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Abstract 1 8 
We present and discuss a candidate for a single parameter representation of the complex 9 
concept of watershed quality that does align short and long term responses, and provides 10 
bounds to the levels of unpredictability. Flow buffering in landscapes is commonly 11 
interpreted as ecosystem service, but needs quantification, as flood damage reflects 12 
insufficient adaptation of human presence and activity to location and variability of river 13 
flow. Increased variability and reduced predictability of river flow is a common sign, in 14 
public discourse, of degrading watersheds, combining increased flooding risk and 15 
reduced low flows. Geology, landscape form, soil porosity, litter layer and surface 16 
features, drainage pathways, vegetation and space-time patterns of rainfall interact in 17 
complex space-time patterns of river flow, but the anthropogenic aspects tend to get 18 
discussed on a one-dimensional scale of degradation and restoration. A strong tradition 19 
in public discourse associates changes on such degradation-restoration axis with binary 20 
deforestation-reforestation shifts. Empirical evidence for such link that may exist at high 21 
spatial resolution may not be a safe basis for securing required flow buffering in 22 
landscapes at large. We define a dimensionless FlowPer parameter Fp that  represents 23 
predictability of river flow in a recursive flow model. Analysis suggests that buffering 24 
has two interlinked effects: a smaller fraction of fresh rainfall enters the streams, and 25 
flow becomes more persistent, in that the ratio of the flow on subsequent days has a 26 
higher minimum level. As a potential indicator of watershed health (or quality), the Fp 27 
metric (or its change over time from what appears to be the local norm) matches local 28 
knowledge concepts, captures key aspects of the river flow dynamic and can be 29 
unambiguously derived from empirical river flow data. Further exploration of 30 
responsiveness of Fp to the interaction of land cover and the specific realization of space-31 
time patterns of rainfall in a limited observation period is needed to test the 32 
interpretation of Fp as indicator of watershed health (or quality) in the way this is 33 
degrading or restoring through land cover change and modifications of the overland and 34 
surface flow pathways, given inherent properties such as geology, geomorphology and 35 
climate. 36 

1 Introduction 37 
Degradation of watersheds and its consequences for river flow regime and flooding intensity 38 
and frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; 39 
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Winsemius et al., 2013). Current watershed rehabilitation programs that focus on increasing 40 
tree cover in upper watersheds are only partly aligned with current scientific evidence of effects 41 
of large-scale tree planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 42 
2009; van Noordwijk et al., 2007, 2015a; Verbist et al., 2010). The relationship between floods 43 
and change in forest quality and quantity, and the availability of evidence for such a relationship 44 
at various scales has been widely discussed over the past decades (Andréassian, 2004; 45 
Bruijnzeel, 2004; Bradshaw et al., 2007; van Dijk et al., 2009). Measurements in Cote d’Ivoire, 46 
for example, showed strong scale dependence of runoff from 30-50% at 1 m2 point scale, to 4% 47 
at 130 ha watershed scale, linked to spatial variability of soil properties plus variations in 48 
rainfall patterns (Van de Giesen et al., 2000). The ratio between peak and average flow 49 
decreases from headwater streams to main rivers in a predictable manner;  while mean annual 50 
discharge scales with (area)1.0, maximum river flow was found to scale with (area)0.7 on average 51 
(Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The determinants of peak 52 
flow are thus scale-dependent, with space-time correlations in rainfall interacting with 53 
subcatchment-level flow buffering at any point along the river. Whether and where peak flows 54 
lead to flooding depends on the capacity of the rivers to pass on peak flows towards downstream 55 
lakes or the sea, assisted by riparian buffer areas with sufficient storage capacity (Baldasarre et 56 
al., 2013); reducing local flooding risk by increased drainage increases flooding risk 57 
downstream, challenging the nested-scales management of watersheds to find an optimal spatial 58 
distribution, rather then minimization, of flooding probabilities. Well-studied effects of forest 59 
conversion on peak flows in small upper stream catchments (Alila et al., 2009) do not 60 
necessarily translate to flooding downstream. As summarized by Beck et al. (2013) meso- to 61 
macroscale catchment studies (>1 and >10 000 km2, respectively) in the tropics, subtropics, and 62 
warm temperate regions have mostly failed to demonstrate a clear relationship between river 63 
flow and change in forest area. Lack of evidence cannot be firmly interpreted as evidence for 64 
lack of effect, however. Detectability of effects depends on their relative size, the accuracy of 65 
the measurement devices, background variability of the signal and length of observation period.  66 
A recent econometric study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, 67 
after appropriate corrections for space-time correlates in the data-set for 31 meso- and 68 
macroscale basins (554-28,643 km2), conversion of inland rain forest to monocultural 69 
plantations of oil palm or rubber increased the number of flooding days reported, but not the 70 
number of flood events, while conversion of wetland forests to urban areas reduced downstream 71 
flood duration. This Malaysian study may be the first credible empirical evidence at this scale. 72 
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The difference between results for flood duration and flood frequency and the result for draining 73 
wetland forests warrant further scrutiny. Consistency of these findings with river flow models 74 
based on a water balance and likely pathways of water under the influence of change in land 75 
cover and land use has yet to be shown. Two recent studies for Southern China confirm the 76 
conventional perspective that deforestation increases high flows, but are contrasting in effects 77 
of reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong Province in China 78 
and concluded that forest recovery had not changed the annual water yield (or its underpinning 79 
water balance terms precipitation and evapotranspiration), but had a statistically significant 80 
positive effect on dry season (low) flows.  Liu et al. (2015), however, found for the Meijiang 81 
watershed (6983 km2) in subtropical China that while historical deforestation had decreased 82 
the magnitudes of low flows (daily flows ≦ Q95%) by 30.1%, low flows were not significantly 83 
improved by reforestation. They concluded that recovery of low flows by reforestation may 84 
take much longer time than expected probably because of severe soil erosion and resultant loss 85 
of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited 86 
period of time can be the combined and interactive effects of variations in the local rainfall 87 
regime, land cover effects on soil structure and engineering modifications of water flow, that 88 
can be teased apart with modelling tools (Ma et al., 2014). 89 
Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ 90 
from those of plantation forestry, while forest statistics do not normally differentiate between 91 
these different land covers. In a regression study of the high and low flow regimes in the Volta 92 
and Mekong river basins Lacombe and McCartney (2016) found that in the variation among 93 
tributaries various aspects of land cover and land cover change had explanatory power. Between 94 
the two basins, however, these aspects differed. In the Mekong basin variation in forest cover 95 
had no direct effect on flows, but extending paddy areas resulted in a decrease in downstream 96 
low flows, probably by increasing evapotranspiration in the dry season. In the Volta River 97 
Basin, the conversion of forests to crops (or a reduction of tree cover in the existing parkland 98 
system) induced greater downstream flood flows. This observation is aligned with the 99 
experimental identification of an optimal, intermediate tree cover from the perspective of 100 
groundwater recharge in parklands in Burkina Faso (Ilstedt et al., 2016).  101 
The statistical challenges of attribution of cause and effect in such data-sets are considerable 102 
with land use/land cover interacting with spatially and temporally variable rainfall, geological 103 
configuration and the fact that land use is not changing in random fashion or following any pre-104 
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randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 105 
catchments in Puerto Rico by Beck et al. (2013) did not find significant relationships between 106 
the change in forest cover or urban area, and change in various flow characteristics, despite 107 
indications that regrowing forests increased evapotranspiration. Yet, the concept of a 108 
‘regulating function’ on river flow regime for forests and other semi-natural ecosystems is 109 
widespread. The considerable human and economic costs of flooding at locations and times 110 
beyond where this is expected make the presumed ‘regulating function’ on flood reduction of 111 
high value (Brauman et al., 2007) – if only we could be sure that the effect is real, beyond the 112 
local scales (< 10 km2) of paired catchments where ample direct empirical proof exists 113 
(Bruijnzeel, 1990, 2004). These observations imply that percent tree cover (or other forest 114 
related indicators) is probably not a good metric for judging the ecosystem services provided 115 
by a watershed (of different levels of ‘health’), and that a metric more directly reflecting 116 
changes in river flow may be needed. Here we will explore a simple recursive model of river 117 
flow (van Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can account 118 
for the types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014), and 119 
(iii) may constitute a suitable performance indicator to monitor watershed ‘health‘ through time.  120 
 Figure 1 121 

Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure and 122 
vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, while 123 
exposure depends on topographic position interacting with human presence, and vulnerability 124 
can be modified by engineering at a finer scale and be further reduced by advice to leave an 125 
area in high-risk periods. A recent study (Jongman et al., 2015) found that human fatalities and 126 
material losses between 1980 and 2010 expressed as a share of the exposed population and 127 
gross domestic product were decreasing with rising income. The planning needed to avoid 128 
extensive damage requires quantification of the risk of higher than usual discharges,  especially 129 
at the upper tail end of the flow frequency distribution. 130 
The statistical scarcity, per definition, of ‘extreme events’ and the challenge of data collection 131 
where they do occur, make it hard to rely on empirical data as such. Existing data on flood 132 
frequency and duration, as well as human and economic damage are influenced by topography, 133 
human population density and economic activity, interacting with engineered infrastructure 134 
(step 4 and 5 in Figure 1), as well as the extreme rainfall events that are their proximate cause. 135 
Subsidence due to groundwater extraction in urban areas of high population density is a specific 136 
problem for a number of cities built on floodplains (such as Jakarta and Bangkok), but 137 
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subsidence of drained peat areas has also been found to increase flooding risks elsewhere 138 
(Sumarga et al., 2016). Common hydrological analysis of flood frequency (called 1 in 10-, 1 in 139 
100-, 1 in 1000-year flood events, for example) does not separately attribute flood magnitude 140 
to rainfall and land use properties, and analysis of likely change in flood frequencies in the 141 
context of climate change adaptation has been challenging (Milly et al., 2002; Ma et al., 2014). 142 
There is a lack of simple performance indicators for watershed health at its point of relating 143 
precipitation P and river flow Q (step 2 in Figure 1) that align with local observations of river 144 
behaviour and concerns about its change and that can reconcile local, public/policy and 145 
scientific knowledge, thereby helping negotiated change in watershed management (Leimona 146 
et al., 2015). The behaviour of rivers depends on many climatic (step 1 in Figure 1) and terrain 147 
factors (step 7-9 in Figure 1) that make it a challenge to differentiate between anthropogenically 148 
induced ecosystem structural change and soil degradation (step 7a) on one hand and intrinsic 149 
variability on the other. Arrow 10 in Figure 1 represents the direct influence of climate on 150 
vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological 151 
models tend to focus on predicting hydrographs at one or more temporal scales, and are usually 152 
tested on data-sets from limited locations. Despite many decades (if not centuries) of 153 
hydrological modelling, current hydrologic theory, models and empirical methods have been 154 
found to be largely inadequate for sound predictions in ungauged basins (Hrachowitz et al., 155 
2013). Efforts to resolve this through harmonization of modelling strategies have so far failed. 156 
Existing models differ in the number of explanatory variables and parameters they use, but are 157 
generally dependent on empirical data of rainfall that are available for specific measurement 158 
points but not at the spatial resolution that is required for a close match between measured and 159 
modelled river flow. Spatially explicit models have conceptual appeal (Ma et al., 2010) but 160 
have too many degrees of freedom and too many opportunities for getting right answers for 161 
wrong reasons if used for empirical calibration (Beven, 2011). Parsimonious, parameter-sparse 162 
models are appropriate for the level of evidence available to constrain them, but these 163 
parameters are themselves implicitly influenced by many aspects of existing and changing 164 
features of the watershed, making it hard to use such models for scenario studies of interacting 165 
land use and climate change. Here we present a more direct approach deriving a metric of flow 166 
predictability that can bridge local concerns and concepts to quantified hydrologic function: the 167 
‘flow persistence’ parameter (step 2 in Figure 1).   168 
In this contribution to the debate we will first define the metric ‘flow persistence’ in the context 169 
of temporal autocorrelation of river flow and then derive a way to estimate its numerical value. 170 



 7

In part II we will apply the algorithm to river flow data for a number of contrasting meso-scale 171 
watersheds. In the discussion of this paper we will consider the new flow persistence metric in 172 
terms of three groups of criteria for usable knowledge (Clark et al., 2011; Lusiana et al., 2011; 173 
Leimona et al., 2015) based on salience (1,2), credibility (3,4) and legitimacy (5-7): 174 

1. Does flow persistence relate to important aspects of watershed behaviour?  175 
2. Does its quantification help to select management actions? 176 
3. Is there consistency of numerical results? 177 
4. How sensitive is it to bias and random error in data sources? 178 
5. Does it match local knowledge?  179 
6. Can it be used to empower local stakeholders of watershed management?  180 
7. Can it inform local risk management?  181 

Questions 3 and 4 will get specific attention in part II.  182 

2 Recursive river flow model and flow persistence  183 

2.1 Basic equations 184 
One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, 185 
related to the volumetric flow (discharge) via rating curves (Maidment, 1992). Without 186 
knowing details of upstream rainfall and the pathways the rain takes to reach the river, 187 
observation of the daily fluctuations in water level allows important inferences to be made. It 188 
is also of direct utility: sudden rises can lead to floods without sufficient warning, while rapid 189 
decline makes water utilization difficult. Indeed, a common local description of watershed 190 
degradation is that rivers become more ‘flashy’ and less predictable, having lost a buffer or 191 
‘sponge‘ effect (Joshi et al., 2004; Ranieri et al., 2004; Rahayu et al., 2013). A simple model of 192 
river flow at time t, Qt, is that it is similar to that of the day before (Qt-1), to the degree Fp, a 193 
dimensionless parameter called ‘flow persistence’ (van Noordwijk et al., 2011) plus an 194 
additional stochastic term Qa,t: 195 
Qt =Fp Qt-1 + Qa,t                                                   [1]. 196 
Qt is for this analysis expressed in mm d-1, which means that measurements in m3 s-1 need to be 197 
divided by the relevant catchment area, with appropriate unit conversion. If river flow were 198 
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constant, it would be perfectly predictable, i.e. Fp would be 1.0 and Qa,t zero; in contrast, an Fp-199 
value equal to zero and Qa,t directly reflecting erratic rainfall represents the lowest possible 200 
level of predictability.  201 
The Fp parameter is conceptually identical to the ‘recession constant’ commonly used in 202 
hydrological models, typically assessed during an extended dry period when the Qa,t term is 203 
negligible and streamflow consists of base flow only (Tallaksen, 1995); empirical deviations 204 
from a straight line in a plot of the logarithm of Q against time are common and point to multiple 205 
rather than a single groundwater pool that contributes to base flow. The larger catchment area 206 
has a possibility to get additional flow from multiple independent groundwater contribution. 207 
As we will demonstrate in a next section, it is possible to derive Fp even when Qa,t is not 208 
negligible. In climates without distinct dry season this is essential; elsewhere it allows a 209 
comparison of apparent Fp between wet and dry parts of the hydrologic year. A possible 210 
interpretation, to be further explored, is that decrease over the years of Fp indicates ‘watershed 211 
degradation’ (i.e. greater contrast between high and low flows), and an increase ‘improvement’ 212 
or ‘rehabilitation’ (i.e. more stable flows). 213 
If we consider the sum of river flow over a period of time (from 1 to T) we obtain 214 
Σ1T Qt =Fp Σ1T Qt-1 + Σ1T Qa,t                               [2]. 215 
If the period is sufficiently long period for QT minus Q0 (the values of Qt for t=T and t=0, 216 
respectively) to be negligibly small relative to the sum over all t‘s, we may equate Σ1T Qt with 217 
Σ1T Qt-1 and obtain a first way of estimating the Fp value: 218 
Fp = 1 – Σ1T Qa,t / Σ1T Qt                                        [3]. 219 
Rearranging Eq.(3) we obtain 220 
Σ1T Qa,t = (1 – Fp) Σ1T Qt          [4]. 221 
The ΣQa,t term reflects the sum of peak flows in mm, while Fp ΣQt  reflects the sum of base 222 
flow, also in mm. Clarifying the Qa contribution is equivalent with one of several ways to 223 
separate base flow from peak flows. For Fp = 1 (the theoretical maximum) we conclude that all 224 
Qa,t must be zero, and all flow is ‘base flow‘.  225 
The stochastic Qa,t can be interpreted in terms of what hydrologists call ‘effective rainfall’ (i.e. 226 
rainfall minus on-site evapotranspiration, assessed over a preceding time period tx since 227 
previous rain event): 228 
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Qt =Fp Qt-1 + (1-Fp)(Ptx – Etx)                                                   [5]. 229 
Where Ptx is the (spatially weighted) precipitation (assuming no snow or ice, which would shift 230 
the focus to snowmelt) in mm d-1; Etx , also in mm d-1, is the preceding evapotranspiration that 231 
allowed for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-232 
replenishing rainfall that induced empty pore space in the soil for infiltration and retention), or 233 
replenishment of a waterfilm on aboveground biomass that will subsequently evaporate. More 234 
complex attributions are possible, aligning with the groundwater replenishing bypass flow  and 235 
the water isotopic fractionation involved in evaporation (Evaristo et al., 2015).  236 
The consistency of multiplying effective rainfall with (1-Fp) can be checked by considering the 237 
geometric series (1-Fp), (1-Fp) Fp, (1-Fp) Fp2, …, (1-Fp) Fpn which adds up to (1-Fp)(1 - Fpn)/(1-238 
Fp) or 1 - Fpn.  This approaches 1 for large n, suggesting that all of the water attributed to time 239 
t, i.e. Pt – Etx, will eventually emerge as river flow. For Fp = 0 all of (Pt – Etx) emerges on the 240 
first day, and river flow is as unpredictable as precipitation itself. For Fp = 1 all of (Pt – Etx) 241 
contributes to the stable daily flow rate, and it takes an infinitely long period of time for the last 242 
drop of water to get to the river. For declining Fp, (1 > Fp > 0), river flow gradually becomes 243 
less predictable, because a greater part of the stochastic precipitation term contributes to 244 
variable rather than evened-out river flow.  245 
Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain: 246 
ΣQt =Σ(Fp Qt-1 + (1-Fp)(Pt – Etx)) = Fp Σ Qt-1 + (1-Fp)( Σ Pt – Σ Etx))        [6]. 247 
Which is consistent with the basic water budget, ΣQ = ΣP – ΣE, at time scales long enough for 248 
changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean 249 
daily river flow are independent of Fp. This does not preclude that processes of watershed 250 
degradation or restoration that affect the partitioning of P over Q and E also affect Fp.  251 

2.2 Low flows 252 
The lowest flow expected in an annual cycle is Qx FpNmax where Qx is flow on the first day 253 
without rain and Nmax the longest series of dry days. Taken at face value, a decrease in Fp has 254 
a strong effect on low-flows, with a flow of 10% of Qx reached after 45, 22, 14, 10, 8 and 6 255 
days for Fp = 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7, respectively. However, the groundwater 256 
reservoir that is drained, equalling the cumulative dry season flow if the dry period is 257 
sufficiently long, is Qx/(1-Fp). If Fp decreases to Fpx but the groundwater reservoir (Res = 258 
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Qx/(1-Fp)) is not affected, initial flows in the dry period will be higher (Qx Fpxi (1-Fpx) Res > 259 
Qx Fpi (1-Fp) Res for i < log((1-Fpx)/(1-Fp))/log(Fp/Fpx)). It thus matters how low flows are 260 
evaluated: from the perspective of the lowest level reached, or as cumulative flow. The 261 
combination of climate, geology and land form are the primary determinants of cumulative 262 
low flows, but if land cover reduces the recharge of groundwater there may be impacts on dry 263 
season flow, that are not directly reflected in Fp. 264 
If a single Fp value would account for both dry and wet season, the effects of changing Fp on 265 
low flows may well be more pronounced than those on flood risk. Empirical tests are needed 266 
of the dependence of Fp on Q (see below). Analysis of the way an aggregate Fp depends on 267 
the dominant flow pathways provides a basis for differentiating Fp within a hydrologic year. 268 

2.3 Flow-pathway dependence of flow persistence 270 
The patch-level partitioning of water between infiltration and overland flow is further modified 271 
at hillslope level, with a common distinction between three pathways that reach streams: 272 
overland flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 273 
2004). An additional interpretation of Eq.(1), potentially adding to our understanding of results 274 
but not needed for analysis of empirical data, can be that three pathways of water through a 275 
landscape contribute to river flow (Barnes, 1939): groundwater release with Fp,g values close to 276 
1.0, overland flow with Fp,o values close to 0, and interflow with intermediate Fp,i values. 277 
Qt =Fp,g Qt-1,g + Fp,i Qt-1,i + Fp,o Qt-1,o + Qa,t         [7], 278 
Fp = (Fp,g Qt-1,g + Fp,i Qt-1,i  + Fp,o Qt-1,o)/Qt-1          [8]. 279 
On this basis a decline or increase in overall weighted average Fp can be interpreted as indicator 280 
of a shift of dominant runoff pathways through time within the watershed. Dry season flows 281 
are dominated by Fp,g. The effective Fp in the rainy season can be interpreted as indicating the 282 
relative importance of the other two flow pathways. Fp reflects the fractions of total river flow 283 
that are based on groundwater, overland flow and interflow pathways: 284 
Fp = Fp,g (ΣQt,g / ΣQt) +  Fp,o (ΣQt,o /ΣQt) +  Fp,i (ΣQt,i / ΣQt)                [9]. 285 
Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to 286 
enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated 287 
conditions throughout the soil profile may also induce overland flow, especially near valley 288 
bottoms (Bonell, 1993; Bruijnzeel, 2004). Thus, the value of Fp,o can be substantially above 289 
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zero if the rainfall has a significant temporal autocorrelation, with heavy rainfall on subsequent 290 
days being more likely than would be expected from general rainfall frequencies. If rainfall 291 
following a wet day is more likely to occur than following a dry day, as is commonly observed 292 
in Markov chain analysis of rainfall patterns (Jones and Thornton, 1997; Bardossy and Plate, 293 
1991), the overland flow component of total flow will also have a partial temporal 294 
autocorrelation, adding to the overall predictability of river flow. In a hypothetical climate with 295 
evenly distributed rainfall, we can expect Fp to be 1.0 even if there is no infiltration and the only 296 
pathway available is overland flow. Even with rainfall that is variable at any point of 297 
observation but has low spatial correlation it is possible to obtain Fp values of (close to) 1.0 in 298 
a situation with (mostly) overland flow (Ranieri at al., 2004).  299 

3. Methods  300 

3.1 Numerical example 301 
Figure 2 provides an example of the way a change in Fp values (based on Eq. 1) influences the 302 
pattern of river flow for a unimodal rainfall regime with a well-developed dry season. The figure 303 
was constructed in a Monte Carlo realization of rainfall based on a (truncated) sinus-based 304 
probability of rainfall and rectangular rainfall depth to derive the (Ptx – Etx) term, with the Qa,t 305 
values derived as (1 – Fp) (Ptx – Etx). The increasing ‘spikiness’ of the graph as Fp is lowered 306 
indicates reduced predictability of flow on any given day during the wet season on the basis of 307 
the flow on the preceding day. A bi-plot of river flow on subsequent days for the same 308 
simulations (Figure 3) shows two main effects of reducing the Fp value: the scatter increases, 309 
and the slope of the lower envelope containing the swarm of points is lowered (as it equals Fp). 310 
Both of these changes can provide entry points for an algorithm to estimate Fp from empirical 311 
time series, provided the basic assumptions of the simple model apply and the data are of 312 
acceptable quality (see Section 3 below). For the numerical example shown in Figure 2, the 313 
maximum daily flow doubled from 50 to 100 mm when the Fp value decreased from a value 314 
close to 1 (0.98) to nearly 0.  315 
 Figure 2 316 
 Figure 3 317 

3.2 Flow persistence as a simple flood risk indicator 318 
For numerical examples (implemented in a spreadsheet model) flow on each day can be derived 319 
as: 320 
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Qt =Σjt Fpt-j (1-Fp) pj Pj          [10]. 321 
Where pj reflects the occurrence of rain on day j (reflecting a truncated sine distribution for 322 
seasonal trends) and Pj is the rain depth (drawn from a uniform distribution). From this model 323 
the effects of Fp (and hence of changes in Fp) on maximum daily flow rates, plus maximum 324 
flow totals assessed over a 2-5 d period, was obtained in a Monte Carlo process (without 325 
Markov autocorrelation of rainfall in the default case – see below). Relative flood protection 326 
was calculated as the difference between peak flows (assessed for 1-5 d duration after a 1 year 327 
‘warm-up‘ period) for a given Fp versus those for Fp = 0, relative to those at Fp = 0. 328 
3.3 An algorithm for deriving Fp from a time series of stream flow data 329 
Equation (3) provides a first method to derive Fp from empirical data if these cover a full 330 
hydrologic year. In situations where there is no complete hydrograph and/or in situations where 331 
we want to quantify Fp for shorter time periods (e.g. to characterise intraseasonal flow patterns) 332 
and the change in the storage term of the water budget equation cannot be ignored, we need an 333 
algorithm for estimating Fp from a series of daily Qt observations.  334 
Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a 335 
groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). 336 
As we can assume for such periods that Qa,t = 0, we obtain Fp = Qt /Qt-1, under these 337 
circumstances. We cannot be sure, however, that this Fp,g estimate also applies in the rainy 338 
season, because overall wet-season Fp will include contributions by Fp,o and Fp,i as well 339 
(compare Eq. 9). In locations without a distinct dry season, we need an alternative method. 340 
A biplot of Qt against Qt-1 (as in Figure 3) will lead to a scatter of points above a line with slope 341 
Fp, with points above the line reflecting the contributions of Qa,t >0, while the points that plot 342 
on the Fp line itself represent Qa,t = 0 mm d-1. There is no independent source of information on 343 
the frequency at which Qa,t = 0, nor what the statistical distribution of Qa,t values is if it is non-344 
zero. Calculating back from the Qt series we can obtain an estimate (Qa,Fptry) of Qa,t for any 345 
given estimate (Fp,try) of Fp, and select the most plausible Fp value. For high Fp,try estimates there 346 
will be many negative Qa,Fptry values, for low Fp,try estimates all Qa,Fptry values will be larger. An 347 
algorithm to derive a plausible Fp estimate can thus make use of the corresponding distribution 348 
of ‘apparent Qa‘ values as estimates of Fp,try , calculated as Qa,try = Qt - Fp,try Qt-1. While Qa,t 349 
cannot be negative in theory, small negative Qa estimates are likely when using real-world data 350 
with their inherent errors. The FlowPer Fp algorithm (van Noordwijk et al., 2011) derives the 351 
distribution of Qa,try estimates for a range of Fp,try values (Figure 4B) and selects the value Fp,try 352 
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that minimizes the variance Var(Qa,Fptry) (or its standard deviation) (Figure 4C). It is 353 
implemented in a spreadsheet workbook that can be downloaded from the ICRAF website  354 
(http://www.worldagroforestry.org/output/flowper-flow-persistence-model) 355 
Figure 4 356 
A consistency test is needed that the high-end Qt values relate to Qt+1 in the same was as do low 357 
or medium Qt values. Visual inspection of Qt+1 versus Qt, with the derived Fp value, provides a 358 
qualitative view of the validity of this assumption. The Fp algorithm can be applied to any 359 
population of (Qt-1, Qt) pairs, e.g. selected from a multiyear data set on the basis of 3-month 360 
periods within the hydrological year. 361 
4 Results 362 

4.1 Flood intensity and duration  363 
Figure 5 shows the effect of Fp values in the range 0 to 1 on the maximum flows obtained with 364 
a random time series of ‘effective rainfall‘, compared to results for Fp = 0. Maximum flows 365 
were considered at time scales of 1 to 5 days, in a moving average routine. This way a relative 366 
flood protection, expressed as reduction of peak flow, could be related to Fp (Figure 5A).  367 
 Figure 5  368 

Relative flood protection rapidly decreased from its theoretical value of 100% at Fp = 1 (when 369 
there was no variation in river flow), to less than 10% at Fp values of around 0.5. Relative flood 370 
protection was slightly lower when the assessment period was increased from 1 to 5 days 371 
(between 1 and 3 d it decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting 372 
effects are at play here: a lower Fp means that a larger fraction (1-Fp) of the effective rainfall 373 
contributes to river flow, but the increased flow is less persistent. In the example the flood 374 
protection in situations where the rainfall during 1 or 2 d causes the peak is slightly stronger 375 
than where the cumulative rainfall over 3-5 d causes floods, as typically occurs downstream.  376 
As we expect from equation 5 that peak flow is to (1-Fp) times peak rainfall amounts, the effect 377 
of a change in Fp not only depends on the change in Fp that we are considering, but also on its 378 
initial value. Higher initial Fp values will lead to more rapid increases in high flows for the same 379 
reduction in Fp (Figure 5B). However, flood duration rather responds to changes in Fp in a 380 
curvilinear manner, as flow persistence implies flood persistence (once flooding occurs), but 381 
the greater the flow persistence the less likely such a flooding threshold is passed (Figure 5C). 382 
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The combined effect may be restricted to about 3 d of increase in flood duration for the 383 
parameter values used in the default example, but for different parametrization of the stochastic 384 
ε other results might be obtained.  385 

4.2 Algorithm for Fp estimates from river flow time series 386 
The algorithm has so far returned non-ambiguous Fp estimates on any modelled time series data 387 
of river flow, as well as for all empirical data set we tested (including all examples tested in 388 
part II), although there probably are data sets on which it can breakdown. Visual inspection of 389 
Qt-1/Qt biplots (as in Figure 3) can provide clues to non-homogenous data sets, to potential 390 
situations where effective Fp depends on flow level Qt and where data are not consistent with a 391 
straight-line lower envelope. Where river flow estimates were derived from a model with 392 
random elements, however, variation in Fp estimates was observed, that suggests that specific 393 
aspects of actual rainfall, beyond the basic characteristics of a watershed and its vegetation, do 394 
have at least some effect. Such effects deserve to be further explored for a set of case studies, 395 
as their strength probably depends on context.  396 
5 Discussion 397 
We will discuss the flow persistence metric based on the questions raised from the perspectives 398 
of salience, credibility and legitimacy. 399 

5.1 Salience 400 
Key salience aspects are “Does flow persistence relate to important aspects of watershed 401 
behaviour?” and “Does it help to select management actions?”. A major finding in the 402 
derivation of Fp was that the flow persistence measured at daily time scale can be logically 403 
linked to the long-term water balance, and that the proportion of peak rainfall that translates to 404 
peak river flow equals the complement of flow persistence. This feature links effects on floods 405 
of changes in watershed quality to effects on low flows, although not in a linear relationship. 406 
The Fp parameter as such does not predict when and where flooding will occur, but it does help 407 
to assess to what extent another condition of the watershed, with either higher or lower Fp would 408 
translate the same rainfall into larger or small peak water flows. This is salient, especially if the 409 
relative contributions of (anthropogenic) land cover and the (exogenous, probabilistic) specifics 410 
of the rainfall pattern can be further teased apart (see part II). Where Fp may describe the 411 
descending branch of hydrographs at a relevant time scale, details of the ascending branch 412 
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beyond the maximum daily flow reached may be relevant for reducing flood damage, and may 413 
require more detailed study at higher temporal resolution. 414 
A key strength of our flow persistence parameter, that it can be derived from observing river 415 
flow at a single point along the river, without knowledge of rainfall events and catchment 416 
conditions, is also its major weakness. If rainfall data exist, and especially rainfall data that 417 
apply to each subcatchment, the Qa term doesn’t have to be treated as a random variable and 418 
event-specific information on the flow pathways may be inferred for a more precise account of 419 
the hydrograph. But for the vast majority of rivers in the tropics, advances in remotely sensed 420 
rainfall data are needed to achieve that situation and Fp may be all that is available to inform 421 
public debates on the relation between forests and floods.  422 
Figures 2 and 6 show that most of the effects of a decreasing Fp value on peak discharge (which 423 
is the basis for downstream flooding) occur between Fp values of 1 and 0.7, with the relative 424 
flood protection value reduced to 10% when Fp reaches 0.5. As indicated in Figure 1, peak 425 
discharge is only one of the factors contributing to flood risk in terms of human casualties and 426 
physical damage. The Fp value has an inverse effect on the fraction of recent rainfall that 427 
becomes river flow, but the effect on peak flows is less, as higher Fp values imply higher base 428 
flow. The way these counteracting effects balance out depends on details of the local rainfall 429 
pattern (including its Markov chain temporal autocorrelation), as well as the downstream 430 
topography and risk of people being at the wrong time at a given place, but the Fp value is an 431 
efficient way of summarizing complex land use mosaics and upstream topography in its effect 432 
on river flow. The difference between wet-season and dry-season Fp deserves further analysis. 433 
In climates with a real rainless dry-season, dry season Fp is dominated by the groundwater 434 
release fraction of the watershed, regardless of land cover, while in wet season it depends on 435 
the mix (weighted average) of flow pathways. The degree to which Fp can be influenced by 436 
land cover needs to be assessed for each landscape and land cover combination, including the 437 
locally relevant forest and forest derived land classes, with their effects on interception, soil 438 
infiltration and time pattern of transpiration. The Fp value can summarize results of models that 439 
explore land use change scenarios in local context. To select the specific management actions 440 
that will maintain or increase Fp a locally calibrated land use/hydrology model is needed, such 441 
as GenRiver or SWAT (Yen et al., 2015).  442 
Although a higher Fp value will in most cases be desirable (and a decrease in Fp undesirable), 443 
we may expect that downstream biota have adjusted to the pre-human flow conditions and its 444 
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inherent Fp and variability. Decreased variability of flow achieved by engineering interventions 445 
(e.g. a reservoir with constant release of water to generate hydropower) may have negative 446 
consequences for fish and other biota (Richter et al., 2003; McCluney et al., 2014). 447 

5.2 Credibility 448 
Key credibility questions are “Consistency of numerical results?” and “How sensitive are 449 
results to bias and random error in data sources?”. This is further discussed in part II, after a 450 
number of case studies has been studied. The main conclusions are that intra-annual variability 451 
of Fp values between wet and dry seasons was around 0.2 in the case studies, interannual 452 
variability in either annual or seasonal Fp was generally in the 0.1 range, while the difference 453 
between observed and simulated flow data as basis for Fp calculations was mostly less than 0.1. 454 
With current methods, it seems that effects of land cover change on flow persistence that shift 455 
the Fp value by about 0.1 are the limit of what can be  asserted from empirical data (with shifts 456 
of that order in a single year a warning sign rather than a firmly established change). When 457 
derived from observed river flow data Fp is suitable for monitoring change (degradation, 458 
restoration) and can be a serious candidate for monitoring performance in outcome-based 459 
ecosystem service management contracts. In interpreting changes in Fp as caused by changes 460 
in the condition in the watershed, however, changes in specific properties of the rainfall regime 461 
must be excluded. At the scale of paired catchment studies this assumption may be reasonable, 462 
but in temporal change (or using specific events as starting point for analysis), it is not easy to 463 
disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not only 464 
responds to, but also influences rainfall (arrow 10 in Figure 1; van Noordwijk et al., 2015b) 465 
further complicates the analysis across scales. 466 

5.3 Legitimacy 467 
Legitimacy aspects are “Does it match local knowledge?” and “Can it be used to empower local 468 
stakeholders of watershed management?” and “Can it inform risk management?”. As the Fp 469 
parameter captures the predictability of river flow that is a key aspect of degradation according 470 
to local knowledge systems, its results are much easier to convey than full hydrographs or 471 
exceedance probabilities of flood levels. By focusing on observable effects at river level, rather 472 
than prescriptive recipes for land cover (“reforestation”), the Fp parameter can be used to more 473 
effectively compare the combined effects of land cover change, changes in the riparian wetlands 474 
and engineered water storage reservoirs, in their effect on flow buffering. It is a candidate for 475 
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shifting environmental service reward contracts from input to outcome based monitoring (van 476 
Noordwijk et al., 2012).  As such it can be used as part of a negotiation support approach to 477 
natural resources management in which  levelling off on knowledge and joint fact finding in 478 
blame attribution are key steps to negotiated solutions that are legitimate and seen to be so (van 479 
Noordwijk et al., 2013; Leimona et al., 2015). Quantification of Fp can help assess tactical 480 
management options (Burt et al., 2014) as in a recent suggestion to minimize negative 481 
downstream impacts of forestry operations on stream flow by avoiding land clearing and 482 
planting operations in locally wet La Niña years. But the most challenging aspect of the 483 
management of flood, as any other environmental risk, is that the frequency of disasters is too 484 
low to intuitively influence human behaviour where short-term risk taking benefits are 485 
attractive. Wider social pressure is needed for investment in watershed health (as a type of 486 
insurance premium) to be mainstreamed, as individuals waiting to see evidence of necessity are 487 
too late to respond. In terms of flooding risk, actions to restore or retain watershed health can 488 
be similarly justified as insurance premium. It remains to be seen whether or not the 489 
transparency of the Fp metric and its intuitive appeal are sufficient to make the case in public 490 
debate when opportunity costs of foregoing reductions in flow buffering by profitable land use 491 
are to be compensated and shared (Burt et al., 2014). 492 

5.4 Conclusions and specific questions for a set of case studies 493 
In conclusion, the Fp metric appears to allow an efficient way of summarizing complex 494 
landscape processes into a single parameter that reflects the effects of landscape management. 495 
Flow persistence is the result of rainfall persistence and the temporal delay provided by the 496 
pathway water takes through the soil and the river system. High flow persistence indicates a 497 
reliable water supply, while minimizing peak flow events.  Wider tests of the Fp metric as 498 
boundary object in science-practice-policy boundary chains (Kirchhoff et al., 2015; Leimona et 499 
al., 2015) are needed. Further tests for specific case studies can clarify how changes in tree 500 
cover (deforestation, reforestation, agroforestation) in different contexts influence river flow 501 
dynamics and Fp values. Sensitivity to specific realizations of underlying time-space rainfall 502 
patterns needs to be quantified, before changes in Fp can be attributed to ‘watershed quality‘, 503 
rather than chance events. 504 
Data availability 505 
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The algorithm used is freely available. Specific data used in the case studies are explained and 506 
accounted for in Part II.  507 
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 693 

 694 
Figure 1. Steps in a causal pathway that relates rainfall (1) via watershed conditions (2) to the 695 

pattern of river flow described in a hydrograph (3), which can get modified by the conditions 696 
along the river channel into a hazard of flood frequency and duration (4); jointly with 697 
exposure (being in the wrong place at critical times, 5) and vulnerability (6) this determines 698 
flood damage; in avoiding flood damage, the condition in the watershed with its landcover 699 
and spatial configuration (7) influences the patch level water partitioning over overland flow 700 
and infiltration (8), while hillslope level configuration further influences flow pathways (9) 701 
and land cover potentially influences rainfall (10) 702 

 703 
704 
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 705 

 706 
Figure 2. Example of daily river flow, split into a base flow and additional flow component, for 707 

a unimodal sinus-based rainfall probability multiplied with a rainfall depth drawn from [0-708 
100] mm/day in watersheds characterized by Fp values ranging from 0.95 to 0.2 709 

710 
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  711 
Figure 3. Biplots of Q(t) versus Q(t-1) for the same simulations as Figure 2 712 

713 
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 714 

  715 
Figure 4. Example of the derivation of best fitting Fp,try value for an example hydrograph (A) 716 

on the basis of the inferred Qa distribution (cumulative frequency in B), and three properties 717 
of this distribution (C): its sum, frequency of negative values and standard deviation; the 718 
Fp,try minimum of the latter is derived from the parameters of a fitted quadratic equation 719 

720 
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 721  722 Figure 5. A. Effects of flow persistence on the relative flood protection (decrease in maximum 723 
flow measured over a 1 – 5 d period relative to a case with Fp = 0 (a few small negative 724 
points were replaced by small positive values to allow the exponential fit); B and C. effects 725 
of a decrease in flow persistence on the volume of water involved in peak flows (B; 726 
relative to the volume at Fp is 0.6 – 0.9) and in the duration (in d) of floods (C) 727 

728 
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Abstract 735 

The way watersheds buffer the temporal pattern of river flow relative to the temporal 736 
pattern of rainfall is an important ecosystem service. Part of this buffering is inherent to 737 
its geology and climate, but another part is responding to human use and misuse of the 738 
landscape, and can be part of management feedback loops if salient, credible and 739 
legitimate indicators can be found and used. Dissecting the anthropogenic change from 740 
exogenous variability (e.g. the specific time-space pattern of rainfall during an 741 
observation period) is relevant for designing and monitoring of watershed management 742 
interventions. Part I introduced the concept of flow persistence, key to a parsimonious 743 
recursive model of river flow. It also discussed the operational derivation of the Fp 744 
parameter. Here we compare Fp estimates from four meso-scale watersheds in Indonesia 745 
(Cidanau, Way Besai, and Bialo) and Thailand (Mae Chaem), with varying climate, 746 
geology and land cover history, at a decadal time scale. The likely response in each of 747 
these four to variation in rainfall properties (incl. the maximum hourly rainfall intensity) 748 
and land cover (comparing scenarios with either more or less forest and tree cover than 749 
the current situation) was explored through a basic daily water balance model, 750 
GenRiver. This model was calibrated for each site on existing data, before being used 751 
to explore alternative land cover and rainfall parameter settings. In both data and model 752 
runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season 753 
values for all four sites. Across the four catchments Fp values decreased with increasing 754 
annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat 755 
soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing 756 
the mean rainfall intensity (at constant monthly totals for rainfall) around the values 757 
considered typical for each landscape was predicted to decrease Fp values by between 758 
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0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change 759 
plus changes in rainfall intensity depends on other characteristics of the watersheds, and 760 
generalizations made on the basis of one or two case studies may not hold, even within 761 
the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-762 
agroforestry mosaic case studies. Interannual variability in Fp was found to be large 763 
relative to effects of land cover change and likely reflects sensitivity in the model of 764 
Hortonian overland flow to variations in rainfall intensity. Multiple (5-10) years of 765 
paired-plot data would generally be needed to reject no-change null-hypotheses on the 766 
effects of land use change (degradation and restoration). While empirical evidence of 767 
such effects at scale is understandably scarce, Fp trends over time serve as a holistic 768 
scale-dependent performance indicator of degrading/recovering watershed health and 769 
can be tested for acceptability and acceptance in a wider socio-ecological context. 770 

Introduction 771 
Inherent properties (geology, geomorphology) interact with climate and human modification of 772 
vegetation, soils, drainage and riparian wetlands in the degree of buffering that watersheds 773 
provide (Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the space-time 774 
dynamics of rainfall is an ecosystem service, reducing the exposure of people living on 775 
geomorphological floodplains to high-flow events, and increasing predictability and river flow 776 
in dry periods (Joshi et al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation 777 
and with a sealed surface, river flow will directly respond to the spatial distribution of rainfall, 778 
with only the travel time to any point of specific interest influencing the temporal pattern of 779 
river flow. Any persistence or predictability of river flow in such a situation will reflect 780 
temporal autocorrelation of rainfall, beyond statistical predictability in seasonal rainfall 781 
patterns. On the other side of the spectrum, river flow can be constant every day, beyond the 782 
theoretical condition of constant rainfall, in a watershed that provides perfect buffering, by 783 
passing all water through groundwater pools that have sufficient storage capacity at any time 784 
during the year. Both infiltration-limited (Hortonian) and saturation-induced use of more rapid 785 
flow pathways (inter and overland flows) will reduce the flow persistence and make it, at least 786 
in part, dependent on rainfall events. Separating the effects of land cover (land use), engineering 787 
and rainfall on the actual flow patterns of rivers remains a considerable challenge (Ma et al., 788 
2014; Verbist et al., 2019). It requires data, models and concepts that can serve as effective 789 
boundary object in communication with stakeholders (Leimona et al. 2015; van Noordwijk et 790 
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al. 2012). There is a long tradition in using forest cover as such a boundary object, but there is 791 
only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et al., 2009; 792 
van Noordwijk et al. 2015a). 793 
In part I, we introduced a flow persistence parameter (Fp) that links the two, asymmetrical 794 
aspects of flow dynamics: translating rainfall excess into river flow, and gradually releasing 795 
water stored in the landscape.  Here, in part II we will apply the Fp algorithm to river flow data 796 
for a number of contrasting meso-scale watersheds in Southeast Asia. These were selected to 797 
represent variation in rainfall and land cover, and test the internal consistency of results based 798 
on historical data: two located in the humid and one in the subhumid tropics of Indonesia, and 799 
one in the unimodal subhumid tropics of northern Thailand.  800 
After exploring the patterns of variation in Fp estimates derived from river flow records, we 801 
will quantify the sensitivity of the Fp metric to variations in rainfall intensity and its response, 802 
on a longer timescale to land cover change. To do so, we will use a model that uses basic water 803 
balance concepts: rainfall interception, infiltration, water use by vegetation, overland flow, 804 
interflow and groundwater release, to a spatially structured watershed where travel time from 805 
sub watersheds to any point of interest modifies the predicted river flow. In the specific model 806 
used land cover effects on soil conditions, interception and seasonal water use have been 807 
included. After testing whether Fp values derived from model outputs match those based on 808 
empirical data where these exist, we rely on the basic logic of the model to make inference on 809 
the relative importance of modifying rainfall and land cover inputs. With the resulting temporal 810 
variation in calculated Fp values, we consider the time frame at which observed shifts in Fp can 811 
be attributed to factors other than chance (that means: null-hypotheses of random effects can be 812 
rejected with accepted chance of Type I errors).  813 
2. Methods 814 
2.1 GenRiver model for effects of land cover on river flow 815 
The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept 816 
with a daily time step and a flexible spatial subdivision of a watershed that influences the 817 
routing of water and employs spatially explicit rainfall. At patch level, vegetation influences 818 
interception, retention for subsequent evaporation and delayed transfer to the soil surface, as 819 
well as the seasonal demand for water. Vegetation (land cover) also influences soil porosity and 820 
infiltration, modifying the inherent soil properties. Water in the root zone is modelled separately 821 
for each land cover within a subcatchment, the groundwater stock is modelled at subcatchment 822 
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level. The spatial structure of a watershed and the routing of surface flows influences the time 823 
delays to any specified point of interest, which normally includes the outflow of the catchment. 824 
Land cover change scenarios are interpolated annually between time-series (measured or 825 
modelled) data. The model may use measured rainfall data, or use a rainfall generator that 826 
involves Markov chain temporal autocorrelation (rain persistence). As our data sources are 827 
mostly restricted to daily rainfall measurements and the infiltration model compares 828 
instantaneous rainfall to infiltration capacity, a stochastic rainfall intensity was applied at 829 
subcatchment level, driven by the mean as parameter and a standard deviation for a normal 830 
distribution (truncated at 3 standard deviations from the mean) proportional to it via a 831 
coefficient of variation as parameter. For the Mae Chaem site in N Thailand data by Dairaku et 832 
al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia we used 30 833 
mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the GenRiver 834 
model. The model itself, a manual and application case studies are freely available 835 
(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow;van 836 
Noordwijk et al., 2011). 837 
2.2 Empirical data-sets, model calibration 838 
Table 1 and Figure 1 provide summary characteristics and the location of river flow data  used 839 
in four meso-scale watersheds for testing the Fp algorithm and application of the GenRiver 840 
model. Figure 1 includes a water tower category in the agro-ecological zones; this is defined on 841 
the basis of a ratio of precipitation and potential evapotranspiration of more than 0.65, and a 842 
product of that ratio and relative elevation exceeding 0.277. 843 
 Table 1 844 
 Figure 1 845 

As major parameters for the GenRiver model were not independently measured for the 846 
respective watersheds, we tuned (calibrated) the model by modifying parameters within a 847 
predetermined plausible range, and used correspondence with measured hydrograph as test 848 
criterion (Kobolt et al. 2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target 849 
above 0.5) and bias (less than 25%) as test criteria and targets. Meeting these performance 850 
targets (Moriasi et al., 2007), we accepted the adjusted models as basis for describing current 851 
conditions and exploring model sensitivity. The main site-specific parameter values are listed 852 
in Table 2 and (generic) land cover specific default parameters in Table 3.  853 
 Table 2 854 
 Table 3 855 
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Table 4 describes the six scenarios of land use change that were evaluated in terms of their 856 
hydrological impacts. Further description on the associated land cover distribution for each 857 
scenario in the four different watersheds is depicted in Appendix 2.  858 
 Table 4 859 

2.3 Bootstrapping to estimate the minimum observation 860 
The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly 861 
used to generate ‘surrogate population‘ for the purpose of approximating the sampling 862 
distribution of a statistic. In this study, the bootstrap approach was used to estimate the 863 
minimum number of observation (or yearly data) required for a pair-wise comparison test 864 
between two time-series of stream flow or discharge data (representing two scenarios of land 865 
use distributions) to be distinguishable from a null-hypothesis of no effect. The pair-wise 866 
comparison test used was Kolmogorov-Smirnov test that is commonly used to test the 867 
distribution of discharge data (Zhang eta al, 2006). We built a simple macro in R (R Core Team, 868 
2015) that entails the following steps: 869 

(i) Bootstrap or resample with replacement 1000 times from both time-series discharge 870 
data with sample size n; 871 

(ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge 872 
data, and record the P-value; 873 

(iii) Perform (i) and (ii) for different size of n, ranging from 5 to 50.  874 
(iv) Tabulate the p-value from the different sample size n, and determine the value of n when 875 

the p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). 876 
The associated n represents the minimum number of observations required.  877 

Appendix 3 provides an example of the macro in R used for this analysis.   878 
3. Results 879 

3.1 Empirical data of flow persistence as basis for model parameterization 880 
Inter-annual variability of Fp estimates derived for the four catchments (Figure 2) was of the 881 
order of 0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. 882 
For all for the years and locations, rainy season Fp values, with mixed flow pathways, were 883 
consistently below dry-season values, dominated by groundwater flows. If we can expect Fp,i 884 
and Fp,o (see equation 8 in part I) to be approximately 0.5 and 0, this difference between wet 885 
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and dry periods implies a 40% contribution of interflow in the wet season, a 20% contribution 886 
of overland flow or any combination of the two effects. 887 
Overall the estimates from modelled and observed data are related with 16% deviating more 888 
than 0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria 889 
for the hydrographs were met by the calibrated models for each site, we tentatively accept the 890 
model to be a basis for sensitivity study of  Fp to modifications to land cover and/or rainfall  891 
 Figure 2 892 
 Figure 3 893 

3.2 Comparing Fp effects of rainfall intensity and land cover change 894 
A direct comparison of model sensitivity to changes in mean rainfall intensity and land use 895 
change scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 896 
shifted the Fp value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but 897 
by 0.128 in Way Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change 898 
scenarios on Fp was smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and 899 
relatively large in Bialo and Mae Chaem, at 0.080 and 0.084, respectively (Figure 4B). The 900 
order of Fp across the land use change scenarios was mostly consistent between the watersheds, 901 
but the contrast between the ReFor and NatFor scenario was largest in Mae Chaem and smallest 902 
in Way Besai. In Cidanau, Way Besai and Mae Chaem, variations in rainfall were 2.2 to 3.1 903 
times more effective than land use change in shifting Fp, in Bialo its relative effect was only 904 
58%. Apparently, the sensitivity to changes in land use change plus changes in rainfall intensity 905 
depends on other characteristics of the watersheds, and generalizations made on the basis of 906 
one or two case studies may not hold, even within the same climatic zone. 907 
 Figure 4 908 

3.3 Further analysis of Fp effects for scenarios of land cover change 909 
Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and 910 
the 'degraded lands' the lowest Fp value (Figure 5), but there are remarkable differences as well: 911 
in Cidanau the interannual variation in Fp is clearly larger than land cover effects, while in the 912 
Way Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a 913 
peat swamp between most of the catchment and the measuring point buffers most of landcover 914 
related variation in flow, but not the interannual variability. Considering the frequency 915 
distributions of Fp values over a 20 year period, we see one watershed (Way Besai) where the 916 
forest stands out from all others, and one (Bialo) where the degraded lands are separate from 917 
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the others. Given the degree of overlap of the frequency distributions, it is clear that multiple 918 
years of empirical observations will be needed before a change can be affirmed.  919 
Figure 5 shows the frequency distributions of expected effect sizes on Fp of a comparison of 920 
any land cover with either forest or degraded lands. Table 5 translates this information to the 921 
number of years that a paired plot (in the absence of measurement error) would have to be 922 
maintained to reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions of 923 
Fp differences of paired catchments do not match a normal distribution, a Kolmorov-Smirnov 924 
test can be used to assess the probability that a no-difference null hypothesis can yield the 925 
difference found. By bootstrapping within the years where simulations supported by observed 926 
rainfall data exist, we found for the Way Besai catchment, for example, that 20 years of data 927 
would be needed to assert (at P = 0.05) that the ReFor scenario differs from AgFor, and 16 928 
years that it differs from Actual and 11 years that it differs from Degrade. In practice, that means 929 
that empirical evidence that survives statistical tests will not emerge, even though effects on 930 
watershed health are real. 931 
 Figure 5 932 
 Table 5 933 

At process-level the increase in ‘overland flow’ in response to soil compaction due to land cover 934 
change has a clear and statistically significant relationship with decreasing Fp values in all 935 
catchments (Figure 6), but both year-to-year variation within a catchment and differences 936 
between catchments influence the results as well, leading to considerable spread in the biplot. 937 
Contrary to expectations, the disappearance of 'interflow' by soil compaction is not reflected in 938 
measurable change in Fp value. The temporal difference between overland and interflow (one 939 
or a few days) gets easily blurred in the river response that integrates over multiple streams with 940 
variation in delivery times; the difference between overland- or interflow and baseflow is much 941 
more pronounced. Apparently, according to our model, the high macroporosity of forest soils 942 
that allows interflow and may be the 'sponge' effect attributed to forest, delays delivery to rivers 943 
by one or a few days, with little effect on the flow volumes at locations downstream where flow 944 
of multiple days accumulates.  The difference between overland- or interflow and baseflow in 945 
time-to-river of rainfall peaks is much more pronounced. 946 
 Figure 6 947 

Tree cover has two contradicting effects on baseflow:  it reduces the surplus of rainfall over 948 
evapotranspiration (annual water yield) by increased evapotranspiration (especially where 949 
evergreen trees are involved), but it potentially increases soil macroporosity that supports 950 
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infiltration and interflow, with relatively little effect on water holding capacity measured as 951 
'field capacity' (after runoff and interflow have removed excess water). Figure 7 shows that the 952 
total volume of baseflow differs more between sites and their rainfall pattern than it varies with 953 
tree cover. Between years total evapotranspiration and baseflow totals are positively correlated,  954 
but for a given rainfall there is a trade-off. Overall these results support the conclusion that 955 
generic effects of deforestation on decreased flow persistence, and of (agro)/(re)-forestation on 956 
increased flow persistence are small relative to interannual variability due to specific rainfall 957 
patterns, and that it will be hard for any empirical data process to pick-up such effects, even if 958 
they are qualitatively aligned with valid process-based models.  959 
 Figure 7 960 
4. Discussion 961 

In the discussion of Part I the credibility questions on replicability of the Fp metric and its 962 
sensitivity to details of rainfall pattern versus land cover as potential causes of variation were 963 
seen as requiring case studies in a range of contexts. Although the four case studies in Southeast 964 
Asia presented here cannot be claimed to represent the global variation in catchment behaviour 965 
(with absence of a snowpack and its dynamics as an obvious element of flow buffering not 966 
included), the diversity of responses among these four already point to challenges for any 967 
generic interpretation of the degree of flow persistence that can be achieved under natural forest 968 
cover, as well as its response to land cover change.  969 
The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand 970 
show that  values of Fp above 0.9 are scarce in the case studies provided, but values above 0.8 971 
were found, or inferred by the model, for forested landscapes. Agroforestry landscapes 972 
generally presented Fp values above 0.7, while open-field agriculture or degraded soils led to Fp 973 
values of 0.5 or lower. Due to differences in local context, it may not be feasible to relate typical 974 
Fp values to the overall condition of a watershed, but temporal change in Fp can indicate 975 
degradation or restoration if a location-specific reference can be found. The difference between 976 
wet and dry season Fp can be further explored in this context. The dry season Fp value primarily 977 
reflects the underlying geology, with potential modification by engineering and operating rules 978 
of reservoirs, the wet season Fp is generally lower due to partial shifts to overland and interflow 979 
pathways.  Where further uncertainty is introduced by the use of modelled rather than measured 980 
river flow, the lack of fit of models similar to the ones we used here would mean that scenario 981 
results are indicative of directions of change rather than a precision tool for fine-tuning 982 
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combinations of engineering and land cover change as part of integrated watershed 983 
management. 984 
The differences in relative response of the watersheds to changes in mean rainfall intensity and 985 
land cover change, suggest that generalizations derived from one or a few case studies are to be 986 
interpreted cautiously. If land cover change would influence details of the rainfall generation 987 
process (arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et 988 
al., 2014; van Noordwijk et al., 2015b) this can easily dominate over effects via interception, 989 
transpiration and soil changes.  990 
Our results indicate an intra-annual variability of Fp values between wet and dry seasons of 991 
around 0.2 in the case studies, while interannual variability in either annual or seasonal Fp was 992 
generally in the 0.1 range. The difference between observed and simulated flow data as basis 993 
for Fp calculations was mostly less than 0.1. With current methods, it seems that effects of land 994 
cover change on flow persistence that shift the Fp value by about 0.1 are the limit of what can 995 
be  asserted from empirical data (with shifts of that order in a single year a warning sign rather 996 
than a firmly established change). When derived from observed river flow data Fp is suitable 997 
for monitoring change (degradation, restoration) and can be a serious candidate for monitoring 998 
performance in outcome-based ecosystem service management contracts.  999 
In view of our results the lack of robust evidence in the literature of effects of change in forest 1000 
and tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets 1001 
contain considerable variability. Yet, such effects are consistent with current process and 1002 
scaling knowledge of watersheds.  1003 
Conclusion 1004 
Overall, our analysis suggests that the level of flow buffering achieved depends on both land 1005 
cover (including its spatial configuration and effects on soil properties) and space-time patterns 1006 
of rainfall (including maximum rainfall intensity as determinant of overland flow). 1007 
Generalizations on dominant influence of either, derived from one or a few case studies are to 1008 
be interpreted cautiously. If land cover change would influence details of the rainfall generation 1009 
process this can easily dominate over effects via interception, transpiration and soil changes. 1010 
Multi-year data will generally be needed to attribute observed changes in flow buffering to 1011 
degradation/restoration of watersheds, rather than specific rainfall events. With current 1012 
methods, it seems that effects of land cover change on flow persistence that shift the Fp value 1013 
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by about 0.1 are the limit of what can be  asserted from empirical data, with shifts of that order 1014 
in a single year a warning sign rather than a firmly established change. When derived from 1015 
observed river flow data Fp is suitable for monitoring change (degradation, restoration) and can 1016 
be a serious candidate for monitoring performance in outcome-based ecosystem service 1017 
management contracts. 1018 
Further tests on the performance of the Fp metric and its standard incorporation into the output 1019 
modules of river flow and watershed management models will broaden the basis for interpreting 1020 
the value ranges that can be expected for well-functioning watersheds in various conditions of 1021 
climate, topography, soils, vegetation and engineering interventions. Such a broader empirical 1022 
base could test the possible use of Fp as performance metric for watershed rehabilitation efforts.   1023 
Data availability 1024 
Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the 1025 
links to detailed descriptions. 1026 
 Table 6 1027 
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Table 1. Basic physiographic characteristics of the four study watersheds 1103 
Parameter Bialo Cidanau Mae Chaem Way Besai 
Location South Sulawesi, 

Indonesia 
West Java, Indonesia Northern Thailand Lampung, Sumatera, 

Indonesia 
Coordinates 5.43 S, 120.01 E 6.21 S, 105.97 E 18.57 N, 98.35 E 5.01 S, 104.43 E 
Area (km2) 111.7 241.6 3892 414.4 
Elevation 
(m a.s.l.) 

0 – 2874 30 – 1778 475-2560 720-1831 

Flow 
pattern 

Parallel Parallel (with two 
main river flow that 
meet in the 
downstream area) 

Parallel Radial 

Land cover 
type  

Forest (13%) 
Agroforest (59%) 
Crops (22%) 
Others (6%) 

Forest (20%) 
Agroforest (32%) 
Crops (33%) 
Others (11%) 
Swamp(4%) 

Forest (evergreen, 
deciduous and pine) 
(84%) 
Crops (15%) 
Others (1%) 

Forest (18%) 
Coffee (monoculture 
and multistrata) (64%) 
Crop and Horticulture 
(12%) 
Others (6%) 

Mean 
annual 
rainfall, mm 

1695 2573 1027 2474 

Wet season April – June January - March July - September January - March 
Dry season July - September July - September January - March July - September 
Mean 
annual 
runoff, mm 

947 917 259 1673 

Major soils Inceptisols Inceptisols Ultisols, Entisols Andisols 
 1104 
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Table 2. Parameters of the GenRiver model used for the four site specific simulations (van 1105 
Noordwijk et al., 2011 for definitions of terms; sequence of parameters follows the pathway of 1106 
water) 1107 

Parameter Definition Unit Bialo Cidanau Mae Chaem Way Besai 
RainIntensMean Average rainfall intensity  mm hr-1 30 30 3 30 
RainIntensCoefVar Coefficient of variation of 

rainfall intensity 
mm hr-1 0.8 0.3 0.5 0.3 

RainInterceptDripRt Maximum drip rate of 
intercepted rain  

mm hr-1 80 10 10 10 

RainMaxIntDripDur Maximum dripping 
duration of intercepted rain 

hr 0.8 0.5 0.5 0.5 

InterceptEffectontrans Rain interception effect on 
transpiration 

- 0.35 0.8 0.3 0.8 

MaxInfRate Maximum infiltration 
capacity  

mm d-1 580 800 150 720 

MaxInfSubsoil Maximum infiltration 
capacity of the sub soil 

mm d-1 80 120 150 120 

PerFracMultiplier  Daily soil water drainage as 
fraction of groundwater 
release fraction 

- 0.35 0.13 0.1 0.1 

MaxDynGrWatStore Dynamic groundwater 
storage capacity 

mm 100 100 300 300 

GWReleaseFracVar  Groundwater release 
fraction, applied to all 
subcatchments  

- 0.15 0.03 0.05 0.1 

Tortuosity Stream shape factor - 0.4 0.4 0.6 0.45 
Dispersal Factor Drainage density - 0.3 0.4 0.3 0.45 
River Velocity  River flow velocity m s-1 0.4 0.7 0.35 0.5 

  1108 
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Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds 1109 
(BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer 1110 
function; see van Noordwijk et al., 2011) 1111 
 1112 

Land cover Type 
Potential 

interception 
(mm/d) 

Relative drought 
threshold BD/BDref 

Forest1 3.0 - 4.0 0.4 - 0.5 0.8 - 1.1 
Agroforestry2 2.0 - 3.0 0.5 - 0.6 0.95 - 1.05 
Monoculture tree3 1.0 0.55 1.08 
Annual crops 1.0 - 3.0 0.6 - 0.7 1.1 - 1.5 
Horticulture 1.0 0.7 1.07 
Rice field4 1.0 - 3.0 0.9 1.1 - 1.2 
Settlement 0.05 0.01 1.3 
Shrub and grass 2.0 - 3.0 0.6 1.0 - 1.07 
Cleared land 1.0 - 1.5 0.3 - 0.4 1.1 - 1.2 

Note:     1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest 1113 
2. Agroforestry: mixed garden, coffee, cocoa, clove 1114 
3. Monoculture : coffee 1115 
4. Rice field: irrigation and rainfed  1116 

1117 
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Table 4. Land use scenarios explored for four watersheds  1118 
Scenario Description 
NatFor Full natural forest, hypothetical reference scenario 
ReFor Reforestation, replanting shrub, cleared land, grass land and some 

agricultural area with forest  
AgFor Agroforestry scenario, maintaining agroforestry areas and converting 

shrub, cleared land, grass land and some of agricultural area into 
agroforestry  

Actual Baseline scenario, based on the actual condition of land cover change 
during the modelled time period 

Agric Agriculture scenario, converting some of tree based plantations, 
cleared land, shrub and grass land into rice fields or dry land 
agriculture, while maintain existing forest 

Degrading No change in already degraded areas, while converting most of forest 
and agroforestry area into rice fields and dry land agriculture 

 1119 
1120 
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Table 5. Number of years of observations required to estimate flow persistence to reject the 1121 
null-hypothesis of ‘no land use effect‘ at p-value = 0.05 using Kolmogorov-Smirnov test. The  1122 
probability of the test statistic in the first significant number is provided between brackets and  1123 
where the number of observations exceeds the time series available, results are given in italics 1124 

A. Natural Forest as reference   
     
Way Besai (N=32) ReFor AgFor Actual Agric 
ReFor   20 (0.035) 

16 
(0.037) 

13 
(0.046) 

AgFor     n.s. n.s. 
Actual       n.s. 
Agric         
Degrading         
     
     
Bialo (N=18) ReFor AgFor Actual Agric 
ReFor   n.s. n.s. 

37 
(0.04) 

AgFor     n.s. n.s. 
Actual       n.s. 
Agric         
Degrading         
     
     
Cidanau (N=20) ReFor AgFor Actual Agric 
ReFor   n.s. n.s. 

32 
(0.037) 

AgFor     n.s. n.s. 
Actual       n.s. 
Agric         
Degrading         
     
     
Mae Chaem (N=15) ReFor Actual Agric Degrade 
ReFor   n.s. 

23 
(0.049) 

18 
(0.050) 

Actual     
45 
(0.037) 

33 
(0.041) 

Agric       
33 
(0.041) 

Degrading         
  1125 
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B. Degrading scenario as reference   
      
Way Besai (N=32) NatFor ReFor AgFor Actual Agric 
NatFor   n.s. 

17 
(0.042) 

13 
(0.046) 

7 
(0.023) 

ReFor     
21 
(0.037) 

19 
(0.026) 

7 
(0.023) 

AgFor       n.s. 
28 
(0.046) 

Actual         
30 
(0.029) 

Agric           
      
      
Bialo (N=18) NatFor ReFor AgFor Actual Agric 
NatFor   n.s. n.s. 

41 
(0.047) 

19 
(0.026) 

ReFor     n.s. n.s. 
32 
(0.037) 

AgFor       n.s. n.s. 
Actual         n.s. 
Agric           
      
      
Cidanau (N=20) NatFor ReFor AgFor Actual Agric 
NatFor   n.s. n.s. 

33 
(0.041) 

8 
(0.034) 

ReFor     n.s. n.s. 
15 
(0.028) 

AgFor       n.s. n.s. 
Actual         

25 
(0.031) 

Agric           
      
      
Mae Chaem (N=15) NatFor ReFor Actual Agric  
NatFor   n.s. 

25 
(0.031) 

12 
(0.037)  

ReFor     n.s. 
18 
(0.050)  

Actual       
18 
(0.050)  

Agric          
  1126 
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Table 6. Data availability 1127 
 Bialo Cidanau Mae Chaem Way Besai 
Rainfall 
data 

1989-2009, Source: 
BWS Sulawesia and 
PUSAIRb; Average 
rainfall data from the 
stations Moti, Bulo-
bulo, Seka and Onto 

1998-2008, source: 
BMKGc 

1998-2002, source: 
WRD55, MTD22, 
RYP48, GMT13, WRD 
52 

1976-2007, Source: 
BMKG, PUd and PLNe 
(interpolation of 8 rainfall 
stations using Thiessen 
polygon) 

River flow 
data 

1993-2010, source; 
BWS Sulawesi and 
PUSAIR 

2000-2009, source: KTIf 1954-2003, source: 
ICHARMg 

1976-1998, source: PU and 
PUSAIR 

Reference 
of detailed 
report 

http://old.icraf.org/re
gions/southeast_asia
/publications?do=vie
w_pub_detail&pub_n
o=PP0343-14 

http://worldagroforest
ry.org/regions/southea
st_asia/publications?d
o=view_pub_detail&pu
b_no=PO0292-13 

http://worldagrofores
try.org/regions/south
east_asia/publications
?do=view_pub_detail
&pub_no=MN0048-11 

http://worldagroforestry.
org/regions/southeast_asi
a/publications?do=view_p
ub_detail&pub_no=MN00
48-11 

Note:  1128 
a BWS: Balai Wilayah Sungai (Regional River Agency) 1129 
bPUSAIR: Pusat Litbang Sumber Daya Air (Centre for Research and Development on Water 1130 

Resources) 1131 
cBMKG: Badan Meteorologi Klimatologi dan Geofisika (Agency on Meterology, Climatology 1132 

and Geophysics) 1133 
dPU: Dinas Pekerjaan Unum (Public Work  Agency) 1134 
ePLN: Perusahaan Listrik Negara (National Electric Company) 1135 
fKTI: Krakatau Tirta Industri, a private steel company 1136 
fICHARM: The International Centre for Water Hazard and Risk Management 1137 
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  1138 

 1139 
Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water 1140 

towers are defined on the basis of ability to generate river flow and being in the upper part 1141 
of a watershed)  1142 

  1143 
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 1144 

 1145 Figure 2. Flow persistence (Fp) estimates derived from measurements in four watersheds, 1146 
separately for the wettest and driest 3-month periods of the year 1147 

 1148 
1149 
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 1150 
Figure 3. Inter- (A) and intra- (B) annual variation in the Fp parameter derived from empirical 1151 

versus modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B) 1152 
 1153 
  1154 
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  1155 
Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B) the land 1156 

use change scenarios of Table 4 across the four watersheds 1157 
1158 
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 1159 
Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four 1160 

watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall 1161 
records; the left side panels show average water balance for each land cover scenario, the 1162 
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middle panels the Fp values per year and land use, the right-side panels the derived frequency 1163 
distributions (best fitting Weibull distribution) 1164 

 1165 

 1166 
Figure 6. Frequency distribution of expected difference in Fp in ‘paired plot’ comparisons where 1167 

land cover is the only variable; left panels: all scenarios compared to ‘reforestation’, right 1168 
panel: all scenarios compared to degradation; graphs are based on a kernel density estimation 1169 
(smoothing) approach  1170 

1171 
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 1172 
Figure 7. Correlations of Fp with fractions of rainfall that take overland flow and interflow 1173 

pathways through the watershed, across all years and land use scenarios of Figure App2  1174 
 1175 

  1176 
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Appendix 1. GenRiver model for effects of land cover on river flow 1177 
The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological 1178 
model that simulates river flow based on water balance concept with a daily time step and a 1179 
flexible spatial subdivision of a watershed that influences the routing of water. The core of the 1180 
GenRiver model is a “patch” level representation of a daily water balance, driven by local 1181 
rainfall and modified by the land cover and land cover change and soil properties. The model 1182 
starts accounting of rainfall or precipitation (P) and traces the subsequent flows and storage in 1183 
the landscape that can lead to either evapotranspiration (E), river flow (Q) or change in storage 1184 
(ΔS) (Figure App1): 1185 
P = Q + E + ΔS        [1] 1186 

 
Figure App1.Overview of the GenRiver model 

 1187 
The model may use measured rainfall data, or use a rainfall generator that involves Markov 1188 
chain temporal autocorrelation (rain persistence). The model can represent spatially explicit 1189 
rainfall, with stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 1190 
2) and partial spatial correlation of daily rainfall between subcatchments. Canopy interception 1191 
leads to direct evaporation of an amount of water controlled by the thickness of waterfilm on 1192 
the leaf area that depends on the land cover, and a delay of water reaching the soil surface 1193 
(parameter RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other 1194 
components of evapotranspiration is controlled by the InterceptEffectontrans parameter, that in practice 1195 
may depend on the time of day rainfall occurs and local climatic conditions such as windspeed) 1196 
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At patch level, vegetation influences interception, retention for subsequent evaporation and 1197 
delayed transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land 1198 
cover) also influences soil porosity and infiltration, modifying the inherent soil properties. 1199 
Groundwater pool dynamics are represented at subcatchment rather than patch level, integrating 1200 
over the landcover fractions within a subcatchment. The output of the model is river flow which 1201 
is contribution from three types of stream flow: surface flow on the day of the rainfall event; 1202 
interflow on the next day; and base flow as the slow flow. the multiple subcatchments that make 1203 
up the catchment as a whole can differ in basic soil properties, land cover fractions that affect 1204 
interception, soil structure (infiltration rate) and seasonal pattern of water use by the vegetation. 1205 
The subcatchment will also typically differ in “routing time” or in the time it takes the streams 1206 
and river to reach any specified observation point (with default focus on the outflow from the 1207 
catchment). The model itself (currently implemented in Stella plus Excel), a manual and 1208 
application case studies are freely available 1209 
(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow ;van 1210 
Noordwijk et al., 2011). 1211 
  1212 
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Appendix 2. Watershed-specific consequences of the land use change scenarios 1213 
The generically defined land use change scenarios (Table 4) led to different land cover 1214 
proportions, depending on the default land cover data for each watershed, as shown in Figure 1215 
App2. 1216 

1217 
Figure App2. Land use distribution of the various land use scenarios explored for the four 1218 
watersheds (see Table 4)   1219 
  1220 
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Appendix 3. Example of a macro in R to estimate number of observation required using 1221 
bootstrap approach. 1222 
 1223 
#The bootstrap procedure is to calculate the minimum sample size (number of observation) required 1224 #for a significant land use effect on Fp 1225 #bialo1 is a dataset contains delta Fp values for two different from Bialo watershed 1226  1227 #read data 1228 bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",") 1229  1230 #name each parameter 1231 BL1 <- bialo1$ReFor 1232 BL5 <- bialo1$Degrade 1233  1234 N = 1000 #number replication 1235  1236 n <- c(5:50) #the various sample size 1237  1238 J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset) 1239  1240 P15= matrix(ncol=J, nrow=R) #variable for storing p-value 1241 P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile 1242  1243 for (j in 1:J) #estimating for different n 1244  1245 #bootstrap sampling 1246 { 1247 for (i in 1:N) 1248 { 1249 #sampling data 1250 S1=sample(BL1, n[j], replace = T) 1251 S5=sample(BL5, n[j], replace = T) 1252  1253 #Kolmogorov-Smirnov test for equal distribution and get the p-Value 1254 KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15$p.value 1255 } 1256  1257 #Confidence interval of CI 1258 P15Q3[j] <- quantile(P15[,j], 0.975) 1259  1260 } 1261  1262 #saving P value data and CI 1263  1264 write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v 1265 


