

1 HESS-2015 -538, 31 Jan 2017

2 **Flood risk reduction and flow buffering as ecosystem**
3 **services: I. Theory on flow persistence, flashiness and base**
4 **flow**

5 Meine van Noordwijk^{1,2}, Lisa Tanika¹, Betha Lusiana¹

6 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia}

7 [2]{Wageningen University and Research, Plant Production Systems, Wageningen, the Netherlands}

8 Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org)

9 **Abstract**

10 Flood damage reflects insufficient adaptation of human presence and activity to location and
11 variability of river flow in a given climate. Flood risk increases when landscapes degrade,
12 counteracted or aggravated by engineering solutions. Efforts to maintain and restore
13 buffering as ecosystem function may help adaptation to climate change, but require
14 quantification of effectiveness in their specific social-ecological context. However, the
15 specific role of forests, trees, soil and drainage pathways in flow buffering, given geology,
16 land form and climate, remains controversial. Complementing the scarce heavily
17 instrumented catchments with reliable long-term data, especially in the tropics, there is a
18 need for metrics for data-sparse conditions. We present and discuss a flow persistence
19 metric that relates transmission to river flow of peak rainfall events, to the base flow
20 component of the water balance. The dimensionless flow persistence parameter F_p is
21 defined in a recursive flow model and can be estimated from limited time series of observed
22 daily flow, without requiring knowledge of spatially distributed rainfall upstream. The F_p
23 metric (or its change over time from what appears to be the local norm) matches local
24 knowledge concepts. Inter-annual variation in the F_p metric in sample watersheds correlates
25 with variation in the 'flashiness index' used in existing watershed health monitoring
26 programs, but the relationship between these metrics varies with context. Inter-annual
27 variation in F_p also correlates with common base-flow indicators, but again in a way that
28 varies between watersheds. Further exploration of the responsiveness of F_p in watersheds
29 with different characteristics to the interaction of land cover and the specific realization of
30 space-time patterns of rainfall in a limited observation period is needed to evaluate
31 interpretation of F_p as indicator of anthropogenic changes in watershed condition.

32 **1 Introduction**

33 Floods can be the direct result of reservoir dams, log jams or protective dykes breaking, with water
34 derived from unexpected heavy rainfall, rapid snow melt, tsunamis or coastal storm surges. We
35 focus here on floods that are associated, at least in the public eye, with watershed degradation.
36 Degradation of watersheds and its consequences for river flow regime and flooding intensity and
37 frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et
38 al., 2013). Engineering measures (dams, reservoirs, canalization, dykes, and flow regulation) can

39 significantly alter the flow regime of rivers, and reduce the direct relationship with landscape
40 conditions in the (upper) catchment (Poff et al., 1997). The life expectancy of such structures
41 depends, however, on the sediment load of incoming rivers and thus on upper watershed conditions
42 (Graf et al., 2010). Where 'flow regulation' has been included in efforts to assess an economic value
43 of ecosystem services, it can emerge as a major component of overall value; the economic damage
44 of floods to cities built on floodplains can be huge and the benefits of avoiding disasters thus large
45 (Farber et al., 2002; Turner and Daily, 2002; Brauman et al., 2007). The 'counterfactual' part of any
46 avoided damage argument, however, depends on metrics that are transparent in their basic concept
47 and relationship with observables. Basic requirements for a metric to be used in managing issues of
48 public concern in a complex multistakeholder environment are that it i) has a direct relationship with
49 a problem that needs to be solved ('salience'), ii) is aligned with current science-based
50 understanding of how the underpinning systems function and can be managed ('credibility') and iii)
51 can be understood from local and public/policy perspectives ('legitimacy') (Clark et al. 2011). Figure
52 1 summarizes these requirements, building on van Noordwijk et al. (2016).

53 \Rightarrow Figure 1

54 In the popular discussion on floods, especially in the tropics, a direct relationship with deforestation
55 and reforestation is still commonly perceived to dominate, and forest cover is seen as salient and
56 legitimate metric of watershed quality (or of urgency of restoration where it is low). A requirement
57 for 30% forest cover, is for example included in the spatial planning law in Indonesia in this context
58 (Galudra and Sirait, 2009). Yet, rivers are probably dominated by the other 70% of the landscape.
59 There is a problem with the credibility of assumed deforestation-flood relations (van Noordwijk et
60 al., 2007; Verbist et al., 2010), beyond the local scales ($< 10 \text{ km}^2$) of paired catchments where ample
61 direct empirical proof exists, especially in non-tropical climate zones (Bruijnzeel, 1990, 2004).
62 Current watershed rehabilitation programs that focus on increasing tree cover in upper watersheds
63 are only partly aligned with current scientific evidence of effects of large-scale tree planting on
64 streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van Noordwijk et al., 2015a).
65 The relationship between floods and change in forest quality and quantity, and the availability of
66 evidence for such a relationship at various scales has been widely discussed over the past decades
67 (Andréassian, 2004; Bruijnzeel, 2004; Bradshaw et al., 2007; van Dijk et al., 2009). Measurements in
68 Côte d'Ivoire, for example, showed strong scale dependence of runoff from 30-50% of rainfall at 1
69 m^2 point scale, to 4% at 130 ha watershed scale, linked to spatial variability of soil properties plus
70 variations in rainfall patterns (Van de Giesen et al., 2000). The ratio between peak and average flow
71 decreases from headwater streams to main rivers in a predictable manner; while mean annual
72 discharge scales with $(\text{area})^{1.0}$, maximum river flow was found to scale with $(\text{area})^{0.4}$ to $(\text{area})^{0.7}$ on
73 average (Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998; Herschy, 2002), with even
74 lower powers for area in flash floods that are linked to an extreme rainfall event over a restricted
75 area (Marchi et al., 2010). The determinants of peak flow are thus scale-dependent, with space-time
76 correlations in rainfall interacting with subcatchment-level flow buffering at any point along the
77 river. Whether and where peak flows lead to flooding depends on the capacity of the rivers to pass
78 on peak flows towards downstream lakes or the sea, assisted by riparian buffer areas with sufficient
79 storage capacity (Baldasarte et al., 2013). Reducing local flooding risk by increased drainage
80 increases flooding risk downstream, challenging the nested-scales management of watersheds to
81 find an optimal spatial distribution, rather than minimization, of flooding probabilities. Well-studied
82 effects of forest conversion on peak flows in small upper stream catchments (Bruijnzeel, 2004; Alila

83 et al., 2009) do not necessarily translate to flooding downstream. With most of the published studies
84 still referring to the temperate zone, the situation in the tropics (generally in the absence of snow) is
85 contested (Bonell and Bruijnzeel, 2005). As summarized by Beck et al. (2013) meso- to macroscale
86 catchment studies (>1 and >10 000 km², respectively) in the tropics, subtropics, and warm
87 temperate regions have mostly failed to demonstrate a clear relationship between river flow and
88 change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack of effect,
89 however. Detectability of effects depends on their relative size, the accuracy of the measurement
90 devices, length of observation period, and background variability of the signal. A recent econometric
91 study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, after appropriate corrections
92 for space-time correlates in the data-set for 31 meso- and macroscale basins (554-28,643 km²),
93 conversion of inland rain forest to monocultural plantations of oil palm or rubber increased the
94 number of flooding days reported, but not the number of flood events, while conversion of wetland
95 forests to urban areas reduced downstream flood duration. This Malaysian study may be the first
96 credible empirical evidence at this scale. The difference between results for flood duration and flood
97 frequency and the result for draining wetland forests warrant further scrutiny. Consistency of these
98 findings with river flow models based on a water balance and likely pathways of water under the
99 influence of change in land cover and land use has yet to be shown. Two recent studies for Southern
100 China confirm the conventional perspective that deforestation increases high flows, but are
101 contrasting in effects of Reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong
102 Province in China and concluded that forest recovery had not changed the annual water yield (or its
103 underpinning water balance terms precipitation and evapotranspiration), but had a statistically
104 significant positive effect on dry season (low) flows. Liu et al. (2015), however, found for the
105 Meijiang watershed (6983 km²) in subtropical China that while historical deforestation had
106 decreased the magnitudes of low flows (daily flows \leq Q95%) by 30.1%, low flows were not
107 significantly improved by Reforestation. They concluded that recovery of low flows by Reforestation
108 may take much longer time than expected probably because of severe soil erosion and resultant loss
109 of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited period of
110 time can be the combined and interactive effects of variations in the local rainfall regime, land cover
111 effects on soil structure and engineering modifications of water flow that can be teased apart with
112 modelling tools (Ma et al., 2014).

113 Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ from
114 those of plantation forestry, while forest statistics do not normally differentiate between these
115 different land covers. In a regression study of the high and low flow regimes in the Volta and
116 Mekong river basins Lacombe and McCartney (2016) found that in the variation among tributaries
117 various aspects of land cover and land cover change had explanatory power. Between the two
118 basins, however, these aspects differed. In the Mekong basin variation in forest cover had no direct
119 effect on flows, but extending paddy areas resulted in a decrease in downstream low flows, probably
120 by increasing evapotranspiration in the dry season. In the Volta River Basin, the conversion of forests
121 to crops (or a reduction of tree cover in the existing parkland system) induced greater downstream
122 flood flows. This observation is aligned with the experimental identification of an optimal,
123 intermediate tree cover from the perspective of groundwater recharge in parklands in Burkina Faso
124 (Ilstedt et al., 2016).

125 The statistical challenges of attribution of cause and effect in such data-sets are considerable with
126 land use/land cover effects interacting with spatially and temporally variable rainfall, geological

127 configuration and the fact that land use is not changing in random fashion or following any pre-
128 randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 catchments
129 in Puerto Rico by Beck et al. (2013) did not find significant relationships between the change in
130 forest cover or urban area, and change in various flow characteristics, despite indications that
131 regrowing forests increased evapotranspiration.

132 These observations imply that percent tree cover (or other forest related indicators) is probably not
133 a good metric for judging the ecosystem services provided by a watershed (of different levels of
134 'health'), and that a metric more directly reflecting changes in river flow may be needed. Here we
135 will explore a simple recursive model of river flow (van Noordwijk et al., 2011) that (i) is focused on
136 (loss of) flow predictability, (ii) can account for the types of results obtained by the cited recent
137 Malaysian study (Tan-Soo et al., 2014), and (iii) may constitute a suitable performance indicator to
138 monitor watershed 'health' through time.

139 Before discussing the credibility dimension of river flow metrics, the way these relate to the salience
140 and legitimacy issues around 'flood damage' as policy issue need attention. The salient issue of
141 'flood damage' is compatible with a common dissection of risk as the product of exposure, hazard
142 and vulnerability (steps 1, 2 and 3 in Figure 2). Many aspects beyond forests and tree cover play a
143 role; in fact these factors are multiple steps away (step 7A) from the direct river flow dynamics that
144 determine floods. Extreme discharge events plus river-level engineering (steps 4 and 5) co-
145 determine hazard (step 2), while exposure (step 1) depends on topographic position interacting with
146 human presence, and vulnerability can be modified by engineering at a finer scale and be further
147 reduced by advice to leave an area in high-risk periods. A recent study (Jongman et al., 2015) found
148 that human fatalities and material losses between 1980 and 2010 expressed as a share of the
149 exposed population and gross domestic product were decreasing with rising income. The planning
150 needed to avoid extensive damage requires quantification of the risk of higher than usual
151 discharges, especially at the upper tail end of the flow frequency distribution.

152 ⇒ Figure 2

153 The statistical scarcity, per definition, of 'extreme events' and the challenge of data collection where
154 they do occur, make it hard to rely on site-specific empirical data as such. Inference of risks needs
155 some trust in extrapolation methods, as is often provided by use of trusted underlying mechanisms
156 and/or data obtained in a geographical proximity. Existing data on flood frequency and duration, as
157 well as human and economic damage are influenced by topography, soils, human population density
158 and economic activity, responding to engineered infrastructure (step 5 in Figure 2), as well as the
159 extreme rainfall events that are their proximate cause (step 6). Subsidence due to groundwater
160 extraction in urban areas of high population density is a specific problem for a number of cities built
161 on floodplains (such as Jakarta and Bangkok), but subsidence of drained peat areas has also been
162 found to increase flooding risks elsewhere (Sumarga et al., 2016). Common hydrological analysis of
163 flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood events, for example) relies on direct
164 observations at step 4 in Fig. 2, but typically requires spatial extrapolation beyond points of data
165 collection through river flow models that combine at least steps 5 and 6. Relatively simple ways of
166 including the conditions in the watershed (step 7) in such models rely on the runoff curve number
167 method (Ponce et al., 1996) and the SWAT (Soil water assessment tool) model that was built on its
168 foundation (Gassman et al. 2007). Applications on tropical soils have had mixed success (Oliveira et
169 al. 2016). Describing peak flows as a proportion of the rainfall event that triggered them has a long

170 history, but where the proportionality factors are estimated for ungauged catchments results may
171 be unreliable (Efstratouidis et al., 2014). More refined descriptions of the infiltration process (step
172 7B) are available, using recursive models as filters on empirical data (Grimaldi et al., 2013), but data
173 for this approach may not be generally available. According to van den Putte et al. (2013) the Green–
174 Ampt infiltration equation can be fitted to data for dry conditions when soil crusts limit infiltration,
175 but not in wet winter conditions. These authors argued that simpler models may be better.

176 Analysis of likely change in flood frequencies in the context of climate change adaptation has been
177 challenging (Milly et al., 2002; Ma et al., 2014). There is a lack of simple performance indicators for
178 watershed health at its point of relating precipitation P and river flow Q (step 4 in Figure 2) that align
179 with local observations of river behaviour and concerns about its change and that can reconcile
180 local, public/policy and scientific knowledge, thereby helping negotiated change in watershed
181 management (Leimona et al., 2015). The behaviour of rivers depends on many climatic (step 6 in
182 Figure 2) and terrain factors (step 7A-D in Figure 2) that make it a challenge to differentiate between
183 human induced ecosystem structural change and soil degradation (step 7B) on one hand and
184 intrinsic variability on the other. Step 8 in Figure 2 represents the direct influence of climate on
185 vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological models
186 tend to focus on predicting hydrographs at one or more temporal scales, and are usually tested on
187 data-sets from limited locations. Despite many decades (if not centuries) of hydrological modelling,
188 current hydrologic theory, models and empirical methods have been found to be largely inadequate
189 for sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts to resolve this through
190 harmonization of modelling strategies have so far failed. Existing models differ in the number of
191 explanatory variables and parameters they use, but are generally dependent on empirical data of
192 rainfall that are available for specific measurement points but not at the spatial resolution that is
193 required for a close match between measured and modelled river flow. Spatially explicit models
194 have conceptual appeal (Ma et al., 2010) but have too many degrees of freedom and too many
195 opportunities for getting right answers for wrong reasons if used for empirical calibration (Beven,
196 2011). Parsimonious, parameter-sparse models are appropriate for the level of evidence available to
197 constrain them, but these parameters are themselves implicitly influenced by many aspects of
198 existing and changing features of the watershed, making it hard to use such models for scenario
199 studies of changing land use and change in climate forcing. Here we present a more direct approach
200 deriving a metric of flow predictability that can bridge local concerns and concepts to quantified
201 hydrologic function: the ‘flow persistence’ parameter as directly observable characteristic (step 4 in
202 Figure 2), that can be logically linked to the primary points of intervention in watershed
203 management, interacting with climate and engineering-based change.

204 In this contribution to the debate we will first define the metric ‘flow persistence’ in the context of
205 temporal autocorrelation of river flow and then derive a way to estimate its numerical value. In part
206 II we will apply the algorithm to river flow data for a number of contrasting meso-scale watersheds.
207 In the discussion of this paper we will consider the new flow persistence metric in terms of three
208 groups of criteria for usable knowledge (Fig. 1; Clark et al., 2011; Lusiana et al., 2011; Leimona et al.,
209 2015) based on salience (I,II), credibility (III, IV) and legitimacy (V-VII):

210 I. Does flow persistence relate to important aspects of watershed behaviour, complementing
211 existing metrics such as the ‘flashiness index’ and ‘base flow separation’ techniques?
212 II. Does its quantification help to select management actions?

213 III. Is there consistency of numerical results?
 214 IV. How sensitive is it to bias and random error in data sources?
 215 V. Does it match local knowledge?
 216 VI. Can it be used to empower local stakeholders of watershed management?
 217 VII. Can it inform local risk management?

218 **2 Flow persistence in water balance equations**

219 **2.1 Recursive model**

220 One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, related to
 221 the volumetric flow (discharge) via rating curves (Maidment, 1992). Without knowing details of
 222 upstream rainfall and the pathways the rain takes to reach the river, observation of the daily
 223 fluctuations in water level allows important inferences to be made. It is also of direct utility: sudden
 224 rises can lead to floods without sufficient warning, while rapid decline makes water utilization
 225 difficult. Indeed, a common local description of watershed degradation is that rivers become more
 226 'flashy' and less predictable, having lost a buffer or 'sponge' effect (Joshi et al., 2004; Ranieri et al.,
 227 2004; Rahayu et al., 2013). A simple model of river flow at time t , Q_t , is that it is similar to that of the
 228 day before (Q_{t-1}), multiplied with F_p , a dimensionless parameter called 'flow persistence' (van
 229 Noordwijk et al., 2011) plus an additional stochastic term $Q_{a,t}$:

230 $Q_t = F_p Q_{t-1} + Q_{a,t}$ [1].

231 Q_t is for this analysis expressed in mm d^{-1} , which means that measurements in $\text{m}^3 \text{s}^{-1}$ need to be
 232 divided by the relevant catchment area, with appropriate unit conversion. If river flow were
 233 constant, it would be perfectly predictable, i.e. F_p would be 1.0 and $Q_{a,t}$ zero; in contrast, an F_p -value
 234 equal to zero and $Q_{a,t}$ directly reflecting erratic rainfall represents the lowest possible level of
 235 predictability.

236 The F_p parameter is conceptually identical to the 'recession constant' commonly used in hydrological
 237 models, typically assessed during an extended dry period when the $Q_{a,t}$ term is negligible and
 238 streamflow consists of base flow only (Tallaksen, 1995); empirical deviations from a straight line in a
 239 plot of the logarithm of Q against time are common and point to multiple rather than a single
 240 groundwater pool that contributes to base flow. The larger catchment area has a possibility to get
 241 additional flow from multiple independent groundwater contribution.

242 As we will demonstrate in a next section, it is possible to derive F_p even when $Q_{a,t}$ is not negligible. In
 243 climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent F_p
 244 between wet and dry parts of the hydrologic year. A possible interpretation, to be further explored,
 245 is that decrease over the years of F_p indicates 'watershed degradation' (i.e. greater contrast between
 246 high and low flows), and an increase 'improvement' or 'rehabilitation' (i.e. more stable flows).

247 If we consider the sum of river flow over a period of time (from 1 to T) we obtain

248 $\Sigma_1^T Q_t = F_p \Sigma_1^T Q_{t-1} + \Sigma_1^T Q_{a,t}$ [2].

249 If the period is sufficiently long period for Q_T minus Q_0 (the values of Q_t for $t=T$ and $t=0$, respectively)
250 to be negligibly small relative to the sum over all t 's, we may equate $\Sigma_1^T Q_t$ with $\Sigma_1^T Q_{t-1}$ and obtain a
251 first way of estimating the F_p value:

252 $F_p = 1 - \Sigma_1^T Q_{a,t} / \Sigma_1^T Q_t$ [3].

253 The stochastic $Q_{a,t}$ can be interpreted in terms of what hydrologists call 'effective rainfall' (i.e. rainfall
254 minus on-site evapotranspiration, assessed over a preceding time period t_x since previous rain
255 event):

256 $Q_t = F_p Q_{t-1} + (1-F_p)(P_{tx} - E_{tx})$ [4].

257 Where P_{tx} is the (spatially weighted) precipitation on day t (or preceding precipitation released as
258 snowmelt on day t) in mm d^{-1} ; E_{tx} , also in mm d^{-1} , is the preceding evapotranspiration that allowed
259 for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-replenishing
260 rainfall that induced empty pore space in the soil for infiltration and retention), or replenishment of
261 a water film on aboveground biomass that will subsequently evaporate. More complex attributions
262 are possible, aligning with the groundwater replenishing bypass flow and the water isotopic
263 fractionation involved in evaporation (Evaristo et al., 2015).

264 The consistency of multiplying effective rainfall with $(1-F_p)$ can be checked by considering the
265 geometric series $(1-F_p)$, $(1-F_p) F_p$, $(1-F_p) F_p^2$, ..., $(1-F_p) F_p^n$ which adds up to $(1-F_p)(1 - F_p^n)/(1-F_p)$ or $1 - F_p^n$. This approaches 1 for large n , suggesting that all of the water attributed to time t , i.e. $P_t - E_{tx}$,
266 will eventually emerge as river flow. For $F_p = 0$ all of $(P_t - E_{tx})$ emerges on the first day, and river flow
267 is as unpredictable as precipitation itself. For $F_p = 1$ all of $(P_t - E_{tx})$ contributes to the stable daily flow
268 rate, and it takes an infinitely long period of time for the last drop of water to get to the river. For
269 declining F_p , $(1 > F_p > 0)$, river flow gradually becomes less predictable, because a greater part of the
270 stochastic precipitation term contributes to variable rather than evened-out river flow.

272 Taking long term summations of the right- and left- hand sides of Eq.(4) we obtain:

273 $\Sigma Q_t = \Sigma (F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})) = F_p \Sigma Q_{t-1} + (1-F_p)(\Sigma P_t - \Sigma E_{tx})$ [5].

274 Which is consistent with the basic water budget, $\Sigma Q = \Sigma P - \Sigma E$, at time scales long enough for
275 changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean daily
276 river flow are independent of F_p . This does not preclude that processes of watershed degradation or
277 restoration that affect the partitioning of P over Q and E also affect F_p .

278 **2.2 Base flow**

279 Clarifying the $Q_{a,t}$ contribution is equivalent with one of several ways to separate base flow from
280 peak flows. Rearranging Eq.(3) we obtain

281 $\Sigma_1^T Q_{a,t} = (1 - F_p) \Sigma_1^T Q_t$ [6].

282 The $\Sigma Q_{a,t}$ term reflects the sum of peak flows in mm. Its complement, $F_p \Sigma Q_t$, reflects the sum of base
283 flow, also in mm. For $F_p = 1$ (the theoretical maximum) we conclude that all $Q_{a,t}$ must be zero, and all
284 flow is 'base flow'.

285 **2.3 Low flows**

286 The lowest flow expected in an annual cycle is $Q_x F_p^{N_{\max}}$ where Q_x is flow on the first day without rain
287 and N_{\max} the longest series of dry days. Taken at face value, a decrease in F_p has a strong effect on
288 low-flows, with a flow of 10% of Q_x reached after 45, 22, 14, 10, 8 and 6 days for $F_p = 0.95, 0.9, 0.85,$
289 0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the
290 cumulative dry season flow if the dry period is sufficiently long, is $Q_x/(1-F_p)$. If F_p decreases to F_{px} but
291 the groundwater reservoir ($Res = Q_x/(1-F_p)$) is not affected, initial flows in the dry period will be
292 higher ($Q_x F_{px}^i (1-F_{px}) Res > Q_x F_p^i (1-F_p) Res$ for $i < \log((1-F_{px})/(1-F_p))/\log(F_p/F_{px})$). It thus matters how
293 low flows are evaluated: from the perspective of the lowest level reached, or as cumulative flow.
294 The combination of climate, geology and land form are the primary determinants of cumulative low
295 flows, but if land cover reduces the recharge of groundwater there may be impacts on dry season
296 flow, that are not directly reflected in F_p .

297 If a single F_p value would account for both dry and wet season, the effects of changing F_p on low
298 flows may well be more pronounced than those on flood risk. Empirical tests are needed of the
299 dependence of F_p on Q (see below). Analysis of the way an aggregate F_p depends on the dominant
300 flow pathways provides a basis for differentiating F_p within a hydrologic year.

301

302 **2.4 Flow-pathway dependence of flow persistence**

303 The patch-level partitioning of water between infiltration and overland flow is further modified at
304 hillslope level, with a common distinction between three pathways that reach streams: overland
305 flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 2004). An additional
306 interpretation of Eq.(1), potentially adding to our understanding of results but not needed for
307 analysis of empirical data, can be that three pathways of water through a landscape contribute to
308 river flow (Barnes, 1939): groundwater release with $F_{p,g}$ values close to 1.0, overland flow with $F_{p,o}$
309 values close to 0, and interflow with intermediate $F_{p,i}$ values.

310 $Q_t = F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o} + Q_{a,t}$ [7],

311 $F_p = (F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o})/Q_{t-1}$ [8].

312 On this basis a decline or increase in overall weighted average F_p can be interpreted as indicator of a
313 shift of dominant runoff pathways through time within the watershed. Dry season flows are
314 dominated by $F_{p,g}$. The effective F_p in the rainy season can be interpreted as indicating the relative
315 importance of the other two flow pathways. F_p reflects the fractions of total river flow that are based
316 on groundwater, overland flow and interflow pathways:

317 $F_p = F_{p,g} (\Sigma Q_{t,g} / \Sigma Q_t) + F_{p,o} (\Sigma Q_{t,o} / \Sigma Q_t) + F_{p,i} (\Sigma Q_{t,i} / \Sigma Q_t)$ [9].

318 Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to
319 enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated conditions
320 throughout the soil profile may also induce overland flow, especially near valley bottoms (Bonell,
321 1993; Bruijnzeel, 2004). Thus, the value of $F_{p,o}$ can be substantially above zero if the rainfall has a
322 significant temporal autocorrelation, with heavy rainfall on subsequent days being more likely than
323 would be expected from general rainfall frequencies. If rainfall following a wet day is more likely to
324 occur than following a dry day, as is commonly observed in Markov chain analysis of rainfall patterns
325 (Jones and Thornton, 1997; Bardossy and Plate, 1991), the overland flow component of total flow
326 will also have a partial temporal autocorrelation, adding to the overall predictability of river flow. In
327 a hypothetical climate with evenly distributed rainfall, we can expect F_p to be 1.0 even if there is no
328 infiltration and the only pathway available is overland flow. Even with rainfall that is variable at any
329 point of observation but has low spatial correlation it is possible to obtain F_p values of (close to) 1.0
330 in a situation with (mostly) overland flow (Ranieri et al., 2004).

331 **2.5 Relationship between flow persistence and flashiness index**

332 The Richards-Baker 'R-B Flashiness index' (Baker et al. 2004) is defined as

333 $FI = \sum_t |\Delta Q_t| / \sum_t Q_t = \sum_{ti} (Q_t - Q_{t-1}) + \sum_{td} (Q_{t-1} - Q_t) \quad [10]$

334 with ti indicating all times t that $Q_t > Q_{t-1}$ and td indicating all times t that $Q_t < Q_{t-1}$. Over a
335 timeframe that flow has no net trend, the sum of increments ($\sum_{ti} (Q_t - Q_{t-1})$) is equal to the sum of
336 declines ($\sum_{td} (Q_{t-1} - Q_t)$).

337 Substituting equation [5] in [10] we obtain:

338 $FI = 2(1-F_p)(0.5 \Delta S + \sum_{ti} (P_t - E_{tx} - Q_t)) / \sum_t Q_t = 2(1-F_p)(-0.5 \Delta S + \sum_{td} (-P_t + E_{tx} + Q_t)) / \sum_t Q_t \quad [11]$

339 With ΔS representing change in catchment storage; $\Delta S = (1-F_p)(-\sum_{ti} (P_t - E_{tx} - Q_t) + \sum_{td} (-P_t + E_{tx} + Q_t))$.

340 This suggests that $FI = 2(1-F_p)$ is a first approximation and becomes zero for $F_p = 1$. These
341 approximations require that changes in the catchment have no influence on P_t or E_{tx} values. If E_{tx} is
342 negatively affected (either by a change in vegetation or by insufficient buffering, reducing water
343 availability on non-rainfall days) flashiness will increase, beyond the main effects on F_p .

344 The rainfall term, counted positive for all days with flow increase and negatively for days with
345 declining flow, hints at one of the major reasons why the flashiness index tends to get smaller when
346 larger catchment areas are involved: rainfall will tend to get more evenly distributed over time,
347 unless the spatial correlation of rainfall is (close to) 1 and all rainfall derives from fronts passing over
348 the area uniformly. Where (part of) precipitation occurs as snow, the timing of snow melt defines P_t
349 as used here. Where vegetation influences timing and synchrony of snowmelt, this will be reflected
350 in the flashiness index. It may not directly influence flow persistence, but will be accounted for in the
351 flow description that uses flow persistence as key parameter.

352 **3. Methods**

353 **3.1 River flow data for four tropical watersheds**

354 To test the applicability of the F_p metric and explore its properties, data from four Southeast Asian
355 watersheds were used, that will be described and further analysed in part II. The first watershed
356 data set is the Way Besai (414.4 km^2) in Lampung province, Sumatra, Indonesia (Verbist et al., 2010).
357 With an elevation between 720-1831 m a.s.l., the Way Besai is dominated by various coffee
358 production systems (64%), with remaining forest (18%), horticulture and crops (12%) and other land
359 uses (6%). Daily rainfall data from 1976 – 2007, was generated by interpolation of eight rainfall
360 stations using Thiessen polygons; data were obtained from BMKG (*Agency on Meteorology,*
361 *Climatology and Geophysics*), PU (Public Work Agency) and PLN (*National Electricity Company*). The
362 average of annual rainfall was 2474 mm, with observed values in the range 1216 – 3277 mm. River
363 flow data at the outflow of the Way Besai was also obtained from PU and PUSAIR (*Centre for*
364 *Research and Development on Water Resources*), with an average of river flow of $16.7 \text{ m}^3/\text{s}$.
365 Data from three other watersheds were used to explore the variation of F_p across multiple years and
366 its relationship with the Flashiness Index: Bialo (111.7 km^2) in South Sulawesi, Indonesia with
367 Agroforestry as the dominant land cover type, Cidanau (241.6 km^2) in West Java, Indonesia,
368 dominated by mixed Agroforestry land uses but with a peat swamp before the final outlet and Mae
369 Chaem (3892 km^2) in Northern Thailand, part of the upper Ping Basin, and dominated by evergreen,
370 deciduous and pine forest. Detailed information on these watersheds and the data sources is
371 provided in Paper II.

372 **3.2 Numerical examples**

373 For visualizing the effects of stochastic rainfall on river flow according to equation [1] a spreadsheet
374 model that is available from the authors on request was used in 'Monte Carlo' simulations. Fixed
375 values for F_p were used in combination with a stochastic $Q_{a,t}$ value. The latter was obtained from a
376 random generator (rand) with two settings for a (truncated) sinus-based daily rainfall probability: A)
377 one for situations that have approximately 120 rainy days, and an annual Q of around 1600 mm, and
378 B) one that leads to around 45 rainy days and an annual total around 600 mm. Maximum daily $Q_{a,t}$
379 was chosen as 60 mm in both cases. For the figures, realizations for various F_p values were retained
380 that were within 10% of this number of rainy days and annual flow total, to focus on the effects of F_p
381 as such.

382 **3.3 Flow persistence as a simple flood risk indicator**

383 For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as:

$$384 Q_t = \sum_j^t F_p^{t-j} (1-F_p) p_j P_j \quad [12].$$

385 Where p_j reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal
386 trends) and P_j is the rain depth (drawn from a uniform distribution). From this model the effects of F_p
387 (and hence of changes in F_p) on maximum daily flow rates, plus maximum flow totals assessed over a
388 2-5 days period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall
389 in the default case – see below). Relative flood protection was calculated as the difference between

390 peak flows (assessed for 1-5 days duration after a 1 year ‘warm-up’ period) for a given F_p versus
391 those for $F_p = 0$, relative to those at $F_p = 0$.

392 **3.4 An algorithm for deriving F_p from a time series of stream flow data**

393 Equation (3) provides a first method to derive F_p from empirical data if these cover a full hydrologic
394 year. In situations where there is no complete hydrograph and/or in situations where we want to
395 quantify F_p for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change
396 in the storage term of the water budget equation cannot be ignored, we need an algorithm for
397 estimating F_p from a series of daily Q_t observations.

398 Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a
399 groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). As we
400 can assume for such periods that $Q_{a,t} = 0$, we obtain $F_p = Q_t / Q_{t-1}$, under these circumstances. We
401 cannot be sure, however, that this $F_{p,g}$ estimate also applies in the rainy season, because overall wet-
402 season F_p will include contributions by $F_{p,o}$ and $F_{p,i}$ as well (compare Eq. 9). In locations without a
403 distinct dry season, we need an alternative method.

404 A biplot of Q_t against Q_{t-1} will lead to a scatter of points above a line with slope F_p , with points above
405 the line reflecting the contributions of $Q_{a,t} > 0$, while the points that plot on the F_p line itself
406 represent $Q_{a,t} = 0 \text{ mm d}^{-1}$. There is no independent source of information on the frequency at which
407 $Q_{a,t} = 0$, nor what the statistical distribution of $Q_{a,t}$ values is if it is non-zero. Calculating back from the
408 Q_t series we can obtain an estimate ($Q_{a,Fptry}$) of $Q_{a,t}$ for any given estimate ($F_{p,try}$) of F_p , and select the
409 most plausible F_p value. For high $F_{p,try}$ estimates there will be many negative $Q_{a,t,Fptry}$ values, for low
410 $F_{p,try}$ estimates all $Q_{a,t,Fptry}$ values will be larger. An algorithm to derive a plausible F_p estimate can
411 thus make use of the corresponding distribution of ‘apparent Q_a ’ values as estimates of $F_{p,try}$,
412 calculated as $Q_{a,t,Fptry} = Q_t - F_{p,try} Q_{t-1}$. While $Q_{a,t}$ cannot be negative in theory, small negative Q_a
413 estimates are likely when using real-world data with their inherent errors. The FlowPer F_p algorithm
414 (van Noordwijk et al., 2011) derives the distribution of $Q_{a,t,Fptry}$ estimates for a range of $F_{p,try}$ values
415 (Figure 3B) and selects the value $F_{p,try}$ that minimizes the variance $\text{Var}(Q_{a,t,Fptry})$ (or its standard
416 deviation) (Figure 3C). It is implemented in a spreadsheet workbook that can be downloaded from
417 the ICRAF website (<http://www.worldAgroforestry.org/output/flowper-flow-persistence-model>)

418 ➔Figure 3

419 A consistency test is needed that the high-end Q_t values relate to Q_{t+1} in the same was as do low or
420 medium Q_t values. Visual inspection of Q_{t+1} versus Q_t , with the derived F_p value, provides a
421 qualitative view of the validity of this assumption. The F_p algorithm can be applied to any population
422 of (Q_{t-1}, Q_t) pairs, e.g. selected from a multiyear data set on the basis of 3-month periods within the
423 hydrological year.

424 **3.5 Flashiness and flow separation**

425 Hydrographs analysed for F_p were also used for calculating the Richards-Baker or R-B Flashiness
426 index (Baker et al. 2004) by summing the absolute values of all daily changes in flow. Two common
427 flow separation algorithms (fixed and sliding interval methods, Furey and Gupta, 2001) were used to
428 estimate the base flow fraction at an annual basis. The average of the two was compared to F_p .

429 **4 Results**

430 **4.1 Numerical examples**

431 Figure 4 provides two examples, for annual river flows of around 1600 and 600 mm y^{-1} , of the way a
432 change in F_p values (based on Eq. 1) influences the pattern of river flow for a unimodal rainfall
433 regime with a well-developed dry season. The increasing 'spikiness' of the graph as F_p is lowered,
434 regardless of annual flow, indicates reduced predictability of flow on any given day during the wet
435 season on the basis of the flow on the preceding day.

436 \Rightarrow Figure 4

437 A bi-plot of river flow on subsequent days for the same simulations (Figure 5) shows two main
438 effects of reducing the F_p value: the scatter increases, and the slope of the lower envelope
439 containing the swarm of points is lowered (as it equals F_p). Both of these changes can provide entry
440 points for an algorithm to estimate F_p from empirical time series, provided the basic assumptions of
441 the simple model apply and the data are of acceptable quality.

442 \Rightarrow Figure 5

443 For the numerical examples shown in Figure 4, the relative increase of the maximum daily flow when
444 the F_p value decreased from a value close to 1 (0.98) to nearly 0 depended on the rainfall regime;
445 with lower annual rainfall but the same maximum daily rainfall, the response of peak flows to
446 decrease in F_p became stronger.

447 **4.2 Flood intensity and duration**

448 Figure 6 shows the effect of F_p values in the range 0 to 1 on the maximum flows obtained with a
449 random time series of 'effective rainfall', compared to results for $F_p = 0$. Maximum flows were
450 considered at time scales of 1 to 5 days, in a moving average routine. This way a relative flood
451 protection, expressed as reduction of peak flow, could be related to F_p (Figure 6A).

452 \Rightarrow Figure 6

453 Relative flood protection rapidly decreased from its theoretical value of 100% at $F_p = 1$ (when there
454 was no variation in river flow), to less than 10% at F_p values of around 0.5. Relative flood protection
455 was slightly lower when the assessment period was increased from 1 to 5 days (between 1 and 3
456 days it decreased by 6.2%, from 3 to 5 days by a further 1.3%). Two counteracting effects are at play
457 here: a lower F_p means that a larger fraction ($1-F_p$) of the effective rainfall contributes to river flow,
458 but the increased flow is less persistent. In the example the flood protection in situations where the
459 rainfall during 1 or 2 days causes the peak is slightly stronger than where the cumulative rainfall over
460 3-5 days causes floods, as typically occurs downstream.

461 As we expect from equation 5 that peak flow is to $(1-F_p)$ times peak rainfall amounts, the effect of a
462 change in F_p not only depends on the change in F_p that we are considering, but also on its initial
463 value. Higher initial F_p values will lead to more rapid increases in high flows for the same reduction in
464 F_p (Figure 6B). However, flood duration rather responds to changes in F_p in a curvilinear manner, as
465 flow persistence implies flood persistence (once flooding occurs), but the greater the flow
466 persistence the less likely such a flooding threshold is passed (Figure 6C). The combined effect may
467 be restricted to about 3 days of increase in flood duration for the parameter values used in the

468 default example, but for different parametrization of the stochastic ϵ other results might be
469 obtained.

470 **4.3 Algorithm for F_p estimates from river flow time series**

471 The algorithm has so far returned non-ambiguous F_p estimates on any modelled time series data of
472 river flow, as well as for all empirical data set we tested (including all examples tested in part II),
473 although there probably are data sets on which it can breakdown. Visual inspection of Q_{t-1}/Q_t biplots
474 (as in Figure 4) can provide clues to non-homogenous data sets, to potential situations where
475 effective F_p depends on flow level Q_t and where data are not consistent with a straight-line lower
476 envelope. Where river flow estimates were derived from a model with random elements, however,
477 variation in F_p estimates was observed, that suggests that specific aspects of actual rainfall, beyond
478 the basic characteristics of a watershed and its vegetation, do have at least some effect. Such effects
479 deserve to be further explored for a set of case studies, as their strength probably depends on
480 context.

481 **4.4 Flow persistence compared to base flow and flashiness index**

482 Figure 7 compares results for a hydrograph of a single year for the Way Besai catchment, described
483 in more detail in paper II. While there is agreement on most of what is indicated as baseflow, the
484 short term response to peaks in the flow differ, with baseflow in the F_p method more rapidly
485 increasing after peak events.

486 \Rightarrow Figure 7

487 When compared across multiple years for four Southeast Asian catchments (figure 8A), there is
488 partial agreement in the way interannual variation is described in each catchment, while numerical
489 values are similar. However, the ratio of what is indicated as baseflow according to the F_p method
490 and according to standard hydrograph separation varies from 1.05 to 0.86.

491 \Rightarrow Figure 8

492 Figure 8 compares numerical results for the R-B Flashiness Index with F_p for the four test catchments
493 and for a number of hydrographs constructed as in Fig. 3A. The two concepts are inversely related,
494 as expected from equation [11], but where F_p is constrained to the 0-1 interval, the R-B Flashiness
495 Index can attain values up to 2.0, with the value for $F_p = 0$ depending on properties of the local
496 rainfall regime. Where hydrographs were generated with a simple flow model with F_p parameter as
497 key variable, the flashiness index is more tightly related to, especially for higher F_p values, than
498 where both flashiness index and F_p were derived from existing flow data (Figure 8C versus 8B). The
499 difference in slope between the four watersheds in Fig. 8B appears to be primarily related to aspects
500 of the local rainfall pattern that deserve further analysis in larger data sets of this nature.

501

502 **5 Discussion**

503 We will discuss the flow persistence metric based on the seven questions raised from the
504 perspectives of salience, credibility and legitimacy and refer back to figure 2 that clarified how

505 ecosystem structure, ecosystem function and human land use interact in causal loops that can lead
506 to flood damage, its control and/or prevention.

507 **5.1 Salience**

508 Key *salience* aspects are “Does flow persistence relate to important aspects of watershed
509 behaviour?” and “Does it help to select management actions?”. A major finding in the derivation of
510 F_p was that the flow persistence measured at daily time scale can be logically linked to the long-term
511 water balance under the assumption that the watershed is defined on the basis of actual
512 groundwater flows, and that the proportion of peak rainfall that translates to peak river flow equals
513 the complement of flow persistence. This feature links effects on floods of changes in watershed
514 quality, as commonly expressed in curve numbers and flashiness indices, to effects on low flows, as
515 commonly expressed in base flow metrics. The F_p parameter as such does not predict when and
516 where flooding will occur, but it does help to assess to what extent another condition of the
517 watershed, with either higher or lower F_p , would translate the same rainfall into larger or small peak
518 water flows. This is salient, especially if the relative contributions of (anthropogenic) land cover and
519 the (exogenous, probabilistic) specifics of the rainfall pattern can be further teased apart (see part
520 II). Where F_p may describe the descending branch of hydrographs at a relevant time scale, details of
521 the ascending branch beyond the maximum daily flow reached may be relevant for reducing flood
522 damage, and may require more detailed study at higher temporal resolution.

523 Figures 3 and 6 show that most of the effects of a decreasing F_p value on peak discharge (which is
524 the basis for downstream flooding) occur between F_p values of 1 and 0.7, with the relative flood
525 protection value reduced to 10% when F_p reaches 0.5. As indicated in Figure 2, peak discharge is only
526 one of the factors contributing to flood risk in terms of human casualties and physical damage. Flood
527 risks are themselves nonlinearly and in strongly topography-specific ways related to the volume of
528 river flow after extreme rainfall events. While the expected fraction of rainfall that contributes to
529 direct flow is linearly related to rainfall via $(1-F_p)$, flooding risk as such will have a non-linear
530 relationship with rainfall, that depends on topography and antecedent rainfall. Catchment changes,
531 such as increases or decreases in percentage tree cover, will generally have a non-linear relationship
532 with F_p as well as with flooding risks. The F_p value has an inverse effect on the fraction of recent
533 rainfall that becomes river flow, but the effect on peak flows is less, as higher F_p values imply higher
534 base flow. The way these counteracting effects balance out depends on details of the local rainfall
535 pattern (including its Markov chain temporal autocorrelation), as well as the downstream
536 topography and risk of people being at the wrong time at a given place, but the F_p value is an
537 efficient way of summarizing complex land use mosaics and upstream topography in its effect on
538 river flow. The difference between wet-season and dry-season F_p deserves further analysis. In
539 climates with a real rainless dry-season, dry season F_p is dominated by the groundwater release
540 fraction of the watershed, regardless of land cover, while in wet season it depends on the mix
541 (weighted average) of flow pathways. The degree to which F_p can be influenced by land cover needs
542 to be assessed for each landscape and land cover combination, including the locally relevant forest
543 and forest derived land classes, with their effects on interception, soil infiltration and time pattern of
544 transpiration. The F_p value can summarize results of models that explore land use change scenarios
545 in local context. To select the specific management actions that will maintain or increase F_p a locally
546 calibrated land use/hydrology model is needed, such as GenRiver (part II), DHV (Bergström, 1995) or
547 SWAT (Yen et al., 2015).

548 The 'health' wording has been used as a comprehensive concept of the way a) climate forcing, b)
549 watershed vegetation and soil conditions and c) engineering interventions interact on functional
550 aspects of river flow. Ma et al (2014) described a method to separate these three influences on river
551 flow. In the four catchments we used as example there have been no major dams or reservoirs
552 installed upstream of the points of measurement. Where these do exist the specific operating rules
553 of reservoirs need to be included in any model and these can have a major influence on downstream
554 flow, depending on the primary use for power generation, dry season irrigation or stabilizing river
555 flow for riverine transport. Although a higher F_p value will in most cases be desirable (and a decrease
556 in F_p undesirable), we may expect that in an ecological perspective on watershed health, the change
557 in low flows that can occur in the flow regime of degrading and intensively managed watersheds
558 alike, depending on the management rules for reservoirs, is at least as relevant as changes in flood
559 risks, as many aquatic organisms thrive during floods (Pahl-Wostl et al., 2013; Poff et al., 2010).
560 Downstream biota can be expected to have adapted to the pre-human flow conditions, inherent F_p
561 and variability. Decreased variability of flow achieved by engineering interventions (e.g. a reservoir
562 with constant release of water to generate hydropower) may have negative consequences for fish
563 and other biota (Richter et al., 2003; McCluney et al., 2014). In an extensive literature review Poff
564 and Zimmerman (2010) found no general, transferable quantitative relationships between flow
565 alteration and ecological response, but the risk of ecological change increases with increasing
566 magnitude of flow alteration.

567 Various geographically defined watershed health concepts are in use (see for example
568 <https://www.epa.gov/hwp/healthy-watersheds-projects-region-5>; City of Fort Collins, 2015,
569 employing a range of specific indicators, including the 'R-B flashiness index' (Baker et al. 2004). The
570 definition of watershed health, like that of human health has evolved over time. Human health was
571 seen as a state of normal function that could be disrupted from time to time by disease. In 1948 the
572 World Health Organization (1958) proposed a definition that aimed higher, linking health to well-
573 being, in terms of physical, mental, and social aspects, and not merely the absence of disease and
574 infirmity. Health became seen as the ability to maintain homeostasis and recover from injury, but
575 remained embedded in the environment in which humans function.

576 **5.2 Credibility**

577 Key *credibility* questions are "Consistency of numerical results?" and "How sensitive are results to
578 bias and random error in data sources?". A key strength of our flow persistence parameter, that it
579 can be derived from a limited number of observations of river flow at a single point along the river,
580 without knowledge of rainfall events and catchment conditions, is also its major weakness. If rainfall
581 data exist, and especially rainfall data that apply to each subcatchment, the Q_a term doesn't have to
582 be treated as a random variable and event-specific information on the flow pathways may be
583 inferred for a more precise account of the hydrograph. But for the vast majority of rivers in the
584 tropics, advances in remotely sensed rainfall data are needed to achieve that situation and F_p may be
585 all that is available to inform public debates on the location-specific relation between forests and
586 floods.

587 The main conclusions from the numerical examples analysed so far are that intra-annual variability
588 of F_p values between wet and dry seasons was around 0.2, interannual variability in either annual or
589 seasonal F_p was generally in the 0.1 range, while the difference between observed and simulated

590 flow data as basis for F_p calculations was mostly less than 0.1. With current methods, it seems that
591 effects of land cover change on flow persistence that shift the F_p value by about 0.1 are the limit of
592 what can be asserted from empirical data (with shifts of that order in a single year a warning sign
593 rather than a firmly established change). When derived from observed river flow data F_p is suitable
594 for monitoring change (degradation, restoration) and can be a serious candidate for monitoring
595 performance in outcome-based ecosystem service management contracts. In interpreting changes in
596 F_p as caused by changes in the condition in the watershed, however, changes in specific properties of
597 the rainfall regime must be excluded. At the scale of paired catchment studies this assumption may
598 be reasonable, but in temporal change (or using specific events as starting point for analysis), it is
599 not easy to disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not
600 only responds to, but also influences rainfall (arrow 10 in Figure 2; van Noordwijk et al., 2015b)
601 further complicates the analysis across scales.

602 As indicated, the F_p method is related to earlier methods used in streamflow hydrograph separation
603 of base flow and quick flow. While textbooks (Ward and Robinson, 2000; Hornberger et al 2014)
604 tend to be critical of the lack of objectivity of graphical methods, algorithms are used for deriving the
605 minimum flow in a fixed or sliding period of reference as base flow (Sloto and Crouse, 1996; Furey
606 and Gupta, 2001). The time interval used for deriving the minimum flow depends on catchment size.

607 Recursive models that describe flow in a next time interval on the basis of a fraction of that in the
608 preceding time interval with a term for additional flow due to additional rainfall have been used in
609 analysis of peak flow event before, with time intervals as short as 1 minute rather than the 1 day we
610 use here (Rose, 2004). Through reference to an overall mass balance a relationship similar to what
611 we found here (F_p times preceding flow plus $1 - F_p$ times recent inputs) was also used in such
612 models. To our knowledge, the method we describe here at daily timescales has not been used
613 before.

614 The idea that the form of the storage-discharge function can be estimated from analysis of
615 streamflow fluctuations has been explored before for a class of catchments in which discharge is
616 determined by the volume of water in storage (Kirchner, 2009). Such catchments behave as simple
617 first-order nonlinear dynamical systems and can be characterized in a single-equation rainfall-runoff
618 model that predicted streamflow, in a test catchment in Wales, as accurately as other models that
619 are much more highly parameterized. This model of the dQ/dt versus Q relationship can also be
620 analytically inverted; thus, it can, according to Kirchner (2009), be used to “do hydrology backward,”
621 that is, to infer time series of whole-catchment precipitation directly from fluctuations in
622 streamflow. The slope of the log-log relationship between flow recession (dQ/dt) and Q that
623 Kirchner (2009) used is conceptually similar to the F_p metric we derived here, but the specific
624 algorithm to derive the parameter from empirical data differs. Further exploration of the underlying
625 assumptions is needed. Estimates of dQ/dt are sensitive to noise in the measurement of Q and the
626 possibly frequent and small increases in Q can be separated from the expected flow recession in the
627 algorithm we presented here.

628 Table 1 compares a number of properties (Salience and Legitimacy in properties 1-4, Credibility
629 dimensions in 5-10) for the R-B Flashiness Index (Baker et al. 2004) and flow persistence. The main
630 advantage of continuing with the flashiness index is that there is an empirical basis for comparisons
631 and the index has been included in existing ‘watershed health’ monitoring programs, especially in
632 the USA. The main advantage of including F_p is that it can be estimated from incomplete flow

633 records, has a clear link to peak flow events and has a more direct relationship with underlying flow
634 pathways, changes in rainfall (or snowmelt) and evapotranspiration, reflecting land cover change.

635 ➔ Table 1

636 Seibert and Beven (2009) discussed the increase in predictive skill of models depending on the
637 amount of location-specific data that can be used to constrain them. They found that the ensemble
638 prediction of multiple models for a single location clearly outperformed the predictions using single
639 parameter sets and that surprisingly little runoff data was necessary to identify model
640 parameterizations that provided good results for 'ungauged' test periods in cases where actual
641 measurements were available. Their results indicated that a few runoff measurements can contain
642 much of the information content of continuous runoff time series. The way these conclusions might
643 be modified if continuous measurements for limited time periods, rather than separated single data
644 points on river flow could be used, remains to be explored. Their study indicated that results may
645 differ significantly between catchments and critical tests of F_p across multiple situations are
646 obviously needed, as paper II will provide.

647 In discussions and models of temperate zone hydrology (Bergström, 1995; Seibert, 1999) snowmelt
648 is a major component of river flow and effects of forest cover on spring temperatures are important
649 to the buffering of the annual peaks in flow that tend to occur in this season. Application of the F_p
650 method to data describing such events has yet to be done.

651 5.3 Legitimacy

652 *Legitimacy* aspects are "Does it match local knowledge?" and "Can it be used to empower local
653 stakeholders of watershed management?" and "Can it inform risk management?". As the F_p
654 parameter captures the predictability of river flow that is a key aspect of degradation according to
655 local knowledge systems, its results are much easier to convey than full hydrographs or exceedance
656 probabilities of flood levels. By focusing on observable effects at river level, rather than prescriptive
657 recipes for land cover ("Reforestation"), the F_p parameter can be used to more effectively compare
658 the combined effects of land cover change, changes in the riparian wetlands and engineered water
659 storage reservoirs, in their effect on flow buffering. It is a candidate for shifting environmental
660 service reward contracts from input to outcome based monitoring (van Noordwijk et al., 2012). As
661 such it can be used as part of a negotiation support approach to natural resources management in
662 which levelling off on knowledge and joint fact finding in blame attribution are key steps to
663 negotiated solutions that are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et
664 al., 2015). Quantification of F_p can help assess tactical management options (Burt et al., 2014) as in a
665 recent suggestion to minimize negative downstream impacts of forestry operations on stream flow
666 by avoiding land clearing and planting operations in locally wet La Niña years. But the most
667 challenging aspect of the management of flood, as any other environmental risk, is that the
668 frequency of disasters is too low to intuitively influence human behaviour where short-term risk
669 taking benefits are attractive. Wider social pressure is needed for investment in watershed health
670 (as a type of insurance premium) to be mainstreamed, as individuals waiting to see evidence of
671 necessity are too late to respond. In terms of flooding risk, actions to restore or retain watershed
672 health can be similarly justified as insurance premium. It remains to be seen whether or not the
673 transparency of the F_p metric and its intuitive appeal are sufficient to make the case in public debate

674 when opportunity costs of foregoing reductions in flow buffering by profitable land use are to be
675 compensated and shared (Burt et al., 2014).

676 **6 Conclusions**

677 In conclusion, the F_p metric appears to allow an efficient way of summarizing complex landscape
678 processes into a single parameter that reflects the effects of landscape management within the
679 context of the local climate. If rainfall patterns change but the landscape does not, the resultant flow
680 patterns may reflect a change in watershed health (van Noordwijk et al., 2016). Flow persistence is
681 the result of rainfall persistence and the temporal delay provided by the pathway water takes
682 through the soil and the river system. High flow persistence indicates a reliable water supply, while
683 minimizing peak flow events. Wider tests of the F_p metric as boundary object in science-practice-
684 policy boundary chains (Kirchhoff et al., 2015; Leimona et al., 2015) are needed. Further tests for
685 specific case studies can clarify how changes in tree cover (deforestation, reforestation and
686 agroforestation) in different contexts influence river flow dynamics and F_p values. Sensitivity to
687 specific realizations of underlying time-space rainfall patterns needs to be quantified, before
688 changes in F_p can be attributed to changed 'watershed health', rather than chance events.

689 **Author contributions**

690 Meine van Noordwijk designed method and paper, Lisa Tanika refined the empirical algorithm and
691 handled the case study data and modelling for part II, and Betha Lusiana contributed statistical
692 analysis; all contributed and approved the final manuscript

693 **Acknowledgements**

694 This research is part of the Forests, Trees and Agroforestry research program of the CGIAR. Several
695 colleagues contributed to the development and early tests of the F_p method. Thanks are due to Eike
696 Luedeling, Sonya Dewi, Sampurno Bruijnzeel and three anonymous reviewers for comments on an
697 earlier version of the manuscript.

698 **References**

699 Alila, Y., Kura, P.K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm sheds light
700 on age-old controversies, *Water Resour. Res.*, 45, W08416, 2009.

701 Andréassian, V.: Waters and forests: from historical controversy to scientific debate, *Journal of
702 Hydrology*, 291, 1–27, 2004.

703 Baker, D.B., Richards, R.P., Loftus, T.T. and Kramer, J.W.: A new flashiness index: Characteristics and
704 applications to midwestern rivers and streams. *Journal of the American Water Resources
705 Association*, Paper No. 03095, 2004.

706 Baldassarre, G.D., Kooy, M., Kemerink, J.S., and Brandimarte, L.: Towards understanding the dynamic
707 behaviour of floodplains as human-water systems, *Hydrology and Earth System Sciences*, 17(8),
708 3235–3244, 2013.

709 Bardossy, A. and Plate, E.J.: Modeling daily rainfall using a semi-Markov representation of
710 circulation pattern occurrence, *Journal of Hydrology*, 122(1), 33–47, 1991.

711 Band, L.E., Patterson, P., Nemani, R., and Running, S.W.: Forest ecosystem processes at the
712 watershed scale: incorporating hillslope hydrology, *Agricultural and Forest Meteorology*, 63(1-2),
713 93-126, 1993.

714 Barnes, B.S.: The structure of discharge-recession curves, *Eos, Transactions American Geophysical
715 Union*, 20(4), 721-725, 1939.

716 Beck, H. E., Bruijnzeel, L. A., Van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., and Schellekens, J.: The
717 impact of forest regeneration on streamflow in 12 mesoscale humid tropical
718 catchments, *Hydrology and Earth System Sciences*, 17(7), 2613-2635, 2013.

719 Bergström, S.: The HBV model. In: Singh, V.P., (Ed.), *Computer Models of Watershed Hydrology*, Ch.
720 13, pp. 443-476, Water Resources Publications, Highlands Ranch, Colorado, USA, 1130 pp., 1995.

721 Beven, K.J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, 2011

722 Bishop, J. and Pagiola, S. (Eds.): *Selling forest environmental services: market-based mechanisms for
723 conservation and development*, Taylor & Francis, Abingdon (UK), 2012.

724 Bonell, M.: Progress in the understanding of runoff generation dynamics in forests, *Journal of
725 Hydrology*, 150, 217-275, 1993.

726 Bonell, M. and Bruijnzeel, L.A. (eds.): *Forests, water and people in the humid tropics: past, present
727 and future hydrological research for integrated land and water management*. Cambridge
728 University Press, Cambridge (UK), 2005.

729 Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S.H., and Brook, B.W.: Global evidence that deforestation
730 amplifies flood risk and severity in the developing world, *Global Change Biol*, 13, 2379–2395,
731 2007.

732 Brauman, K.A., Daily, G.C., Duarte, T.K.E., and Mooney, H.A.: The nature and value of ecosystem
733 services: an overview highlighting hydrologic services, *Annu. Rev. Environ. Resour.*, 32, 67-98,
734 2007.

735 Bruijnzeel, L.A.: *Hydrology of Moist Tropical Forests and Effects of Conversion: a State of Knowledge
736 Review*. IHP-UNESCO Humid Tropical Programme, Paris, 224 pp, 1990.

737 Bruijnzeel, L.A.: Hydrological functions of tropical forests: not seeing the soil for the trees, *Agr.
738 Ecosyst. Environ.*, 104, 185–228, 2004.

739 Burt, T.P., Howden, N.J.K., McDonnell, J.J., Jones, J.A., and Hancock, G.R.: Seeing the climate through
740 the trees: observing climate and forestry impacts on streamflow using a 60-year record,
741 *Hydrological Processes*, doi: 10.1002/hyp.10406, 2014.

742 City of Fort Collins, River Health Assessment Framework la Poudre River.
743 <http://www.fcgov.com/naturalareas/pdf/river-health-report-final-appendix.pdf>, 2015.

744 Clark, W. C., Tomich, T. P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N. M., and McNie,
745 E.: Boundary work for sustainable development: natural resource management at the
746 Consultative Group on International Agricultural Research (CGIAR), *Proc. Nat. Acad. Sci.*,
747 doi:10.1073/pnas.0900231108, 2011.

748 Delfs, J.O., Park, C.H., and Kolditz, O.: A sensitivity analysis of Hortonian flow, *Advances in Water*
749 *Resources*, 32(9), 1386-1395, 2009.

750 Efstratiadis, A., Koussis, A.D., Koutsoyiannis, D. and Mamassis, N.: Flood design recipes vs. reality: can
751 predictions for ungauged basins be trusted? *Natural Hazards and Earth System Sciences*, 14(6), 1417-1428,
752 2014.

753 Evaristo, J., Jasechko, S., and McDonnell, J.J.: Global separation of plant transpiration from
754 groundwater and streamflow, *Nature*, 525(7567), 91-94, 2015.

755 Farber, S.C., Costanza, R. and Wilson, M.A.: Economic and ecological concepts for valuing ecosystem
756 services. *Ecological economics*, 41(3), 375-392, 2002.

757 Furey, P.R. and Gupta, V.K.: A physically based filter for separating base flow from streamflow time
758 series. *Water Resources Research*, 37(11), 2709-2722, 2001.

759 Galudra, G. and Sirait, M.: A discourse on Dutch colonial forest policy and science in Indonesia at the
760 beginning of the 20th century. *International Forestry Review* 11(4), 524-533, 2009

761 Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G.: The soil and water assessment tool: historical
762 development, applications, and future research directions. *Transactions of the ASABE*, 50(4), 1211-1250,
763 2007.

764 Graf, W.L., Wohl, E., Sinha, T. and Sabo, J.L., 2010. Sedimentation and sustainability of western American
765 reservoirs. *Water Resources Research*, 46(12), 2010.

766 Grimaldi, S., Petroselli, A. and Romano, N.: Green-Ampt Curve-Number mixed procedure as an empirical tool
767 for rainfall-runoff modelling in small and ungauged basins. *Hydrological Processes*, 27(8), 1253-1264,
768 2013.

769 Ghimire, C.P., Bruijnzeel, L.A., Lubczynski, M.W., and Bonell, M.: Negative trade-off between changes
770 in vegetation water use and infiltration recovery after reforesting degraded pasture land in the
771 Nepalese Lesser Himalaya, *Hydrology and Earth System Sciences*, 18(12), 4933-4949, 2014.

772 Herschy, R.W.: The world's maximum observed floods. *Flow Measurement and Instrumentation* 13
773 (5-6), 231-235, 2002.

774 Hornberger, G.M., Wiberg, P.L., D'Odorico, P. and Raffensperger, J.P.: *Elements of physical*
775 *hydrology*. John Hopkins University Press, 2014.

776 Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W.,
777 Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H.V.,
778 Hughes, D. A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S.,
779 Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C.: A decade of Predictions
780 in Ungauged Basins (PUB)—a review, *Hydrological sciences journal*, 58(6), 1198-1255, 2013.

781 Ilstedt, U., Tobella, A.B., Bazié, H.R., Bayala, J., Verbeeten, E., Nyberg, G., Sanou, J., Benegas, L.,
782 Murdiyarso, D., Laudon, H., and Sheil, D.: Intermediate tree cover can maximize groundwater
783 recharge in the seasonally dry tropics, *Scientific reports*, 6, 2016

784 Jones, P.G. and Thornton, P.K.: Spatial and temporal variability of rainfall related to a third-order
785 Markov model, *Agricultural and Forest Meteorology*, 86(1), 127-138, 1997.

786 Jongman, B., Winsemius, H. C., Aerts, J. C., de Perez, E. C., van Aalst, M. K., Kron, W., and Ward, P. J.:
787 Declining vulnerability to river floods and the global benefits of adaptation, In: Proceedings of
788 the National Academy of Sciences, 112(18), E2271-E2280, 2015.

789 Joshi, L., Schalenbourg, W., Johansson, L., Khasanah, N., Stefanus, E., Fagerström, M.H., and van
790 Noordwijk, M.: Soil and water movement: combining local ecological knowledge with that of
791 modellers when scaling up from plot to landscape level, In: van Noordwijk, M., Cadisch, G. and
792 Ong, C.K. (Eds.) Belowground Interactions in Tropical Agroecosystems, CAB International,
793 Wallingford (UK), 349-364, 2004.

794 Kirchhoff, C.J., Esselman, R., and Brown, D.: Boundary Organizations to Boundary Chains: Prospects
795 for Advancing Climate Science Application, Climate Risk Management,
796 doi:10.1016/j.crm.2015.04.001, 2015.

797 Kirchner, J.W.: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff
798 modeling, and doing hydrology backward. *Water Resources Research*, 45(2).
799 DOI: 10.1029/2008WR006912, 2009.

800 Lacombe, G. and McCartney, M.: Evaluating the flow regulating effects of ecosystems in the Mekong
801 and Volta river basins, Colombo, Sri Lanka, International Water Management Institute (IWMI)
802 Research Report 166, doi: 10.5337/2016.202, 2016.

803 Lacombe, G., Ribolzi, O., de Rouw, A., Pierret, A., Latsachak, K., Silvera, N., Pham Dinh, R., Orange, D.,
804 Janeau, J.-L., Soulileuth, B., Robain, H., Taccoen, A., Sengphaathith, P., Mouche, E.,
805 Sengtaheuanghoun, O., Tran Duc, T., and Valentin, C.: Afforestation by natural regeneration or
806 by tree planting: Examples of opposite hydrological impacts evidenced by long-term field
807 monitoring in the humid tropics, *Hydrology and Earth System Sciences Discussions*, 12, 12615-
808 12648, 2015.

809 Leimona, B., Lusiana, B., van Noordwijk, M., Mulyoutami, E., Ekadinata, A., and Amaruzama, S.:
810 Boundary work: knowledge co-production for negotiating payment for watershed services in
811 Indonesia, *Ecosystems Services*, 15, 45–62, 2015.

812 Liu, W., Wei, X., Fan, H., Guo, X., Liu, Y., Zhang, M., and Li, Q.: Response of flow regimes to
813 deforestation and reforestation in a rain-dominated large watershed of subtropical
814 China, *Hydrological Processes*, 29, 5003-5015 , 2015.

815 Lusiana, B., van Noordwijk, M., Suyamto, D., Joshi, L., and Cadisch, G.: Users' perspectives on validity
816 of a simulation model for natural resource management, *International Journal of Agricultural
817 Sustainability*, 9(2), 364-378, 2011.

818 Ma, X., Xu, J. and van Noordwijk, M.: Sensitivity of streamflow from a Himalayan catchment to
819 plausible changes in land cover and climate, *Hydrological Processes*, 24, 1379–1390, 2010.

820 Ma, X., Lu, X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change, vegetation
821 restoration, and engineering measures to the reduction of suspended sediment in the Kejie
822 catchment, southwest China, *Hydrol. Earth Syst. Sci.*, 18, 1979–1994, 2014.

823 Maidment, D.R.: *Handbook of hydrology*, McGraw-Hill Inc., 1992.

824 Malmer, A., Murdiyarso, D., Bruijnzeel L.A., and Ilstedt, U.: Carbon sequestration in tropical forests
825 and water: a critical look at the basis for commonly used generalizations, *Global Change*
826 *Biology*, 16(2), 599-604, 2010.

827 Marchi, L., Borga, M., Preciso, E. and Gaume, E.: Characterisation of selected extreme flash floods in Europe
828 and implications for flood risk management. *Journal of Hydrology*, 394(1), 118-133, 2010.

829 McCluney, K.E., Poff, N.L., Palmer, M.A., Thorp, J.H., Poole, G.C., Williams, B.S., Williams, M.R., and
830 Baron, J.S.: Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river
831 basins with human alterations, *Frontiers in Ecology and the Environment*, 12(1), 48-58, 2014.

832 Milly, P.C.D., Wetherald, R., Dunne, K.A., and Delworth, T.L.: Increasing risk of great floods in a
833 changing climate, *Nature*, 415(6871), 514-517, 2002.

834 Oliveira, P.T.S., Nearing, M.A., Hawkins, R.H., Stone, J.J., Rodrigues, D.B.B., Panachuki, E. and Wendland, E.:
835 Curve number estimation from Brazilian Cerrado rainfall and runoff data. *Journal of Soil and Water
836 Conservation*, 71(5), 420-429, 2016

837 Pahl-Wostl, C., Arthington, A., Bogardi, J., Bunn, S.E., Hoff, H., Lebel, L., Nikitina, E., Palmer, M., Poff, L.N.,
838 Richards, K. and Schlüter, M.: Environmental flows and water governance: managing sustainable water
839 uses. *Current Opinion in Environmental Sustainability*, 5(3), pp.341-351, 2013.

840 Palmer, M.A.: Reforming watershed restoration: science in need of application and applications in
841 need of science, *Estuaries and coasts*, 32(1), 1-17, 2009.

842 Poff, N.L. and Zimmerman, J.K.: Ecological responses to altered flow regimes: a literature review to inform the
843 science and management of environmental flows. *Freshwater Biology*, 55(1), 194-205, 2010.

844 Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C.: The
845 natural flow regime. *BioScience*, 47(11), 769-784, 1997.

846 Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., Apse, C., Bledsoe,
847 B.P., Freeman, M.C. and Henriksen, J.: The ecological limits of hydrologic alteration (ELOHA): a new
848 framework for developing regional environmental flow standards. *Freshwater Biology*, 55(1), 147-170,
849 2010

850 Ponce, V.M. and Hawkins, R.H.: Runoff curve number: Has it reached maturity? *Journal of Hydrologic
851 Engineering*, 1(1), 11-19, 1996

852 Rahayu, S., Widodo, R.H., van Noordwijk, M., Suryadi, I., and Verbist, B.: Water monitoring in
853 watersheds. Bogor, Indonesia, World Agroforestry Centre (ICRAF) SEA Regional Program, 2013

854 Ranieri, S.B.L., Stirzaker, R., Suprayogo, D., Purwanto, E., de Willigen, P., and van Noordwijk, M.:
855 Managing movements of water, solutes and soil: from plot to landscape scale. In: van Noordwijk, M., Cadisch, G. and Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB
856 International, Wallingford (UK), 329-347, 2004.

858 Richter, B.D., Mathews, R., Harrison, D.L., and Wigington, R.: Ecologically sustainable water
859 management: managing river flows for ecological integrity, *Ecological applications*, 13(1), 206-
860 224, 2003.

861 Rodríguez-Iturbe, I. and Rinaldo, A.: *Fractal river basins: chance and self-organization*, Cambridge
862 University Press, Cambridge, 2001.

863 Rose, C.W.: *An introduction to the environmental physics of soil, water and watersheds*. Cambridge
864 University Press, Cambridge (UK) 2004.

865 Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., and Lambin, E.: Forest
866 transitions: towards a global understanding of land use change, *Global Environmental*
867 *Change*, 15(1), 23-31, 2005.

868 Seibert, J.: Regionalisation of parameters for a conceptual rainfall-runoff model. *Agricultural and*
869 *Forest Meteorology* 98-99: 279-293, 1999.

870 Seibert, J., Beven, K.J.: Gauging the ungauged basin: how many discharge measurements are
871 needed? *Hydrol. Earth Syst. Sci.*, 13, 883–892, 2009

872 Sloto, R.A. and Crouse, M.Y.: *HYSEP, a computer program for streamflow hydrograph separation and*
873 *analysis*. US Department of the Interior, US Geological Survey, 1996.

874 Sumarga, E., Hein, L., Hooijer, A., and Vernimmen, R.: Hydrological and economic effects of oil palm
875 cultivation in Indonesian peatlands, *Ecology and Society*, 21(2), 2016.

876 Tallaksen, L.M.: A review of baseflow recession analysis, *J Hydrol*, 165, 349-370, 1995.

877 Tan-Soo, J.S., Adnan, N., Ahmad, I., Pattanayak, S.K., and Vincent, J.R.: Econometric Evidence on
878 Forest Ecosystem Services: Deforestation and Flooding in Malaysia. *Environmental and Resource*
879 *Economics*, on-line: <http://link.springer.com/article/10.1007/s10640-014-9834-4>, 2014.

880 Turner, R.K. and Daily, G.C.: The ecosystem services framework and natural capital
881 conservation. *Environmental and Resource Economics*, 39(1), 25-35, 2008

882 Van de Giesen, N.C., Stomph, T.J., and De Ridder, N.: Scale effects of Hortonian overland flow and
883 rainfall-runoff dynamics in a West African catena landscape, *Hydrological Processes*, 14,165-
884 175, 2000.

885 Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W. and Diels, J.: Estimating the parameters of
886 the Green-Ampt infiltration equation from rainfall simulation data: Why simpler is better. *Journal of*
887 *Hydrology*, 476, 332-344, 2013.

888 van Dijk, A.I., van Noordwijk, M., Calder, I.R., Bruijnzeel, L.A., Schellekens, J., and Chappell, N.A.:
889 Forest-flood relation still tenuous – comment on ‘Global evidence that deforestation amplifies
890 flood risk and severity in the developing world’, *Global Change Biology*, 15, 110-115, 2009.

891 van Noordwijk, M., van Roode, M., McCallie, E.L., and Lusiana, B.: Erosion and sedimentation as
892 multiscale, fractal processes: implications for models, experiments and the real world, In: F.
893 Penning de Vries, F. Agus and J. Kerr (Eds.) *Soil Erosion at Multiple Scales, Principles and*
894 *Methods for Assessing Causes and Impacts*. CAB International, Wallingford, 223-253, 1998.

895 van Noordwijk, M., Agus, F., Verbist, B., Hairiah, K., and Tomich, T.P.: Managing Watershed Services,
896 In: Scherr, S.J. and McNeely, J.A. (Eds) *Ecoagriculture Landscapes. Farming with Nature: The*
897 *Science and Practice of Ecoagriculture*, Island Press, Washington DC, 191 – 212, 2007.

898 van Noordwijk, M., Widodo, R.H., Farida, A., Suyamto, D., Lusiana, B., Tanika, L., and Khasanah, N.:
899 GenRiver and FlowPer: Generic River and Flow Persistence Models. User Manual Version 2.0.
900 Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, 2011.

901 van Noordwijk, M., Leimona, B., Jindal, R., Villamor, G.B., Vardhan, M., Namirembe, S., Catacutan, D.,
902 Kerr, J., Minang, P.A., and Tomich, T.P.: Payments for Environmental Services: evolution towards
903 efficient and fair incentives for multifunctional landscapes, *Annu. Rev. Environ. Resour.*, 37, 389-
904 420, 2012.

905 van Noordwijk, M., Lusiana, B., Leimona, B., Dewi, S., and Wulandari, D.: Negotiation-support toolkit
906 for learning landscapes, Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia
907 Regional Program, 2013.

908 van Noordwijk, M., Leimona, B., Xing, M., Tanika, L., Namirembe, S., and Suprayogo, D.: Water-
909 focused landscape management. *Climate-Smart Landscapes: Multifunctionality In Practice*. eds
910 Minang PA et al.. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 179-192, 2015a.

911 van Noordwijk, M., Bruijnzeel, S., Ellison, D., Sheil, D., Morris, C., Gutierrez, V., Cohen, J., Sullivan, C.,
912 Verbist, B., and Muys, B.: Ecological rainfall infrastructure: investment in trees for sustainable
913 development, ASB Brief no 47. Nairobi. ASB Partnership for the Tropical Forest Margins, 2015b.

914 van Noordwijk M, Kim Y-S, Leimona B, Hairiah K, Fisher LA,: Metrics of water security, adaptive
915 capacity and Agroforestry in Indonesia. *Current Opinion on Environmental Sustainability* (in
916 press: <http://dx.doi.org/10.1016/j.cosust.2016.10.004>), 2016.

917 Verbist, B., Poesen, J., van Noordwijk, M. Widianto, Suprayogo, D., Agus, F., and Deckers, J.: Factors
918 affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic
919 Agroforestry landscape, *Catena*, 80, 34-46, 2010.

920 Ward, R.C. and Robinson, M.: *Principles of hydrology*. 4th edition. New York: McGraw-Hill, 2000.

921 Weiler, M. and McDonnell, J.: Virtual experiments: a new approach for improving process
922 conceptualization in hillslope hydrology, *Journal of Hydrology*, 285(1), 3-18, 2004

923 Winsemius, H.C., van Beek, L.P.H., Jongman, B., Ward, P.J., and Bouwman, A.: A framework for global
924 river flood risk assessments, *Hydrol Earth Syst Sci*, 17, 1871–1892, 2013.

925 World Health Organization: The first ten years of the World Health Organization. Geneva: WHO,
926 1958

927 Yen, H., White, M.J., Jeong, J., Arabi, M. and Arnold, J.G.: Evaluation of alternative surface runoff
928 accounting procedures using the SWAT model, *International Journal of Agricultural and
929 Biological Engineering*, 8(3), 54-68, 2015.

930 Zhou, G., Wei, X., Luo, Y., Zhang, M., Li, Y., Qiao, Y., Liu, H., and Wang, C.: Forest recovery and river
931 discharge at the regional scale of Guangdong Province, China, *Water Resources Research*, 46(9),
932 W09503, doi:10.1029/2009WR00829, 2010.

933

A. Interests↔Understanding↔Metrics

multistakeholder resource management processes

→ Monitoring → Diagnosis → Tradeoff analysis → Innovation → Scenarios → Negotiations →

Basis of current land use policies:

Deforestation → increased flood risk

Reforestation → reduced flood risk

Forestry perspective

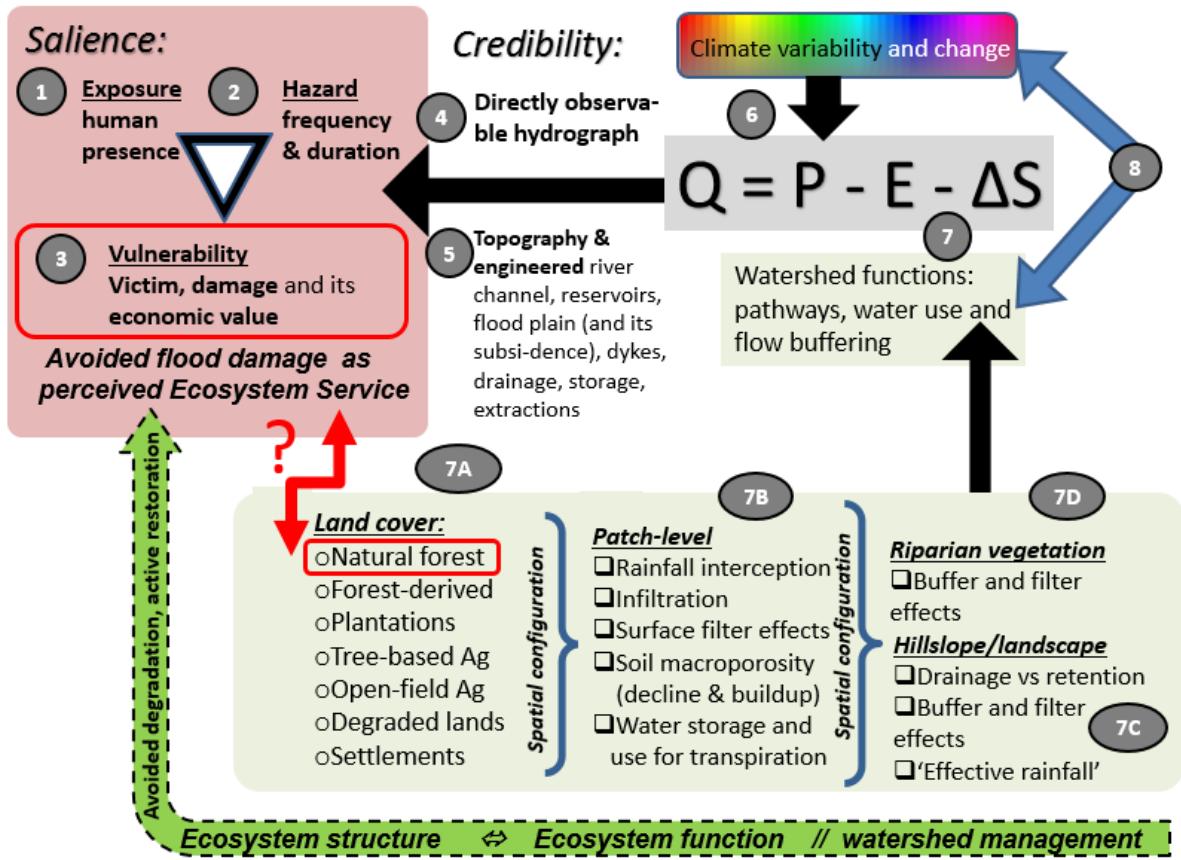
Ecohydrology perspective

Relationship between land cover & river flow
depends on complex interactions, non-linearities,
partial reversibility, climate variabilityEngineering of river storage and flow can
control all relevant risks, once these are
quantified

Engineering perspective

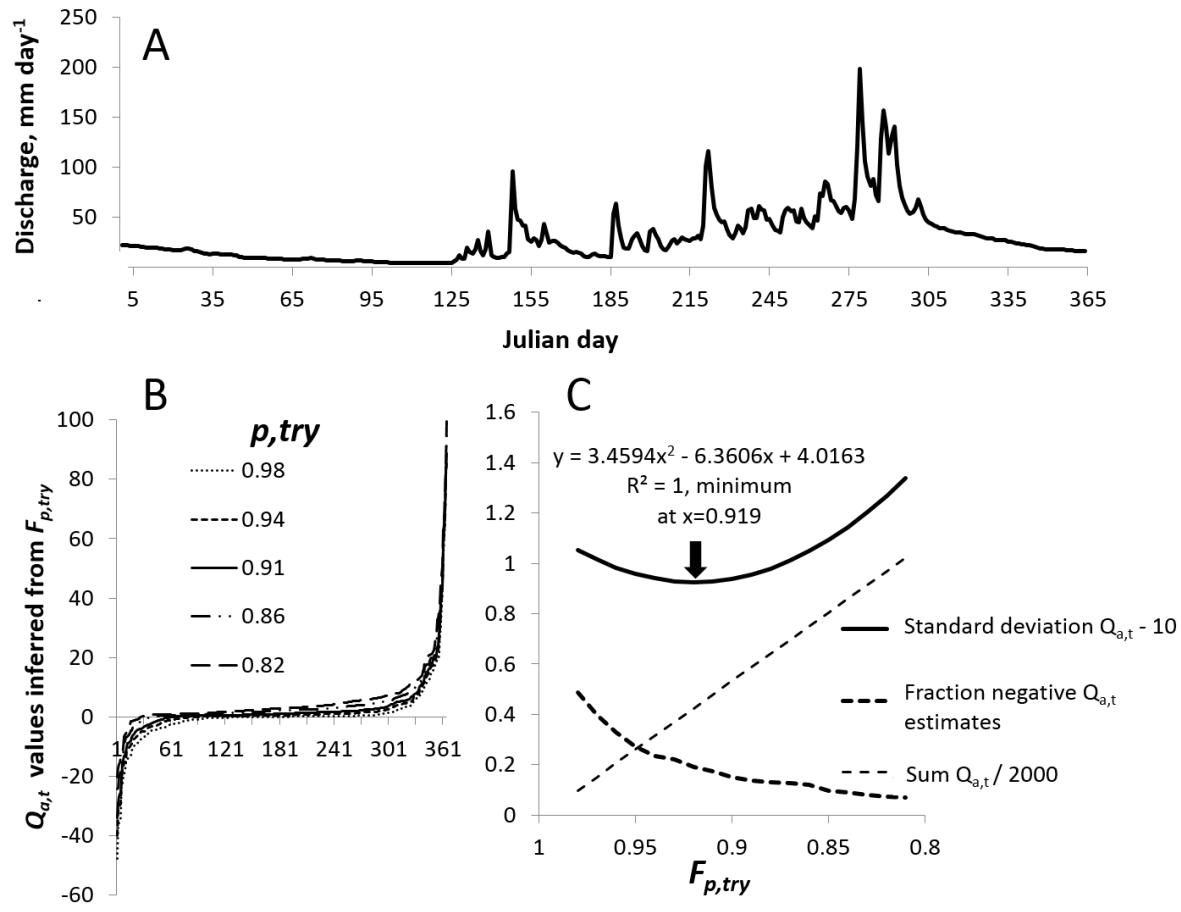
Climate Change
adaptation viewLocal land users want river flow to be
predictable but also like to have flexibility in
how land use is regulated as part of
ecosystem services management**B.**I) Diagnostic tool to identify
and prioritize 'issues' that
are or should be of public concern and
require a policy response.
II) Help in selecting
and monitoring
management actions.V. Match with
local knowledge
and existing policy
frameworks.

Legitimacy


VI) Empowerment of local stakeholders of resource management
through boundary work, bridging local knowledge, science, and
policy-making, and supporting negotiations among stakeholders; basis for wider monitoring
and evaluation of conditions and trends, enhancing transparency of governance.

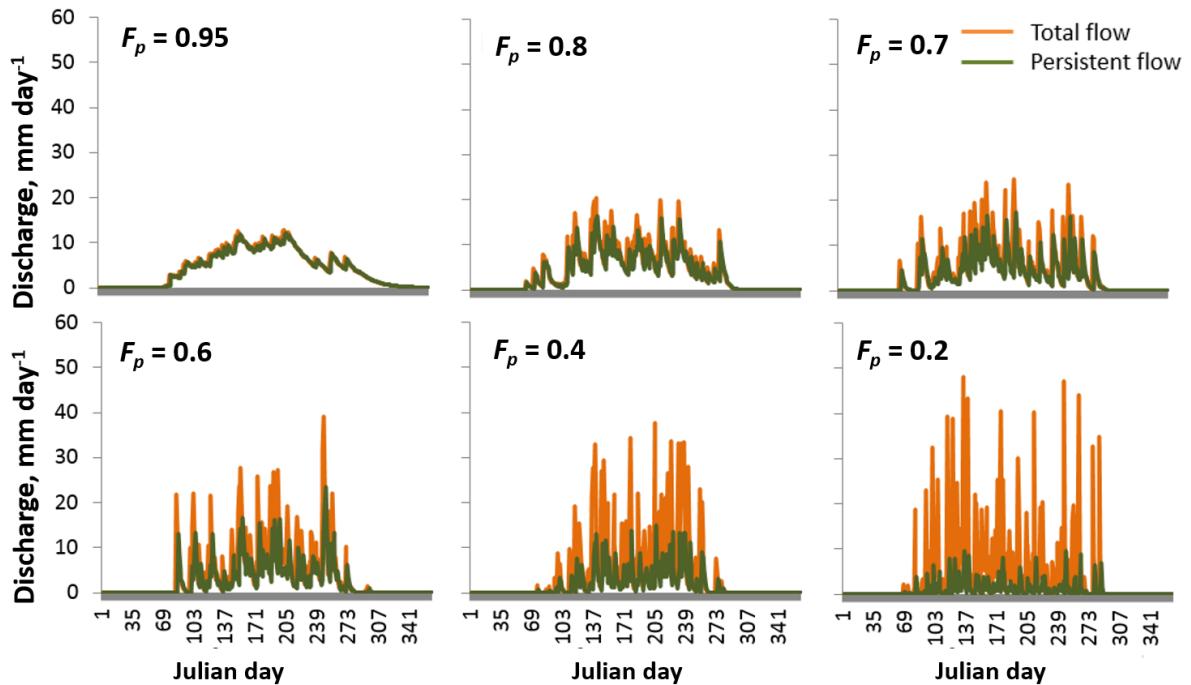
Credibility

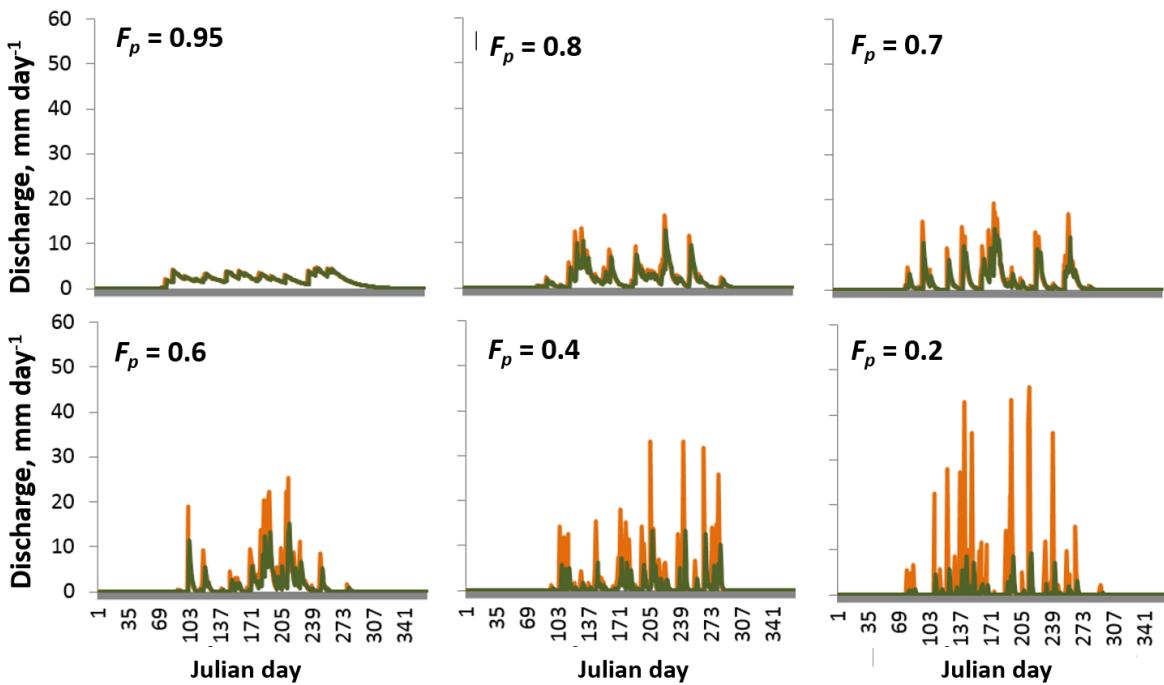
III) Succinct representation of current
understanding of system performance
and options.IV) Operational link with primary data,
known statistical distributions and
confidence intervals that allow assessment
of change as part of, or beyond
'normal' ranges.VII) Basis, as 'boundary object',
of 'performance-based' contracts and widely supported
commitments to resolve 'issues'.


935

936 Figure 1. A. Multiple perspectives on the way flood risk is to be understood, monitored and handled
 937 according to different knowledge systems; B. Basic requirements for a 'metric' to be used in public
 938 discussions of natural resource management issues that deserve to be resolved and acted upon
 939 (modified from van Noordwijk et al., 2016)

940

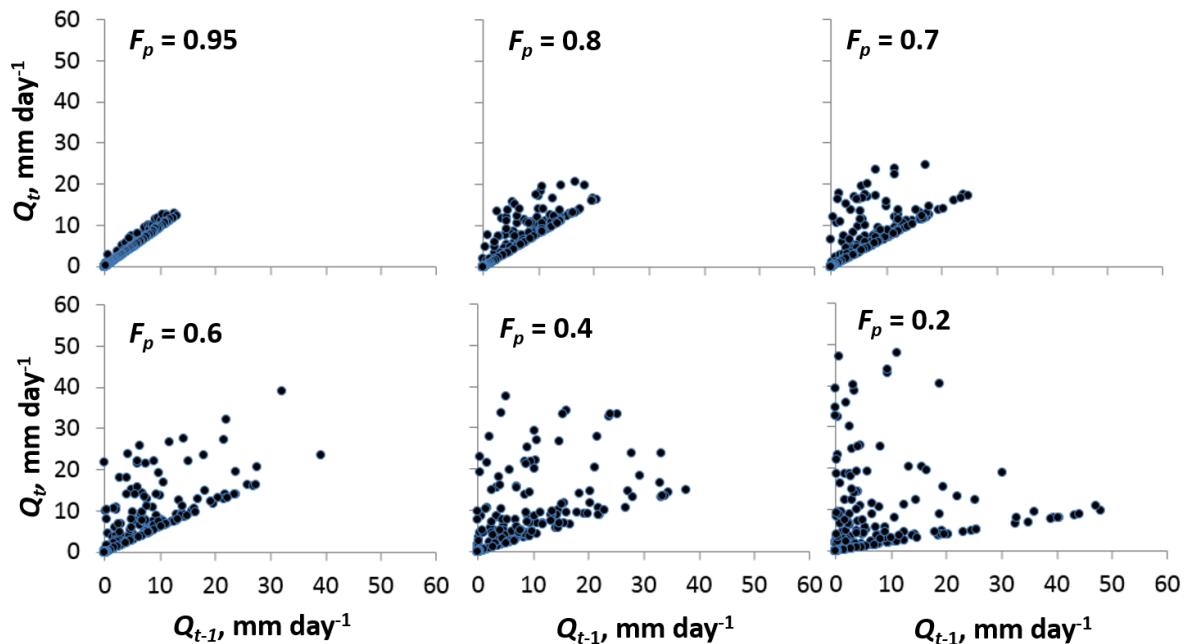

941 Figure 2. Steps in a causal pathway that relates the salience of 'avoided flood damage as
942 ecosystem service' to the interaction of exposure (1; being in the wrong place at critical
943 times), hazard (2; spatially explicit flood frequency and duration) and human determinants
944 of vulnerability (3); the hazard component depends, in common scientific analysis, on the
945 pattern of river flow described in a hydrograph (4), which in turn is understood to be
946 influenced by conditions along the river channel (5), precipitation and potential
947 evapotranspiration (E_{pot} as climatic factors (6) and the condition in the watershed (7)
948 determining evapotranspiration (E_{act}), temporary water storage (ΔS) and water partitioning
949 over overland flow and infiltration; these watershed functions in turn depend on the
950 interaction of terrain (topography, soils, geology), vegetation and human land use; current
951 understanding of a two-way interaction between vegetation and rainfall adds further
952 complexity (8)


953 Figure 3. Example of the derivation of best fitting $F_{p,try}$ value for an example hydrograph (A) on the
 954 basis of the inferred Q_a distribution (cumulative frequency in B), and three properties of this
 955 distribution (C): its sum, frequency of negative values and standard deviation; the $F_{p,try}$ minimum
 956 of the latter is derived from the parameters of a fitted quadratic equation
 957

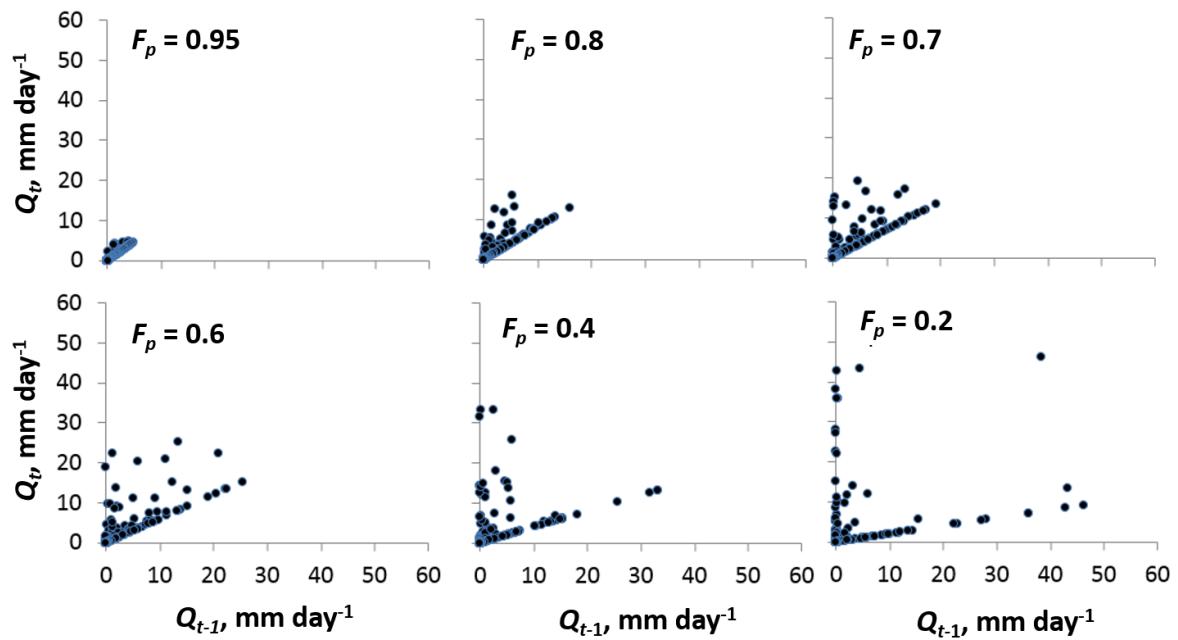
958

A. 120 rainy days, Discharge ~ 1600 mm year $^{-1}$

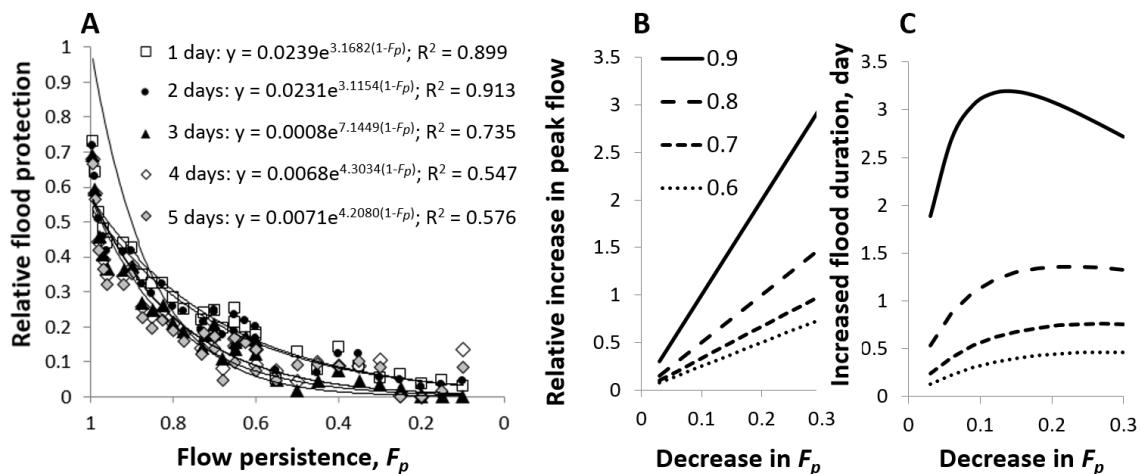
B. 45 rainy days, Discharge ~ 600 mm year $^{-1}$

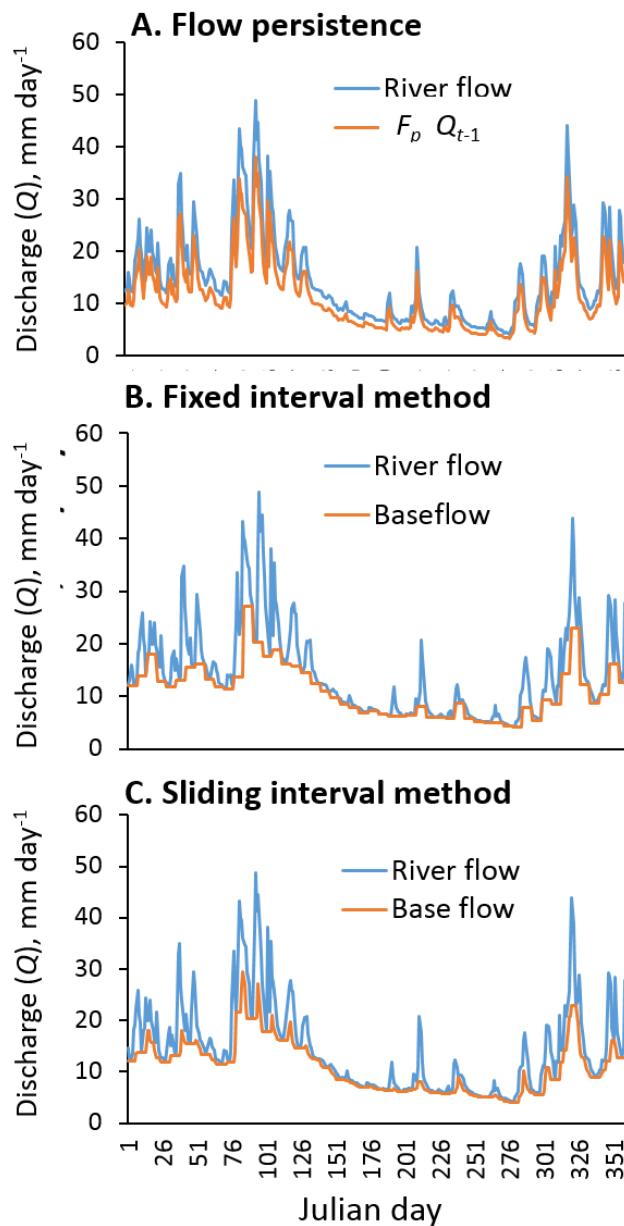


959


960 Figure 4. Effects of the F_p parameter on hydrographs of daily river flow generated by a random
 961 rainfall generator, with persistent and additional flow components indicated, for two settings
 962 with total rainfall of approximately 1600 and 600 mm/yr (NB river flow is here expressed as mm
 963 d^{-1} rather than as $m^3 s^{-1}$ as in figure 3)

964


A. 120 rainy days, Discharge $\sim 1600 \text{ mm year}^{-1}$


B. 45 rainy days, Discharge $\sim 600 \text{ mm year}^{-1}$

967 Figure 5 A and B Temporal autocorrelation of river flow for the same simulations as Figure 4; the
 968 lower envelope of the points indicated slope F_p , the points above this line the effect of fresh
 969 additions to river flow

975 Figure 6. A. Effects of flow persistence on the relative flood protection (decrease in
 976 maximum flow measured over a 1 – 5 d period relative to a case with $F_p = 0$ (a few small
 977 negative points were replaced by small positive values to allow the exponential fit); B and
 978 C. effects of a decrease in flow persistence on the volume of water involved in peak flows
 979 (B; relative to the volume at F_p is 0.6 – 0.9) and in the duration (in d) of floods (C)

981
 982 Figure 7. Comparison of base flow separation of a hydrograph according to the flow
 983 persistence method (A) and two common flow separation methods, respectively with
 984 fixed (B) and sliding intervals (C)

985

986

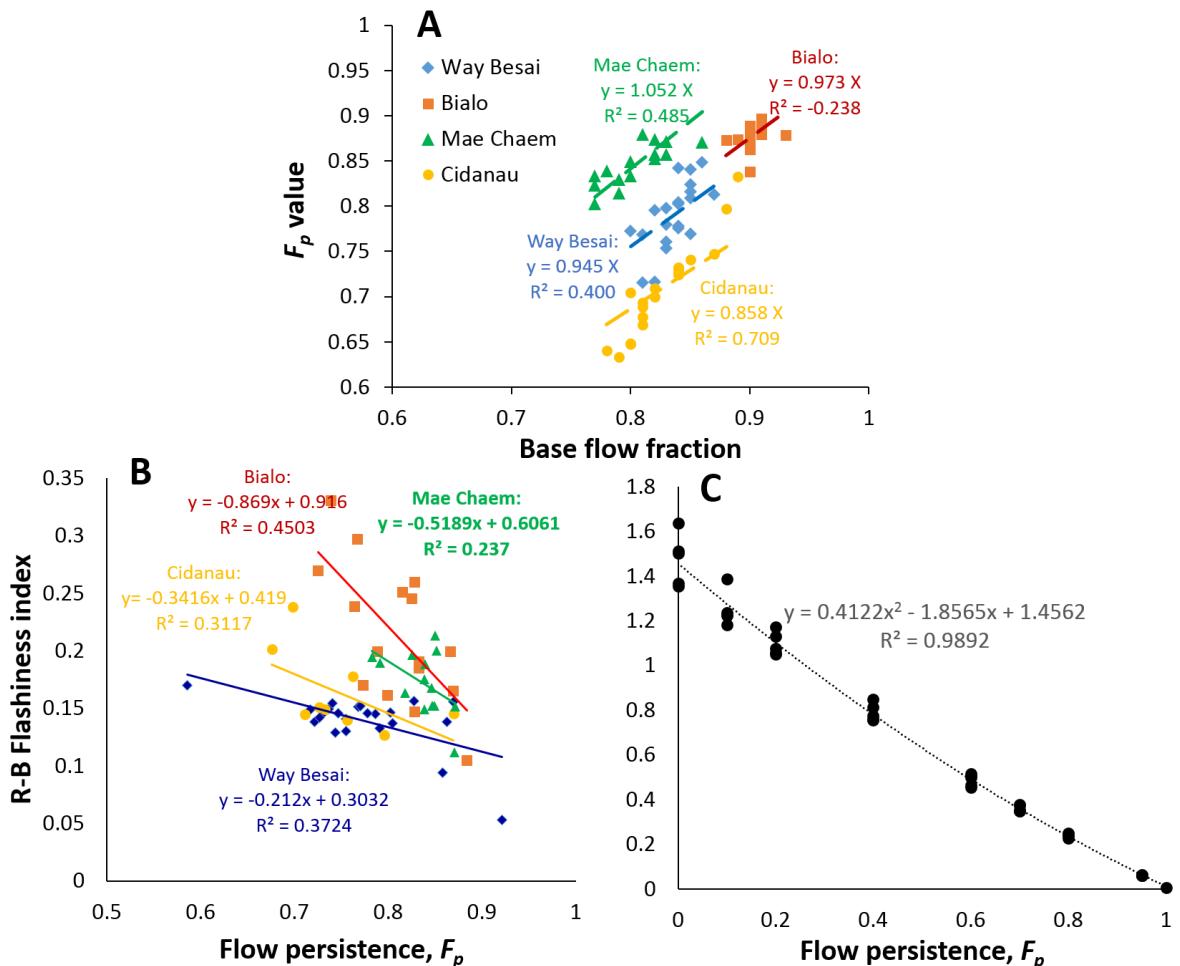


Figure 8. A) Comparison of yearly data for four Southeast Asian watersheds analysed with common flow separation methods (average of results in Fig. 7) and the flow persistence method and comparison of the Richards-Baker Flashiness Index (Baker et al., 2004) and the flow persistence metric F_p for B) four Southeast Asian watersheds, C) a series of hydrographs as in Fig. 4A, with 5 replicates per F_p value

Table 1. Comparison of properties of the Flashiness Index and Flow persistence F_p

Flashiness Index (Baker et al. 2004)	Flow persistence (as defined here)
1. Has direct appeal to non-technical audiences	Potentially similar
2. Where reservoir management rules imply major changes in ΔS , flashiness still describes implications for flow regimes	Is focused on the effects of changes in (upper) catchment land cover, not where reservoir management determines flow
3. Values depend on the scale of evaluating river flow; no absolute criteria for what is 'healthy'	Similar
4. Increase generally not desirable	Decrease generally not desirable
5. Varies in range [0-2], may need normalizing by division by 2	Varies in range [0-1]

6. Requires full year flow record to be calculated	Can be estimated from any set of sequential flow observations
7. Empirical metric, no direct link to underlying process understanding	Overall F_p can be understood as weighted average of the F_p 's of contributing flow pathways (overland, subsurface and groundwater-based)
8. No directly visible relationship between peak and low flow characteristics	The F_p term low flows and the $(1 - F_p)$ term for peak flows show the water balance logic of a link between peak and low flows
9. Aggregates changes in flow regime; no directly visible link between the performance metric, rainfall (or snow melt) and (vegetation dependent) evapotranspiration	The main water balance terms are directly reflected in the flow descriptions based on F_p
10. Substantial empirical data bases available for comparison and meta studies	Not yet

997 **Flood risk reduction and flow buffering as ecosystem
998 services: II. Land use and rainfall intensity effects in
999 Southeast Asia**

1000 Meine van Noordwijk^{1,2}, Lisa Tanika¹, Betha Lusiana¹

1001 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia}

1002 [2]{Wageningen University, Plant Production Systems, Wageningen, the Netherlands}

1003 Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org)

1004 **Abstract**

1005 Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of
1006 rainfall. This 'ecosystem service' is inherent to geology and climate, but buffering also
1007 responds to human use and misuse of the landscape. Buffering can be part of management
1008 feedback loops if salient, credible and legitimate indicators are used. The flow persistence
1009 parameter F_p in a parsimonious recursive model of river flow (Part I) couples the
1010 transmission of extreme rainfall events ($1 - F_p$), to the annual base flow fraction of a
1011 watershed (F_p). Here we compare F_p estimates from four meso-scale watersheds in
1012 Indonesia (Cidanau, Way Besai, and Bialo) and Thailand (Mae Chaem), with varying climate,
1013 geology and land cover history, at a decadal time scale. The likely response in each of these
1014 four to variation in rainfall properties (incl. the maximum hourly rainfall intensity) and land
1015 cover (comparing scenarios with either more or less forest and tree cover than the current
1016 situation) was explored through a basic daily water balance model, GenRiver. This model
1017 was calibrated for each site on existing data, before being used for alternative land cover
1018 and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) F_p
1019 values were consistently lower than dry-season values for all four sites. Across the four
1020 catchments F_p values decreased with increasing annual rainfall, but specific aspects of
1021 watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use
1022 change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly
1023 totals for rainfall) around the values considered typical for each landscape was predicted to
1024 cause a decrease in F_p values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of
1025 F_p to changes in land use change plus changes in rainfall intensity depends on other
1026 characteristics of the watersheds, and generalizations made on the basis of one or two case
1027 studies may not hold, even within the same climatic zone. A wet-season F_p value above 0.7
1028 was achievable in forest-Agroforestry mosaic case studies. Interannual variability in F_p is
1029 large relative to effects of land cover change. Multiple (5-10) years of paired-plot data would
1030 generally be needed to reject no-change null-hypotheses on the effects of land use change
1031 (degradation and restoration). F_p trends over time serve as a holistic scale-dependent
1032 performance indicator of degrading/recovering watershed health and can be tested for
1033 acceptability and acceptance in a wider social-ecological context.

1034 **Introduction**

1035 Inherent properties (geology, geomorphology) interact with climate and human modification of
1036 vegetation, soils, drainage and riparian wetlands in effectuating the degree of buffering that
1037 watersheds provide (Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the
1038 space-time dynamics of rainfall is an ecosystem service, reducing the exposure of people living on
1039 geomorphological floodplains to high-flow events, and increasing predictability and river flow in dry
1040 periods (Joshi et al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation and with a
1041 sealed surface, river flow will directly respond to the spatial distribution of rainfall, with only the
1042 travel time to any point of specific interest influencing the temporal pattern of river flow. Any
1043 persistence or predictability of river flow in such a situation will reflect temporal autocorrelation of
1044 rainfall, beyond statistical predictability in seasonal rainfall patterns. On the other side of the
1045 spectrum, river flow can be constant every day, beyond the theoretical condition of constant rainfall,
1046 in a watershed that provides perfect buffering, by passing all water through groundwater pools that
1047 have sufficient storage capacity at any time during the year. Both infiltration-limited (Hortonian) and
1048 saturation-induced use of more rapid flow pathways (inter and overland flows) will reduce the flow
1049 persistence and make it, at least in part, dependent on rainfall events. Separating the effects of land
1050 cover (land use), engineering and rainfall on the actual flow patterns of rivers remains a considerable
1051 challenge (Ma et al., 2014; Verbist et al., 2019). It requires data, models and concepts that can serve
1052 as effective boundary object in communication with stakeholders (Leimona et al. 2015; van
1053 Noordwijk et al. 2012, 2016). There is a long tradition in using forest cover as such a boundary
1054 object, but there is only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et
1055 al., 2009; van Noordwijk et al. 2015a; part I).

1056 In part I, we introduced a flow persistence parameter (F_p) that links the two, asymmetrical aspects of
1057 flow dynamics: translating rainfall excess into river flow, and gradually releasing water stored in the
1058 landscape. The direct link between these two aspects can be seen from equation [4] in part I:

$$1059 Q_t = F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})$$

1060 Where Q_t and Q_{t-1} represent river flow on subsequent days, P_{tx} the precipitation on day t (or
1061 preceding precipitation released as snowmelt on day t) and E_{tx} the preceding evapotranspiration
1062 since the previous precipitation event, creating storage space in the soils of the watershed. The first
1063 term on the right-hand side of the equation represents the gradual release of stored water, causing
1064 a slow decline of flow as the pools feeding this flow are gradually depleted. The second term reflects
1065 the part of fresh additions of water are partitioned over immediate river flow and the increase of
1066 stocks from which water can be gradually released. The derivation of the link depended on the long
1067 term water balance, and thus assumed that all out- and inflows are accounted for in the watershed.

1068 Commonly used rainfall-runoff models (including the curve number approach and SWAT models)
1069 only focus on the second term of the above equation (Ponce et al., 1996; Gassman et al., 2007),
1070 without link to the first. Various empirical methods for deriving 'base flow' are in use, but details of
1071 the calculation procedure matter. Results in part I for a number of contrasting meso-scale
1072 watersheds in Southeast Asia suggested that interannual variation in F_p within a given watershed
1073 correlates with both the R-B Flashiness Index (Baker et al., 2004) and the base-flow fraction of
1074 annual river flow. However, the slope of these relationships varied between watersheds. Here, in
1075 part II we will further analyse the F_p results for these watersheds that were selected to represent
1076 variation in rainfall and land cover, and test the internal consistency of results based on historical

1077 data: two located in the humid and one in the subhumid tropics of Indonesia, and one in the
1078 unimodal subhumid tropics of northern Thailand.

1079 After exploring the patterns of variation in F_p estimates derived from actual river flow records, we
1080 will quantify the sensitivity of the F_p metric to variations in rainfall intensity and its response, on a
1081 longer timescale to land cover change. To do so, we will use a model that uses basic water balance
1082 concepts: rainfall interception, infiltration, water use by vegetation, overland flow, interflow and
1083 groundwater release, to a spatially structured watershed where travel time from sub watersheds to
1084 any point of interest modifies the predicted river flow. In the specific model used land cover effects
1085 on soil conditions, interception and seasonal water use have been included. After testing whether F_p
1086 values derived from model outputs match those based on empirical data where these exist, we rely
1087 on the basic logic of the model to make inference on the relative importance of modifying rainfall
1088 and land cover inputs. With the resulting temporal variation in calculated F_p values, we consider the
1089 time frame at which observed shifts in F_p can be attributed to factors other than chance (that means:
1090 null-hypotheses of random effects can be rejected with accepted chance of Type I errors).

1091 **2. Methods**

1092 **2.1 GenRiver model for effects of land cover on river flow**

1093 The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a
1094 daily time step and a flexible spatial subdivision of a watershed that influences the routing of water
1095 and employs spatially explicit rainfall. At patch level, vegetation influences interception, retention
1096 for subsequent evaporation and delayed transfer to the soil surface, as well as the seasonal demand
1097 for water. Vegetation (land cover) also influences soil porosity and infiltration, modifying the
1098 inherent soil properties. Water in the root zone is modelled separately for each land cover within a
1099 subcatchment, the groundwater stock is modelled at subcatchment level. The spatial structure of a
1100 watershed and the routing of surface flows influences the time delays to any specified point of
1101 interest, which normally includes the outflow of the catchment. Land cover change scenarios are
1102 interpolated annually between time-series (measured or modelled) data. The model may use
1103 measured rainfall data, or use a rainfall generator that involves Markov chain temporal
1104 autocorrelation (rain persistence). As our data sources are mostly restricted to daily rainfall
1105 measurements and the infiltration model compares instantaneous rainfall to infiltration capacity, a
1106 stochastic rainfall intensity was applied at subcatchment level, driven by the mean as parameter and
1107 a standard deviation for a normal distribution (truncated at 3 standard deviations from the mean)
1108 proportional to it via a coefficient of variation as parameter. For the Mae Chaem site in N Thailand
1109 data by Dairaku et al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia
1110 we used 30 mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the
1111 GenRiver model. The model itself, a manual and application case studies are freely available
1112 (<http://www.worldAgroforestry.org/output/genriver-genetic-river-model-river-flow>; van Noordwijk
1113 et al., 2011).

1114 **2.2 Empirical data-sets, model calibration**

1115 Table 1 and Figure 1 provide summary characteristics and the location of river flow data used in four
1116 meso-scale watersheds for testing the F_p algorithm and application of the GenRiver model. Figure 1
1117 includes a water tower category in the agro-ecological zones; this is defined on the basis of a ratio of

1118 precipitation and potential evapotranspiration of more than 0.65, and a product of that ratio and
1119 relative elevation exceeding 0.277.

1120 \Rightarrow Table 1

1121 \Rightarrow Figure 1

1122 As major parameters for the GenRiver model were not independently measured for the respective
1123 watersheds, we tuned (calibrated) the model by modifying parameters within a predetermined
1124 plausible range, and used correspondence with measured hydrograph as test criterion (Kobolt et al.
1125 2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target above 0.5) and bias (less than
1126 25%) as test criteria and targets. Meeting these performance targets (Moriasi et al., 2007), we
1127 accepted the adjusted models as basis for describing current conditions and exploring model
1128 sensitivity. The main site-specific parameter values are listed in Table 2 and (generic) land cover
1129 specific default parameters in Table 3.

1130 \Rightarrow Table 2

1131 \Rightarrow Table 3

1132 Table 4 describes the six scenarios of land use change that were evaluated in terms of their
1133 hydrological impacts. Further description on the associated land cover distribution for each scenario
1134 in the four different watersheds is depicted in Appendix 2.

1135 \Rightarrow Table 4

1136 **2.3 Bootstrapping to estimate the minimum observation**

1137 The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly used
1138 to generate ‘surrogate population’ for the purpose of approximating the sampling distribution of a
1139 statistic. In this study, the bootstrap approach was used to estimate the minimum number of
1140 observation (or yearly data) required for a pair-wise comparison test between two time-series of
1141 stream flow or discharge data (representing two scenarios of land use distributions) to be
1142 distinguishable from a null-hypothesis of no effect. The pair-wise comparison test used was
1143 Kolmogorov-Smirnov test that is commonly used to test the distribution of discharge data (Zhang et al,
1144 2006). We built a simple macro in R (R Core Team, 2015) that entails the following steps:

1145 (i) Bootstrap or resample with replacement 1000 times from both time-series discharge data
1146 with sample size n ;

1147 (ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge data,
1148 and record the P-value;

1149 (iii) Perform (i) and (ii) for different size of n , ranging from 5 to 50.

1150 (iv) Tabulate the p-value from the different sample size n , and determine the value of n when the
1151 p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). The
1152 associated n represents the minimum number of observations required.

1153 Appendix 3 provides an example of the macro in R used for this analysis.

1154 **3. Results**

1155 **3.1 Empirical data of flow persistence as basis for model parameterization**

1156 Inter-annual variability of F_p estimates derived for the four catchments (Figure 2) was of the order of
1157 0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. For all years
1158 and locations, rainy season F_p values, with mixed flow pathways, were consistently below dry-season
1159 values, dominated by groundwater flows. If we can expect $F_{p,i}$ and $F_{p,o}$ (see equation 8 in part I) to be
1160 approximately 0.5 and 0, this difference between wet and dry periods implies a 40% contribution of
1161 interflow in the wet season, a 20% contribution of overland flow or any combination of the two
1162 effects.

1163 Overall the estimates from modelled and observed data are related with 16% deviating more than
1164 0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria for the
1165 hydrographs were met by the calibrated models for each site, we tentatively accept the model to be
1166 a basis for sensitivity study of F_p to modifications to land cover and/or rainfall

1167 ⇒ Figure 2
1168 ⇒ Figure 3

1169 **3.2 Comparing F_p effects of rainfall intensity and land cover change**

1170 A direct comparison of model sensitivity to changes in mean rainfall intensity and land use change
1171 scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 shifted the F_p
1172 value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but by 0.128 in Way
1173 Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change scenarios on F_p was
1174 smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and relatively large in Bialo and Mae
1175 Chaem, at 0.080 and 0.084, respectively (Figure 4B). The order of F_p across the land use change
1176 scenarios was mostly consistent between the watersheds, but the contrast between the
1177 Reforestation and Natural Forest scenario was largest in Mae Chaem and smallest in Way Besai. In
1178 Cidanau, Way Besai and Mae Chaem, variations in rainfall were 2.2 to 3.1 times more effective than
1179 land use change in shifting F_p , in Bialo its relative effect was only 58%. Apparently, the sensitivity to
1180 changes in land use change plus changes in rainfall intensity depends on other characteristics of the
1181 watersheds, and generalizations made on the basis of one or two case studies may not hold, even
1182 within the same climatic zone.

1183 ⇒ Figure 4

1184 **3.3 Further analysis of F_p effects for scenarios of land cover change**

1185 Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and the
1186 'degraded lands' the lowest F_p value (Figure 5), but there are remarkable differences as well: in
1187 Cidanau the interannual variation in F_p is clearly larger than land cover effects, while in the Way
1188 Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a peat swamp
1189 between most of the catchment and the measuring point buffers most of land cover related
1190 variation in flow, but not the interannual variability. Considering the frequency distributions of F_p
1191 values over a 20 year period, we see one watershed (Way Besai) where the forest stands out from all
1192 others, and one (Bialo) where the degraded lands are separate from the others. Given the degree of
1193 overlap of the frequency distributions, it is clear that multiple years of empirical observations will be
1194 needed before a change can be affirmed.

1195 Figure 5 shows the frequency distributions of expected effect sizes on F_p of a comparison of any land
1196 cover with either forest or degraded lands. Table 5 translates this information to the number of

1197 years that a paired plot (in the absence of measurement error) would have to be maintained to
1198 reject a null-hypothesis of no effect, at $p=0.05$. As the frequency distributions of F_p differences of
1199 paired catchments do not match a normal distribution, a Kolmogorov-Smirnov test can be used to
1200 assess the probability that a no-difference null hypothesis can yield the difference found. By
1201 bootstrapping within the years where simulations supported by observed rainfall data exist, we
1202 found for the Way Besai catchment, for example, that 20 years of data would be needed to assert (at
1203 $P = 0.05$) that the Reforestation scenario differs from Agroforestation, and 16 years that it differs
1204 from Actual and 11 years that it differs from Degrade. In practice, that means that empirical
1205 evidence that survives statistical tests will not emerge, even though effects on watershed health are
1206 real.

1207 ⇒ Figure 5
1208 ⇒ Table 5

1209 At process-level the increase in 'overland flow' in response to soil compaction due to land cover
1210 change has a clear and statistically significant relationship with decreasing F_p values in all catchments
1211 (Figure 6), but both year-to-year variation within a catchment and differences between catchments
1212 influence the results as well, leading to considerable spread in the biplot. Contrary to expectations,
1213 the disappearance of 'interflow' by soil compaction is not reflected in measurable change in F_p value.
1214 The temporal difference between overland and interflow (one or a few days) gets easily blurred in
1215 the river response that integrates over multiple streams with variation in delivery times; the
1216 difference between overland- or interflow and baseflow is much more pronounced. Apparently,
1217 according to our model, the high macroporosity of forest soils that allows interflow and may be the
1218 'sponge' effect attributed to forest, delays delivery to rivers by one or a few days, with little effect on
1219 the flow volumes at locations downstream where flow of multiple days accumulates. The difference
1220 between overland- or interflow and baseflow in time-to-river of rainfall peaks is much more
1221 pronounced.

1222 ⇒ Figure 6

1223 Tree cover has two contradicting effects on baseflow: it reduces the surplus of rainfall over
1224 evapotranspiration (annual water yield) by increased evapotranspiration (especially where
1225 evergreen trees or trees with a large canopy interception are involved), but it potentially increases
1226 soil macroporosity that supports infiltration and interflow, with relatively little effect on water
1227 holding capacity measured as 'field capacity' (after runoff and interflow have removed excess
1228 water). Figure 7 shows that the total volume of baseflow differs more between sites and their
1229 rainfall pattern than it varies with tree cover. Between years total evapotranspiration and baseflow
1230 totals are positively correlated, but for a given rainfall there is a trade-off. Overall these results
1231 support the conclusion that generic effects of deforestation on decreased flow persistence, and of
1232 (agro)/(re)-forestation on increased flow persistence are small relative to interannual variability due
1233 to specific rainfall patterns, and that it will be hard for any empirical data process to pick-up such
1234 effects, even if they are qualitatively aligned with valid process-based models.

1235 ⇒ Figure 7

1236 **4. Discussion**

1237 In the discussion of Part I the credibility questions on replicability of the F_p metric and its sensitivity
1238 to details of rainfall pattern versus land cover as potential causes of variation were seen as requiring

1239 case studies in a range of contexts. Although the four case studies in Southeast Asia presented here
1240 cannot be claimed to represent the global variation in catchment behaviour (with absence of a
1241 snowpack and its dynamics as an obvious element of flow buffering not included), the diversity of
1242 responses among these four already point to challenges for any generic interpretation of the degree
1243 of flow persistence that can be achieved under natural forest cover, as well as its response to land
1244 cover change.

1245 The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand show
1246 that values of F_p above 0.9 are scarce in the case studies provided, but values above 0.8 were found,
1247 or inferred by the model, for forested landscapes. Agroforestry landscapes generally presented F_p
1248 values above 0.7, while open-field agriculture or degraded soils led to F_p values of 0.5 or lower. Due
1249 to differences in local context, it may not be feasible to relate typical F_p values to the overall
1250 condition of a watershed, but temporal change in F_p can indicate degradation or restoration if a
1251 location-specific reference can be found. The difference between wet and dry season F_p can be
1252 further explored in this context. The dry season F_p value primarily reflects the underlying geology,
1253 with potential modification by engineering and operating rules of reservoirs, the wet season F_p is
1254 generally lower due to partial shifts to overland and interflow pathways. Where further uncertainty
1255 is introduced by the use of modelled rather than measured river flow, the lack of fit of models
1256 similar to the ones we used here would mean that scenario results are indicative of directions of
1257 change rather than a precision tool for fine-tuning combinations of engineering and land cover
1258 change as part of integrated watershed management.

1259 The differences in relative response of the watersheds to changes in mean rainfall intensity and land
1260 cover change, suggest that generalizations derived from one or a few case studies are to be
1261 interpreted cautiously. If land cover change would influence details of the rainfall generation process
1262 (arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et al., 2014; van
1263 Noordwijk et al., 2015b) this can easily dominate over effects via interception, transpiration and soil
1264 changes.

1265 Our results indicate an intra-annual variability of F_p values between wet and dry seasons of around
1266 0.2 in the case studies, while interannual variability in either annual or seasonal F_p was generally in
1267 the 0.1 range. The difference between observed and simulated flow data as basis for F_p calculations
1268 was mostly less than 0.1. With current methods, it seems that effects of land cover change on flow
1269 persistence that shift the F_p value by about 0.1 are the limit of what can be asserted from empirical
1270 data (with shifts of that order in a single year a warning sign rather than a firmly established change).
1271 When derived from observed river flow data F_p is suitable for monitoring change (degradation,
1272 restoration) and can be a serious candidate for monitoring performance in outcome-based
1273 ecosystem service management contracts. Choice of the part of the year for which F_p changes are
1274 used as indicator may have to depend on the seasonal patterns of rainfall.

1275 In view of our results the lack of robust evidence in the literature of effects of change in forest and
1276 tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets contain
1277 considerable variability. Yet, such effects are consistent with current process and scaling knowledge
1278 of watersheds.

1279 In summarizing findings on the F_p metric, we can compare it with existing ones across the seven
1280 questions raised in Fig. 1 of part I. Comparator metrics can derive from various data sources,

1281 including the amount (and/or quality) of forest cover upstream, the fraction of flows that is
1282 technically controlled, direct records of river flow (over a short or longer time period), records of
1283 rainfall and/or models that combine landscape properties, climate and land cover. Tentative scoring
1284 for these metrics (Table 6) suggest that the F_p metric is an efficient tool for data-scarce
1285 environments, as it indicates aspects of hydrographs that so far required multi-annual records of
1286 river flow.

1287 ➔ Table 6

1288 Conclusion

1289 Overall, our analysis suggests that the level of flow buffering achieved depends on both land cover
1290 (including its spatial configuration and effects on soil properties) and space-time patterns of rainfall
1291 (including maximum rainfall intensity as determinant of overland flow). Generalizations on dominant
1292 influence of either, derived from one or a few case studies are to be interpreted cautiously. If land
1293 cover change would influence details of the rainfall generation process this can easily dominate over
1294 effects via interception, transpiration and soil changes. Multi-year data will generally be needed to
1295 attribute observed changes in flow buffering to degradation/restoration of watersheds, rather than
1296 specific rainfall events. With current methods, it seems that effects of land cover change on flow
1297 persistence that shift the F_p value by about 0.1 are the limit of what can be asserted from empirical
1298 data, with shifts of that order in a single year a warning sign rather than a firmly established change.
1299 When derived from observed river flow data F_p is suitable for monitoring change (degradation,
1300 restoration) and can be a serious candidate for monitoring performance in outcome-based
1301 ecosystem service management contracts. Watershed health is here characterized through the flow
1302 pattern it generates, leaving the attribution to land cover, rainfall pattern and engineering of that
1303 pattern and of changes in pattern to further location-specific analysis, just as a symptom of a high
1304 body temperature can indicate health, but not diagnose the specific illness causing it.

1305 The data sets analysed so far did not indicate that the flow persistence at high flows differed from
1306 that at lower flows within the same season, but in other circumstances this may not be the case and
1307 further care may be needed to use F_p values beyond the measurement period in which they were
1308 derived. While a major strength of the F_p method over existing procedures for parameterizing curve
1309 number estimates, for example, is that the latter depend on scarce observations during extreme
1310 events and F_p can be estimated for any part of the flow record, the reliability of F_p estimates will still
1311 increase with the length of the observation period.

1312 Further tests on the performance of the F_p metric and its standard incorporation into the output
1313 modules of river flow and watershed management models will broaden the basis for interpreting the
1314 value ranges that can be expected for well-functioning watersheds in various conditions of climate,
1315 topography, soils, vegetation and engineering interventions. Such a broader empirical base could
1316 test the possible use of F_p as performance metric for watershed rehabilitation efforts.

1317 Data availability

1318 Table 7 specifies the rainfall and river flow data we used for the four basins and specifies the links to
1319 detailed descriptions.

1320 ➔ Table 7

1321 **Acknowledgements**

1322 This research is part of the Forests, Trees and Agroforestry research program of the CGIAR. Several
1323 colleagues contributed to the development and early tests of the F_p method. Thanks are due to
1324 Thoha Zulkarnain for assistance with Figure 1 and to Eike Luedeling, Sonya Dewi, Sampurno
1325 Bruijnzeel and two anonymous reviewers for comments on an earlier version of the manuscript.

1326 **References**

1327 Andréassian, V.: Waters and forests: from historical controversy to scientific debate, *Journal of*
1328 *Hydrology*, 291, 1–27, 2004.

1329 Baker, D.B., Richards, R.P., Loftus, T.T. and Kramer, J.W.: A new flashiness index: Characteristics and
1330 applications to midwestern rivers and streams. *Journal of the American Water Resources*
1331 *Association*, Paper No. 03095, 2004.

1332 Bruijnzeel, L.A.: Hydrological functions of tropical forests: not seeing the soil for the trees, *Agr.*
1333 *Ecosyst. Environ*, 104, 185–228, 2004.

1334 Dairaku K., Emori, S., and Taikan, T.: Rainfall Amount, Intensity, Duration, and Frequency
1335 Relationships in the Mae Chaem Watershed in Southeast Asia, *Journal of Hydrometeorology*, 5,
1336 458-470, 2004.

1337 Efron, B and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other
1338 Measures of Statistical Accuracy. *Statistical Science* 1 (1): 54-75, 1986.

1339 Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G.: The soil and water assessment tool: historical
1340 development, applications, and future research directions. *Transactions of the ASABE*, 50(4), 1211-1250,
1341 2007.

1342 Joshi, L., Schalenbourg, W., Johansson, L., Khasanah, N., Stefanus, E., Fagerström, M.H., and van
1343 Noordwijk, M.: Soil and water movement: combining local ecological knowledge with that of
1344 modellers when scaling up from plot to landscape level, In: van Noordwijk, M., Cadisch, G. and
1345 Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB International,
1346 Wallingford (UK), 349-364, 2004.

1347 Kobold, M., Suselj, K., Polajnar, J., and Pogacnik, N.: Calibration Techniques Used For HBV
1348 Hydrological Model In Savinja Catchment, In: XXIVth Conference of the Danubian Countries On
1349 The Hydrological Forecasting And Hydrological Bases Of Water Management, 2008.

1350 Kusumastuti, D.I., Jokowinarno, D., van Rafi'i, C.H., and Yuniaristi, F.: Analysis of rainfall characteristics
1351 for flood estimation in Way Awi watershed, *Civil Engineering Dimension*, 18, 31-37, 2016

1352 Leimona, B., Lusiana, B., van Noordwijk, M., Mulyoutami, E., Ekadinata, A., and Amaruzama, S.:
1353 Boundary work: knowledge co-production for negotiating payment for watershed services in
1354 Indonesia, *Ecosystems Services*, 15, 45–62, 2015.

1355 Ma, X., Lu, X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change, vegetation
1356 restoration, and engineering measures to the reduction of suspended sediment in the Kejie
1357 catchment, southwest China, *Hydrol. Earth Syst. Sci.*, 18, 1979–1994, 2014.

1358 Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L.: Model
1359 Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations,
1360 American Society of Agricultural and Biological Engineers, 20(3),885-900, 2001
1361 Morris, C.E., Conen, F., Huffman, A., Phillips, V., Pöschl, U., and Sands, D.C.: Bioprecipitation: a
1362 feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice
1363 nucleators in the atmosphere, *Glob Change Biol*, 20, 341-351. 2014.
1364 Ponce, V.M. and Hawkins, R.H.: Runoff curve number: Has it reached maturity? *Journal of Hydrologic*
1365 *Engineering*, 1(1), 11-19, 1996
1366 R Core Team R: A language and environment for statistical computing. R Foundation for Statistical
1367 Computing, Vienna, Austria, URL <http://www.R-project.org/>, 2015
1368 Tan-Soo, J.S., Adnan, N., Ahmad, I., Pattanayak, S.K., and Vincent, J.R.: Econometric Evidence on
1369 Forest Ecosystem Services: Deforestation and Flooding in Malaysia. *Environmental and Resource*
1370 *Economics*, on-line: <http://link.springer.com/article/10.1007/s10640-014-9834-4>, 2014.
1371 van Dijk, A.I., van Noordwijk, M., Calder, I.R., Bruijnzeel, L.A., Schellekens, J., and Chappell, N.A.:
1372 Forest-flood relation still tenuous – comment on ‘Global evidence that deforestation amplifies
1373 flood risk and severity in the developing world’, *Global Change Biology*, 15, 110-115, 2009.
1374 van Noordwijk, M., Widodo, R.H., Farida, A., Suyamto, D., Lusiana, B., Tanika, L., and Khasanah, N.:
1375 GenRiver and FlowPer: Generic River and Flow Persistence Models. User Manual Version 2.0,
1376 Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, 2011.
1377 van Noordwijk, M., Leimona, B., Jindal, R., Villamor, G.B., Vardhan, M., Namirembe, S., Catacutan, D.,
1378 Kerr, J., Minang, P.A., and Tomich, T.P.: Payments for Environmental Services: evolution towards
1379 efficient and fair incentives for multifunctional landscapes, *Annu. Rev. Environ. Resour.*, 37, 389-
1380 420, 2012.
1381 van Noordwijk, M., Leimona, B., Xing, M., Tanika, L., Namirembe, S., and Suprayogo, D.: Water-
1382 focused landscape management. *Climate-Smart Landscapes: Multifunctionality In Practice*, eds
1383 Minang PA et al.. Nairobi, Kenya: World Agroforestry Centre (ICRAF), 179-192, 2015a.
1384 van Noordwijk, M., Bruijnzeel, S., Ellison, D., Sheil, D., Morris, C., Gutierrez, V., Cohen, J., Sullivan, C.,
1385 Verbist, B., and Muys, B.: Ecological rainfall infrastructure: investment in trees for sustainable
1386 development, *ASB Brief no 47*, Nairobi, ASB Partnership for the Tropical Forest Margins, 2015b.
1387 van Noordwijk, M., Kim, Y-S., Leimona, B., Hairiah, K., Fisher, L.A.: Metrics of water security,
1388 adaptive capacity and Agroforestry in Indonesia. *Current Opinion on Environmental Sustainability*
1389 (in press: <http://dx.doi.org/10.1016/j.cosust.2016.10.004>). 2016
1390 Verbist, B., Poesen, J., van Noordwijk, M. Widianto, Suprayogo, D., Agus, F., and Deckers, J.: Factors
1391 affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic
1392 Agroforestry landscape, *Catena*, 80, 34-46, 2010.
1393 Zhang, Q., Liu, C., Xu, C., Xu, and Jiang T.: Observed trends of annual maximum water level and
1394 streamflow during past 130 years in the Yangtze River basin, China, *Journal of Hydrology*, 324,
1395 255-265, 2006.
1396

1397 Table 1. Basic physiographic characteristics of the four study watersheds

Parameter	Bialo	Cidanau	Mae Chaem	Way Besai
Location	South Sulawesi, Indonesia	West Java, Indonesia	Northern Thailand	Lampung, Sumatera, Indonesia
Coordinates	5.43 S, 120.01 E	6.21 S, 105.97 E	18.57 N, 98.35 E	5.01 S, 104.43 E
Area (km ²)	111.7	241.6	3892	414.4
Elevation (m a.s.l.)	0 – 2874	30 – 1778	475-2560	720-1831
Flow pattern	Parallel	Parallel (with two main river flow that meet in the downstream area)	Parallel	Radial
Land cover type	Forest (13%) Agroforest (59%) Crops (22%) Others (6%)	Forest (20%) Agroforest (32%) Crops (33%) Others (11%) Swamp(4%)	Forest (evergreen, deciduous and pine) (84%) Crops (15%) Others (1%)	Forest (18%) Coffee (monoculture and multistrata) (64%) Crop and Horticulture (12%) Others (6%)
Mean annual rainfall, mm	1695	2573	1027	2474
Wet season	April – June	January - March	July - September	January - March
Dry season	July - September	July - September	January - March	July - September
Mean annual runoff, mm	947	917	259	1673
Major soils	Inceptisols	Inceptisols	Ultisols, Entisols	Andisols

1398

1399 Table 2. Parameters of the GenRiver model used for the four site specific simulations (van Noordwijk et al., 2011 for definitions of terms; sequence of parameters follows the pathway of water)

Parameter	Definition	Unit	Bialo	Cidanau	Mae Chaem	Way Besai
RainIntensMean	Average rainfall intensity	mm hr ⁻¹	30	30	3	30
RainIntensCoefVar	Coefficient of variation of rainfall intensity	mm hr ⁻¹	0.8	0.3	0.5	0.3

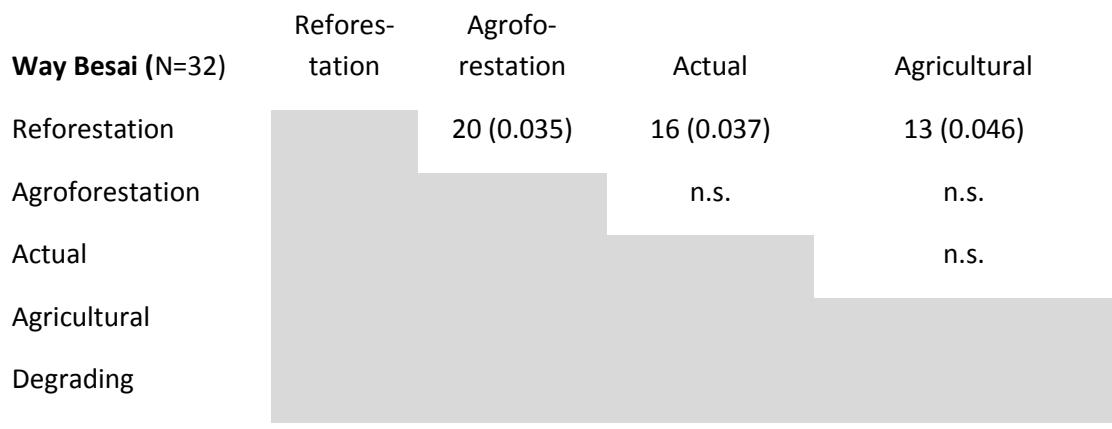
RainInterceptDripRt	Maximum drip rate of intercepted rain	mm hr ⁻¹	80	10	10	10
RainMaxIntDripDur	Maximum dripping duration of intercepted rain	hr	0.8	0.5	0.5	0.5
InterceptEffectontrans	Rain interception effect on transpiration	-	0.35	0.8	0.3	0.8
MaxInfRate	Maximum infiltration capacity	mm d ⁻¹	580	800	150	720
MaxInfSubsoil	Maximum infiltration capacity of the sub soil	mm d ⁻¹	80	120	150	120
PerFracMultiplier	Daily soil water drainage as fraction of groundwater release fraction	-	0.35	0.13	0.1	0.1
MaxDynGrWatStore	Dynamic groundwater storage capacity	mm	100	100	300	300
GWReleaseFracVar	Groundwater release fraction, applied to all subcatchments	-	0.15	0.03	0.05	0.1
Tortuosity	Stream shape factor	-	0.4	0.4	0.6	0.45
Dispersal Factor	Drainage density	-	0.3	0.4	0.3	0.45
River Velocity	River flow velocity	m s ⁻¹	0.4	0.7	0.35	0.5

1402 Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds
 1403 (BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer function;
 1404 see van Noordwijk et al., 2011)

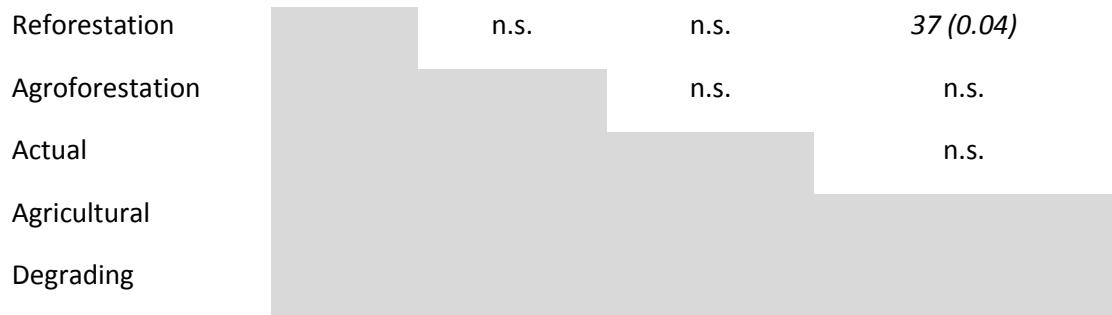
Land cover Type	Potential interception (mm/d)	Relative drought threshold	BD/BDref
Forest ¹	3.0 - 4.0	0.4 - 0.5	0.8 - 1.1
Agroforestry ²	2.0 - 3.0	0.5 - 0.6	0.95 - 1.05
Monoculture tree ³	1.0	0.55	1.08
Annual crops	1.0 - 3.0	0.6 - 0.7	1.1 - 1.5
Horticulture	1.0	0.7	1.07
Rice field ⁴	1.0 - 3.0	0.9	1.1 - 1.2
Settlement	0.05	0.01	1.3
Shrub and grass	2.0 - 3.0	0.6	1.0 - 1.07
Cleared land	1.0 - 1.5	0.3 - 0.4	1.1 - 1.2

1405 Note: 1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest
 1406 2. Agroforestry: mixed garden, coffee, cocoa, clove
 1407 3. Monoculture : coffee
 1408 4. Rice field: irrigation and rainfed
 1409

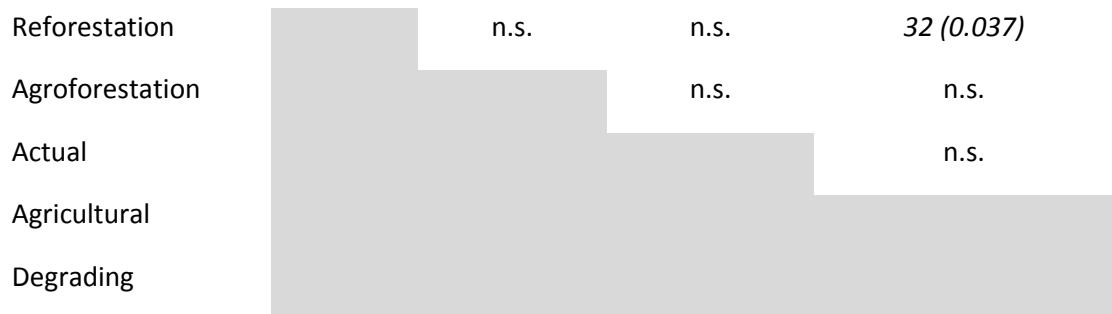
1410 Table 4. Land use scenarios explored for four watersheds


Scenario	Description
Natural Forest	Full natural forest, hypothetical reference scenario
Reforestation	Reforestation, replanting shrub, cleared land, grass land and some agricultural area with forest
Agroforestation	Agroforestry scenario, maintaining Agroforestry areas and converting shrub, cleared land, grass land and some of agricultural area into Agroforestry
Actual	Baseline scenario, based on the actual condition of land cover change during the modelled time period
Agriculture	Agriculture scenario, converting some of tree based plantations, cleared land, shrub and grass land into rice fields or dry land agriculture, while maintain existing forest
Degrading	No change in already degraded areas, while converting most of forest and Agroforestry area into rice fields and dry land agriculture

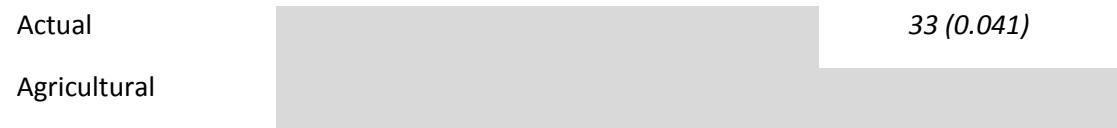
1411


1412

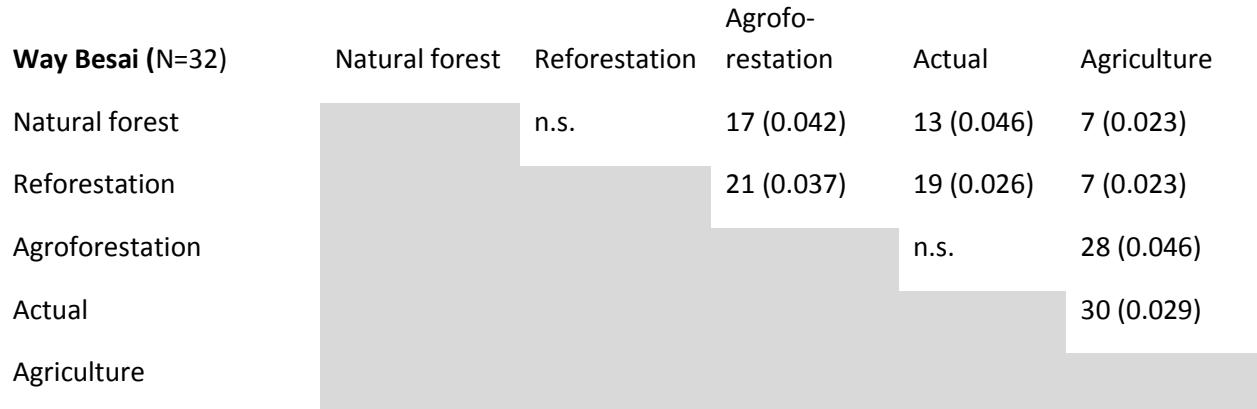
1413 Table 5. Number of years of observations required to estimate flow persistence to reject the null-
 1414 hypothesis of 'no land use effect', at p-value = 0.05 using Kolmogorov-Smirnov test. The probability
 1415 of the test statistic in the first significant number is provided between brackets and where the
 1416 number of observations exceeds the time series available, results are given in *italics*


A. Natural Forest as reference

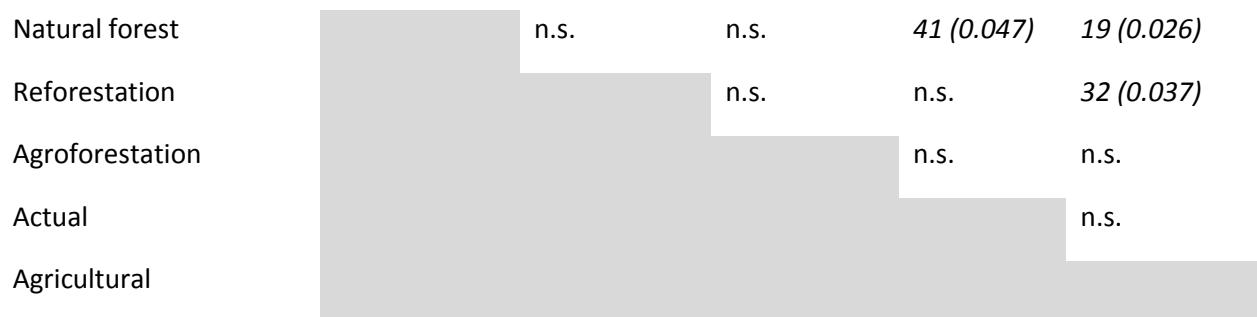
Bialo (N=18)

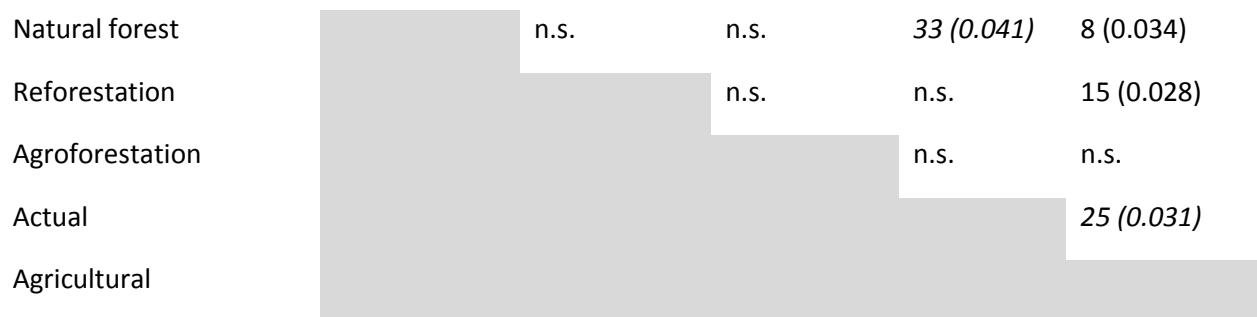


Cidanau (N=20)



Mae Chaem (N=15)




B. Degrading scenario as reference

Bialo (N=18)

Cidanau (N=20)

Mae Chaem (N=15) Natural forest Reforestation Actual Agriculture

Agroforestation

18 (0.050)

Actual

1417

1418 Table 6. Comparison of metrics at various points in the causal network (Fig. 2 of Paper I) that can
 1419 support watershed management and prevention of flood damage on the list of seven issues (I – VII)
 1420 introduced in Fig. 1 Paper I*.

Terrain-based (7A and 5 in Fig. 2 of part I)			Based on river flow characteristics (4 in Fig. 2 of part I)					Integrated (5-7) terrain + climate + land use + river flow models		
Is- sues*	Forest cover	Fraction of flow tech- nically regulated	Q_{\max} / Q_{\min}	Flashi- ness index	Flow fre- quency analysis	Curve- number (rainfall- runoff)	Base- flow	Flow persis- tence, F_p	Spatial analysis	Spatial water flow model
Range	0-100%	0-100%	1 - ω	0 - 2		1 - 100	0-100%	0 - 1		
IA	No	Yes	No	Yes	Yes	Yes	No	Yes	Partially	Yes
IB	No	Yes	No	No	Yes	No	Yes	Yes	Partially	Yes
IIA	Not	Partially	Not	Not	Yes	Partially	Partially	Partially	Partially	Partially
IIB	Partially	Yes	Not	Not	Not	Partially	Partially	Partially	Partially	Yes
IIC	Not	Partially	Not	Partially	Partially	Not	Partially	Partially	Partially	Yes
III	Partially	Partially	Not	Partially	Yes	Partially	Partially	Partially	Partially	Yes
IVA	Single	-	Single	Single	Multi	Multi	Single	Single	Single	Single
IVB	Robust	Robust	Sensitive	Sensitive	Sensitive	Sensitive	Robust	Robust	Robust	Robust
V	Partially	Not	Not	Yes	No	No	Partially	Yes	Partially	Partially
VI	Not	Not	Not	Partially	Not	Not	Not	Yes	Partially	Partially
VII	Not	Neutral	Not	Yes	Yes	Neutral	Neutral	Yes	Yes	Yes

1421 I. Does the indicator relate to important aspects of watershed behaviour (A. Flood damage
 1422 prevention; B. Low flow water availability)?

1423 II. Does its quantification help to select management actions? (A. Risk assessment, insurance
 1424 design; B. Spatial planning, engineering interventions; C. Fine-tuning land use)

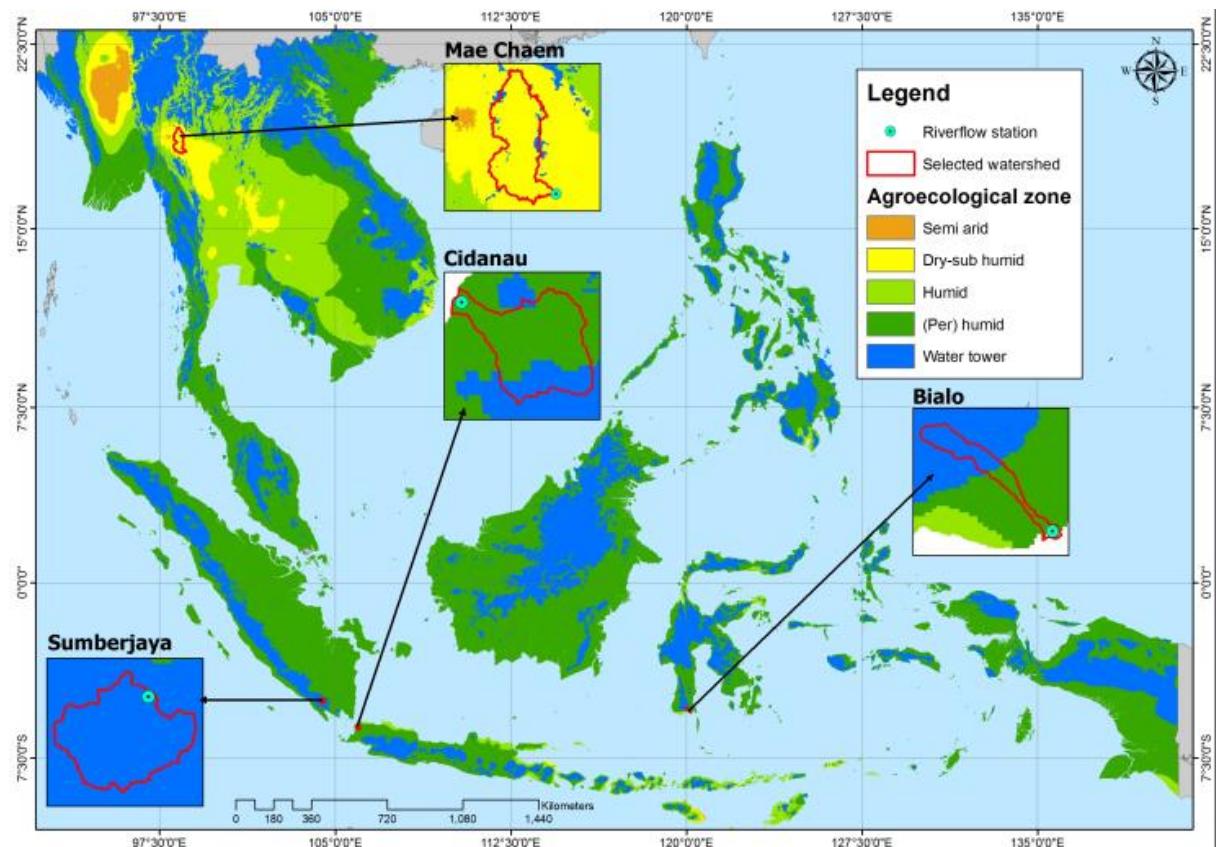
1425 III. Is it consistent with current understanding of key processes

1426 IV. Are data requirements feasible (A. Lowest temporal resolution for estimates (years); B.
 1427 Consistency of numerical results and sensitivity to bias and random error in data sources?)

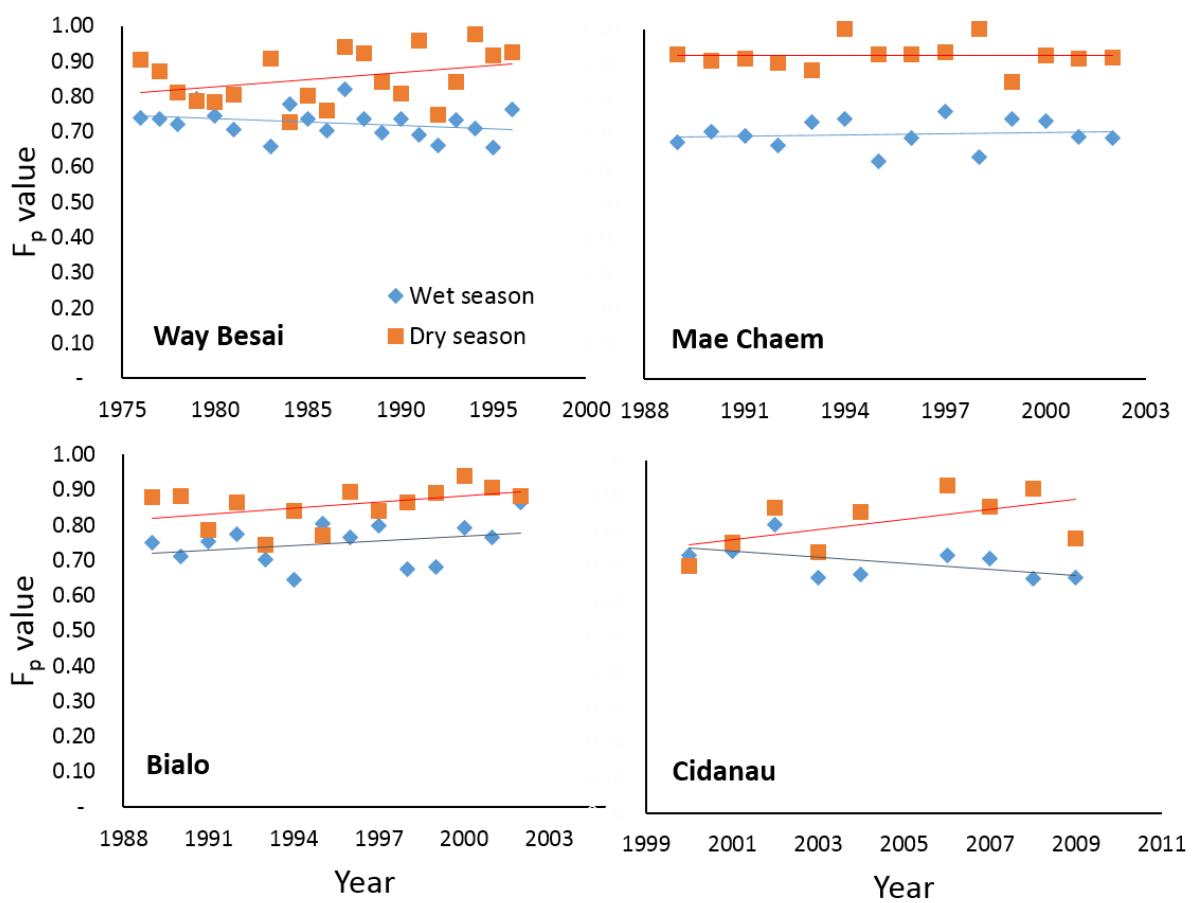
1428 V. Does it match local knowledge and concerns?

1429 VI. Can it be used to empower local stakeholders of watershed management through
 1430 performance (outcome) based contracts?

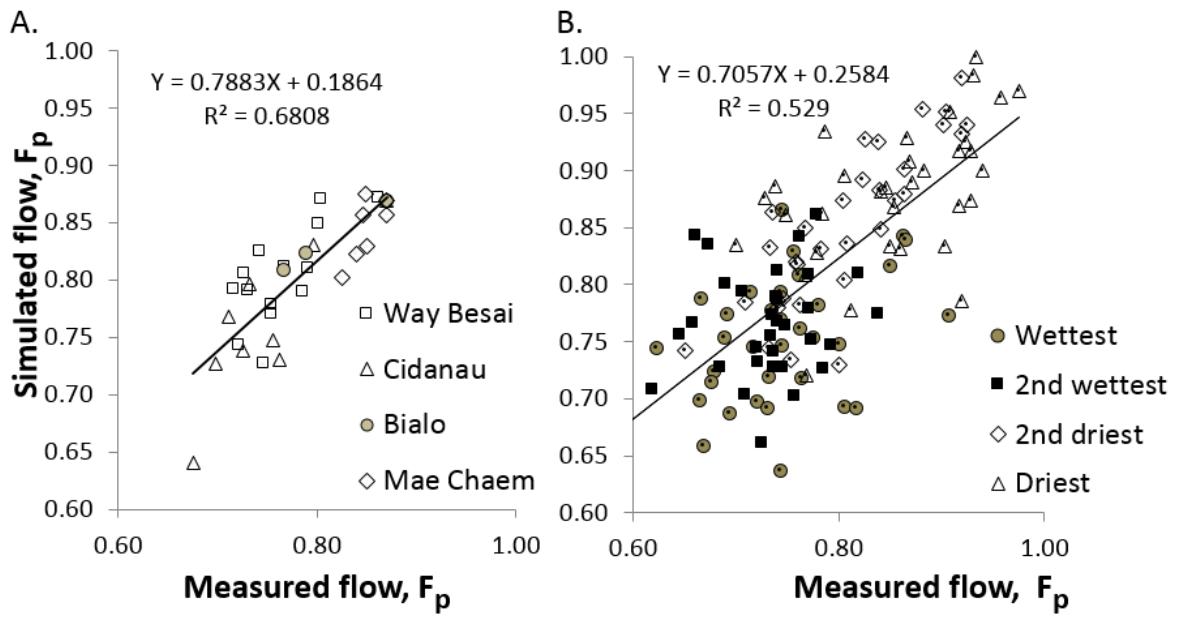
1431 VII. Can it inform local risk management?


1432

1433 Table 7. Data availability

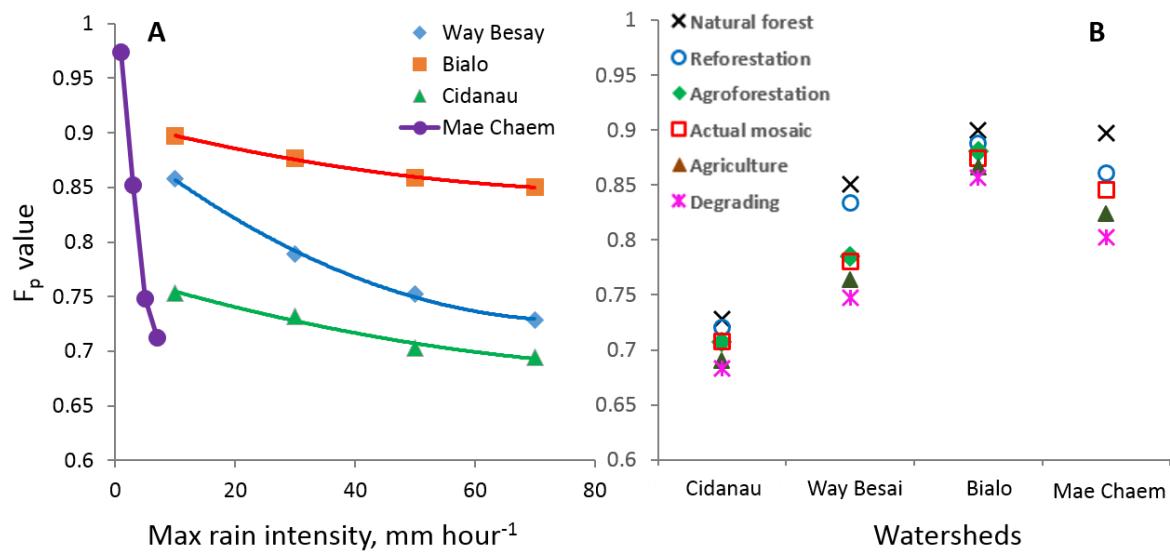

	Bialo	Cidanau	Mae Chaem	Way Besai
Rainfall data	1989-2009, Source: BWS Sulawesi ^a and PUSAIR ^b ; Average rainfall data from the stations Moti, Bulubulo, Seka and Onto	1998-2008, source: BMKG ^c	1998-2002, source: WRD55, MTD22, RYP48, GMT13, WRD 52	1976-2007, Source: BMKG, PU ^d and PLN ^e (interpolation of 8 rainfall stations using Thiessen polygon)
River flow data	1993-2010, source: BWS Sulawesi and PUSAIR	2000-2009, source: KTI ^f	1954-2003, source: ICHARM ^g	1976-1998, source: PU and PUSAIR
Reference of detailed report	http://old.icraf.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=PP0343-14	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=PO0292-13	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=MN0048-11	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=MN0048-11

1434 Note:


1435 ^aBWS: Balai Wilayah Sungai (*Regional River Agency*)1436 ^bPUSAIR: Pusat Litbang Sumber Daya Air (*Centre for Research and Development on Water Resources*)1437 ^cBMKG: Badan Meteorologi Klimatologi dan Geofisika (*Agency on Meteorology, Climatology and Geophysics*)1439 ^dPU: Dinas Pekerjaan Umum (*Public Work Agency*)1440 ^ePLN: Perusahaan Listrik Negara (*National Electric Company*)1441 ^fKTI: Krakatau Tirta Industri, a private steel company1442 ^gICHARM: The International Centre for Water Hazard and Risk Management

1445 Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water
 1446 towers are defined on the basis of ability to generate river flow and being in the upper part of a
 1447 watershed)

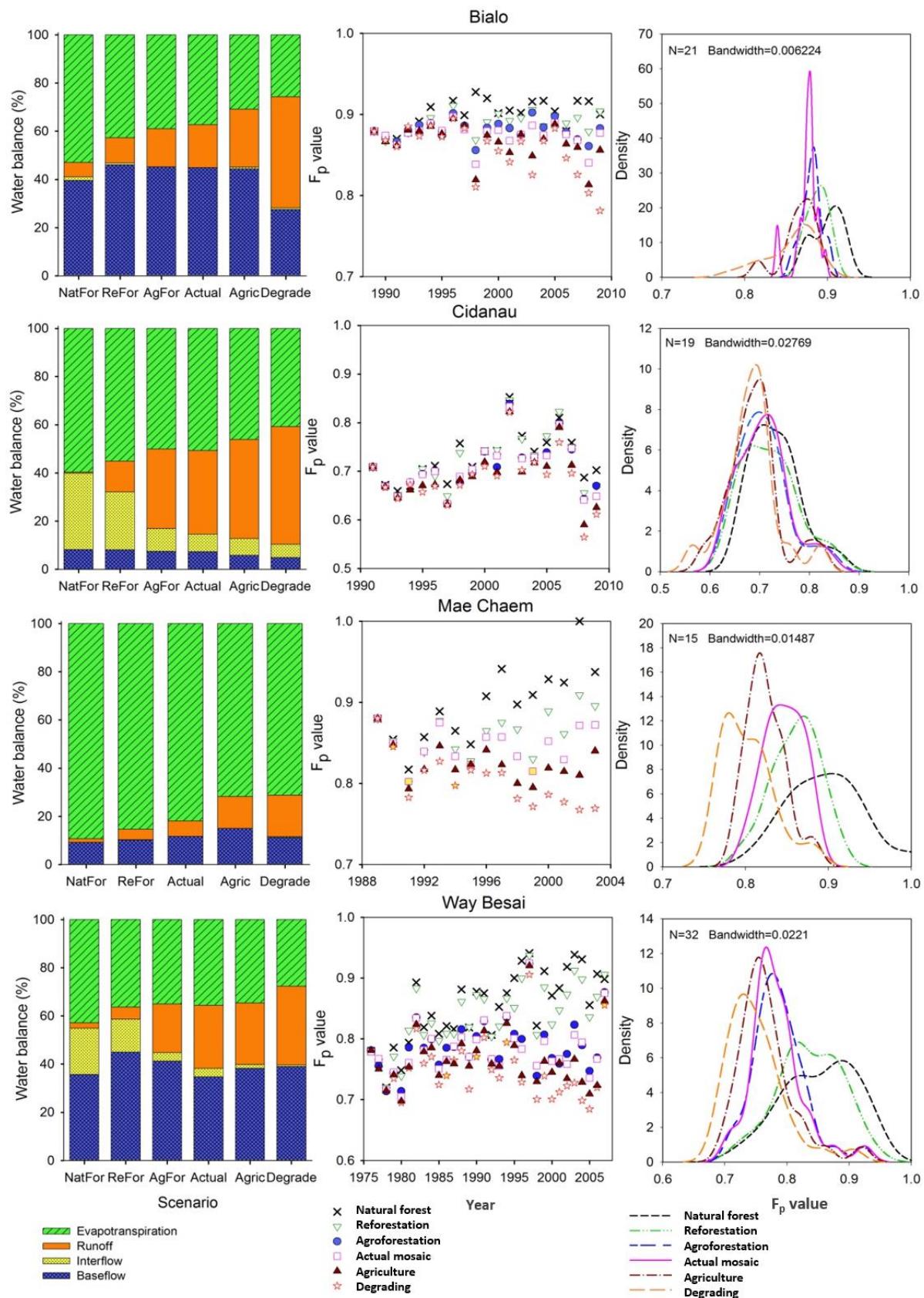
1451 Figure 2. Flow persistence (F_p) estimates derived from measurements in four Southeast Asian
 1452 watersheds, separately for the wettest and driest 3-month periods of the year



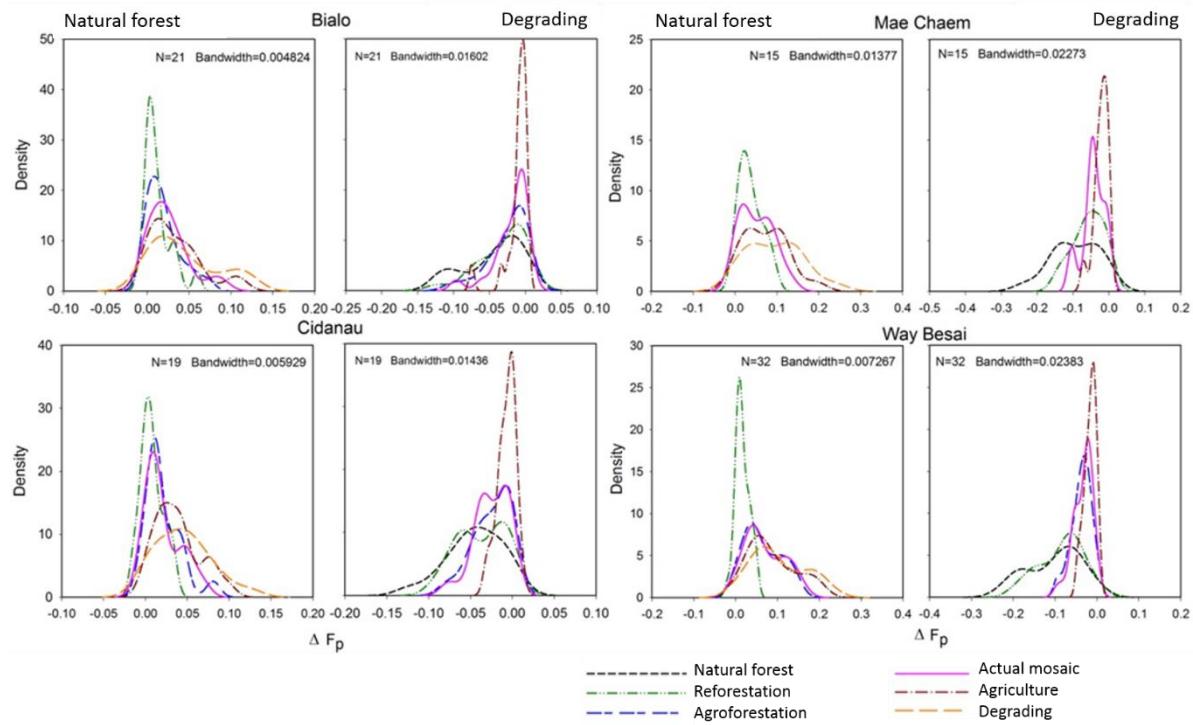
1455

1456 Figure 3. Inter- (A) and intra- (B) annual variation in the F_p parameter derived from empirical versus
1457 modelled flow: for the four test sites on annual basis (A) or three-monthly basis (B)

1458

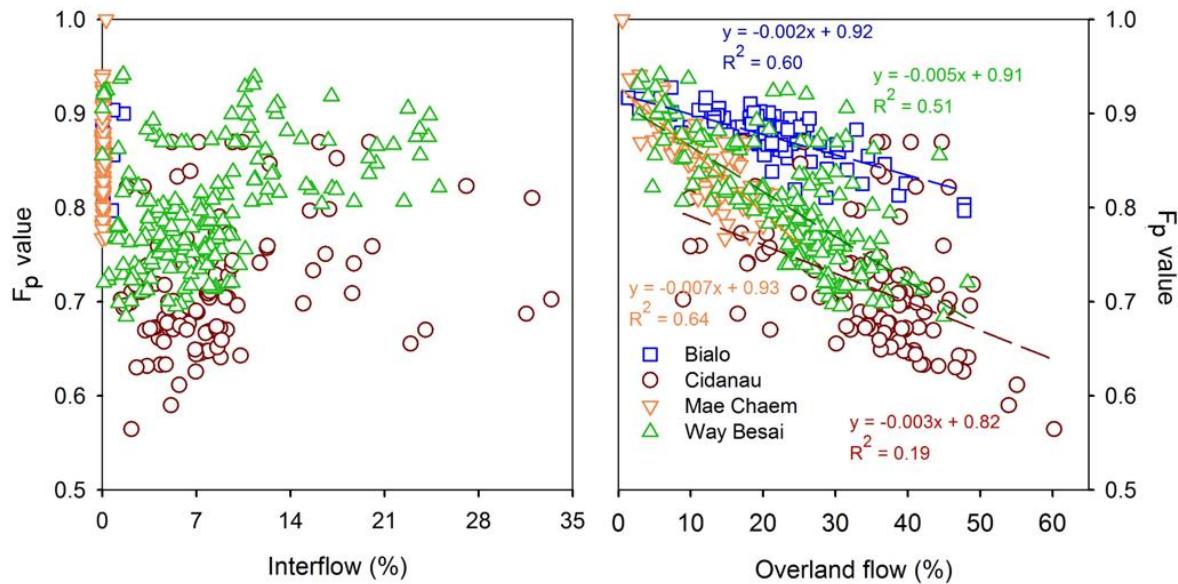

1459

1460

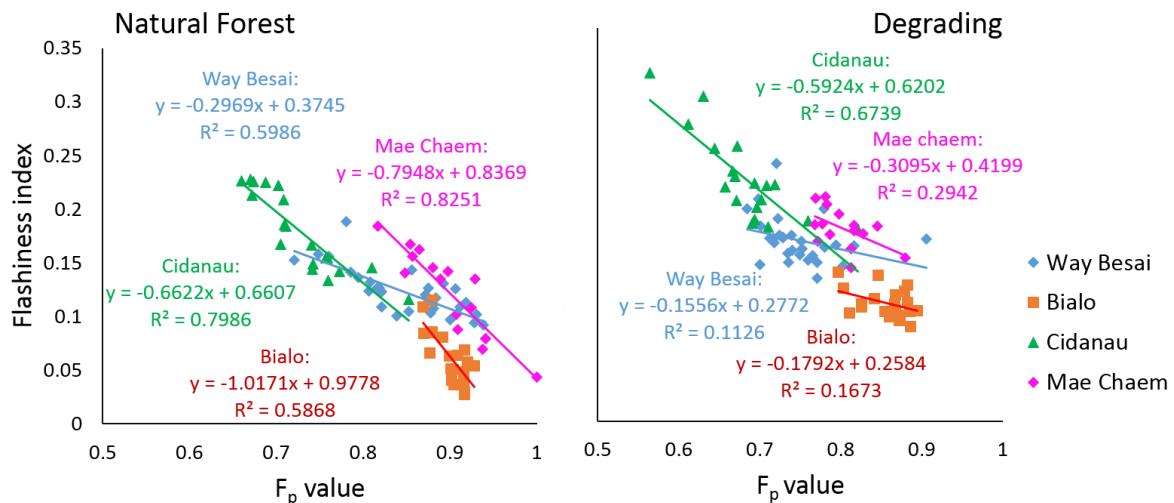

1461 Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B) the land use
 1462 change scenarios of Table 4 across the four watersheds

1463

1468 the F_p values per year and land use, the right-side panels the derived frequency distributions
1469 (best fitting Weibull distribution)


1470

1471


1472 Figure 6. Frequency distribution of expected difference in F_p in 'paired plot' comparisons where land
1473 cover is the only variable; left panels: all scenarios compared to 'Reforestation', right panel: all
1474 scenarios compared to degradation; graphs are based on a kernel density estimation (smoothing)
1475 approach

1476

1477

1478 Figure 7. Correlations of F_p with fractions of rainfall that take overland flow and interflow pathways
1479 through the watershed, across all years and land use scenarios of Figure App2
1480

1481

1482 Figure 8. Relationship between F_p value and R-B Flashiness index across years in four Southeast Asian
1483 watersheds under a 'natural forest' and 'degradation' scenario, simulated with the GenRiver model

1484 Appendix 1. GenRiver model for effects of land cover on river flow

1485 The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological model
1486 that simulates river flow based on water balance concept with a daily time step and a flexible spatial
1487 subdivision of a watershed that influences the routing of water. The core of the GenRiver model is a
1488 “patch” level representation of a daily water balance, driven by local rainfall and modified by the
1489 land cover and land cover change and soil properties. The model starts accounting of rainfall or
1490 /precipitation (P) and traces the subsequent flows and storage in the landscape that can lead to
1491 either evapotranspiration (E), river flow (Q) or change in storage (ΔS) (Figure App1):

$$1492 P = Q + E + \Delta S$$

[1]

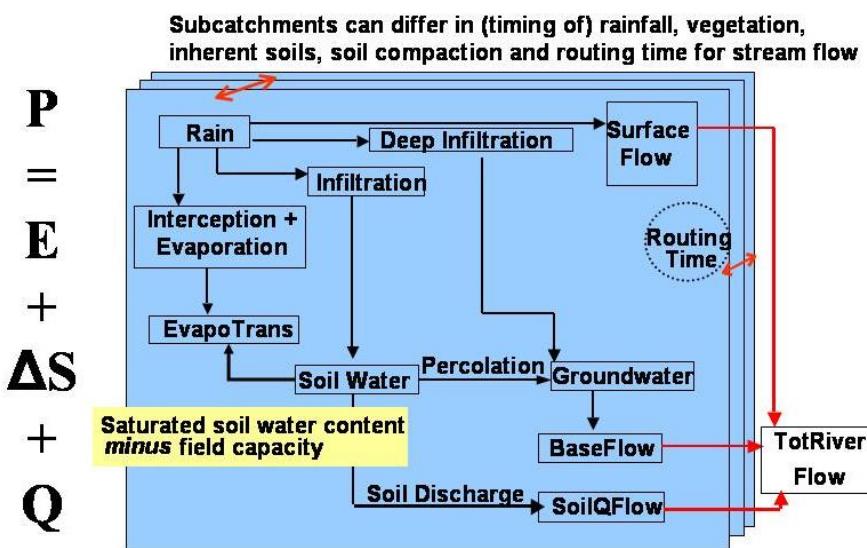
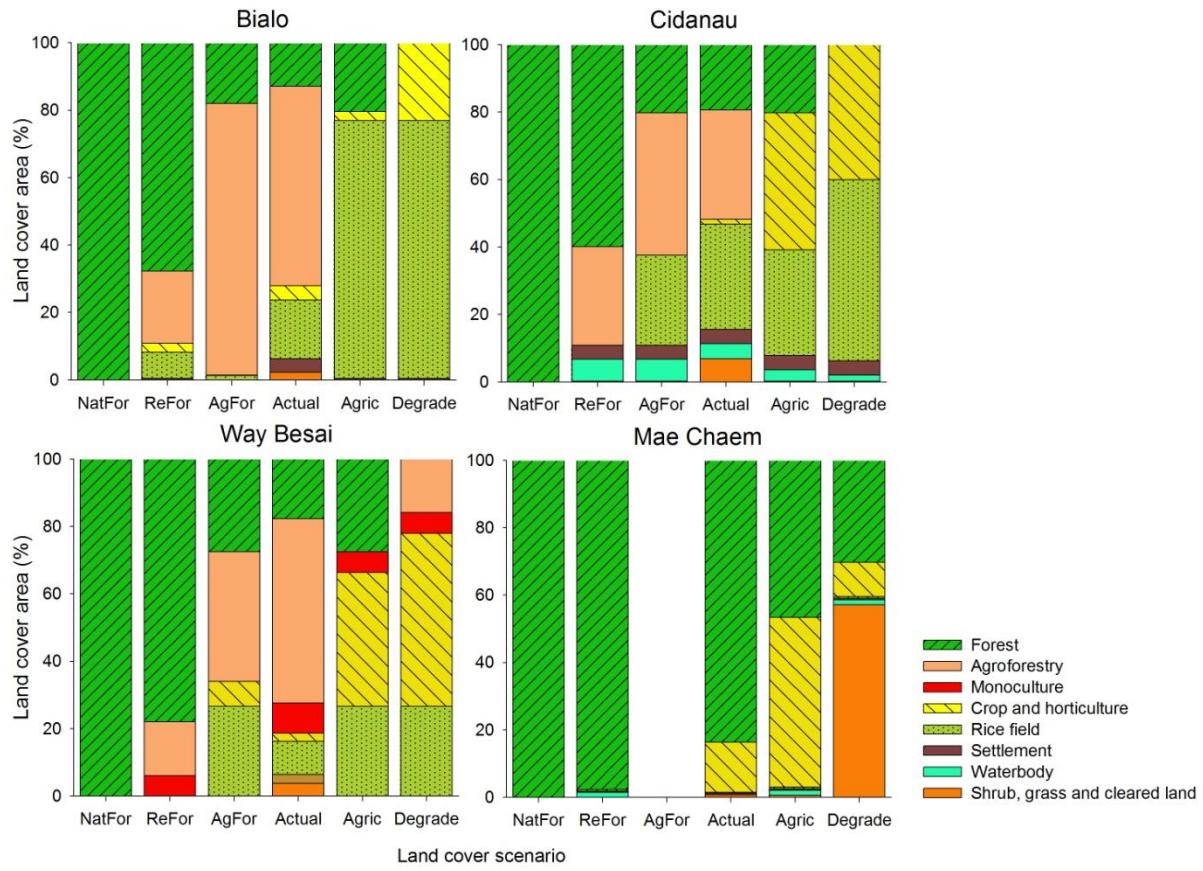


Figure App1.Overview of the GenRiver model

1493

1494 The model may use measured rainfall data, or use a rainfall generator that involves Markov chain
1495 temporal autocorrelation (rain persistence). The model can represent spatially explicit rainfall, with
1496 stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 2) and partial
1497 spatial correlation of daily rainfall between subcatchments. Canopy interception leads to direct
1498 evaporation of an amount of water controlled by the thickness of waterfilm on the leaf area that
1499 depends on the land cover, and a delay of water reaching the soil surface (parameter
1500 RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other components
1501 of evapotranspiration is controlled by the InterceptEffectontrans parameter that in practice may
1502 depend on the time of day rainfall occurs and local climatic conditions such as windspeed)


1503 At patch level, vegetation influences interception, retention for subsequent evaporation and delayed
1504 transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land cover) also
1505 influences soil porosity and infiltration, modifying the inherent soil properties. Groundwater pool
1506 dynamics are represented at subcatchment rather than patch level, integrating over the landcover
1507 fractions within a subcatchment. The output of the model is river flow which is aggregated from
1508 three types of stream flow: surface flow on the day of the rainfall event; interflow on the next day;
1509 and base flow gradually declining over a period of time. The multiple subcatchments that make up

1510 the catchment as a whole can differ in basic soil properties, land cover fractions that affect
1511 interception, soil structure (infiltration rate) and seasonal pattern of water use by the vegetation.
1512 The subcatchment will also typically differ in “routing time” or in the time it takes the streams and
1513 river to reach any specified observation point (with default focus on the outflow from the
1514 catchment). The model itself (currently implemented in Stella plus Excel), a manual and application
1515 case studies are freely available (<http://www.worldAgroforestry.org/output/genriver-generic-river-model-river-flow>;van Noordwijk et al., 2011).

1517

1518 Appendix 2. Watershed-specific consequences of the land use change scenarios

1519 The generically defined land use change scenarios (Table 4) led to different land cover proportions,
1520 depending on the default land cover data for each watershed, as shown in Figure App2.

1521

1522 Figure App2. Land use distribution of the various land use scenarios explored for the four
1523 watersheds (see Table 4)

1524

1525 Appendix 3. Example of a macro in R to estimate number of observation required using bootstrap
1526 approach.

1527

1528 #The bootstrap procedure is to calculate the minimum sample size (number of observation) required
1529 #for a significant land use effect on Fp
1530 #balo1 is a dataset contains delta Fp values for two different from Balo watershed
1531
1532 #read data
1533 balo1 <- read.table("balo1.csv", header=TRUE, sep=",")
1534
1535 #name each parameter
1536 BL1 <- balo1\$ReFor
1537 BL5 <- balo1\$Degrade
1538
1539 N = 1000 #number replication
1540
1541 n <- c(5:50) #the various sample size
1542
1543 J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset)
1544
1545 P15= matrix(ncol=J, nrow=R) #variable for storing p-value
1546 P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile
1547
1548 for (j in 1:J) #estimating for different n
1549
1550 #bootstrap sampling
1551 {
1552 for (i in 1:N)
1553 {
1554 #sampling data
1555 S1=sample(BL1, n[j], replace = T)
1556 S5=sample(BL5, n[j], replace = T)
1557
1558 #Kolmogorov-Smirnov test for equal distribution and get the p-Value
1559 KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15\$p.value
1560 }
1561
1562 #Confidence interval of CI
1563 P15Q3[j] <- quantile(P15[,j], 0.975)
1564
1565 }
1566
1567 #saving P value data and CI
1568

```
1569  write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v  
1570  /
```