 Southern China confirm the conventional perspective that deforestation increases high flows, 24 but are contrasting in effects of reforestation. Zhou et al. (2010) analyzed a 50-year data set 25 for Guangdong Province in China and concluded that forest recovery had not changed the 26 annual water yield (or its underpinning water balance terms precipitation and evapotransipiration), but had a statistically significant positive effect on dry season (low) 27 28 flows. Liu et al. (2015), however, found for the Meijiang watershed (6983 km2) in 29 subtropical China that while historical deforestation had decreased the magnitudes of low 30 flows (daily flows $\leq Q95\%$) by 30.1%, low flows were not significantly improved by 31 reforestation. They concluded that recovery of low flows by reforestation may take much 32 longer time than expected probably because of severe soil erosion and resultant loss of soil 33 infiltration capacity after deforestation.

1 The statistical challenges of attribution of cause and effect in such data-sets are considerable 2 with land use/land cover interacting with spatially and temporally variable rainfall, geological 3 configuration and the fact that land use is not changing in random fashion or following any 4 pre-randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrologic analysis across 12 5 catchments in Puerto Rico by Beck et al. (2013) did not find significant relationships between 6 the change in forest cover or urban area, and change in various flow characteristics, despite 7 indications that regrowing forests increased evapotranspiration. Yet, the concept of a 8 'regulating function' on river flow regime for forests and other semi-natural ecosystems is 9 widespread. The considerable human and economic costs of flooding at locations and times 10 beyond where this is expected make the presumed 'regulating function' on flood reduction of 11 high value (Brauman et al., 2007) – if only we could be sure that the effect is real, beyond the 12 local scales (< 10 km²) of paired catchments where ample direct empirical proof exists 13 (Bruijnzeel, 1990, 2004). Here we will explore a simple recursive model of river flow (van 14 Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can account for the 15 types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014), and (iii) may constitute a suitable performance indicator of watershed 'health' through time, 16 17 combining statistical properties of the local rainfall regime, land cover effects on soil structure 18 and any engineering modifications of water flow (Ma et al., 2014).

20 Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure 21 and vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, 22 while exposure depends on topographic position interacting with human presence, and 23 vulnerability can be modified by engineering at a finer scale. A recent study (Jongman et al., 24 2015) found that human fatalities and material losses between 1980 and 2010 expressed as a 25 share of the exposed population and gross domestic product were decreasing with rising 26 income. Yet, the planning needed to avoid extensive damage requires quantification of the 27 risk of higher than usual discharges, especially at the upper tail end of the flow frequency 28 distribution.

The statistical scarcity of 'extreme events' and the challenge of data collection where they do occur, make it hard to rely on empirical data as such. Existing data on flood frequency and duration, as well as human and economic damage are influenced by topography, human population density and economic activity, interacting with engineered infrastructure (steps 5-9 in Fig. 1), as well as the extreme rainfall events that are their proximate cause. Common

1 hydrological analysis of flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood 2 events, for example) doess not separately attribute flood magnitude to rainfall and land use 3 properties, and analysis of likely change in flood frequencies in the context of climate change 4 adaptation has been challenging (Milly et al., 2002; Ma et al., 2014). There is a lack of simple 5 performance indicators for watershed health (step 3 in Fig. 1) that align with local 6 observations of river behavior and concerns about its change and that can reconcile local, 7 public/policy and scientific knowledge, thereby helping negotiated change in watershed 8 management (Leimona et al., 2015). The behavior of rivers depends on many climatic (step 4 9 in Figure 1) and terrain factors (step 1 in Figure 1) that make it a challenge to differentiate 10 between anthropogenically induced ecosystem structural and soil degradation (step 0) and 11 intrinsic variability (Fig. 1). Hydrologic models tend to focus on predicting hydrographs and 12 are usually tested on data-sets from limited locations. Despite many decades of hydrologic 13 modeling, current hydrologic theory, models and empirical methods have been found to be 14 largely inadequate for sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts 15 to resolve this through harmonization of modelling strategies have so far failed. Existing 16 models differ in the number of explanatory variables and parameters they use, but are 17 generally dependent on empirical data of rainfall that are available for specific measurement 18 points but not at the spatial resolution that is required for a close match between measured and 19 modeled river flow. Spatially explicit models have conceptual appeal (Ma et al., 2010) but 20 have too many degrees of freedom and too many opportunities for getting right answers for 21 wrong reasons if used for empirical calibration (Beven, 2011). Parsimonious, parameter-22 sparse models are appropriate for the level of evidence available to constrain them, but these 23 parameters are themselves implicitly influenced by many aspects of existing and changing 24 features of the watershed, making it hard to use such models for scenario studies of 25 interacting land use and climate change. Here we present a more direct approach deriving a 26 metric of flow predictability that can bridge local concerns and concepts to quantified 27 hydrologic function: the 'flow persistence' parameter (step 3 in Figure 1).

In this contribution to the debate on forests and floods we will first define the metric 'flow persistence' in the context of temporal autocorrelation of river flow and derive a way to estimate its numerical value. We will then apply the algorithm to river flow data for a number of contrasting meso-scale watersheds, representing variation in rainfall and land cover, and and test the internal consistency of results based on historical data: one located in the humid tropics of Indonesia, and one in the unimodal subhumid tropics of northern Thailand. As a

1 next step we show how projected changes in rainfall patterns (frequency, intensity, temporal 2 and spatial autocorrelation) are expected to interact with changes in land cover, soil 3 infiltration behaviour and landscape-level buffering elements such as wetlands and impoundments, on the regularity of river flow, as captured by the flow persistence metric. 4 5 Possible applications of the flow persistence metric to questions on low flows are left for a 6 later analysis. In the discussion we will consider the new flow persistence metric in terms of 7 three groups of criteria (Clark et al., 2011; Lusiana et al., 2011; Leimona et al., 2015) based 8 on salience (1,2), credibility (3,4) and legitimacy (5-7):

- 9 1. Does flow persistence relate to important aspects of watershed behavior?
- 10 2. Does it's quantification help to select management actions?
- 11 3. Is there consistency of numerical results?
- 12 4. How sensitive is it to noise in data sources?
- 13 5. Does it match local knowledge?
- 14 6. Can it be used to empower local stakeholders of watershed management?
- 15 7. Can it inform local risk management?

16 **2** Flow persistence as a suitable hydrological metric: theory

17 2.1 Basic equations

18 One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in waterlevel, 19 related to the volumetric flow (discharge) via rating curves (Maidment, 1992). Without 20 knowing details of upstream rainfall and the pathways the rain takes to reach the river, 21 observation of the daily fluctuations in waterlevel allows important inferences to be made. It 22 is also of direct utility: sudden rises can lead to floods without sufficient warning, while rapid 23 decline makes water utilization difficult. Indeed, a common local description of watershed 24 degradation is that rivers become more 'flashy' and less predictable, having lost a buffer or 25 'sponge' effect (Joshi et al., 2004; Ranieri et al., 2004; Rahayu et al., 2013). The probably 26 simplest model of river flow at time t, Q_t , is that it is similar to that of the day before (Q_{t-1}), to 27 the degree F_p, a dimensionless parameter called 'flow persistence' (van Noordwijk et al., 28 2011) plus an additional stochastic term ε :

[1].

- $1 \qquad Q_t = F_p Q_{t-1} + \varepsilon$
- Q_t is for this analysis expressed in mm d⁻¹, which means that measurements in m³ s⁻¹ need to be divided by the relevant catchment area, with appropriate unit conversion. If river flow were constant, it would be perfectly predictable, i.e. F_p would be 1.0 and ε zero; in contrast, an F_p -
- value equal to zero and ε directly reflecting erratic rainfall represents the lowest possible
 predictability.
- The F_p parameter is conceptually identical to the 'recession constant' commonly used in hydrological models, typically assessed during an extended dry period when the ε term is negligible and streamflow consists of baseflow only (Tallaksen, 1995); empirical deviations from a straight line in a plot of the logarithm of Q against time are common and point to multiple rather than a single groundwater pool that contributes to base flow. With increasing size of a catchment area it is increasingly likely that there indeed are multiple, partly independent groundwater contributions.
- As we will demonstrate, it is possible to derive F_p even when ε is not negligible. In climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent F_p between wet and dry parts of the hydrologic year. A decrease over the years of F_p indicates 'watershed degradation' (i.e. greater contrast between high and low flows), and an increase improvement' or 'rehabilitation' (i.e. more stable flows).
- 19 If we consider the sum of river flow over a sufficiently long period, we can expect ΣQ_t to 20 closely approximate ΣQ_{t-1} , and thus

21
$$\Sigma Q_t = F_p \Sigma Q_{t-1} + \Sigma \epsilon$$
 [2].

From this relationship we obtain a first way of estimating the F_p value if a complete hydrograph is available:

$$24 F_p = 1 - \Sigma \varepsilon / \Sigma Q_t [3].$$

25 Rearranging Eq.(3) we obtain

$$26 \qquad \Sigma \varepsilon = (1 - F_p) \Sigma Q_t \qquad [4].$$

- 27 The F_p term is equivalent with one of several ways to separate baseflow from peakflows. The
- $28 \hspace{0.5cm} \Sigma\epsilon \hspace{0.1cm} \text{term reflects the sum of peak flows in mm, while } F_p \hspace{0.1cm} \Sigma Q_t \hspace{0.1cm} \text{reflects the sum of base flow, also}$
- 29 in mm. For $F_p = 1$ (the theoretical maximum) we conclude that all ε must be zero, and all flow
- 30 is 'base flow'. The stochastic ε can be interpreted in terms of what hydrologists call 'effective

- 1 rainfall' (i.e. rainfall minus on-site evapotranspiration, assessed over a preceding time period
- 2 tx since previous rain event):

3
$$Q_t = F_p Q_{t-1} + (1-F_p)(P_{tx} - E_{tx})$$
 [5]

4 Where P_{tx} is the (spatially weighted) precipitation (assuming no snow or ice) in mm d⁻¹ and 5 E_{tx} , also in mm d⁻¹, is the preceding evapotranspiration that allowed for infiltration during this 6 rainfall event (*i.e.* evapotranspiration since the previous soil-replenishing rainfall that induced 7 empty pore space in the soil for infiltration and retention). More complex attributions are 8 possible, aligning with the groundwater replenishing bypassflow and the water isotopic 9 fractionation involved in evaporation (Evaristo et al., 2015).

10 The multiplication of effective rainfall times $(1-F_p)$ can be checked by considering the 11 geometric series (1-F_p), (1-F_p) F_p, (1-F_p) F_p^2 , ..., (1-F_p) F_p^n which adds up to (1-F_p)(1 - F_pⁿ)/(1-12 F_p) or 1 - F_pⁿ. This approaches 1 for large n, suggesting that all of the water attributed to time 13 t, *i.e.* $P_t - E_{tx}$, will eventually emerge as river flow. For $F_p = 0$ all of $(P_t - E_{tx})$ emerges on the 14 first day, and riverflow is as unpredictable as precipitation itself. For $F_p = 1$ all of $(P_t - E_{tx})$ 15 contributes to the stable daily flow rate. For declining F_p , $(1 > F_p > 0)$, river flow gradually becomes less predictable, because a greater part of the stochastic precipitation term 16 17 contributes to variable rather than evened-out river flow.

18 Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain:

19
$$\Sigma Q_t = \Sigma (F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})) = F_p \Sigma Q_{t-1} + (1-F_p)(\Sigma P_t - \Sigma E_{tx}))$$
 [6].

20 Which is consistent with the basic water budget, $\Sigma Q = \Sigma P - \Sigma E$, at time scales that changes in 21 soil water buffer stocks can be ignored. As such the total annual, and hence the mean daily 22 river flow are independent of F_p. This does not preclude that processes of watershed 23 degradation or restoration that affect the partitioning of P over Q and E also affect F_p.

24 2.2 Low flows

The lowest flow expected in an annual cycle is $Q_x F_p^{Nmax}$ where Q_x is flow on the first day without rain and N_{max} the longest series of dry days. Taken at face value, a decrease in F_p has a strong effect on low-flows, with a flow of 10% of Q_x reached after 45, 22, 14, 10, 8 and 6 days for $F_p = 0.95$, 0.9, 0.85, 0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the cumulative dry season flow if the dry period is sufficiently long, is $Q_x/(1-F_p)$. If F_p decreases to F_{px} but the groundwater reservoir (Res =

- 1 $Q_x/(1-F_p)$) is not affected, initial flows in the dry period will be higher ($Q_x F_{px}^{i}(1-F_{px}) \text{ Res} > 1$
- 2 $Q_x F_p^i (1-F_p)$ Res for $i < \log((1-F_{px})/(1-F_p))/\log(F_p/F_{px}))$. It thus matters how low flows are
- 3 evaluated: from the perspective of the lowest level reached, or as cumulative flow. The
- 4 combination of climate, geology and land form are the primary determinants of cumulative
- 5 low flows, but if land cover reduces the recharge of groundwater there may be impacts on dry
- 6 season flow, that are not directly reflected in Fp.
- 7 If a single F_p value would account for both dry and wet season, the effects of changing F_p on
- 8 low flows may well be more pronounced than those on flood risk. Tests are needed of the
- 9 dependence of F_p on Q (see below). Analysis of the way an aggregate F_p depends on the
- 10 dominant flow pathways provides a basis for differentiating F_p within a hydrologic year.

12 2.3 Flow-pathway dependent flow persistence

A further interpretation of Eq.(1) can be that three pathways of water through a landscape
contribute to river flow (Barnes, 1939): groundwater release with F_{p,g} values close to 1.0,
overland flow with F_{p,o} values close to 0, and interflow with intermediate F_{p,i} values.

16
$$Q_t = F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o} + \varepsilon$$
 [7],

17
$$F_p = (F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o})/Q_{t-1}$$
 [8].

On this basis a decline or increase in overall weighted average F_p can be interpreted as indicator of a shift of dominant runoff pathways through time within the watershed. Similarly, a second interpretation of F_p emerges based on the fractions of total river flow that are based on groundwater, overland flow and interflow pathways:

22
$$F_{p} = F_{p,g} \left(\Sigma Q_{t,g} / \Sigma Q_{t} \right) + F_{p,o} \left(\Sigma Q_{t,o} / \Sigma Q_{t} \right) + F_{p,i} \left(\Sigma Q_{t,i} / \Sigma Q_{t} \right)$$
[9].

23 Beyond the type of degradation of the watershed that, mostly through soil compaction, leads 24 to enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated 25 conditions throughout the soil profile may also induce overland flow, especially near valley 26 bottoms (Bonell, 1993; Bruijnzeel, 2004). Thus, the value of F_{p,o} can be substantially above 27 zero if the rainfall has a significant temporal autocorrelation, with heavy rainfall on 28 subsequent days being more likely than would be expected from general rainfall frequencies. 29 If rainfall following a wet day is more likely to occur than following a dry day, as is 30 commonly observed in Markov chain analysis of rainfall patterns (Jones and Thornton, 1997; 31 Bardossy and Plate, 1991), the overland flow component of total flow will also have a partial

1 temporal autocorrelation, adding to the overall predictability of river flow. In a hypothetical 2 climate with evenly distributed rainfall, we can expect F_p to be 1.0 even if there is no 3 infiltration and the only pathway available is overland flow. Even with rainfall that is variable 4 at any point of observation but has low spatial correlation it is possible to obtain F_p values of 5 (close to) 1.0 in a situation with (mostly) overland flow (Ranieri at al., 2004).

6 2.4 Numerical example

7 Figure 2 provides an example of the way a change in F_p values (based on Eq. 1) influences the 8 visual pattern of river flow for a unimodal rainfall regime with a well-developed dry season. 9 The increasing 'spikedness' of the graph as F_p is lowered indicates reduced predictability of 10 flow on any given day during the wet season on the basis of the flow on the preceding day. A 11 bi-plot of river flow on subsequent days for the same simulations (Fig. 3) shows two main 12 effects of reducing the F_p value: the scatter increases, and the slope of the lower envelope 13 containing the swarm of points is lowered (as it equals F_p). Both of these changes can provide 14 entry points for an algorithm to estimate F_p from empirical time series, provided the basic 15 assumptions of the simple model apply and the data are of acceptable quality (see Section 3 16 below). For the numerical example shown in Fig. 2, the maximum daily flow doubled from 50 to 100 mm when the F_p value decreased from a value close to 1 (0.98) to nearly 0. 17

18 ⇒ Fig. 2

19 ⇒ Fig. 3

20 **2.5** Flow persistence as a simple flood risk indicator

For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as:

23
$$Q_t = \sum_j^t F_p^{t-j} (1-F_p) p_j P_j$$
 [10].

Where p_j reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal trends) and P_j is the rain depth (drawn from a uniform distribution). From this model the effects of F_p (and hence of changes in F_p) on maximum daily flow rates, plus maximum flow totals assessed over a 2-5 d period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall in the default case – see below). Relative flood protection was calculated as the difference between peak flows (assessed for 1-5 d duration after a 1 year 'warm-up' period) for a given F_p versus those for $F_p = 0$, relative to those at $F_p = 0$.

1 In further analyzing this numerical example, we evaluated the maximum flow by 2 accumulating over a 1-5 d period (in a moving average routine) and compared the maximum 3 obtained for each F_p with what, for the same Monte Carlo realization, was obtained for F_p of 4 zero. This way a relative flood protection, expressed as reduction of peak flow, could be 5 related to F_p (Fig. 4A). Relative flood protection decreased to less than 10% at F_p values of 6 around 0.5, with slightly weaker flood protection when the assessment period was increased 7 from 1 to 5 days (between 1 and 3 d it decreased by 6.2%, from 3 to 5 d by a further 1.3%). 8 Two counteracting effects are at play here: a lower F_p means that a larger fraction (1- F_p) of 9 the effective rainfall contributes to river flow, but the increased flow is less persistent. In the 10 example the flood protection in situations where the rainfall during 1 or 2 d causes the peak is 11 slightly stronger than where the cumulative rainfall over 3-5 d causes floods, as typically 12 occurs downstream.

13 As we expect peak flow to be proportional to $(1-F_p)$ times peak rainfall amounts, the effect of 14 a change in F_p not only depends on the change in F_p that we are considering, but also on its 15 initial value, with greater F_p values leading to more rapid increases in high flows (Fig. 4B). 16 However, flood duration rather responds to changes in Fp in a curvilinear manner, as flow 17 persistence implies flood persistence (once flooding occurs), but the greater the flow 18 persistence the less likely such a flooding threshold is passed (Fig. 4C). The combined effect 19 may be restricted to about 3 d of increase in flood duration for the parameter values used in 20 the default example, but for different parametrization of the stochastic ε other results might be 21 obtained.

22 ⇒ Fig. 4

23 3 Methods

24 3.1 An algorithm for deriving F_p from a time series of stream flow data

Equation (3) provides a first method to derive F_p from empirical data if these cover a full hydrologic year. In situations where there is no complete hydrograph and/or in situations where we want to quantify F_p for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change in the storage term of the water budget equation cannot be ignored, we need an algorithm for estimating F_p from a series of daily Q_t observations.

30 Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a 31 groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). 32 As we can assume for such periods that $\varepsilon = 0$, we obtain $F_p = Q_t / Q_{t-1}$, under these

1 circumstances. We cannot be sure, however, that this $F_{p,g}$ estimate also applies in the rainy 2 season, because overall wet-season F_p will include contributions by $F_{p,o}$ and $F_{p,i}$ as well 3 (compare Eq. 9). In locations without a distinct dry season, we need an alternative method.

- 4 A biplot of Q_t against Q_{t-1} (as in Fig. 3) during times of flow recession will lead to a scatter of 5 points above a line with slope F_p , with points above the line reflecting the contributions of ϵ 6 >0, while the points that plot on the F_p line itself represent $\varepsilon = 0 \text{ mm } d^{-1}$. There is no 7 independent source of information on the frequency at which $\varepsilon = 0$, nor what the statistical 8 distribution of ε values is if it is non-zero. Calculating back from the Q_t series we can obtain 9 an estimate of Q_{add} as the realization of the stochastic ϵ for any given estimate of F_p , and 10 select the most plausible value. For high Fp estimates there will be many negative Qadd values, 11 for low F_p estimates all Q_{add} values will be larger. An algorithm to derive a plausible F_p 12 estimate can thus make use of the corresponding distribution of 'apparent Qadd' values as 13 estimates of ε (Q_{add} = Q_t - F_p Q_{t-1}). While ε , and thus in theory Q_{add} cannot be negative, small 14 negative Qadd estimates are likely when using real-world data with their inherent errors. The 15 FlowPer F_p algorithm (van Noordwijk et al., 2011) derives the distribution of Qadd, Fptry 16 estimates for a range of F_{p,try} values (Fig. 5B) and selects the value F_{p,try} that minimizes the 17 variance Var(Q_{add,Fptry}) (or its standard deviation) (Fig. 5C). It is implemented in a spreadsheet 18 workbook that can be downloaded from the ICRAF website (****).
- 19 **→**Fig. 5

A consistency test is needed that the high-end Q_t values relate to Q_{t+1} in the same was as do low or medium Q_t values. Visual inspection of Q_{t+1} versus Q_t , with the derived F_p value, provides a qualitative view of the validity of this assumption.

23 3.2 GenRiver model for effects of land cover on river flow

24 The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a daily timestep and a flexible spatial subdivision of a watershed that influences the 25 routing of water and employs spatially explicit rainfall. Land cover affects rainfall 26 27 interception losses as well as soil macroporosity (bulk density) modifying infiltration rates. 28 Any land-cover change scenarios are interpolated annually between measured time-series 29 data. The model may use measured rainfall data, or use a rainfall generator that involves 30 Markov chain temporal autocorrelation (rain persistence). The model itself, a manual and 31 application case studies are freely available (**weblink**; van Noordwijk et al., 2011).

1 **3.3 Empirical data-sets**

- Table 1 provides summary characteristics of four meso-scale watersheds used for testing the F_p algorithm and application of the GenRiver model. Basic site-specific parameterization is given in Table 2 and land-cover specific default parameters in Table 3, while Table 4 describes the six scenarios of land-use change that were evaluated in terms of their hydrological impacts.

11 3.4 Bootstrapping

- We used a bootstrap approach to estimate the minimum number of observation (or yearly data) required for a pair-wise comparison test between two time-series of stream flow data (representing 2 scenarios of land use) to be distinguishable from a null-hypothesis of no effect. We built a simple macro in R (R Core Team, 2015) using the following steps:
- 16 (i) Take a sample of size n from both time-series data with replacement, N times,
- 17 (ii) Apply the Kolmogorov-Smirnov test, and record the P-value,
- 18 (iii) Perform (i) and (ii) for different size of n
- (iv) Tabulate the p-value from various n, and determine the value of n when the p-value
 reached equal to or less than 0.025. The associated n represents the minimum number
 of observations required. Appendix 1 provides an example of the macro in R.

22 4 Results

23 **4.1 Empirical data of flow persistence as basis for model parameterization**

Overall the estimates from modeled and observed data are related with 16% deviating more than 0.1 and 3% more than 0.15. The flow persistence estimates derived from the wettest three-month period are about 0.2 lower than those derived for the driest period, when baseflow dominates (Fig. 6). If we can expect $F_{p,i}$ and $F_{p,o}$ to be approximately 0.5 and 0, this difference between wet and dry periods implies a 40% contribution of interflow in the wet season, a 20% contribution of overland flow or any combination of the two effects.

30 ⇒ Fig. 6

31 4.2 F_p effects for scenarios of land cover change

1 ⇒ Fig. 7

2 Among the four watersheds there is consistency in that the 'forest' scenario has the highest, 3 and the 'degraded lands' the lowest Fp value (Fig. 7), but there are remarkable differences as 4 well: in Cidanau the interannual variation in F_p is clearly larger than land cover effects, while 5 in the Way Besai the spread in land use scenarios is larger than interannual variability. In 6 Cidanau a peat swamp between most of the catchment and measuring point buffers most of 7 landcover related variation in flow, but not the interannual variability. Considering the 8 frequency distributions of F_p values over a 20 year period, we see one watershed (Way Besai) 9 where the forest stands out from all others, and one (Bialo) where the degraded lands are 10 separate from the others. Given the degree of overlap of the frequency distributions, it is clear 11 that multiple years of empirical observations will be needed before a change can be affirmed. 12 Figure 8 shows the frequency distributions of expected effect sizes on Fp of a comparison of 13 any land cover with either forest or degraded lands. Table 5 translates this information to the 14 number of years that a paired plot (in the absence of measurement error) would have to be maintained to reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions 15 16 of F_p differences of paired catchments do not match a normal distribution, a Kolmorov-17 Smirnov test can be used to assess the probability that a no-difference null hypothesis can 18 yield the difference found. By bootstrapping within the years where simulations supported by 19 observed rainfall data exist, we found for the Way Besai catchment, for example, that 20 20 years of data would be needed to assert (at P = 0.05) that the ReFor scenario differs from 21 AgFor, and 16 years that it differs from Actual and 11 years that it differs from Degrade. In 22 practice, that means that empirical evidence that survives statistical tests will not emerge, 23 even though effects on watershed health are real.

24 ⇒ Fig. 8

26 At process-level the increase in 'overland flow' in response to soil compaction due to land 27 cover change has a clear and statistically significant relationship with decreasing Fp values in 28 all catchments (Fig 8A), but both year-to-year variation within a catchment and differences 29 between catchments influence the results as well, leading to considerable spread in the biplot. 30 Contrary to expectations, the disappearance of 'interflow' by soil compaction is not reflected 31 in measurable change in Fp value. The temporal difference between overland and interflow 32 (one or a few days) gets easily blurred in the river response that integrates over multiple 33 streams with variation in delivery times; the difference between overland- or interflow and

1 baseflow is much more pronounced. Apparently, according to our model, the high 2 macroporosity of forest soils that allows interflow and may be the 'sponge' effect attributed to 3 forest, delays delivery to rivers by one or a few days, with little effect on the flow volumes at 4 locations downstream where flow of multiple days accumulates. The difference between 5 overland- or interflow and baseflow in time-to-river of rainfall peaks is much more 6 pronounced..

7 ⇒ Fig. 9

8 Tree cover has two contradicting effects on baseflow: it reduces the surplus of rainfall over 9 evapotranspiration (annual water yield) by increased evapotranspiration (especially where 10 evergreen trees are involved), but it potentially increases soil macroporosity that supports 11 infiltration and interflow, with relatively little effect on waterholding capacity measured as 12 'field capacity' (after runoff and interflow have removed excess water). Fig. 6 shows that the 13 total volume of baseflow differs more between sites and their rainfall pattern than it varies 14 with tree cover. Between years total evapotranspiration and baseflow totals are positively 15 correlated (see supplementary information), but for a given rainfall there is a tradeoff. Overall 16 these results support the conclusion that generic effects of deforestation on decreased flow 17 persistence, and of (agro)/(re)-forestation on increased flow persistence are small relative to 18 interannual variability due to specific rainfall patterns, and that it will be hard for any 19 empirical data process to pick-up such effects, even if they are qualitatively aligned with valid 20 process-based models.

21 5 Discussion

22 In view of our results the lack of robust evidence in the literature of effects of change in forest 23 and tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets 24 contain considerable noise. Yet, such effects are consistent with current process and scaling 25 knowledge of watersheds. The key strength of our flow persistence parameter, that it can be 26 derived from observing river flow at a single point along the river, without knowledge of 27 rainfall events and catchment conditions, is also its major weakness. If rainfall data exist, and 28 especially rainfall data that apply to each subcatchment, the Q_{add} term doesn't have to be 29 treated as a random variable and event-specific information on the flow pathways may be 30 inferred for a more precise account of the hydrograph. But for the vast majority of rivers in 31 the tropics, advances in remotely sensed rainfall data are needed to achieve that situation and 32 F_p may be all that is available to inform public debates on the relation between forests and

1 floods. We will discuss the flow persistence metric against criteria based on salience, 2 credibility and legitimacy. Key salience aspects are "Does flow persistence relate to important aspects of watershed behavior?" and "Does it help to select management actions?". Figures 2 3 4 and 6 show that most of the effects of a decreasing F_p value on peak discharge (which is the 5 basis for downstream flooding) occur between F_p values of 1 and 0.7, with the relative flood 6 protection value reduced to 10% when Fp reaches 0.5. As indicated in Fig. 1, peak discharge 7 is only one of the factors contributing to flood risk in terms of human casualties and physical 8 damage. The F_p value has an inverse effect on the fraction of recent rainfall that becomes river 9 flow, but the effect on peak flows is less, as higher F_p values imply higher base flow. The way 10 these counteracting effects balance out depends on details of the local rainfall pattern 11 (including its Markov chain temporal autocorrelation), as well as the downstream topography 12 and risk of people being at the wrong time at a given place, but the Fp value is en efficient 13 way of summarizing complex land use mosaics and upstream topography in its effect on river 14 flow. The difference between wet-season and dry-season F_p deserves further analysis. In climates with a real rainless dry-season, dry season F_{p} is dominated by the groundwater 15 16 release fraction of the watershed, regardless of land cover, while in wet season it depends on 17 the mix (weighted average) of flow pathways. The degree to which F_p can be influenced by 18 land cover needs to be assessed for each landscape and land cover combination, including the 19 locally relevant forest and forest derived land classes, with their effects on interception, soil 20 infiltration and time pattern of transpiration. The F_p value can summarize results of models 21 that explore land use change scenarios in local context. To select the specific management 22 actions that will maintain or increase F_p a locally calibrated land use/hydrology model is 23 needed, such as GenRiver or SWAT (Yen et al., 2015). The empirical data summarized here 24 for (sub)humid tropical sites in Indonesia and Thailand show that values of F_p above 0.9 are 25 scarce in the case studies provided, but values above 0.8 were found, or inferred by the model, 26 for forested landscapes. Agroforestry landscapes generally presented F_p values above 0.7, 27 while open-field agriculture or degraded soils led to Fp values of 0.5 or lower. Despite 28 differences in local context, it seems feasible to relate typical F_p values to the overall 29 condition of a watershed.

Key *credibility* questions are "Consistency of numerical results?" and "How sensitive are results to noisy data sources?". Intra-annual variability of F_p values was around 0.2 in our results, interannual variability in either annual or seasonal F_p was generally in the 0.1 range, while the difference between observed and simulated flow data as basis for F_p calculations

1 was mostly less than 0.1. With current methods, it seems that effects of land cover change on 2 flow persistence that shift the F_p value by about 0.1 are the limit of what can be asserted from 3 empirical data (with shifts of that order in a single year a warning sign rather than a firmly 4 established change). When derived from observed river flow data F_p is suitable for monitoring 5 change (degradation, restoration) and can be a serious candidate for monitoring performance 6 in outcome-based ecosystem service management contracts. Where further uncertainty is 7 introduced by the use of modeled rather than measured river flow, the lack of fit of models 8 similar to the ones we used here would mean that scenario results are indicative of directions 9 of change rather than a precision tool for fine-tuning combinations of engineering and land 10 cover change as part of integrated watershed management.

11 Legitimacy aspects are "Does it match local knowledge?" and "Can it be used to empower 12 local stakeholders of watershed management?" and "Can it inform risk management?". As the 13 F_p parameter captures the predictability of river flow that is a key aspect of degradation 14 according to local knowledge systems, its results are much easier to convey than full 15 hydrographs or excedance probabilities of flood levels. By focusing on observable effects at 16 river level, rather than prescriptive recipes for land cover ("reforestation"), the F_p parameter 17 can be used to more effectively compare the combined effects of land cover change, changes 18 in the riparian wetlands and engineered water storage reservoirs, in their effect on flow 19 buffering. It is a candidate for shifting environmental service reward contracts from input to 20 outcome based monitoring (van Noordwijk et al., 2012). As such it can be used as part of a 21 negotiation support approach to natural resources management in which leveling off on 22 knowledge and joint fact finding in blame attribution are key steps to negotiated solutions that 23 are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et al., 2015). 24 Quantification of Fp can help assess tactical management options (Burt et al., 2014) as in a 25 recent suggestion to minimize negative downstream impacts of forestry operations on stream 26 flow by avoiding land clearing and planting operations in locally wet La Niña years. But the 27 most challenging aspect of the management of flood, as any other environmental risk, is that 28 the frequency of disasters is too low to intuitively influence human behavior where short-term 29 risk taking benefits are attractive. Wider social pressure is needed for investment in watershed 30 health (as a type of insurance premium) to be mainstreamed, as individuals waiting to see 31 evidence of necessity are too late to respond. In terms of flooding risk, actions to restore or 32 retain watershed health can be similarly justified as insurance premium. It remains to be seen 33 whether or not the transparency of the F_p metric and its intuitive appeal are sufficient to make

- 1 the case in public debate when opportunity costs of foregoing reductions in flow buffering by
- 2 profitable land use are to be compensated and shared (Burt et al., 2014).
- 3 In conclusion, the F_p metric allows efficient summaries of complex landscape processes into a
- 4 single parameter that summarizes the effects of landscape management. It integrates changes
- 5 in tree cover (deforestation, reforestation, agroforestation) at the level that these influence
- 6 river flow. Flow persistence is the result of rainfall persistence and the temporal delay
- 7 provided by the pathway water takes through the soil and the river system. High flow
- 8 persistence indicates a reliable water supply, while minimizing peak flow events. Wider tests
- 9 of the F_p metric as boundary object in science-practice-policy boundary chains (Kirchoff et al
- 10 2015; Leimona et al., 2015) are needed.

11 Data availability

- 12 Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the
- 13 links to detailed descriptions.

15

16 Author contributions

- 17 MvN designed method and paper, LT handled the case study data and modeling and BL
- 18 contributed statistical analysis; all contributed and approved the final manuscript

19 Acknowledgements

- 20 This research is part of the Forests, Trees and Agroforestry research program of the CGIAR.
- 21 Several colleagues contributed to the development and early tests of the F_p method. Thanks
- 22 are due to Eike Luedeling, Sonya Dewi and Sampurno Bruijnzeel for comments on an earlier
- 23 version of the manuscript.

24

25 References

- Alila, Y., Kura, P.K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm
 sheds light on age-old controversies. Water Resour Res 45: W08416, 2009.
- 28 Andréassian, V.: Waters and forests: from historical controversy to scientific debate. Journal
- 29 of Hydrology 291: 1–27, 2004.

- 1 Baldassarre, G.D., Kooy, M., Kemerink, J.S. and Brandimarte, L.,: Towards understanding
- 2 the dynamic behaviour of floodplains as human-water systems. Hydrology and Earth
- *System Sciences 17*(8), 3235-3244, 2013.
- 4 Bardossy, A. and Plate, E.J.: Modeling daily rainfall using a semi-Markov representation of
- 5 circulation pattern occurrence. *Journal of Hydrology*, *122*(1), pp.33-47, 1991.
- Barnes, B.S.: The structure of discharge-recession curves. *Eos, Transactions American Geophysical Union*, 20(4), 721-725, 1939.
- Beck, H. E., Bruijnzeel, L. A., Van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., and
 Schellekens, J.: The impact of forest regeneration on streamflow in 12 mesoscale humid
 tropical catchments. *Hydrology and Earth System Sciences* 17(7), 2613-2635, 2013.
- 11 Beven, K.J.,: Rainfall-runoff modelling: the primer. John Wiley & Sons, 2011
- Bishop, J. and Pagiola, S. (Eds.): Selling forest environmental services: market-based
 mechanisms for conservation and development. Taylor & Francis, Abingdon (UK), 2012.
- Bonell, M.: Progress in the understanding of runoff generation dynamics in forests. *Journal of Hydrology*, *150*(2), pp.217-275, 1993.
- Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S.H., and Brook, B.W.: Global evidence that
 deforestation amplifies flood risk and severity in the developing world. Global Change
 Biol. 13: 2379–2395, 2007.
- Brauman, K.A., Daily, G.C., Duarte, T.K.E., and Mooney, H.A.: The nature and value of
 ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ.
 Resour. 32: 67-98, 2007.
- Bruijnzeel, L.A.: Hydrological functions of tropical forests: not seeing the soil for the trees.
 Agr. Ecosyst. Environ. 104: 185–228, 2004.
- Burt, T.P., Howden, N.J.K., McDonnell, J.J., Jones, J.A., Hancock, G.R.: Seeing the climate
 through the trees: observing climate and forestry impacts on streamflow using a 60-year
 record. Hydrological Processes. DOI: 10.1002/hyp.10406, 2014.
- Clark, W. C., Tomich, T. P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N. M.,
 and McNie, E.: Boundary work for sustainable development: natural resource
 management at the Consultative Group on International Agricultural Research (CGIAR).
 Proc. Nat. Acad. Sci., doi:10.1073/pnas.0900231108, 2011.

- 1 Delfs, J.O., Park, C.H., and Kolditz, O.: A sensitivity analysis of Hortonian flow. Advances in
- 2 Water Resources 32(9): 1386-1395, 2009.
- 3 Evaristo, J., Jasechko, S. and McDonnell, J.J.,: Global separation of plant transpiration from
- 4 groundwater and streamflow. *Nature*, *525*(7567), pp.91-94, 2015.
- Ghimire, C.P., Bruijnzeel, L.A., Lubczynski, M.W., and Bonell, M.: Negative trade-off
 between changes in vegetation water use and infiltration recovery after reforesting
 degraded pasture land in the Nepalese Lesser Himalaya. Hydrology and Earth System
 Sciences 18(12): 4933-4949, 2014.
- 9 Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy,
- J.W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J E., Gelfan, A.,
 Gupta, H.V., Hughes, D. A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch,
- P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E. and
- Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB)—a
 review. Hydrological sciences journal, 58(6), 1198-1255, 2013.
- Jones, P.G. and Thornton, P.K., 1997. Spatial and temporal variability of rainfall related to a
 third-order Markov model. *Agricultural and Forest Meteorology*, 86(1), pp.127-138.
- Jongman, B., Winsemius, H. C., Aerts, J. C., de Perez, E. C., van Aalst, M. K., Kron, W., and
 Ward, P. J.: Declining vulnerability to river floods and the global benefits of
 adaptation. Proceedings of the National Academy of Sciences, 112(18), E2271-E2280,
 2015.
- Joshi, L., Schalenbourg, W., Johansson, L., Khasanah, N., Stefanus, E., Fagerström, M.H. and
 van Noordwijk, M.,: Soil and water movement: combining local ecological knowledge
 with that of modellers when scaling up from plot to landscape level. In: van Noordwijk,
- M., Cadisch, G. and Ong, C.K. (Eds.) Belowground Interactions in Tropical
 Agroecosystems, CAB International, Wallingford (UK). pp. 349-364, 2004.
- Kirchhoff, C.J., Esselman, R., and Brown, D.: Boundary Organizations to Boundary Chains:
 Prospects for Advancing Climate Science Application. Climate Risk Management
 doi:10.1016/j.crm.2015.04.001, 2015.
- Leimona, B., Lusiana, B., van Noordwijk, M., Mulyoutami, E., Ekadinata, A., and
 Amaruzama, S.: Boundary work: knowledge co-production for negotiating payment for
 watershed services in Indonesia. Ecosystems Services 15, 45–62, 2015.

- Liu, W., Wei, X., Fan, H., Guo, X., Liu, Y., Zhang, M. and Li, Q.,: Response of flow regimes
 to deforestation and reforestation in a rain-dominated large watershed of subtropical
- 3 China. Hydrological Processes 10459, 2015
- 4 Lusiana, B., van Noordwijk, M., Suyamto, D., Joshi, L., and Cadisch, G.: Users' perspectives
- 5 on validity of a simulation model for natural resource management. International Journal
- 6 of Agricultural Sustainability 9(2): 364-378, 2011.
- Ma, X., Xu, J., van Noordwijk, M.: Sensitivity of streamflow from a Himalayan catchment to
 plausible changes in land-cover and climate. Hydrological Processes 24: 1379–1390,
 2010.
- Ma, X., Lu, X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change,
 vegetation restoration, and engineering measures to the reduction of suspended sediment
- 12 in the Kejie catchment, southwest China. Hydrol. Earth Syst. Sci. 18: 1979–1994, 2014.
- 13 Maidment, D.R.: Handbook of hydrology. McGraw-Hill Inc., 1992.
- Malmer, A., Murdiyarso, D., Bruijnzeel L.A., and Ilstedt, U.: Carbon sequestration in tropical
 forests and water: a critical look at the basis for commonly used generalizations. *Global Change Biology 16*(2): 599-604, 2010.
- Milly, P.C.D., Wetherald, R., Dunne, K.A., and Delworth, T.L.: Increasing risk of great
 floods in a changing climate. Nature 415(6871): 514-517, 2002.
- Palmer, M.A.: Reforming watershed restoration: science in need of application and
 applications in need of science. Estuaries and coasts 32(1): 1-17, 2009.
- R Core Team R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u>, 2015
- Rahayu, S., Widodo, R.H., van Noordwijk, M., Suryadi, I. and Verbist, B.: *Water monitoring in watersheds*. Bogor, Indonesia. World Agroforestry Centre (ICRAF) SEA Regional
 Program. 104 p., 2013
- Ranieri, S.B.L., Stirzaker, R., Suprayogo, D., Purwanto, E., de Willigen, P. and van
 Noordwijk, M.,: Managing movements of water, solutes and soil: from plot to landscape
 scale. In: van Noordwijk, M., Cadisch, G. and Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB International, Wallingford (UK). pp. 329347, 2004.

- 1 Rodríguez-Iturbe, I., and Rinaldo, A.: Fractal river basins: chance and self-organization.
- 2 Cambridge University Press, Cambridge, 2001.
- 3 Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., and Lambin, E.:
- Forest transitions: towards a global understanding of land use change. Global
 Environmental Change 15(1): 23-31, 2005.
- 6 Tallaksen, L.M.: A review of baseflow recession analysis. J Hydrol 165, 349-370, 1995.
- 7 Tan-Soo, J.S., Adnan, N., Ahmad, I., Pattanayak, S.K., and Vincent, J.R.: Econometric 8 Evidence on Forest Ecosystem Services: Deforestation and Flooding in 9 Malaysia. Environmental on-line: and Resource Economics, 10 http://link.springer.com/article/10.1007/s10640-014-9834-4, 2014.
- van Dijk, A.I., van Noordwijk, M., Calder, I.R., Bruijnzeel, L.A., Schellekens, J., and
 Chappell, N.A.: Forest-flood relation still tenuous comment on 'Global evidence that
 deforestation amplifies flood risk and severity in the developing world'. Global Change
 Biology 15: 110-115, 2009.
- van Noordwijk, M., van Roode, M., McCallie, E.L. and Lusiana, B.,: Erosion and
 sedimentation as multiscale, fractal processes: implications for models, experiments and
 the real world. In: F. Penning de Vries, F. Agus and J. Kerr (Eds.) Soil Erosion at Multiple
 Scales, Principles and Methods for Assessing Causes and Impacts.. CAB International,
 Wallingford. pp 223-253, 1998.
- van Noordwijk, M., Agus, F., Verbist, B., Hairiah, K. and Tomich, T.P.: Managing Watershed
 Services. In: Scherr, S.J. and McNeely, J.A. (Eds) Ecoagriculture Landscapes. Farming
 with Nature: The Science and Practice of Ecoagriculture. Island Press, Washington DC,
 pp 191 212, 2007.
- van Noordwijk, M., Widodo, R.H., Farida, A., Suyamto, D., Lusiana, B., Tanika, L., and
 Khasanah, N..: GenRiver and FlowPer: Generic River and Flow Persistence Models. User
 Manual Version 2.0. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast
 Asia Regional Program. 119 p, 2011.
- van Noordwijk, M., Leimona, B., Jindal, R., Villamor, G.B., Vardhan, M., Namirembe, S.,
 Catacutan, D., Kerr, J., Minang, P.A., and Tomich, T.P.: Payments for Environmental
 Services: evolution towards efficient and fair incentives for multifunctional landscapes.
 Annu. Rev. Environ. Resour. 37: 389-420, 2012.

- 1 van Noordwijk, M., Lusiana, B., Leimona, B., Dewi, S. and Wulandari, D.: Negotiation-
- 2 support toolkit for learning landscapes. Bogor, Indonesia. World Agroforestry Centre
- 3 (ICRAF) Southeast Asia Regional Program, 2013.
- 4 van Noordwijk, M., Leimona, B., Xing, M., Tanika, L., Namirembe, S., and Suprayogo, D.,:
- 5 Water-focused landscape management. Climate-Smart Landscapes: Multifunctionality In
- 6 Practice. eds Minang PA et al.. Nairobi, Kenya: World Agroforestry Centre (ICRAF), pp
- 7 179-192, 2015.
- 8 Verbist, B., Poesen, J., van Noordwijk, M. Widianto, Suprayogo, D., Agus, F., and Deckers,
 9 J.: Factors affecting soil loss at plot scale and sediment yield at catchment scale in a
 10 tropical volcanic agroforestry landscape. Catena 80: 34-46, 2010.
- Winsemius, H.C., van Beek, L.P.H., Jongman, B., Ward, P.J., and Bouwman, A.: A
 framework for global river flood risk assessments. Hydrol Earth Syst Sci 17:1871–1892,
 2013.
- Yen, H., White, M.J., Jeong, J., Arabi, M. and Arnold, J.G.: Evaluation of alternative surface
 runoff accounting procedures using the SWAT model.International Journal of Agricultural
 and Biological Engineering, 8(1), 2015.
- Zhou, G., Wei, X., Luo, Y., Zhang, M., Li, Y., Qiao, Y., Liu, H. and Wang, C.,: Forest
 recovery and river discharge at the regional scale of Guangdong Province, China. *Water Resources Research*, 46(9) 008829, 2010.
- 20

	Ô
(cc)	(1)
$\mathbf{\nabla}$	BY
-	BY

Parameter	Bialo	Cidanau	Mae Chaem	Way Besai
Location	South Sulawesi, Indonesia	West Java, Indonesia	Northern Thailand	Lampung, Sumatera, Indonesia
Area (km ²)	111.7	241.6	3891.7	414.4
Elevation (m a.s.l.)	0 - 2874	30 - 1778	475-2560	720-1831
Flow pattern	Parallel	Parallel (with two main river flow that meet in the downstream area)	Parallel	Radial
Dominant land cover type	Mixed garden (cocoa and clove)	Mixed garden	Forest (evergreen, deciduous and pine)	Coffee (monoculture and multistrata)
Mean annual rainfall, mm	1695	2573	1027	2474
Mean annual runoff, mm	947	917	259	1673
Major soils	Inceptisols	Inceptisols	Ultisols, Entisols	Andisols
% Natural forest	13	3.1 (forest and swamp forest)	84 (deciduous, evergreen, pine)	3.6

1 Table 1. Basic physiographic characteristics of the four study watersheds

2

- 1 Table 2. Parameters of the GenRiver model used for the four site specific simulations (van
- 2 Noordwijk et al., 2011 for definitions of terms; sequence of parameters follows the pathway
- 3 of water)

Parameter	Definition	Unit	Bialo	Cidanau	Mae Chaem	Way Besai
RainIntensMean	Average rainfall intensity	mm d ⁻¹	30	30	3	30
RainIntensCoefVar	Coefficient of variation of rainfall intensity	mm d ⁻¹	0.8	0.3	0.5	0.3
RainInterceptDripRt	Max rain interception drip rate	mm d ⁻¹	80	10	10	10
RainMaxIntDripDur	Rain interception drip duration	hr	0.8	0.5	0.5	0.5
InterceptEffectontrans	Rain interception effect on transpiration	-	0.35	0.8	0.3	0.8
MaxInfRate	Maximum infiltration capacity	mm d ⁻¹	580	800	150	720
MaxInfSubsoil	Maximum infiltration sub soil capacity	mm d ⁻¹	80	120	150	120
PerFracMultiplier	Daily soil water drainage as fraction of groundwater release fraction	-	0.35	0.13	0.1	0.1
MaxDynGrWatStore	Dynamic groundwater storage capacity	mm	100	100	300	300
GWReleaseFracVar	Groundwater release fraction, applied to all subcatchments	-	0.15	0.03	0.05	0.1
Tortuosity	Stream shape factor	-	0.4	0.4	0.6	0.45
Dispersal Factor	Drainage density	-	0.3	0.4	0.3	0.45
River Velocity	River flow velocity	m s ⁻¹	0.4	0.7	0.35	0.5

4

1

5

- 2 Table 3. GenRiver defaults for land-use specific parameter values, used for all four
- 3 watersheds (BD/BDref indicates the bulk density relative to that for an agricultural soil
- 4 pedotransfer function; see van Noordwijk et al., 2011)
 - Potential **Relative drought** Land cover Type interception **BD/BDref** threshold (mm/d)Forest¹ 3.0 - 4.0 0.4 - 0.5 0.8 - 1.1 Agroforestry² 2.0 - 3.0 0.5 - 0.6 0.95 - 1.05 Monoculture tree³ 1.0 0.55 1.081.0 - 3.0 0.6 - 0.7 1.1 - 1.5 Annual crops Horticulture 1.0 0.7 1.07 Rice field⁴ 1.0 - 3.0 0.9 1.1 - 1.2 Settlement 0.05 0.01 1.3 1.0 - 1.07 Shrub and grass 2.0 - 3.0 0.6 Cleared land 1.0 - 1.5 0.3 - 0.4 1.1 - 1.2
- 6 Note: 1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest
- 7

2. Agroforestry: mixed garden, coffee, cocoa, clove

8 3. Monoculture : coffee

4. Rice field: irrigation and rainfed

1 Table 4. Land use scenarios explored for four watersheds

Scenario	Description
NatFor	Full natural forest, hypothetical reference scenario
ReFor	Reforestation, replanting shrub, cleared land, grass land and some agricultural area with forest
AgFor	Agroforestry scenario, maintaining agroforestry areas and converting shrub, cleared land, grass land and some of agricultural area into agroforestry
Actual	Baseline scenario, based on the actual condition of land cover change during the modeled time period
Agric	Agriculture scenario, converting some of tree based plantations, cleared land, shrub and grass land into rice fields or dry land agriculture, while maintain existing forest
Degrade	No change in already degraded areas, while converting most of forest and agroforestry area into rice fields and dry land agriculture

2

5

- 1 Table 5. Number of years of observations on flow persistence required to reject the null-
- 2 hypothesis of 'no land use effect' at p-value = 0.05 using Kolmogorov-Smirnov test. The
- 3 probability of the test statistic in the first significant number is provided between brackets and
- 4 where the number of observations exceeds the time series available, results are given in *italics*

Way Besai (N=32) ReFor AgFor Actual Agric Degrade	ReFor	AgFor 20 (0.035)	Actual 16 (0.037) n.s.	Agric 13 (0.046) n.s. n.s.			
Bialo (N=18) ReFor AgFor Actual Agric Degrade	ReFor	AgFor n.s.	Actual n.s. n.s.	Agric 37 (0.04) n.s. n.s.			
Cidanau (N=20) ReFor AgFor Actual Agric Degrade	ReFor	AgFor n.s.	Actual n.s. n.s.	Agric 32 (0.037) n.s. n.s.			
Mae Chaem (N=15) ReFor Actual Agric Degrade	ReFor	Actual n.s.	Agric 23 (0.049) 45 (0.037)	Degrade 18 (0.050) 33 (0.041) 33 (0.041)			

A. Natural Forest as reference

1

B. Degraded scenario as reference

Way Besai (N=32)	NatFor	ReFor	AgFor 17	Actual	Agric 7
NatFor		n.s.	(0.042)	(0.046)	, (0.023)
ReFor			21 (0.037)	19 (0.026)	/ (0.023)
AgFor				n.s.	28 (0.046)
Actual					30 (0.029)
Agric					(0.023)

Bialo (N=18)	NatFor	ReFor	AgFor	Actual	Agric
NatFor		n.s.	n.s.	41 (0.047)	19 (0.026) 32
ReFor			n.s.	n.s.	(0.037)
AgFor				n.s.	n.s.
Actual					n.s.
Agric					

Cidanau (N=20)	NatFor	ReFor	AgFor	Actual	Agric
NatFor		n.s.	n.s.	33 (0.041)	8 (0.034) 15
ReFor			n.s.	n.s.	(0.028)
AgFor				n.s.	n.s.
					25
Actual					(0.031)
Agric					

Mae Chaem (N=15)	NatFor	ReFor	Actual	Agric
NotFor			25	12
NatFor		n.s.	(0.031)	(0.037)
DeFer				18
Refor			n.s.	(0.050)
				18
Actual				(0.050)
Agric				

1 Table 6.5. Data availability

	Bialo	Cidanau	Mae Chaem	Way Besai	
Rainfall	1989-2009, Source:	1998-2008, source:	1998-2002, source:	1976-2007, Source:	
data	BWS Sulawesi and	BMKG	WRD55, MTD22,	BMKG, PU and PLN	
	PUSAIR; Average		RYP48, GMT13, WRD	(interpolation of 8 rainfall	
	rainfall data from the		52	stations using Thiessen	
	stations Moti, Bulo-			polygon)	
	bulo, Seka and Onto				
River flow	1993-2010, source;	2000-2009, source:	1954-2003, source:	1976-1998, source: PU	
data	BWS Sulawesi and	КТІ	ICHARM	and PUSAIR	
	PUSAIR				
Reference	Bialo	http://worldagrofores	http://worldagrofores	http://worldagroforestry.	
of detailed		try.org/regions/south	try.org/regions/south	org/regions/southeast_asi	
report		east_asia/publications	east_asia/publications	a/publications?do=view_p	
		?do=view_pub_detail	?do=view_pub_detail	ub_detail&pub_no=MN00	
		&pub_no=PO0292-13	&pub_no=MN0048-11	48-11	

1

2 Figure 1. Steps in a causal pathway that relates ecosystem structure to function, human land use and a perceived ecosystem service of 'avoided flood damage'; blue (open) arrows refer 3 4 to water flow, black (solid) arrows to influences; plot-level processing of incoming rainfall 5 (1) influences the total blue-water yield (2) and its temporal pattern (3), in dependence of 6 the time-space pattern of rainfall (4); extreme discharge events (5), jointly with the 7 (engineered) river channel (6), and topography determine flood frequency and duration (7); 8 human population density and activity (8) together with flood characteristics determines 9 victims, damage and its economic consequence (9); attributing 'avoided flood damage' 10 (10) to land cover (0) and its influences on step 1 is thus complex, especially as *ceteris* 11 paribus assumptions do not generally hold and interactions are common

Figure 2. Example of daily river flow for a unimodal rainfall regime with clear dry season, in
 response to change in the flow persistence parameter F_p

4

2 Figure 3. Biplots of Q(t) versus Q(t-1) for the same simulations as figure 2

3

5

6

Figure 5. Example of the derivation of best fitting F_{p,try} value for an example hydrograph (A) on the basis of the inferred Q_{add} distribution (cumulative frequency in B), and three properties of this distribution (C): its sum, frequency of negative values and standard deviation; the F_{p,try} minimum of the latter is derived from the parameters of a fitted quadratic equation

2 Figure 6. Inter- (A) and intra- (B) annual variation in the F_p parameter derived from empirical

- 3 versus modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B)
- 4

Figure 7. Effects of land cover change scenarios (Table 1) on the flow persistence value in 1 2 four watersheds, modelled in GenRiver²¹ over a 20-year time-period, based on actual 3 rainfall records; the left side panels show average water balance for each land cover 4 scenario, the middle panels the Fp values per year and land use, the right-side panels the 5 derived frequency distributions (best fitting Weibull distribution)

6

8 Figure 8. Frequency distribution of expected difference in F_p in 'paired plot' comparisons 9 where land cover is the only variable; left panels: all scenarios compared to 'reforestation', 10 righ panel: all scenarios compared to degradation; graphs are based on a kernel density 11 estimation (smoothing) approach

Figure 9. Correlations of F_p with fractions of rainfall that take overland flow and interflow
pathways through the watershed, across all years and land use scenarios of Fig. 7

- 1 Appendix 1. Example of a macro in R to estimate number of observation required using
- 2 bootstrap approach.
- 3
- 4 #The bootstrap procedure is to calculate the minimum sample size (number of observation) required 5 #for a significant land use effect on Fp 6 #bialo1 is a dataset contains delta Fp values for two different from Bialo watershed 7 8 #read data 9 bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",")</pre> 10 11 #name each parameter 12 BL1 <- bialo1\$ReFor 13 BL5 <- bialo1\$Degrade 14 15 N = 1000 #number replication 16 17 n <- c(5:50) #the various sample size 18 19 J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset) 20 21 P15= matrix(ncol=J, nrow=R) #variable for storing p-value 22 P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile 23 24 for (j in 1:J) #estimating for different n 25 26 #bootstrap sampling 27 { 28 for (i in 1:N) 29 { 30 #sampling data 31 S1=sample(BL1, n[j], replace = T) 32 S5=sample(BL5, n[j], replace = T) 33 34 #Kolmogorov-Smirnov test for equal distribution and get the p-Value 35 KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15\$p.value 36 } 37 38 #Confidence interval of CI 39 P15Q3[j] <- quantile(P15[,j], 0.975) 40 41 } 42 43 #saving P value data and CI 44 45 write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")