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Abstract 1 8 

We present and discuss a candidate for a single parameter representation of the complex 9 

concept of watershed quality that does align short and long term responses, and provides 10 

bounds to the levels of unpredictability. Flow buffering in landscapes is commonly 11 

interpreted as ecosystem service, but needs quantification, as flood damage reflects 12 

insufficient adaptation of human presence and activity to location and variability of river 13 

flow in a given climate. Increased variability and reduced predictability of river flow is 14 

a common sign, in public discourse, of degrading watersheds, combining increased 15 

flooding risk and reduced low flows. Geology, landscape form, soil porosity, litter layer 16 

and surface features, drainage pathways, vegetation and space-time patterns of rainfall 17 

interact in complex space-time patterns of river flow, but the anthropogenic aspects tend 18 

to get discussed on a one-dimensional scale of degradation and restoration, or in other 19 

parts of the literature as due to climate change. A strong tradition in public discourse 20 

associates changes on such degradation-restoration axis with binary deforestation-21 

reforestation shifts. Empirical evidence for such link that may exist at high spatial 22 

resolution may not be a safe basis for securing required flow buffering in landscapes at 23 

large. We define a dimensionless FlowPer parameter Fp that represents predictability of 24 

river flow in a recursive flow model. Analysis suggests that buffering has two 25 

interlinked effects: a smaller fraction of fresh rainfall enters the streams, and flow 26 

becomes more persistent, in that the ratio of the flow on subsequent days has a higher 27 

minimum level. As a potential indicator of watershed health (or quality), the Fp metric 28 

(or its change over time from what appears to be the local norm) matches local 29 

knowledge concepts, captures key aspects of the river flow dynamic and can be 30 

unambiguously derived from empirical river flow data. Further exploration of 31 

responsiveness of Fp to the interaction of land cover and the specific realization of space-32 

time patterns of rainfall in a limited observation period is needed to test the 33 

interpretation of Fp as indicator of watershed health (or quality) in the way this is 34 

degrading or restoring through land cover change and modifications of the overland and 35 

surface flow pathways, given inherent properties such as geology, geomorphology and 36 

climate. 37 
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1 Introduction 38 

Degradation of watersheds and its consequences for river flow regime and flooding intensity 39 

and frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; 40 

Winsemius et al., 2013). Current watershed rehabilitation programs that focus on increasing 41 

tree cover in upper watersheds are only partly aligned with current scientific evidence of effects 42 

of large-scale tree planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 43 

2009; van Noordwijk et al., 2007, 2015a; Verbist et al., 2010). The relationship between floods 44 

and change in forest quality and quantity, and the availability of evidence for such a relationship 45 

at various scales has been widely discussed over the past decades (Andréassian, 2004; 46 

Bruijnzeel, 2004; Bradshaw et al., 2007; van Dijk et al., 2009). Measurements in Cote d’Ivoire, 47 

for example, showed strong scale dependence of runoff from 30-50% at 1 m2 point scale, to 4% 48 

at 130 ha watershed scale, linked to spatial variability of soil properties plus variations in 49 

rainfall patterns (Van de Giesen et al., 2000). The ratio between peak and average flow 50 

decreases from headwater streams to main rivers in a predictable manner;  while mean annual 51 

discharge scales with (area)1.0, maximum river flow was found to scale with (area)0.7 on average 52 

(Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The determinants of peak 53 

flow are thus scale-dependent, with space-time correlations in rainfall interacting with 54 

subcatchment-level flow buffering at any point along the river. Whether and where peak flows 55 

lead to flooding depends on the capacity of the rivers to pass on peak flows towards downstream 56 

lakes or the sea, assisted by riparian buffer areas with sufficient storage capacity (Baldasarre et 57 

al., 2013); reducing local flooding risk by increased drainage increases flooding risk 58 

downstream, challenging the nested-scales management of watersheds to find an optimal spatial 59 

distribution, rather then minimization, of flooding probabilities. Well-studied effects of forest 60 

conversion on peak flows in small upper stream catchments (Alila et al., 2009) do not 61 

necessarily translate to flooding downstream. As summarized by Beck et al. (2013) meso- to 62 

macroscale catchment studies (>1 and >10 000 km2, respectively) in the tropics, subtropics, and 63 

warm temperate regions have mostly failed to demonstrate a clear relationship between river 64 

flow and change in forest area. Lack of evidence cannot be firmly interpreted as evidence for 65 

lack of effect, however. Detectability of effects depends on their relative size, the accuracy of 66 

the measurement devices, background variability of the signal and length of observation period.  67 

A recent econometric study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, 68 

after appropriate corrections for space-time correlates in the data-set for 31 meso- and 69 

macroscale basins (554-28,643 km2), conversion of inland rain forest to monocultural 70 
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plantations of oil palm or rubber increased the number of flooding days reported, but not the 71 

number of flood events, while conversion of wetland forests to urban areas reduced downstream 72 

flood duration. This Malaysian study may be the first credible empirical evidence at this scale. 73 

The difference between results for flood duration and flood frequency and the result for draining 74 

wetland forests warrant further scrutiny. Consistency of these findings with river flow models 75 

based on a water balance and likely pathways of water under the influence of change in land 76 

cover and land use has yet to be shown. Two recent studies for Southern China confirm the 77 

conventional perspective that deforestation increases high flows, but are contrasting in effects 78 

of reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong Province in China 79 

and concluded that forest recovery had not changed the annual water yield (or its underpinning 80 

water balance terms precipitation and evapotranspiration), but had a statistically significant 81 

positive effect on dry season (low) flows.  Liu et al. (2015), however, found for the Meijiang 82 

watershed (6983 km2) in subtropical China that while historical deforestation had decreased 83 

the magnitudes of low flows (daily flows ≦ Q95%) by 30.1%, low flows were not significantly 84 

improved by reforestation. They concluded that recovery of low flows by reforestation may 85 

take much longer time than expected probably because of severe soil erosion and resultant loss 86 

of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited 87 

period of time can be the combined and interactive effects of variations in the local rainfall 88 

regime, land cover effects on soil structure and engineering modifications of water flow, that 89 

can be teased apart with modelling tools (Ma et al., 2014). 90 

Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ 91 

from those of plantation forestry, while forest statistics do not normally differentiate between 92 

these different land covers. In a regression study of the high and low flow regimes in the Volta 93 

and Mekong river basins Lacombe and McCartney (2016) found that in the variation among 94 

tributaries various aspects of land cover and land cover change had explanatory power. Between 95 

the two basins, however, these aspects differed. In the Mekong basin variation in forest cover 96 

had no direct effect on flows, but extending paddy areas resulted in a decrease in downstream 97 

low flows, probably by increasing evapotranspiration in the dry season. In the Volta River 98 

Basin, the conversion of forests to crops (or a reduction of tree cover in the existing parkland 99 

system) induced greater downstream flood flows. This observation is aligned with the 100 

experimental identification of an optimal, intermediate tree cover from the perspective of 101 

groundwater recharge in parklands in Burkina Faso (Ilstedt et al., 2016).  102 
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The statistical challenges of attribution of cause and effect in such data-sets are considerable 103 

with land use/land cover interacting with spatially and temporally variable rainfall, geological 104 

configuration and the fact that land use is not changing in random fashion or following any pre-105 

randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 106 

catchments in Puerto Rico by Beck et al. (2013) did not find significant relationships between 107 

the change in forest cover or urban area, and change in various flow characteristics, despite 108 

indications that regrowing forests increased evapotranspiration. Yet, the concept of a 109 

‘regulating function’ on river flow regime for forests and other semi-natural ecosystems is 110 

widespread. The considerable human and economic costs of flooding at locations and times 111 

beyond where this is expected make the presumed ‘regulating function’ on flood reduction of 112 

high value (Brauman et al., 2007) – if only we could be sure that the effect is real, beyond the 113 

local scales (< 10 km2) of paired catchments where ample direct empirical proof exists 114 

(Bruijnzeel, 1990, 2004). These observations imply that percent tree cover (or other forest 115 

related indicators) is probably not a good metric for judging the ecosystem services provided 116 

by a watershed (of different levels of ‘health’), and that a metric more directly reflecting 117 

changes in river flow may be needed. Here we will explore a simple recursive model of river 118 

flow (van Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can account 119 

for the types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014), and 120 

(iii) may constitute a suitable performance indicator to monitor watershed ‘health‘ through time.  121 

 Figure 1 122 

Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure and 123 

vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, while 124 

exposure depends on topographic position interacting with human presence, and vulnerability 125 

can be modified by engineering at a finer scale and be further reduced by advice to leave an 126 

area in high-risk periods. A recent study (Jongman et al., 2015) found that human fatalities and 127 

material losses between 1980 and 2010 expressed as a share of the exposed population and 128 

gross domestic product were decreasing with rising income. The planning needed to avoid 129 

extensive damage requires quantification of the risk of higher than usual discharges,  especially 130 

at the upper tail end of the flow frequency distribution. 131 

The statistical scarcity, per definition, of ‘extreme events’ and the challenge of data collection 132 

where they do occur, make it hard to rely on empirical data as such. Existing data on flood 133 

frequency and duration, as well as human and economic damage are influenced by topography, 134 

human population density and economic activity, interacting with engineered infrastructure 135 
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(step 4 and 5 in Figure 1), as well as the extreme rainfall events that are their proximate cause. 136 

Subsidence due to groundwater extraction in urban areas of high population density is a specific 137 

problem for a number of cities built on floodplains (such as Jakarta and Bangkok), but 138 

subsidence of drained peat areas has also been found to increase flooding risks elsewhere 139 

(Sumarga et al., 2016). Common hydrological analysis of flood frequency (called 1 in 10-, 1 in 140 

100-, 1 in 1000-year flood events, for example) does not separately attribute flood magnitude 141 

to rainfall and land use properties, and analysis of likely change in flood frequencies in the 142 

context of climate change adaptation has been challenging (Milly et al., 2002; Ma et al., 2014). 143 

There is a lack of simple performance indicators for watershed health at its point of relating 144 

precipitation P and river flow Q (step 2 in Figure 1) that align with local observations of river 145 

behaviour and concerns about its change and that can reconcile local, public/policy and 146 

scientific knowledge, thereby helping negotiated change in watershed management (Leimona 147 

et al., 2015). The behaviour of rivers depends on many climatic (step 1 in Figure 1) and terrain 148 

factors (step 7-9 in Figure 1) that make it a challenge to differentiate between anthropogenically 149 

induced ecosystem structural change and soil degradation (step 7a) on one hand and intrinsic 150 

variability on the other. Arrow 10 in Figure 1 represents the direct influence of climate on 151 

vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological 152 

models tend to focus on predicting hydrographs at one or more temporal scales, and are usually 153 

tested on data-sets from limited locations. Despite many decades (if not centuries) of 154 

hydrological modelling, current hydrologic theory, models and empirical methods have been 155 

found to be largely inadequate for sound predictions in ungauged basins (Hrachowitz et al., 156 

2013). Efforts to resolve this through harmonization of modelling strategies have so far failed. 157 

Existing models differ in the number of explanatory variables and parameters they use, but are 158 

generally dependent on empirical data of rainfall that are available for specific measurement 159 

points but not at the spatial resolution that is required for a close match between measured and 160 

modelled river flow. Spatially explicit models have conceptual appeal (Ma et al., 2010) but 161 

have too many degrees of freedom and too many opportunities for getting right answers for 162 

wrong reasons if used for empirical calibration (Beven, 2011). Parsimonious, parameter-sparse 163 

models are appropriate for the level of evidence available to constrain them, but these 164 

parameters are themselves implicitly influenced by many aspects of existing and changing 165 

features of the watershed, making it hard to use such models for scenario studies of interacting 166 

land use and climate change. Here we present a more direct approach deriving a metric of flow 167 
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predictability that can bridge local concerns and concepts to quantified hydrologic function: the 168 

‘flow persistence’ parameter (step 2 in Figure 1).   169 

In this contribution to the debate we will first define the metric ‘flow persistence’ in the context 170 

of temporal autocorrelation of river flow and then derive a way to estimate its numerical value. 171 

In part II we will apply the algorithm to river flow data for a number of contrasting meso-scale 172 

watersheds. In the discussion of this paper we will consider the new flow persistence metric in 173 

terms of three groups of criteria for usable knowledge (Clark et al., 2011; Lusiana et al., 2011; 174 

Leimona et al., 2015) based on salience (1,2), credibility (3,4) and legitimacy (5-7): 175 

1. Does flow persistence relate to important aspects of watershed behaviour?  176 

2. Does its quantification help to select management actions? 177 

3. Is there consistency of numerical results? 178 

4. How sensitive is it to bias and random error in data sources? 179 

5. Does it match local knowledge?  180 

6. Can it be used to empower local stakeholders of watershed management?  181 

7. Can it inform local risk management?  182 

Questions 3 and 4 will get specific attention in part II.  183 

2 Recursive river flow model and flow persistence  184 

2.1 Basic equations 185 

One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, 186 

related to the volumetric flow (discharge) via rating curves (Maidment, 1992). Without 187 

knowing details of upstream rainfall and the pathways the rain takes to reach the river, 188 

observation of the daily fluctuations in water level allows important inferences to be made. It 189 

is also of direct utility: sudden rises can lead to floods without sufficient warning, while rapid 190 

decline makes water utilization difficult. Indeed, a common local description of watershed 191 

degradation is that rivers become more ‘flashy’ and less predictable, having lost a buffer or 192 

‘sponge‘ effect (Joshi et al., 2004; Ranieri et al., 2004; Rahayu et al., 2013). A simple model of 193 

river flow at time t, Qt, is that it is similar to that of the day before (Qt-1), to the degree Fp, a 194 
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dimensionless parameter called ‘flow persistence’ (van Noordwijk et al., 2011) plus an 195 

additional stochastic term Qa,t: 196 

Qt =Fp Qt-1 + Qa,t                                                   [1]. 197 

Qt is for this analysis expressed in mm d-1, which means that measurements in m3 s-1 need to be 198 

divided by the relevant catchment area, with appropriate unit conversion. If river flow were 199 

constant, it would be perfectly predictable, i.e. Fp would be 1.0 and Qa,t zero; in contrast, an Fp-200 

value equal to zero and Qa,t directly reflecting erratic rainfall represents the lowest possible 201 

level of predictability.  202 

The Fp parameter is conceptually identical to the ‘recession constant’ commonly used in 203 

hydrological models, typically assessed during an extended dry period when the Qa,t term is 204 

negligible and streamflow consists of base flow only (Tallaksen, 1995); empirical deviations 205 

from a straight line in a plot of the logarithm of Q against time are common and point to multiple 206 

rather than a single groundwater pool that contributes to base flow. The larger catchment area 207 

has a possibility to get additional flow from multiple independent groundwater contribution. 208 

As we will demonstrate in a next section, it is possible to derive Fp even when Qa,t is not 209 

negligible. In climates without distinct dry season this is essential; elsewhere it allows a 210 

comparison of apparent Fp between wet and dry parts of the hydrologic year. A possible 211 

interpretation, to be further explored, is that decrease over the years of Fp indicates ‘watershed 212 

degradation’ (i.e. greater contrast between high and low flows), and an increase ‘improvement’ 213 

or ‘rehabilitation’ (i.e. more stable flows). 214 

If we consider the sum of river flow over a period of time (from 1 to T) we obtain 215 

Σ1
T Qt =Fp Σ1

T Qt-1 + Σ1
T Qa,t                               [2]. 216 

If the period is sufficiently long period for QT minus Q0 (the values of Qt for t=T and t=0, 217 

respectively) to be negligibly small relative to the sum over all t‘s, we may equate Σ1
T Qt with 218 

Σ1
T Qt-1 and obtain a first way of estimating the Fp value: 219 

Fp = 1 – Σ1
T Qa,t / Σ1

T Qt                                        [3]. 220 

Rearranging Eq.(3) we obtain 221 

Σ1
T Qa,t = (1 – Fp) Σ1

T Qt          [4]. 222 

The ΣQa,t term reflects the sum of peak flows in mm, while Fp ΣQt  reflects the sum of base 223 

flow, also in mm. Clarifying the Qa contribution is equivalent with one of several ways to 224 
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separate base flow from peak flows. For Fp = 1 (the theoretical maximum) we conclude that all 225 

Qa,t must be zero, and all flow is ‘base flow‘.  226 

The stochastic Qa,t can be interpreted in terms of what hydrologists call ‘effective rainfall’ (i.e. 227 

rainfall minus on-site evapotranspiration, assessed over a preceding time period tx since 228 

previous rain event): 229 

Qt =Fp Qt-1 + (1-Fp)(Ptx – Etx)                                                   [5]. 230 

Where Ptx is the (spatially weighted) precipitation (assuming no snow or ice, which would shift 231 

the focus to snowmelt) in mm d-1; Etx , also in mm d-1, is the preceding evapotranspiration that 232 

allowed for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-233 

replenishing rainfall that induced empty pore space in the soil for infiltration and retention), or 234 

replenishment of a waterfilm on aboveground biomass that will subsequently evaporate. More 235 

complex attributions are possible, aligning with the groundwater replenishing bypass flow  and 236 

the water isotopic fractionation involved in evaporation (Evaristo et al., 2015).  237 

The consistency of multiplying effective rainfall with (1-Fp) can be checked by considering the 238 

geometric series (1-Fp), (1-Fp) Fp, (1-Fp) Fp
2, …, (1-Fp) Fp

n which adds up to (1-Fp)(1 - Fp
n)/(1-239 

Fp) or 1 - Fp
n.  This approaches 1 for large n, suggesting that all of the water attributed to time 240 

t, i.e. Pt – Etx, will eventually emerge as river flow. For Fp = 0 all of (Pt – Etx) emerges on the 241 

first day, and river flow is as unpredictable as precipitation itself. For Fp = 1 all of (Pt – Etx) 242 

contributes to the stable daily flow rate, and it takes an infinitely long period of time for the last 243 

drop of water to get to the river. For declining Fp, (1 > Fp > 0), river flow gradually becomes 244 

less predictable, because a greater part of the stochastic precipitation term contributes to 245 

variable rather than evened-out river flow.  246 

Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain: 247 

ΣQt =Σ(Fp Qt-1 + (1-Fp)(Pt – Etx)) = Fp Σ Qt-1 + (1-Fp)( Σ Pt – Σ Etx))        [6]. 248 

Which is consistent with the basic water budget, ΣQ = ΣP – ΣE, at time scales long enough for 249 

changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean 250 

daily river flow are independent of Fp. This does not preclude that processes of watershed 251 

degradation or restoration that affect the partitioning of P over Q and E also affect Fp.  252 
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2.2 Low flows 253 

The lowest flow expected in an annual cycle is Qx Fp
Nmax where Qx is flow on the first day 254 

without rain and Nmax the longest series of dry days. Taken at face value, a decrease in Fp has 255 

a strong effect on low-flows, with a flow of 10% of Qx reached after 45, 22, 14, 10, 8 and 6 256 

days for Fp = 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7, respectively. However, the groundwater 257 

reservoir that is drained, equalling the cumulative dry season flow if the dry period is 258 

sufficiently long, is Qx/(1-Fp). If Fp decreases to Fpx but the groundwater reservoir (Res = 259 

Qx/(1-Fp)) is not affected, initial flows in the dry period will be higher (Qx Fpx
i (1-Fpx) Res > 260 

Qx Fp
i (1-Fp) Res for i < log((1-Fpx)/(1-Fp))/log(Fp/Fpx)). It thus matters how low flows are 261 

evaluated: from the perspective of the lowest level reached, or as cumulative flow. The 262 

combination of climate, geology and land form are the primary determinants of cumulative 263 

low flows, but if land cover reduces the recharge of groundwater there may be impacts on dry 264 

season flow, that are not directly reflected in Fp. 265 

If a single Fp value would account for both dry and wet season, the effects of changing Fp on 266 

low flows may well be more pronounced than those on flood risk. Empirical tests are needed 267 

of the dependence of Fp on Q (see below). Analysis of the way an aggregate Fp depends on 268 

the dominant flow pathways provides a basis for differentiating Fp within a hydrologic year. 269 

2.3 Flow-pathway dependence of flow persistence 271 

The patch-level partitioning of water between infiltration and overland flow is further modified 272 

at hillslope level, with a common distinction between three pathways that reach streams: 273 

overland flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 274 

2004). An additional interpretation of Eq.(1), potentially adding to our understanding of results 275 

but not needed for analysis of empirical data, can be that three pathways of water through a 276 

landscape contribute to river flow (Barnes, 1939): groundwater release with Fp,g values close to 277 

1.0, overland flow with Fp,o values close to 0, and interflow with intermediate Fp,i values. 278 

Qt =Fp,g Qt-1,g + Fp,i Qt-1,i + Fp,o Qt-1,o + Qa,t         [7], 279 

Fp = (Fp,g Qt-1,g + Fp,i Qt-1,i  + Fp,o Qt-1,o)/Qt-1          [8]. 280 

On this basis a decline or increase in overall weighted average Fp can be interpreted as indicator 281 

of a shift of dominant runoff pathways through time within the watershed. Dry season flows 282 

are dominated by Fp,g. The effective Fp in the rainy season can be interpreted as indicating the 283 
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relative importance of the other two flow pathways. Fp reflects the fractions of total river flow 284 

that are based on groundwater, overland flow and interflow pathways: 285 

Fp = Fp,g (ΣQt,g / ΣQt) +  Fp,o (ΣQt,o /ΣQt) +  Fp,i (ΣQt,i / ΣQt)                [9]. 286 

Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to 287 

enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated 288 

conditions throughout the soil profile may also induce overland flow, especially near valley 289 

bottoms (Bonell, 1993; Bruijnzeel, 2004). Thus, the value of Fp,o
 can be substantially above 290 

zero if the rainfall has a significant temporal autocorrelation, with heavy rainfall on subsequent 291 

days being more likely than would be expected from general rainfall frequencies. If rainfall 292 

following a wet day is more likely to occur than following a dry day, as is commonly observed 293 

in Markov chain analysis of rainfall patterns (Jones and Thornton, 1997; Bardossy and Plate, 294 

1991), the overland flow component of total flow will also have a partial temporal 295 

autocorrelation, adding to the overall predictability of river flow. In a hypothetical climate with 296 

evenly distributed rainfall, we can expect Fp to be 1.0 even if there is no infiltration and the only 297 

pathway available is overland flow. Even with rainfall that is variable at any point of 298 

observation but has low spatial correlation it is possible to obtain Fp values of (close to) 1.0 in 299 

a situation with (mostly) overland flow (Ranieri at al., 2004).  300 

3. Methods  301 

3.1 Numerical example 302 

Figure 2 provides an example of the way a change in Fp values (based on Eq. 1) influences the 303 

pattern of river flow for a unimodal rainfall regime with a well-developed dry season. The figure 304 

was constructed in a Monte Carlo realization of rainfall based on a (truncated) sinus-based 305 

probability of rainfall and rectangular rainfall depth to derive the (Ptx – Etx) term, with the Qa,t 306 

values derived as (1 – Fp) (Ptx – Etx). The increasing ‘spikiness’ of the graph as Fp is lowered 307 

indicates reduced predictability of flow on any given day during the wet season on the basis of 308 

the flow on the preceding day. A bi-plot of river flow on subsequent days for the same 309 

simulations (Figure 3) shows two main effects of reducing the Fp value: the scatter increases, 310 

and the slope of the lower envelope containing the swarm of points is lowered (as it equals Fp). 311 

Both of these changes can provide entry points for an algorithm to estimate Fp from empirical 312 

time series, provided the basic assumptions of the simple model apply and the data are of 313 
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acceptable quality (see Section 3 below). For the numerical example shown in Figure 2, the 314 

maximum daily flow doubled from 50 to 100 mm when the Fp value decreased from a value 315 

close to 1 (0.98) to nearly 0.  316 

 Figure 2 317 

 Figure 3 318 

3.2 Flow persistence as a simple flood risk indicator 319 

For numerical examples (implemented in a spreadsheet model) flow on each day can be derived 320 

as: 321 

Qt =Σj
t Fp

t-j (1-Fp) pj Pj          [10]. 322 

Where pj reflects the occurrence of rain on day j (reflecting a truncated sine distribution for 323 

seasonal trends) and Pj is the rain depth (drawn from a uniform distribution). From this model 324 

the effects of Fp (and hence of changes in Fp) on maximum daily flow rates, plus maximum 325 

flow totals assessed over a 2-5 d period, was obtained in a Monte Carlo process (without 326 

Markov autocorrelation of rainfall in the default case – see below). Relative flood protection 327 

was calculated as the difference between peak flows (assessed for 1-5 d duration after a 1 year 328 

‘warm-up‘ period) for a given Fp versus those for Fp = 0, relative to those at Fp = 0. 329 

3.3 An algorithm for deriving Fp from a time series of stream flow data 330 

Equation (3) provides a first method to derive Fp from empirical data if these cover a full 331 

hydrologic year. In situations where there is no complete hydrograph and/or in situations where 332 

we want to quantify Fp for shorter time periods (e.g. to characterise intraseasonal flow patterns) 333 

and the change in the storage term of the water budget equation cannot be ignored, we need an 334 

algorithm for estimating Fp from a series of daily Qt observations.  335 

Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a 336 

groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). 337 

As we can assume for such periods that Qa,t = 0, we obtain Fp = Qt /Qt-1, under these 338 

circumstances. We cannot be sure, however, that this Fp,g estimate also applies in the rainy 339 

season, because overall wet-season Fp will include contributions by Fp,o and Fp,i as well 340 

(compare Eq. 9). In locations without a distinct dry season, we need an alternative method. 341 

A biplot of Qt against Qt-1 (as in Figure 3) will lead to a scatter of points above a line with slope 342 

Fp, with points above the line reflecting the contributions of Qa,t >0, while the points that plot 343 

on the Fp line itself represent Qa,t = 0 mm d-1. There is no independent source of information on 344 
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the frequency at which Qa,t = 0, nor what the statistical distribution of Qa,t values is if it is non-345 

zero. Calculating back from the Qt series we can obtain an estimate (Qa,Fptry) of Qa,t for any 346 

given estimate (Fp,try) of Fp, and select the most plausible Fp value. For high Fp,try estimates there 347 

will be many negative Qa,Fptry values, for low Fp,try estimates all Qa,Fptry values will be larger. An 348 

algorithm to derive a plausible Fp estimate can thus make use of the corresponding distribution 349 

of ‘apparent Qa‘ values as estimates of Fp,try , calculated as Qa,try = Qt - Fp,try Qt-1. While Qa,t 350 

cannot be negative in theory, small negative Qa estimates are likely when using real-world data 351 

with their inherent errors. The FlowPer Fp algorithm (van Noordwijk et al., 2011) derives the 352 

distribution of Qa,try estimates for a range of Fp,try values (Figure 4B) and selects the value Fp,try 353 

that minimizes the variance Var(Qa,Fptry) (or its standard deviation) (Figure 4C). It is 354 

implemented in a spreadsheet workbook that can be downloaded from the ICRAF website  355 

(http://www.worldagroforestry.org/output/flowper-flow-persistence-model) 356 

Figure 4 357 

A consistency test is needed that the high-end Qt values relate to Qt+1 in the same was as do low 358 

or medium Qt values. Visual inspection of Qt+1 versus Qt, with the derived Fp value, provides a 359 

qualitative view of the validity of this assumption. The Fp algorithm can be applied to any 360 

population of (Qt-1, Qt) pairs, e.g. selected from a multiyear data set on the basis of 3-month 361 

periods within the hydrological year. 362 

4 Results 363 

4.1 Flood intensity and duration  364 

Figure 5 shows the effect of Fp values in the range 0 to 1 on the maximum flows obtained with 365 

a random time series of ‘effective rainfall‘, compared to results for Fp = 0. Maximum flows 366 

were considered at time scales of 1 to 5 days, in a moving average routine. This way a relative 367 

flood protection, expressed as reduction of peak flow, could be related to Fp (Figure 5A).  368 

 Figure 5  369 

Relative flood protection rapidly decreased from its theoretical value of 100% at Fp = 1 (when 370 

there was no variation in river flow), to less than 10% at Fp values of around 0.5. Relative flood 371 

protection was slightly lower when the assessment period was increased from 1 to 5 days 372 

(between 1 and 3 d it decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting 373 

effects are at play here: a lower Fp means that a larger fraction (1-Fp) of the effective rainfall 374 

contributes to river flow, but the increased flow is less persistent. In the example the flood 375 

http://www.worldagroforestry.org/output/flowper-flow-persistence-model
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protection in situations where the rainfall during 1 or 2 d causes the peak is slightly stronger 376 

than where the cumulative rainfall over 3-5 d causes floods, as typically occurs downstream.  377 

As we expect from equation 5 that peak flow is to (1-Fp) times peak rainfall amounts, the effect 378 

of a change in Fp not only depends on the change in Fp that we are considering, but also on its 379 

initial value. Higher initial Fp values will lead to more rapid increases in high flows for the same 380 

reduction in Fp (Figure 5B). However, flood duration rather responds to changes in Fp in a 381 

curvilinear manner, as flow persistence implies flood persistence (once flooding occurs), but 382 

the greater the flow persistence the less likely such a flooding threshold is passed (Figure 5C). 383 

The combined effect may be restricted to about 3 d of increase in flood duration for the 384 

parameter values used in the default example, but for different parametrization of the stochastic 385 

ε other results might be obtained.  386 

4.2 Algorithm for Fp estimates from river flow time series 387 

The algorithm has so far returned non-ambiguous Fp estimates on any modelled time series data 388 

of river flow, as well as for all empirical data set we tested (including all examples tested in 389 

part II), although there probably are data sets on which it can breakdown. Visual inspection of 390 

Qt-1/Qt biplots (as in Figure 3) can provide clues to non-homogenous data sets, to potential 391 

situations where effective Fp depends on flow level Qt and where data are not consistent with a 392 

straight-line lower envelope. Where river flow estimates were derived from a model with 393 

random elements, however, variation in Fp estimates was observed, that suggests that specific 394 

aspects of actual rainfall, beyond the basic characteristics of a watershed and its vegetation, do 395 

have at least some effect. Such effects deserve to be further explored for a set of case studies, 396 

as their strength probably depends on context.  397 

5 Discussion 398 

We will discuss the flow persistence metric based on the questions raised from the perspectives 399 

of salience, credibility and legitimacy. 400 

5.1 Salience 401 

Key salience aspects are “Does flow persistence relate to important aspects of watershed 402 

behaviour?” and “Does it help to select management actions?”. A major finding in the 403 

derivation of Fp was that the flow persistence measured at daily time scale can be logically 404 

linked to the long-term water balance, and that the proportion of peak rainfall that translates to 405 
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peak river flow equals the complement of flow persistence. This feature links effects on floods 406 

of changes in watershed quality to effects on low flows, although not in a linear relationship. 407 

The Fp parameter as such does not predict when and where flooding will occur, but it does help 408 

to assess to what extent another condition of the watershed, with either higher or lower Fp would 409 

translate the same rainfall into larger or small peak water flows. This is salient, especially if the 410 

relative contributions of (anthropogenic) land cover and the (exogenous, probabilistic) specifics 411 

of the rainfall pattern can be further teased apart (see part II). Where Fp may describe the 412 

descending branch of hydrographs at a relevant time scale, details of the ascending branch 413 

beyond the maximum daily flow reached may be relevant for reducing flood damage, and may 414 

require more detailed study at higher temporal resolution. 415 

A key strength of our flow persistence parameter, that it can be derived from observing river 416 

flow at a single point along the river, without knowledge of rainfall events and catchment 417 

conditions, is also its major weakness. If rainfall data exist, and especially rainfall data that 418 

apply to each subcatchment, the Qa term doesn’t have to be treated as a random variable and 419 

event-specific information on the flow pathways may be inferred for a more precise account of 420 

the hydrograph. But for the vast majority of rivers in the tropics, advances in remotely sensed 421 

rainfall data are needed to achieve that situation and Fp may be all that is available to inform 422 

public debates on the relation between forests and floods.  423 

Figures 2 and 5 show that most of the effects of a decreasing Fp value on peak discharge (which 424 

is the basis for downstream flooding) occur between Fp values of 1 and 0.7, with the relative 425 

flood protection value reduced to 10% when Fp reaches 0.5. As indicated in Figure 1, peak 426 

discharge is only one of the factors contributing to flood risk in terms of human casualties and 427 

physical damage. Flood risks are themselves nonlinearly and in strongly topography-specific 428 

ways related to the volume of river flow after extreme rainfall events. While the expected 429 

fraction of rainfall that contributes to direct flow is linearly related to rainfall via (1-Fp), 430 

flooding risk as such will have a non-linear relationship with rainfall, that depends on 431 

topography and antecedent rainfall. Catchment changes, such as increases or decreases in 432 

percentage tree cover, will generally have a non-linear relationship with Fp as well as with 433 

flooding risks. The Fp value has an inverse effect on the fraction of recent rainfall that becomes 434 

river flow, but the effect on peak flows is less, as higher Fp values imply higher base flow. The 435 

way these counteracting effects balance out depends on details of the local rainfall pattern 436 

(including its Markov chain temporal autocorrelation), as well as the downstream topography 437 
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and risk of people being at the wrong time at a given place, but the Fp value is an efficient way 438 

of summarizing complex land use mosaics and upstream topography in its effect on river flow. 439 

The difference between wet-season and dry-season Fp deserves further analysis. In climates 440 

with a real rainless dry-season, dry season Fp is dominated by the groundwater release fraction 441 

of the watershed, regardless of land cover, while in wet season it depends on the mix (weighted 442 

average) of flow pathways. The degree to which Fp can be influenced by land cover needs to 443 

be assessed for each landscape and land cover combination, including the locally relevant forest 444 

and forest derived land classes, with their effects on interception, soil infiltration and time 445 

pattern of transpiration. The Fp value can summarize results of models that explore land use 446 

change scenarios in local context. To select the specific management actions that will maintain 447 

or increase Fp a locally calibrated land use/hydrology model is needed, such as GenRiver (part 448 

II), DHV (Bergström, 1995) or SWAT (Yen et al., 2015).  449 

Although a higher Fp value will in most cases be desirable (and a decrease in Fp undesirable), 450 

we may expect that downstream biota have adjusted to the pre-human flow conditions and its 451 

inherent Fp and variability. Decreased variability of flow achieved by engineering interventions 452 

(e.g. a reservoir with constant release of water to generate hydropower) may have negative 453 

consequences for fish and other biota (Richter et al., 2003; McCluney et al., 2014). 454 

The “health” concept we use is a comprehensive one of the way climate, watershed and 455 

engineering interventions interact on functional aspects of river flow. In the catchments we 456 

considered in part II there have been no major dams or reservoirs installed. Ma et al (2014) 457 

described a method to separate these three influences on river flow. Where these do exist the 458 

specific operating rules of reservoirs need to be included in any model and these can have a 459 

major influence on downstream flow, depending on the primary use for power generation, dry 460 

season irrigation or stabilizing river flow for riverine transport. 461 

5.2 Credibility 462 

Key credibility questions are “Consistency of numerical results?” and “How sensitive are 463 

results to bias and random error in data sources?”. This is further discussed in part II, after a 464 

number of case studies has been studied. The main conclusions are that intra-annual variability 465 

of Fp values between wet and dry seasons was around 0.2 in the case studies, interannual 466 

variability in either annual or seasonal Fp was generally in the 0.1 range, while the difference 467 

between observed and simulated flow data as basis for Fp calculations was mostly less than 0.1. 468 
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With current methods, it seems that effects of land cover change on flow persistence that shift 469 

the Fp value by about 0.1 are the limit of what can be  asserted from empirical data (with shifts 470 

of that order in a single year a warning sign rather than a firmly established change). When 471 

derived from observed river flow data Fp is suitable for monitoring change (degradation, 472 

restoration) and can be a serious candidate for monitoring performance in outcome-based 473 

ecosystem service management contracts. In interpreting changes in Fp as caused by changes 474 

in the condition in the watershed, however, changes in specific properties of the rainfall regime 475 

must be excluded. At the scale of paired catchment studies this assumption may be reasonable, 476 

but in temporal change (or using specific events as starting point for analysis), it is not easy to 477 

disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not only 478 

responds to, but also influences rainfall (arrow 10 in Figure 1; van Noordwijk et al., 2015b) 479 

further complicates the analysis across scales. 480 

As indicated, the Fp method is related to earlier methods used in streamflow hydrograph 481 

separation of base flow and quick flow. While textbooks (Ward and Robinson, 2000; 482 

Hornberger et al 2014) tend to be critical of the lack of objectivity of graphical methods, 483 

algorithms are used for deriving the minimum flow in a fixed or sliding period of reference as 484 

base flow (Sloto and Crouse, 1996; Furey and Gupta, 2001). The time interval used for deriving 485 

the minimum flow depends on catchment size. Figure 6 compares results for a hydrograph of a 486 

single year of one of the catchments described in more detail in paper II. While there is 487 

agreement on most of what is indicated ass baseflow, the short term response to peaks in the 488 

flow differ, with baseflow in the Fp method more rapidly increasing after peak events. When 489 

compared across multiple years for the four catchments described in detail in paper II (figure 490 

7), there is partial agreement in the way interannual variation is described in each catchment, 491 

while numerical values are similar, but the ratio of what is indicated as baseflow according to 492 

the Fp method and according to standard hydrograph separation varies from 1.05 to 0.86. 493 

 Figure 6 494 

 Figure 7 495 

Recursive models that describe flow in a next time interval on the basis of a fraction of that in 496 

the preceding time interval with a term for additional flow due to additional rainfall have been 497 

used in analysis of peak flow event before, with time intervals as short as 1 minute rather than 498 

the 1 day we use here (Rose, 2004). Through reference to an overall mass balance a relationship 499 

similar to what we found here (Fp times preceding flow plus 1 – Fp times recent inputs) was 500 
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also used in such models. To our knowledge, the method we describe here at daily timescales 501 

has not been used before. 502 

The idea that the form of the storage-discharge function can be estimated from analysis of 503 

streamflow fluctuations has been explored before for a class of catchments in which discharge 504 

is determined by the volume of water in storage (Kirchner, 2009). Such catchments behave as 505 

simple first-order nonlinear dynamical systems and can be characterized in a single-equation 506 

rainfall-runoff model that predicted streamflow, in a test catchment in Wales, as accurately as 507 

other models that are much more highly parameterized. This model of the dQ/dt versus Q 508 

relationship can also be analytically inverted; thus, it can be used to “do hydrology backward,” 509 

that is, to infer time series of whole-catchment precipitation directly from fluctuations in 510 

streamflow. The slope of the log-log relationship between flow recession (dQ/dt) and Q that 511 

Kirchner (2009) used is conceptually similar to the Fp metric we derived here, but the specific 512 

algorithm to derive the parameter from empirical data differs. Estimates of dQ/dt are sensitive 513 

to noise in the measurement of Q and the possibly frequent and small increases in Q can be 514 

separated from the expected flow recession in the algorithm we presented here. 515 

Seifert and Beven (2009) discussed the increase in predictive skill of models depending on the 516 

amount of location-specific data that can be used to constrain them. They found that the 517 

ensemble prediction of multiple models for a single location clearly outperformed the 518 

predictions using single parameter sets and that surprisingly little runoff data was necessary to 519 

identify model parameterizations that provided good results for “ungauged” test periods in 520 

cases where actual measurements were available. Their results indicated that a few runoff 521 

measurements can contain much of the information content of continuous runoff time series. 522 

The way these conclusions might be modified if continuous measurements for limited time 523 

periods, rather than separated single data points on river flow could be used, remains to be 524 

explored. Their study indicated that results may differ significantly between catchments and 525 

critical tests of Fp across multiple situations are obviously needed, as paper II will provide.  526 

In discussions and models of temperate zone hydrology (Bergström, 1995; Seifert, 1999) 527 

snowmelt is a major component of river flow and effects of forest cover on spring temperatures 528 

are important to the buffering of the annual peaks in flow that tend to occur in this season. 529 

Application of the Fp method to data describing such events has yet to be done. 530 
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5.3 Legitimacy 531 

Legitimacy aspects are “Does it match local knowledge?” and “Can it be used to empower local 532 

stakeholders of watershed management?” and “Can it inform risk management?”. As the Fp 533 

parameter captures the predictability of river flow that is a key aspect of degradation according 534 

to local knowledge systems, its results are much easier to convey than full hydrographs or 535 

exceedance probabilities of flood levels. By focusing on observable effects at river level, rather 536 

than prescriptive recipes for land cover (“reforestation”), the Fp parameter can be used to more 537 

effectively compare the combined effects of land cover change, changes in the riparian wetlands 538 

and engineered water storage reservoirs, in their effect on flow buffering. It is a candidate for 539 

shifting environmental service reward contracts from input to outcome based monitoring (van 540 

Noordwijk et al., 2012).  As such it can be used as part of a negotiation support approach to 541 

natural resources management in which  levelling off on knowledge and joint fact finding in 542 

blame attribution are key steps to negotiated solutions that are legitimate and seen to be so (van 543 

Noordwijk et al., 2013; Leimona et al., 2015). Quantification of Fp can help assess tactical 544 

management options (Burt et al., 2014) as in a recent suggestion to minimize negative 545 

downstream impacts of forestry operations on stream flow by avoiding land clearing and 546 

planting operations in locally wet La Niña years. But the most challenging aspect of the 547 

management of flood, as any other environmental risk, is that the frequency of disasters is too 548 

low to intuitively influence human behaviour where short-term risk taking benefits are 549 

attractive. Wider social pressure is needed for investment in watershed health (as a type of 550 

insurance premium) to be mainstreamed, as individuals waiting to see evidence of necessity are 551 

too late to respond. In terms of flooding risk, actions to restore or retain watershed health can 552 

be similarly justified as insurance premium. It remains to be seen whether or not the 553 

transparency of the Fp metric and its intuitive appeal are sufficient to make the case in public 554 

debate when opportunity costs of foregoing reductions in flow buffering by profitable land use 555 

are to be compensated and shared (Burt et al., 2014). 556 

5.4 Conclusions and specific questions for a set of case studies 557 

In conclusion, the Fp metric appears to allow an efficient way of summarizing complex 558 

landscape processes into a single parameter that reflects the effects of landscape management 559 

within the context of the local climate. If rainfall patterns change but the landscape does not, 560 

the resultant flow patterns may reflect a change in watershed health (van Noordwijk et al., 561 

2016). Flow persistence is the result of rainfall persistence and the temporal delay provided by 562 
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the pathway water takes through the soil and the river system. High flow persistence indicates 563 

a reliable water supply, while minimizing peak flow events.  Wider tests of the Fp metric as 564 

boundary object in science-practice-policy boundary chains (Kirchhoff et al., 2015; Leimona et 565 

al., 2015) are needed. Further tests for specific case studies can clarify how changes in tree 566 

cover (deforestation, reforestation, agroforestation) in different contexts influence river flow 567 

dynamics and Fp values. Sensitivity to specific realizations of underlying time-space rainfall 568 

patterns needs to be quantified, before changes in Fp can be attributed to ‘watershed quality‘, 569 

rather than chance events. 570 
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 782 

 783 

Figure 1. Steps in a causal pathway that relates rainfall (1) via watershed conditions (2) to the 784 

pattern of river flow described in a hydrograph (3), which can get modified by the conditions 785 

along the river channel into a hazard of flood frequency and duration (4); jointly with 786 

exposure (being in the wrong place at critical times, 5) and vulnerability (6) this determines 787 

flood damage; in avoiding flood damage, the condition in the watershed with its landcover 788 

and spatial configuration (7) influences the patch level water partitioning over overland flow 789 

and infiltration (8), while hillslope level configuration further influences flow pathways (9) 790 

and land cover potentially influences rainfall (10) 791 

 792 

793 
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 794 

 795 

Figure 2. Example of daily river flow, split into a base flow and additional flow component, for 796 

a unimodal sinus-based rainfall probability multiplied with a rainfall depth calculated as 797 

60^rand(0.1) mm/day (~120 rainy days, annual Q ~ 1600 mm) in watersheds characterized 798 

by Fp values ranging from 0.95 to 0.2 799 

800 
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 801 

 802 

Figure 3. Biplots of Q(t) versus Q(t-1) for the same simulations as Figure 2 803 

804 
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 805 

  806 

Figure 4. Example of the derivation of best fitting Fp,try value for an example hydrograph (A) 807 

on the basis of the inferred Qa distribution (cumulative frequency in B), and three properties 808 

of this distribution (C): its sum, frequency of negative values and standard deviation; the 809 

Fp,try minimum of the latter is derived from the parameters of a fitted quadratic equation 810 

811 
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 812 
 813 
Figure 5. A. Effects of flow persistence on the relative flood protection (decrease in maximum 814 

flow measured over a 1 – 5 d period relative to a case with Fp = 0 (a few small negative 815 

points were replaced by small positive values to allow the exponential fit); B and C. effects 816 

of a decrease in flow persistence on the volume of water involved in peak flows (B; 817 

relative to the volume at Fp is 0.6 – 0.9) and in the duration (in d) of floods (C) 818 

  819 
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 820 
Figure 6. Comparison of baseflow separation of a hydrograph according to the flow 821 

persistence method (A) and two common flow separation methods, respectively with fixed 822 

(B) and sliding intervals (C) 823 

 824 
 825 

Figure 7. Comparison of yearly data for four watersheds (see paper II) analysed with common 826 

flow separation methods (as in Fig. 6) and the flow persistence method  827 

828 
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Abstract 835 

The way watersheds buffer the temporal pattern of river flow relative to the temporal 836 

pattern of rainfall is an important ecosystem service. Part of this buffering is inherent to 837 

its geology and climate, but another part is responding to human use and misuse of the 838 

landscape, and can be part of management feedback loops if salient, credible and 839 

legitimate indicators can be found and used. Dissecting the anthropogenic change from 840 

exogenous variability (e.g. the specific time-space pattern of rainfall during an 841 

observation period) is relevant for designing and monitoring of watershed management 842 

interventions. Part I introduced the concept of flow persistence, key to a parsimonious 843 

recursive model of river flow. It also discussed the operational derivation of the Fp 844 

parameter. Here we compare Fp estimates from four meso-scale watersheds in Indonesia 845 

(Cidanau, Way Besai, and Bialo) and Thailand (Mae Chaem), with varying climate, 846 

geology and land cover history, at a decadal time scale. The likely response in each of 847 

these four to variation in rainfall properties (incl. the maximum hourly rainfall intensity) 848 

and land cover (comparing scenarios with either more or less forest and tree cover than 849 

the current situation) was explored through a basic daily water balance model, 850 

GenRiver. This model was calibrated for each site on existing data, before being used 851 

to explore alternative land cover and rainfall parameter settings. In both data and model 852 

runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season 853 

values for all four sites. Across the four catchments Fp values decreased with increasing 854 

annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat 855 

soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing 856 

the mean rainfall intensity (at constant monthly totals for rainfall) around the values 857 

considered typical for each landscape was predicted to decrease Fp values by between 858 

mailto:m.vannoordwijk@cgiar.org


 35 

0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change 859 

plus changes in rainfall intensity depends on other characteristics of the watersheds, and 860 

generalizations made on the basis of one or two case studies may not hold, even within 861 

the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-862 

agroforestry mosaic case studies. Interannual variability in Fp was found to be large 863 

relative to effects of land cover change and likely reflects sensitivity in the model of 864 

Hortonian overland flow to variations in rainfall intensity. Multiple (5-10) years of 865 

paired-plot data would generally be needed to reject no-change null-hypotheses on the 866 

effects of land use change (degradation and restoration). While empirical evidence of 867 

such effects at scale is understandably scarce, Fp trends over time serve as a holistic 868 

scale-dependent performance indicator of degrading/recovering watershed health and 869 

can be tested for acceptability and acceptance in a wider socio-ecological context. 870 

Introduction 871 

Inherent properties (geology, geomorphology) interact with climate and human modification of 872 

vegetation, soils, drainage and riparian wetlands in the degree of buffering that watersheds 873 

provide (Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the space-time 874 

dynamics of rainfall is an ecosystem service, reducing the exposure of people living on 875 

geomorphological floodplains to high-flow events, and increasing predictability and river flow 876 

in dry periods (Joshi et al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation 877 

and with a sealed surface, river flow will directly respond to the spatial distribution of rainfall, 878 

with only the travel time to any point of specific interest influencing the temporal pattern of 879 

river flow. Any persistence or predictability of river flow in such a situation will reflect 880 

temporal autocorrelation of rainfall, beyond statistical predictability in seasonal rainfall 881 

patterns. On the other side of the spectrum, river flow can be constant every day, beyond the 882 

theoretical condition of constant rainfall, in a watershed that provides perfect buffering, by 883 

passing all water through groundwater pools that have sufficient storage capacity at any time 884 

during the year. Both infiltration-limited (Hortonian) and saturation-induced use of more rapid 885 

flow pathways (inter and overland flows) will reduce the flow persistence and make it, at least 886 

in part, dependent on rainfall events. Separating the effects of land cover (land use), engineering 887 

and rainfall on the actual flow patterns of rivers remains a considerable challenge (Ma et al., 888 

2014; Verbist et al., 2019). It requires data, models and concepts that can serve as effective 889 

boundary object in communication with stakeholders (Leimona et al. 2015; van Noordwijk et 890 
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al. 2012). There is a long tradition in using forest cover as such a boundary object, but there is 891 

only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et al., 2009; 892 

van Noordwijk et al. 2015a). 893 

In part I, we introduced a flow persistence parameter (Fp) that links the two, asymmetrical 894 

aspects of flow dynamics: translating rainfall excess into river flow, and gradually releasing 895 

water stored in the landscape.  Here, in part II we will apply the Fp algorithm to river flow data 896 

for a number of contrasting meso-scale watersheds in Southeast Asia. These were selected to 897 

represent variation in rainfall and land cover, and test the internal consistency of results based 898 

on historical data: two located in the humid and one in the subhumid tropics of Indonesia, and 899 

one in the unimodal subhumid tropics of northern Thailand.  900 

After exploring the patterns of variation in Fp estimates derived from river flow records, we 901 

will quantify the sensitivity of the Fp metric to variations in rainfall intensity and its response, 902 

on a longer timescale to land cover change. To do so, we will use a model that uses basic water 903 

balance concepts: rainfall interception, infiltration, water use by vegetation, overland flow, 904 

interflow and groundwater release, to a spatially structured watershed where travel time from 905 

sub watersheds to any point of interest modifies the predicted river flow. In the specific model 906 

used land cover effects on soil conditions, interception and seasonal water use have been 907 

included. After testing whether Fp values derived from model outputs match those based on 908 

empirical data where these exist, we rely on the basic logic of the model to make inference on 909 

the relative importance of modifying rainfall and land cover inputs. With the resulting temporal 910 

variation in calculated Fp values, we consider the time frame at which observed shifts in Fp can 911 

be attributed to factors other than chance (that means: null-hypotheses of random effects can be 912 

rejected with accepted chance of Type I errors).  913 

2. Methods 914 

2.1 GenRiver model for effects of land cover on river flow 915 

The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept 916 

with a daily time step and a flexible spatial subdivision of a watershed that influences the 917 

routing of water and employs spatially explicit rainfall. At patch level, vegetation influences 918 

interception, retention for subsequent evaporation and delayed transfer to the soil surface, as 919 

well as the seasonal demand for water. Vegetation (land cover) also influences soil porosity and 920 

infiltration, modifying the inherent soil properties. Water in the root zone is modelled separately 921 

for each land cover within a subcatchment, the groundwater stock is modelled at subcatchment 922 
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level. The spatial structure of a watershed and the routing of surface flows influences the time 923 

delays to any specified point of interest, which normally includes the outflow of the catchment. 924 

Land cover change scenarios are interpolated annually between time-series (measured or 925 

modelled) data. The model may use measured rainfall data, or use a rainfall generator that 926 

involves Markov chain temporal autocorrelation (rain persistence). As our data sources are 927 

mostly restricted to daily rainfall measurements and the infiltration model compares 928 

instantaneous rainfall to infiltration capacity, a stochastic rainfall intensity was applied at 929 

subcatchment level, driven by the mean as parameter and a standard deviation for a normal 930 

distribution (truncated at 3 standard deviations from the mean) proportional to it via a 931 

coefficient of variation as parameter. For the Mae Chaem site in N Thailand data by Dairaku et 932 

al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia we used 30 933 

mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the GenRiver 934 

model. The model itself, a manual and application case studies are freely available 935 

(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow;van 936 

Noordwijk et al., 2011). 937 

2.2 Empirical data-sets, model calibration 938 

Table 1 and Figure 1 provide summary characteristics and the location of river flow data  used 939 

in four meso-scale watersheds for testing the Fp algorithm and application of the GenRiver 940 

model. Figure 1 includes a water tower category in the agro-ecological zones; this is defined on 941 

the basis of a ratio of precipitation and potential evapotranspiration of more than 0.65, and a 942 

product of that ratio and relative elevation exceeding 0.277. 943 

 Table 1 944 

 Figure 1 945 

As major parameters for the GenRiver model were not independently measured for the 946 

respective watersheds, we tuned (calibrated) the model by modifying parameters within a 947 

predetermined plausible range, and used correspondence with measured hydrograph as test 948 

criterion (Kobolt et al. 2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target 949 

above 0.5) and bias (less than 25%) as test criteria and targets. Meeting these performance 950 

targets (Moriasi et al., 2007), we accepted the adjusted models as basis for describing current 951 

conditions and exploring model sensitivity. The main site-specific parameter values are listed 952 

in Table 2 and (generic) land cover specific default parameters in Table 3.  953 

 Table 2 954 

 Table 3 955 

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow
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Table 4 describes the six scenarios of land use change that were evaluated in terms of their 956 

hydrological impacts. Further description on the associated land cover distribution for each 957 

scenario in the four different watersheds is depicted in Appendix 2.  958 

 Table 4 959 

2.3 Bootstrapping to estimate the minimum observation 960 

The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly 961 

used to generate ‘surrogate population‘ for the purpose of approximating the sampling 962 

distribution of a statistic. In this study, the bootstrap approach was used to estimate the 963 

minimum number of observation (or yearly data) required for a pair-wise comparison test 964 

between two time-series of stream flow or discharge data (representing two scenarios of land 965 

use distributions) to be distinguishable from a null-hypothesis of no effect. The pair-wise 966 

comparison test used was Kolmogorov-Smirnov test that is commonly used to test the 967 

distribution of discharge data (Zhang eta al, 2006). We built a simple macro in R (R Core Team, 968 

2015) that entails the following steps: 969 

(i) Bootstrap or resample with replacement 1000 times from both time-series discharge 970 

data with sample size n; 971 

(ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge 972 

data, and record the P-value; 973 

(iii) Perform (i) and (ii) for different size of n, ranging from 5 to 50.  974 

(iv) Tabulate the p-value from the different sample size n, and determine the value of n when 975 

the p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). 976 

The associated n represents the minimum number of observations required.  977 

Appendix 3 provides an example of the macro in R used for this analysis.   978 

3. Results 979 

3.1 Empirical data of flow persistence as basis for model parameterization 980 

Inter-annual variability of Fp estimates derived for the four catchments (Figure 2) was of the 981 

order of 0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. 982 

For all for the years and locations, rainy season Fp values, with mixed flow pathways, were 983 

consistently below dry-season values, dominated by groundwater flows. If we can expect Fp,i 984 

and Fp,o (see equation 8 in part I) to be approximately 0.5 and 0, this difference between wet 985 
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and dry periods implies a 40% contribution of interflow in the wet season, a 20% contribution 986 

of overland flow or any combination of the two effects. 987 

Overall the estimates from modelled and observed data are related with 16% deviating more 988 

than 0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria 989 

for the hydrographs were met by the calibrated models for each site, we tentatively accept the 990 

model to be a basis for sensitivity study of  Fp to modifications to land cover and/or rainfall  991 

 Figure 2 992 

 Figure 3 993 

3.2 Comparing Fp effects of rainfall intensity and land cover change 994 

A direct comparison of model sensitivity to changes in mean rainfall intensity and land use 995 

change scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 996 

shifted the Fp value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but 997 

by 0.128 in Way Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change 998 

scenarios on Fp was smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and 999 

relatively large in Bialo and Mae Chaem, at 0.080 and 0.084, respectively (Figure 4B). The 1000 

order of Fp across the land use change scenarios was mostly consistent between the watersheds, 1001 

but the contrast between the ReFor and NatFor scenario was largest in Mae Chaem and smallest 1002 

in Way Besai. In Cidanau, Way Besai and Mae Chaem, variations in rainfall were 2.2 to 3.1 1003 

times more effective than land use change in shifting Fp, in Bialo its relative effect was only 1004 

58%. Apparently, the sensitivity to changes in land use change plus changes in rainfall intensity 1005 

depends on other characteristics of the watersheds, and generalizations made on the basis of 1006 

one or two case studies may not hold, even within the same climatic zone. 1007 

 Figure 4 1008 

3.3 Further analysis of Fp effects for scenarios of land cover change 1009 

Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and 1010 

the 'degraded lands' the lowest Fp value (Figure 5), but there are remarkable differences as well: 1011 

in Cidanau the interannual variation in Fp is clearly larger than land cover effects, while in the 1012 

Way Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a 1013 

peat swamp between most of the catchment and the measuring point buffers most of landcover 1014 

related variation in flow, but not the interannual variability. Considering the frequency 1015 

distributions of Fp values over a 20 year period, we see one watershed (Way Besai) where the 1016 

forest stands out from all others, and one (Bialo) where the degraded lands are separate from 1017 
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the others. Given the degree of overlap of the frequency distributions, it is clear that multiple 1018 

years of empirical observations will be needed before a change can be affirmed.  1019 

Figure 5 shows the frequency distributions of expected effect sizes on Fp of a comparison of 1020 

any land cover with either forest or degraded lands. Table 5 translates this information to the 1021 

number of years that a paired plot (in the absence of measurement error) would have to be 1022 

maintained to reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions of 1023 

Fp differences of paired catchments do not match a normal distribution, a Kolmorov-Smirnov 1024 

test can be used to assess the probability that a no-difference null hypothesis can yield the 1025 

difference found. By bootstrapping within the years where simulations supported by observed 1026 

rainfall data exist, we found for the Way Besai catchment, for example, that 20 years of data 1027 

would be needed to assert (at P = 0.05) that the ReFor scenario differs from AgFor, and 16 1028 

years that it differs from Actual and 11 years that it differs from Degrade. In practice, that means 1029 

that empirical evidence that survives statistical tests will not emerge, even though effects on 1030 

watershed health are real. 1031 

 Figure 5 1032 

 Table 5 1033 

At process-level the increase in ‘overland flow’ in response to soil compaction due to land cover 1034 

change has a clear and statistically significant relationship with decreasing Fp values in all 1035 

catchments (Figure 6), but both year-to-year variation within a catchment and differences 1036 

between catchments influence the results as well, leading to considerable spread in the biplot. 1037 

Contrary to expectations, the disappearance of 'interflow' by soil compaction is not reflected in 1038 

measurable change in Fp value. The temporal difference between overland and interflow (one 1039 

or a few days) gets easily blurred in the river response that integrates over multiple streams with 1040 

variation in delivery times; the difference between overland- or interflow and baseflow is much 1041 

more pronounced. Apparently, according to our model, the high macroporosity of forest soils 1042 

that allows interflow and may be the 'sponge' effect attributed to forest, delays delivery to rivers 1043 

by one or a few days, with little effect on the flow volumes at locations downstream where flow 1044 

of multiple days accumulates.  The difference between overland- or interflow and baseflow in 1045 

time-to-river of rainfall peaks is much more pronounced. 1046 

 Figure 6 1047 

Tree cover has two contradicting effects on baseflow:  it reduces the surplus of rainfall over 1048 

evapotranspiration (annual water yield) by increased evapotranspiration (especially where 1049 

evergreen trees are involved), but it potentially increases soil macroporosity that supports 1050 
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infiltration and interflow, with relatively little effect on water holding capacity measured as 1051 

'field capacity' (after runoff and interflow have removed excess water). Figure 7 shows that the 1052 

total volume of baseflow differs more between sites and their rainfall pattern than it varies with 1053 

tree cover. Between years total evapotranspiration and baseflow totals are positively correlated,  1054 

but for a given rainfall there is a trade-off. Overall these results support the conclusion that 1055 

generic effects of deforestation on decreased flow persistence, and of (agro)/(re)-forestation on 1056 

increased flow persistence are small relative to interannual variability due to specific rainfall 1057 

patterns, and that it will be hard for any empirical data process to pick-up such effects, even if 1058 

they are qualitatively aligned with valid process-based models.  1059 

 Figure 7 1060 

4. Discussion 1061 

In the discussion of Part I the credibility questions on replicability of the Fp metric and its 1062 

sensitivity to details of rainfall pattern versus land cover as potential causes of variation were 1063 

seen as requiring case studies in a range of contexts. Although the four case studies in Southeast 1064 

Asia presented here cannot be claimed to represent the global variation in catchment behaviour 1065 

(with absence of a snowpack and its dynamics as an obvious element of flow buffering not 1066 

included), the diversity of responses among these four already point to challenges for any 1067 

generic interpretation of the degree of flow persistence that can be achieved under natural forest 1068 

cover, as well as its response to land cover change.  1069 

The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand 1070 

show that  values of Fp above 0.9 are scarce in the case studies provided, but values above 0.8 1071 

were found, or inferred by the model, for forested landscapes. Agroforestry landscapes 1072 

generally presented Fp values above 0.7, while open-field agriculture or degraded soils led to Fp 1073 

values of 0.5 or lower. Due to differences in local context, it may not be feasible to relate typical 1074 

Fp values to the overall condition of a watershed, but temporal change in Fp can indicate 1075 

degradation or restoration if a location-specific reference can be found. The difference between 1076 

wet and dry season Fp can be further explored in this context. The dry season Fp value primarily 1077 

reflects the underlying geology, with potential modification by engineering and operating rules 1078 

of reservoirs, the wet season Fp is generally lower due to partial shifts to overland and interflow 1079 

pathways.  Where further uncertainty is introduced by the use of modelled rather than measured 1080 

river flow, the lack of fit of models similar to the ones we used here would mean that scenario 1081 

results are indicative of directions of change rather than a precision tool for fine-tuning 1082 
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combinations of engineering and land cover change as part of integrated watershed 1083 

management. 1084 

The differences in relative response of the watersheds to changes in mean rainfall intensity and 1085 

land cover change, suggest that generalizations derived from one or a few case studies are to be 1086 

interpreted cautiously. If land cover change would influence details of the rainfall generation 1087 

process (arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et 1088 

al., 2014; van Noordwijk et al., 2015b) this can easily dominate over effects via interception, 1089 

transpiration and soil changes.  1090 

Our results indicate an intra-annual variability of Fp values between wet and dry seasons of 1091 

around 0.2 in the case studies, while interannual variability in either annual or seasonal Fp was 1092 

generally in the 0.1 range. The difference between observed and simulated flow data as basis 1093 

for Fp calculations was mostly less than 0.1. With current methods, it seems that effects of land 1094 

cover change on flow persistence that shift the Fp value by about 0.1 are the limit of what can 1095 

be  asserted from empirical data (with shifts of that order in a single year a warning sign rather 1096 

than a firmly established change). When derived from observed river flow data Fp is suitable 1097 

for monitoring change (degradation, restoration) and can be a serious candidate for monitoring 1098 

performance in outcome-based ecosystem service management contracts.  1099 

In view of our results the lack of robust evidence in the literature of effects of change in forest 1100 

and tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets 1101 

contain considerable variability. Yet, such effects are consistent with current process and 1102 

scaling knowledge of watersheds.  1103 

Conclusion 1104 

Overall, our analysis suggests that the level of flow buffering achieved depends on both land 1105 

cover (including its spatial configuration and effects on soil properties) and space-time patterns 1106 

of rainfall (including maximum rainfall intensity as determinant of overland flow). 1107 

Generalizations on dominant influence of either, derived from one or a few case studies are to 1108 

be interpreted cautiously. If land cover change would influence details of the rainfall generation 1109 

process this can easily dominate over effects via interception, transpiration and soil changes. 1110 

Multi-year data will generally be needed to attribute observed changes in flow buffering to 1111 

degradation/restoration of watersheds, rather than specific rainfall events. With current 1112 

methods, it seems that effects of land cover change on flow persistence that shift the Fp value 1113 
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by about 0.1 are the limit of what can be  asserted from empirical data, with shifts of that order 1114 

in a single year a warning sign rather than a firmly established change. When derived from 1115 

observed river flow data Fp is suitable for monitoring change (degradation, restoration) and can 1116 

be a serious candidate for monitoring performance in outcome-based ecosystem service 1117 

management contracts. 1118 

Further tests on the performance of the Fp metric and its standard incorporation into the output 1119 

modules of river flow and watershed management models will broaden the basis for interpreting 1120 

the value ranges that can be expected for well-functioning watersheds in various conditions of 1121 

climate, topography, soils, vegetation and engineering interventions. Such a broader empirical 1122 

base could test the possible use of Fp as performance metric for watershed rehabilitation efforts.   1123 

Data availability 1124 

Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the 1125 

links to detailed descriptions. 1126 

 Table 6 1127 
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Table 1. Basic physiographic characteristics of the four study watersheds 1203 

Parameter Bialo Cidanau Mae Chaem Way Besai 

Location South Sulawesi, 

Indonesia 

West Java, Indonesia Northern Thailand Lampung, Sumatera, 

Indonesia 

Coordinates 5.43 S, 120.01 E 6.21 S, 105.97 E 18.57 N, 98.35 E 5.01 S, 104.43 E 

Area (km2) 111.7 241.6 3892 414.4 

Elevation 

(m a.s.l.) 

0 – 2874 30 – 1778 475-2560 720-1831 

Flow 

pattern 

Parallel Parallel (with two 

main river flow that 

meet in the 

downstream area) 

Parallel Radial 

Land cover 

type  

Forest (13%) 

Agroforest (59%) 

Crops (22%) 

Others (6%) 

Forest (20%) 

Agroforest (32%) 

Crops (33%) 

Others (11%) 

Swamp(4%) 

Forest (evergreen, 

deciduous and pine) 

(84%) 

Crops (15%) 

Others (1%) 

Forest (18%) 

Coffee (monoculture 

and multistrata) (64%) 

Crop and Horticulture 

(12%) 

Others (6%) 

Mean 

annual 

rainfall, mm 

1695 2573 1027 2474 

Wet season April – June January - March July - September January - March 

Dry season July - September July - September January - March July - September 

Mean 

annual 

runoff, mm 

947 917 259 1673 

Major soils Inceptisols Inceptisols Ultisols, Entisols Andisols 

 1204 
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Table 2. Parameters of the GenRiver model used for the four site specific simulations (van 1205 

Noordwijk et al., 2011 for definitions of terms; sequence of parameters follows the pathway of 1206 

water) 1207 

Parameter Definition Unit Bialo Cidanau Mae Chaem Way Besai 

RainIntensMean Average rainfall intensity  mm hr-1 30 30 3 30 

RainIntensCoefVar Coefficient of variation of 

rainfall intensity 

mm hr-1 0.8 0.3 0.5 0.3 

RainInterceptDripRt Maximum drip rate of 

intercepted rain  

mm hr-1 80 10 10 10 

RainMaxIntDripDur Maximum dripping 

duration of intercepted rain 

hr 0.8 0.5 0.5 0.5 

InterceptEffectontrans Rain interception effect on 

transpiration 

- 0.35 0.8 0.3 0.8 

MaxInfRate Maximum infiltration 

capacity  

mm d-1 580 800 150 720 

MaxInfSubsoil Maximum infiltration 

capacity of the sub soil 

mm d-1 80 120 150 120 

PerFracMultiplier  Daily soil water drainage as 

fraction of groundwater 

release fraction 

- 0.35 0.13 0.1 0.1 

MaxDynGrWatStore Dynamic groundwater 

storage capacity 

mm 100 100 300 300 

GWReleaseFracVar  Groundwater release 

fraction, applied to all 

subcatchments  

- 0.15 0.03 0.05 0.1 

Tortuosity Stream shape factor - 0.4 0.4 0.6 0.45 

Dispersal Factor Drainage density - 0.3 0.4 0.3 0.45 

River Velocity  River flow velocity m s-1 0.4 0.7 0.35 0.5 

  1208 
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Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds 1209 

(BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer 1210 

function; see van Noordwijk et al., 2011) 1211 

 1212 

Land cover Type 

Potential 

interception 

(mm/d) 

Relative drought 

threshold 
BD/BDref 

Forest1 3.0 - 4.0 0.4 - 0.5 0.8 - 1.1 

Agroforestry2 2.0 - 3.0 0.5 - 0.6 0.95 - 1.05 

Monoculture tree3 1.0 0.55 1.08 

Annual crops 1.0 - 3.0 0.6 - 0.7 1.1 - 1.5 

Horticulture 1.0 0.7 1.07 

Rice field4 1.0 - 3.0 0.9 1.1 - 1.2 

Settlement 0.05 0.01 1.3 

Shrub and grass 2.0 - 3.0 0.6 1.0 - 1.07 

Cleared land 1.0 - 1.5 0.3 - 0.4 1.1 - 1.2 

Note:     1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest 1213 

2. Agroforestry: mixed garden, coffee, cocoa, clove 1214 

3. Monoculture : coffee 1215 

4. Rice field: irrigation and rainfed  1216 

1217 
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Table 4. Land use scenarios explored for four watersheds  1218 

Scenario Description 

NatFor Full natural forest, hypothetical reference scenario 

ReFor Reforestation, replanting shrub, cleared land, grass land and some 

agricultural area with forest  

AgFor Agroforestry scenario, maintaining agroforestry areas and converting 

shrub, cleared land, grass land and some of agricultural area into 

agroforestry  

Actual Baseline scenario, based on the actual condition of land cover change 

during the modelled time period 

Agric Agriculture scenario, converting some of tree based plantations, 

cleared land, shrub and grass land into rice fields or dry land 

agriculture, while maintain existing forest 

Degrading No change in already degraded areas, while converting most of forest 

and agroforestry area into rice fields and dry land agriculture 

 1219 

1220 
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Table 5. Number of years of observations required to estimate flow persistence to reject the 1221 

null-hypothesis of ‘no land use effect‘ at p-value = 0.05 using Kolmogorov-Smirnov test. The  1222 

probability of the test statistic in the first significant number is provided between brackets and  1223 

where the number of observations exceeds the time series available, results are given in italics 1224 

A. Natural Forest as reference   

     
Way Besai (N=32) ReFor AgFor Actual Agric 

ReFor   20 (0.035) 

16 

(0.037) 

13 

(0.046) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Bialo (N=18) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 

37 

(0.04) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Cidanau (N=20) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 

32 

(0.037) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Mae Chaem (N=15) ReFor Actual Agric Degrade 

ReFor   n.s. 

23 

(0.049) 

18 

(0.050) 

Actual     

45 

(0.037) 

33 

(0.041) 

Agric       

33 

(0.041) 

Degrading         

  1225 
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B. Degrading scenario as reference   

      

Way Besai (N=32) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. 

17 

(0.042) 

13 

(0.046) 

7 

(0.023) 

ReFor     

21 

(0.037) 

19 

(0.026) 

7 

(0.023) 

AgFor       n.s. 

28 

(0.046) 

Actual         

30 

(0.029) 

Agric           

      

      
Bialo (N=18) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 

41 

(0.047) 

19 

(0.026) 

ReFor     n.s. n.s. 

32 

(0.037) 

AgFor       n.s. n.s. 

Actual         n.s. 

Agric           

      

      
Cidanau (N=20) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 

33 

(0.041) 

8 

(0.034) 

ReFor     n.s. n.s. 

15 

(0.028) 

AgFor       n.s. n.s. 

Actual         

25 

(0.031) 

Agric           

      

      
Mae Chaem (N=15) NatFor ReFor Actual Agric  

NatFor   n.s. 

25 

(0.031) 

12 

(0.037)  

ReFor     n.s. 

18 

(0.050)  

Actual       

18 

(0.050)  
Agric          

  1226 
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Table 6. Data availability 1227 

 Bialo Cidanau Mae Chaem Way Besai 

Rainfall 

data 

1989-2009, Source: 

BWS Sulawesia and 

PUSAIRb; Average 

rainfall data from the 

stations Moti, Bulo-

bulo, Seka and Onto 

1998-2008, source: 

BMKGc 

1998-2002, source: 

WRD55, MTD22, 

RYP48, GMT13, WRD 

52 

1976-2007, Source: 

BMKG, PUd and PLNe 

(interpolation of 8 rainfall 

stations using Thiessen 

polygon) 

River flow 

data 

1993-2010, source; 

BWS Sulawesi and 

PUSAIR 

2000-2009, source: KTIf 1954-2003, source: 

ICHARMg 

1976-1998, source: PU and 

PUSAIR 

Reference 

of detailed 

report 

http://old.icraf.org/re

gions/southeast_asia

/publications?do=vie

w_pub_detail&pub_n

o=PP0343-14 

http://worldagroforest

ry.org/regions/southea

st_asia/publications?d

o=view_pub_detail&pu

b_no=PO0292-13 

http://worldagrofores

try.org/regions/south

east_asia/publications

?do=view_pub_detail

&pub_no=MN0048-11 

http://worldagroforestry.

org/regions/southeast_asi

a/publications?do=view_p

ub_detail&pub_no=MN00

48-11 

Note:  1228 

a BWS: Balai Wilayah Sungai (Regional River Agency) 1229 

bPUSAIR: Pusat Litbang Sumber Daya Air (Centre for Research and Development on Water 1230 

Resources) 1231 

cBMKG: Badan Meteorologi Klimatologi dan Geofisika (Agency on Meterology, Climatology 1232 

and Geophysics) 1233 

dPU: Dinas Pekerjaan Unum (Public Work  Agency) 1234 

ePLN: Perusahaan Listrik Negara (National Electric Company) 1235 

fKTI: Krakatau Tirta Industri, a private steel company 1236 

fICHARM: The International Centre for Water Hazard and Risk Management 1237 
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  1238 

 1239 

Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water 1240 

towers are defined on the basis of ability to generate river flow and being in the upper part 1241 

of a watershed)  1242 

  1243 
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 1244 

 1245 
Figure 2. Flow persistence (Fp) estimates derived from measurements in four watersheds, 1246 

separately for the wettest and driest 3-month periods of the year 1247 

 1248 

1249 
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 1250 

Figure 3. Inter- (A) and intra- (B) annual variation in the Fp parameter derived from empirical 1251 

versus modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B) 1252 

 1253 

  1254 
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  1255 

Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B) the land 1256 

use change scenarios of Table 4 across the four watersheds 1257 

1258 
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 1259 

Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four 1260 

watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall 1261 

records; the left side panels show average water balance for each land cover scenario, the 1262 
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middle panels the Fp values per year and land use, the right-side panels the derived frequency 1263 

distributions (best fitting Weibull distribution) 1264 

 1265 

 1266 

Figure 6. Frequency distribution of expected difference in Fp in ‘paired plot’ comparisons where 1267 

land cover is the only variable; left panels: all scenarios compared to ‘reforestation’, right 1268 

panel: all scenarios compared to degradation; graphs are based on a kernel density estimation 1269 

(smoothing) approach  1270 

1271 
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 1272 

Figure 7. Correlations of Fp with fractions of rainfall that take overland flow and interflow 1273 

pathways through the watershed, across all years and land use scenarios of Figure App2  1274 

 1275 

  1276 
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Appendix 1. GenRiver model for effects of land cover on river flow 1277 

The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological 1278 

model that simulates river flow based on water balance concept with a daily time step and a 1279 

flexible spatial subdivision of a watershed that influences the routing of water. The core of the 1280 

GenRiver model is a “patch” level representation of a daily water balance, driven by local 1281 

rainfall and modified by the land cover and land cover change and soil properties. The model 1282 

starts accounting of rainfall or precipitation (P) and traces the subsequent flows and storage in 1283 

the landscape that can lead to either evapotranspiration (E), river flow (Q) or change in storage 1284 

(ΔS) (Figure App1): 1285 

P = Q + E + ΔS        [1] 1286 

 

Figure App1.Overview of the GenRiver model 

 1287 

The model may use measured rainfall data, or use a rainfall generator that involves Markov 1288 

chain temporal autocorrelation (rain persistence). The model can represent spatially explicit 1289 

rainfall, with stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 1290 

2) and partial spatial correlation of daily rainfall between subcatchments. Canopy interception 1291 

leads to direct evaporation of an amount of water controlled by the thickness of waterfilm on 1292 

the leaf area that depends on the land cover, and a delay of water reaching the soil surface 1293 

(parameter RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other 1294 

components of evapotranspiration is controlled by the InterceptEffectontrans parameter, that in practice 1295 

may depend on the time of day rainfall occurs and local climatic conditions such as windspeed) 1296 
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At patch level, vegetation influences interception, retention for subsequent evaporation and 1297 

delayed transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land 1298 

cover) also influences soil porosity and infiltration, modifying the inherent soil properties. 1299 

Groundwater pool dynamics are represented at subcatchment rather than patch level, integrating 1300 

over the landcover fractions within a subcatchment. The output of the model is river flow which 1301 

is contribution from three types of stream flow: surface flow on the day of the rainfall event; 1302 

interflow on the next day; and base flow as the slow flow. the multiple subcatchments that make 1303 

up the catchment as a whole can differ in basic soil properties, land cover fractions that affect 1304 

interception, soil structure (infiltration rate) and seasonal pattern of water use by the vegetation. 1305 

The subcatchment will also typically differ in “routing time” or in the time it takes the streams 1306 

and river to reach any specified observation point (with default focus on the outflow from the 1307 

catchment). The model itself (currently implemented in Stella plus Excel), a manual and 1308 

application case studies are freely available 1309 

(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow ;van 1310 

Noordwijk et al., 2011). 1311 

  1312 

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow
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Appendix 2. Watershed-specific consequences of the land use change scenarios 1313 

The generically defined land use change scenarios (Table 4) led to different land cover 1314 

proportions, depending on the default land cover data for each watershed, as shown in Figure 1315 

App2. 1316 

1317 

Figure App2. Land use distribution of the various land use scenarios explored for the four 1318 

watersheds (see Table 4)   1319 

  1320 
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Appendix 3. Example of a macro in R to estimate number of observation required using 1321 

bootstrap approach. 1322 

 1323 

#The bootstrap procedure is to calculate the minimum sample size (number of observation) required 1324 
#for a significant land use effect on Fp 1325 
#bialo1 is a dataset contains delta Fp values for two different from Bialo watershed 1326 
 1327 
#read data 1328 
bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",") 1329 
 1330 
#name each parameter 1331 
BL1 <- bialo1$ReFor 1332 
BL5 <- bialo1$Degrade 1333 
 1334 
N = 1000 #number replication 1335 
 1336 
n <- c(5:50) #the various sample size 1337 
 1338 
J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset) 1339 
 1340 
P15= matrix(ncol=J, nrow=R) #variable for storing p-value 1341 
P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile 1342 
 1343 
for (j in 1:J) #estimating for different n 1344 
 1345 
#bootstrap sampling 1346 
{ 1347 
for (i in 1:N) 1348 
{ 1349 
#sampling data 1350 
S1=sample(BL1, n[j], replace = T) 1351 
S5=sample(BL5, n[j], replace = T) 1352 
 1353 
#Kolmogorov-Smirnov test for equal distribution and get the p-Value 1354 
KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15$p.value 1355 
} 1356 
 1357 
#Confidence interval of CI 1358 
P15Q3[j] <- quantile(P15[,j], 0.975) 1359 
 1360 
} 1361 
 1362 
#saving P value data and CI 1363 
 1364 
write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v 1365 


