

1 **HESS-2015 -538.** Author's response to the third reviewer, 31 Jan 2017

2 Dear editor

3 We have taken the advice and restructured the manuscript to strengthen the overall storyline, which
4 is focused on how flood risk reduction and flow buffering as ecosystem service can be quantified in
5 data-scarce environments, by comparison with flashiness index and base flow indicators. We have
6 revised the figures and captions throughout.

Reviewer	Authors
I find the concept of this paper to be really interesting, but feel that the papers are still poorly organized, figures and tables need better labeling and updating, and that the authors still need to make a better case for what F_p adds to a given analysis (both in the text and through benchmarking in Part II).	Thanks for the interest – on re-reading the manuscript we realize that by elaborating points in response to various comments, the main storyline has indeed been lost at a number of places. We have overhauled the text, revised figures and captions and added a table that compares F_p and flashiness index in part I, and an overall comparison table in the discussion of part II.
Major points are summarized as follows: <ul style="list-style-type: none">The connection from health, to floods, to F_p I think gets lost amongst both papers. I would almost change all references from health to refer to F_p as an indicator of alteration. The threat of flooding differs based on your location within a catchment (upstream or downstream) as well as many different watershed characteristics, including human impact. Also, as stated in a comment below, floods are healthy, so attributing their increase solely to human impact is perhaps missing some points. I think reframing this as an indicator of alteration could be useful.	We have further downplayed the 'health' aspect and refocused on floods as the primary 'salient' point of attention. The word 'health' is still found in the text, in reference to existing literature. We fully agree with emphasis of change in F_p rather than F_p itself as primary indicator -- this was indicated before, but is now the primary conclusion. There was some reference to the relevance of floods for downstream biota, and there is now a full paragraph in the discussion on this. We don't quite understand what you mean by "so attributing their increase solely to human impact".
<ul style="list-style-type: none">I find it very striking that two large bodies of literature are missing from the paper – the work of Leroy Poff (Natural Flow Regime, etc), and reference to many of the (small) benchmark catchment studies in the US that linked forest harvest to streamflow responses – these would be interesting candidates for further testing of F_p. I understand that you are focusing on floods at the larger scale, but given the connections you draw between forest harvest/recovery and watershed response, it would be remiss to not reference these landmark papers.	There luckily are many more large bodies of literature missing from the paper... The concept of 'natural flow regimes' gets some mention. The older work in the US and Europe on changes in forest catchments gets mentioned primarily through the excellent reviews that have summarized the results. It would of course be interesting if somebody can test the F_p metric on the existing US data, but we don't have access to these data. Indeed, it is the larger scale floods that are more contested (and potential involve larger values). Meanwhile, a major difference between temperate and tropical watersheds in the absence of snowpacks and snowmelt in the latter now gets mentioned several times.

<ul style="list-style-type: none"> Floods are a natural part of the flow regime – while Part II demonstrates that the deviation from these natural flow regimes through time is really what you are looking for, I think this theoretical approach would be worth stating and referencing upfront throughout Part I. Just like most of the indicators of hydrologic alteration literature, you are interested in a deviation from average. 	<p>We have done so – it is explicit in the terms ‘degradation’ and ‘restoration’ that a change over time is the core interest. Whether it is ‘deviation from the average’ or ‘deviation from what has been the past distribution’ is an issue for further debate.</p>
<ul style="list-style-type: none"> I am left to think that the F_p metric may be worthwhile for comparing within a catchment through time, but may not be effective at comparing across catchments, due to their heterogeneity in all of the effects summarized in Figure 1. It would be nice to include some discussion of the possible limitations of F_p. 	<p>We have further clarified that the interannual variation in F_p versus flashiness index as well as ‘base flow’ has a pattern that differs between catchments, even with the small set (four) of examples discussed here.</p> <p>We have added a table 1 that provides strengths and weaknesses of both indicators.</p>
<ul style="list-style-type: none"> From Figure 2 (Part I), I am really left thinking that this indicator is a measure of flashiness 	<p>In a sense yes, but it also is a metric for base flow and it does correlate with the R-B Flashiness index, but it is not equal to it</p>
<ul style="list-style-type: none"> Part of the utility of this indicator over flashiness could be your ability to partition it between wet and dry seasons and different flow pathways. At first, the description in Part I was lost on me, but I understood it after reading Part 2. I would better organize this description to frame F_p as a flexible indicator that spans the empirical and modeling realms. Currently, this is somewhat described in Part I, but highlighting the different ways it could be used by a Figure, or by organizing the text better would be really useful. 	<p>Thanks for the suggestion, we hope that the current text makes these points more clear.</p> <p>We have added a new Figure 1 that spells out the criteria that a ‘metric’ must meet in order to find its place in the applied field of discussion between natural resource managers, the wider public and local stakeholders. These lead to the 7 questions framed at the end of the introduction, and used to structure the discussion of part I.</p>
<ul style="list-style-type: none"> As a new reviewer coming to this paper with fresh eyes, I found that many of the comments from previous reviewers were not addressed, especially points of ambiguity in the text .e.g, sufficiently long period (line 224), and the wording throughout section 2, which I found difficult to follow. It is unclear if changes were made to Figure 1, despite comments from reviewers to this effect. I also find this figure difficult to dissect. 	<p>Where you have been non-ambiguous in these comments we have addressed them. We don’t quite understand what your issue is in section 2. This is indeed a technical account with rather precise wording.</p> <p>Figure 1 has certainly been changed from the earlier version in the HESS_D manuscript and the changes were appreciated by the one reviewer who provided suggestions. We have made further changes now, to connect it with the terms in Fig. 1.</p>

Minor points:	
-I found interpreting the figures in part I of the paper based on their captions alone to be very difficult, especially Figures 2, 3 and 8 (and their formatting). Please revise these captions.	We have revised the captions – but the sequence of showing Fig 3 (in the ‘methods’) before figures 4 and 5 (in the results) is suboptimal for ease of understanding. Hopefully readers will refer to the M&M section once they are interested in details, and will first look at ‘results’
-All figures would benefit from some revising, especially using subscripts for the p in Fp, sizing font and axes text to the same size, labeling x and y axes, better labeling of Figures (Figure 4, Part II especially), and construction of figures (Figure 4, Part II – lines should not be used to connect different values – this implies a continuity, but these are different catchments) -I found the results/discussion of part I to be haphazard – if data is presented, whether constructed or real, it should be introduced and discussed prior to being included in the discussion. Furthermore, while I like the comparison of Fp to the flashiness index, this was introduced so late in the paper, and not touched on in the methods, and then not truly analyzed. The authors missed an opportunity to give some thought to how this flashiness index compares to Fp – if the flashiness index describes Fp, then why do we need Fp? Does it say the same thing as Fp? Constructive analysis would certainly make the case for Fp here.	Thanks, we have indeed taken a critical look at all and harmonized them. We have brought the description of the algorithm used for former figures 2 and 3 into the ‘methods’ section, and described the graphs generated in the ‘results’. The cost of this may be that the explanation of what was Figure 4 (now Fig. 3) will be harder to follow, as no numerical examples have been presented at this stage, but no linear text representation can work for all readers, and once in print readers can switch forward and back and skip the technical sections until they have some general idea of what is being done here. Indeed the flashiness index comparison was an ‘add on’ in the discussion, and is now fully integrated in the text.
Line 45: 30-50% of what?	Rainfall, corrected
Line 48: This is true at large scales, but differences in catchments of similar size would break this relationship down	Not sure we understand what you mean here. All statements in this part have references to the literature in which they are based.
Line 109: there are several historical papers out of the US that were the first to perform the paired catchment study, highlighting the effect of land cover change on streamflow across longer time periods – work at Coweeta, HJ Andrews, Hubbard Brook, and Fernow Forests would be relevant	We state that there is indeed ‘ample proof’ at this scale and in this type of condition. As we are not writing a textbook with full historical perspective, we maintain that use of the review papers that summarized the studies and conclusions is appropriate. There is similarly an extensive literature on forest and floods in Indonesia in the 1920’s and 1930’s that will be relevant (and is probably lesser known than the well-cited US examples).
Line 127: I’m not sure I fully agree – what is the alternative? Mechanistic models?	We elaborated the text a bit here

Line 130 on: also soils	Added
Line 136: the rational method and curve number approach were developed to do just this	Yes, thanks – we have adjusted the text here and give more reference to CN and SWAT here.
Line 150: I would recommend including more citations here – there are many papers that have demonstrated this	The Hachrowitz paper is a multi-authored review of the PUB effort – we have added a few further references here.
Line 310: I think there is an incorrectly placed word on this line!	We hope it has disappeared by now...
Line 469: wording	Adjusted
Line 491: For Figures 6 and 7 – If the data is used in this paper, you should describe where it came from – I think these implications may be better explored in paper 2, or the data source should be described in paper 1.	We have indeed more fully incorporated this into the paper and use the actual flow data for the four catchments in Paper I, leaving the (model-based_) scenarios for paper II.
Line 508: This paper made several assumptions that also should be acknowledged – doing hydrology backward only works well under certain cases	We use this language as in the paper that is referenced – there is acknowledgement in the text surrounding this statement that there is further discussion on where and when it ‘works’
I find Figure 1 to be too busy to follow! Consider reducing color, size, changing font, and adding arrows in such a way to better show the “flow”	We have reduced colour and harmonized lines
Part II: Given that you wish to relate health to F_p , and its change through time to land cover, it seems as though Part II would almost benefit more with a comparison to flashiness indicators. If flashiness tells the same story, then what is the value of F_p ? I still think the argument could be made that it allows some simple process-based analysis. The contribution of F_p in Part II needs to be more clear, and should be benchmarked against another indicator of hydrologic alteration, to show the clear value of using F_p over other indicators.	Thanks for these suggestions. We have added further comparisons of F_p and F_I , for the LU change scenarios in the four catchments (while in Paper I this comparison is made for actual flow data). We have also added a new table (Table 6 in new numbering) that tries to summarize responses to the 7 initial questions for a range of ‘indicators’
Lines 960 – 64 – these are relatively relaxed targets, and may miss peaks. Given that the emphasis of this paper is on high flows, you should include a hydrograph of your model to demonstrate that the model adequately matches high flows. As this would affect your F_p values, it may be why you end up with wide scatter in Figure 3.	We could add examples as supplementary material, but examples (especially for the Wai Besai watershed with the best data) are already available in http://www.worldagroforestry.org/output/genriver/download The primary reason, we believe, for the scatter are limitations in the rainfall data, with an insufficient number of measurement stations for the given spatial heterogeneity of rainfall.

Lines 1011 on: please use words for scenarios instead of abbreviations	Modified
Line 1097: wording is confusing	Thanks, we modified the sentence
Table 5, please use more descriptive titles or cite your abbreviations – I cannot tell what these titles mean	We have used full words instead of abbreviation now.

7

8 We have highlighted the major changes made in the text in
 9 yellow

10

11 Flood risk reduction and flow buffering as ecosystem
12 services: I. Theory on flow persistence, flashiness and base
13 flow

14 Meine van Noordwijk^{1,2}, Lisa Tanika¹, Betha Lusiana¹

15 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia}

16 [2]{Wageningen University, Plant Production Systems, Wageningen, the Netherlands}

17 Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org)

18 **Abstract 1 (284 words...)**

19 Flood damage reflects insufficient adaptation of human presence and activity to location and
20 variability of river flow in a given climate. Flood risk increases when landscapes degrade,
21 counteracted or aggravated by engineering solutions. Efforts to maintain and restore
22 buffering as ecosystem function may help adaptation to climate change, but require
23 quantification of effectiveness in their specific social-ecological context. However, the
24 specific role of forests, trees, soil and drainage pathways in flow buffering, given geology,
25 land form and climate, remains controversial. Complementing the scarce heavily
26 instrumented catchments with reliable long-term data, especially in the tropics, there is a
27 need for metrics for data-sparse conditions. We present and discuss a flow persistence
28 metric that relates transmission to river flow of peak rainfall events, to the base flow
29 component of the water balance. The dimensionless flow persistence parameter F_p is
30 defined in a recursive flow model and can be estimated from limited time series of observed
31 daily flow, without requiring knowledge of spatially distributed rainfall upstream. The F_p
32 metric (or its change over time from what appears to be the local norm) matches local
33 knowledge concepts. Inter-annual variation in the F_p metric in sample watersheds correlates
34 with variation in the 'flashiness index' used in existing watershed health monitoring
35 programs, but the relationship between these metrics varies with context. Inter-annual
36 variation in F_p also correlates with common base-flow indicators, but again in a way that
37 varies between watersheds. Further exploration of the responsiveness of F_p in watersheds
38 with different characteristics to the interaction of land cover and the specific realization of
39 space-time patterns of rainfall in a limited observation period is needed to evaluate
40 interpretation of F_p as indicator of anthropogenic changes in watershed condition.

41 **1 Introduction**

42 Floods can be the direct result of reservoir dams, log jams or protective dykes breaking, with water
43 derived from unexpected heavy rainfall, rapid snow melt, tsunamis or coastal storm surges. We
44 focus here on floods that are associated, at least in the public eye, with watershed degradation.
45 Degradation of watersheds and its consequences for river flow regime and flooding intensity and
46 frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et
47 al., 2013). Engineering measures (dams, reservoirs, canalization, dykes, and flow regulation) can
48 significantly alter the flow regime of rivers, and reduce the direct relationship with landscape
49 conditions in the (upper) catchment (Poff et al., 1997). The life expectancy of such structures
50 depends, however, on the sediment load of incoming rivers and thus on upper watershed conditions
51 (Graf et al., 2010). Where 'flow regulation' has been included in efforts to assess an economic value

52 of ecosystem services, it can emerge as a major component of overall value; the economic damage
53 of floods to cities built on floodplains can be huge and the benefits of avoiding disasters thus large
54 (Farber et al., 2002; Turner and Daily, 2002; Brauman et al., 2007). The 'counterfactual' part of any
55 avoided damage argument, however, depends on metrics that are transparent in their basic concept
56 and relationship with observables. Basic requirements for a metric to be used in managing issues of
57 public concern in a complex multistakeholder environment are that it i) has a direct relationship with
58 a problem that needs to be solved ('salience'), ii) is aligned with current science-based
59 understanding of how the underpinning systems function and can be managed ('credibility') and iii)
60 can be understood from local and public/policy perspectives ('legitimacy') (Clark et al. 2011). Figure
61 1 summarizes these requirements, building on van Noordwijk et al. (2016).

62 \Rightarrow Figure 1

63 In the popular discussion on floods, especially in the tropics, a direct relationship with deforestation
64 and reforestation is still commonly perceived to dominate, and forest cover is seen as salient and
65 legitimate metric of watershed quality (or of urgency of restoration where it is low). A requirement
66 for 30% forest cover, is for example included in the spatial planning law in Indonesia in this context
67 (Galudra and Sirait, 2009). Yet, rivers are probably dominated by the other 70% of the landscape.
68 There is a problem with the credibility of assumed deforestation-flood relations (van Noordwijk et
69 al., 2007; Verbist et al., 2010), beyond the local scales ($< 10 \text{ km}^2$) of paired catchments where ample
70 direct empirical proof exists, especially in non-tropical climate zones (Bruijnzeel, 1990, 2004).
71 Current watershed rehabilitation programs that focus on increasing tree cover in upper watersheds
72 are only partly aligned with current scientific evidence of effects of large-scale tree planting on
73 streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van Noordwijk et al., 2015a).
74 The relationship between floods and change in forest quality and quantity, and the availability of
75 evidence for such a relationship at various scales has been widely discussed over the past decades
76 (Andréassian, 2004; Bruijnzeel, 2004; Bradshaw et al., 2007; van Dijk et al., 2009). Measurements in
77 Côte d'Ivoire, for example, showed strong scale dependence of runoff from 30-50% of rainfall at 1
78 m^2 point scale, to 4% at 130 ha watershed scale, linked to spatial variability of soil properties plus
79 variations in rainfall patterns (Van de Giesen et al., 2000). The ratio between peak and average flow
80 decreases from headwater streams to main rivers in a predictable manner; while mean annual
81 discharge scales with $(\text{area})^{1.0}$, maximum river flow was found to scale with $(\text{area})^{0.4}$ to $(\text{area})^{0.7}$ on
82 average (Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998; Herschy, 2002), with even
83 lower powers for area in flash floods that are linked to an extreme rainfall event over a restricted
84 area (Marchi et al., 2010). The determinants of peak flow are thus scale-dependent, with space-time
85 correlations in rainfall interacting with subcatchment-level flow buffering at any point along the
86 river. Whether and where peak flows lead to flooding depends on the capacity of the rivers to pass
87 on peak flows towards downstream lakes or the sea, assisted by riparian buffer areas with sufficient
88 storage capacity (Baldasarte et al., 2013). Reducing local flooding risk by increased drainage
89 increases flooding risk downstream, challenging the nested-scales management of watersheds to
90 find an optimal spatial distribution, rather than minimization, of flooding probabilities. Well-studied
91 effects of forest conversion on peak flows in small upper stream catchments (Bruijnzeel, 2004;
92 Change, 2006; Alila et al., 2009) do not necessarily translate to flooding downstream. With most of
93 the published studies still referring to the temperate zone, the situation in the tropics (generally in
94 the absence of snow) is contested (Bonell and Bruijnzeel, 2005). As summarized by Beck et al. (2013)
95 meso- to macroscale catchment studies (> 1 and $> 10,000 \text{ km}^2$, respectively) in the tropics, subtropics,
96 and warm temperate regions have mostly failed to demonstrate a clear relationship between river
97 flow and change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack of
98 effect, however. Detectability of effects depends on their relative size, the accuracy of the

99 measurement devices, length of observation period, and background variability of the signal. A
100 recent econometric study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, after
101 appropriate corrections for space-time correlates in the data-set for 31 meso- and macroscale basins
102 (554-28,643 km²), conversion of inland rain forest to monocultural plantations of oil palm or rubber
103 increased the number of flooding days reported, but not the number of flood events, while
104 conversion of wetland forests to urban areas reduced downstream flood duration. This Malaysian
105 study may be the first credible empirical evidence at this scale. The difference between results for
106 flood duration and flood frequency and the result for draining wetland forests warrant further
107 scrutiny. Consistency of these findings with river flow models based on a water balance and likely
108 pathways of water under the influence of change in land cover and land use has yet to be shown.
109 Two recent studies for Southern China confirm the conventional perspective that deforestation
110 increases high flows, but are contrasting in effects of Reforestation. Zhou et al. (2010) analysed a 50-
111 year data set for Guangdong Province in China and concluded that forest recovery had not changed
112 the annual water yield (or its underpinning water balance terms precipitation and
113 evapotranspiration), but had a statistically significant positive effect on dry season (low) flows. Liu
114 et al. (2015), however, found for the Meijiang watershed (6983 km²) in subtropical China that while
115 historical deforestation had decreased the magnitudes of low flows (daily flows \leq Q95%) by 30.1%,
116 low flows were not significantly improved by Reforestation. They concluded that recovery of low
117 flows by Reforestation may take much longer time than expected probably because of severe soil
118 erosion and resultant loss of soil infiltration capacity after deforestation. Changes in river flow
119 patterns over a limited period of time can be the combined and interactive effects of variations in
120 the local rainfall regime, land cover effects on soil structure and engineering modifications of water
121 flow that can be teased apart with modelling tools (Ma et al., 2014).

122 Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ from
123 those of plantation forestry, while forest statistics do not normally differentiate between these
124 different land covers. In a regression study of the high and low flow regimes in the Volta and
125 Mekong river basins Lacombe and McCartney (2016) found that in the variation among tributaries
126 various aspects of land cover and land cover change had explanatory power. Between the two
127 basins, however, these aspects differed. In the Mekong basin variation in forest cover had no direct
128 effect on flows, but extending paddy areas resulted in a decrease in downstream low flows, probably
129 by increasing evapotranspiration in the dry season. In the Volta River Basin, the conversion of forests
130 to crops (or a reduction of tree cover in the existing parkland system) induced greater downstream
131 flood flows. This observation is aligned with the experimental identification of an optimal,
132 intermediate tree cover from the perspective of groundwater recharge in parklands in Burkina Faso
133 (Ilstedt et al., 2016).

134 The statistical challenges of attribution of cause and effect in such data-sets are considerable with
135 land use/land cover effects interacting with spatially and temporally variable rainfall, geological
136 configuration and the fact that land use is not changing in random fashion or following any pre-
137 randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 catchments
138 in Puerto Rico by Beck et al. (2013) did not find significant relationships between the change in
139 forest cover or urban area, and change in various flow characteristics, despite indications that
140 regrowing forests increased evapotranspiration.

141 These observations imply that percent tree cover (or other forest related indicators) is probably not
142 a good metric for judging the ecosystem services provided by a watershed (of different levels of
143 'health'), and that a metric more directly reflecting changes in river flow may be needed. Here we
144 will explore a simple recursive model of river flow (van Noordwijk et al., 2011) that (i) is focused on

145 (loss of) flow predictability, (ii) can account for the types of results obtained by the cited recent
146 Malaysian study (Tan-Soo et al., 2014), and (iii) may constitute a suitable performance indicator to
147 monitor watershed 'health' through time.

148 Before discussing the credibility dimension of river flow metrics, the way these relate to the salience
149 and legitimacy issues around 'flood damage' as policy issue need attention. The salient issue of
150 'flood damage' is compatible with a common dissection of risk as the product of exposure, hazard
151 and vulnerability (steps 1, 2 and 3 in Figure 2). Many aspects beyond forests and tree cover play a
152 role; in fact these factors are multiple steps away (step 7A) from the direct river flow dynamics that
153 determine floods. Extreme discharge events plus river-level engineering (steps 4 and 5) co-
154 determine hazard (step 2), while exposure (step 1) depends on topographic position interacting with
155 human presence, and vulnerability can be modified by engineering at a finer scale and be further
156 reduced by advice to leave an area in high-risk periods. A recent study (Jongman et al., 2015) found
157 that human fatalities and material losses between 1980 and 2010 expressed as a share of the
158 exposed population and gross domestic product were decreasing with rising income. The planning
159 needed to avoid extensive damage requires quantification of the risk of higher than usual
160 discharges, especially at the upper tail end of the flow frequency distribution.

161 ⇒ Figure 2

162 The statistical scarcity, per definition, of 'extreme events' and the challenge of data collection where
163 they do occur, make it hard to rely on site-specific empirical data as such. Inference of risks needs
164 some trust in extrapolation methods, as is often provided by use of trusted underlying mechanisms
165 and/or data obtained in a geographical proximity. Existing data on flood frequency and duration, as
166 well as human and economic damage are influenced by topography, soils, human population density
167 and economic activity, responding to engineered infrastructure (step 5 in Figure 2), as well as the
168 extreme rainfall events that are their proximate cause (step 6). Subsidence due to groundwater
169 extraction in urban areas of high population density is a specific problem for a number of cities built
170 on floodplains (such as Jakarta and Bangkok), but subsidence of drained peat areas has also been
171 found to increase flooding risks elsewhere (Sumarga et al., 2016). Common hydrological analysis of
172 flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood events, for example) relies on direct
173 observations at step 4 in Fig. 2, but typically requires spatial extrapolation beyond points of data
174 collection through river flow models that combine at least steps 5 and 6. Relatively simple ways of
175 including the conditions in the watershed (step 7) in such models rely on the runoff curve number
176 method (Ponce et al., 1996) and the SWAT (Soil water assessment tool) model that was built on its
177 foundation (Gassman et al. 2007). Applications on tropical soils have had mixed success (Oliveira et
178 al. 2016). Describing peak flows as a proportion of the rainfall event that triggered them has a long
179 history, but where the proportionality factors are estimated for ungauged catchments results may
180 be unreliable (Efstratiodis et al., 2014). More refined descriptions of the infiltration process (step
181 7B) are available, using recursive models as filters on empirical data (Grimaldi et al., 2013), but data
182 for this approach may not be generally available. According to van der Putte et al. (2013) the Green-
183 Ampt infiltration equation can be fitted to data for dry conditions when soil crusts limit infiltration,
184 but not in wet winter conditions. These authors argued that simpler models may be better.

185 Analysis of likely change in flood frequencies in the context of climate change adaptation has been
186 challenging (Milly et al., 2002; Ma et al., 2014). There is a lack of simple performance indicators for
187 watershed health at its point of relating precipitation P and river flow Q (step 4 in Figure 2) that align
188 with local observations of river behaviour and concerns about its change and that can reconcile
189 local, public/policy and scientific knowledge, thereby helping negotiated change in watershed
190 management (Leimona et al., 2015). The behaviour of rivers depends on many climatic (step 6 in

191 Figure 2) and terrain factors (step 7A-D in Figure 2) that make it a challenge to differentiate between
192 human induced ecosystem structural change and soil degradation (step 7B) on one hand and
193 intrinsic variability on the other. Step 8 in Figure 2 represents the direct influence of climate on
194 vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological models
195 tend to focus on predicting hydrographs at one or more temporal scales, and are usually tested on
196 data-sets from limited locations. Despite many decades (if not centuries) of hydrological modelling,
197 current hydrologic theory, models and empirical methods have been found to be largely inadequate
198 for sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts to resolve this through
199 harmonization of modelling strategies have so far failed. Existing models differ in the number of
200 explanatory variables and parameters they use, but are generally dependent on empirical data of
201 rainfall that are available for specific measurement points but not at the spatial resolution that is
202 required for a close match between measured and modelled river flow. Spatially explicit models
203 have conceptual appeal (Ma et al., 2010) but have too many degrees of freedom and too many
204 opportunities for getting right answers for wrong reasons if used for empirical calibration (Beven,
205 2011). Parsimonious, parameter-sparse models are appropriate for the level of evidence available to
206 constrain them, but these parameters are themselves implicitly influenced by many aspects of
207 existing and changing features of the watershed, making it hard to use such models for scenario
208 studies of changing land use and change in climate forcing. Here we present a more direct approach
209 deriving a metric of flow predictability that can bridge local concerns and concepts to quantified
210 hydrologic function: the ‘flow persistence’ parameter as directly observable characteristic (step 4 in
211 Figure 2), that can be logically linked to the primary points of intervention in watershed
212 management, interacting with climate and engineering-based change.

213 In this contribution to the debate we will first define the metric ‘flow persistence’ in the context of
214 temporal autocorrelation of river flow and then derive a way to estimate its numerical value. In part
215 II we will apply the algorithm to river flow data for a number of contrasting meso-scale watersheds.
216 In the discussion of this paper we will consider the new flow persistence metric in terms of three
217 groups of criteria for usable knowledge (Fig. 1; Clark et al., 2011; Lusiana et al., 2011; Leimona et al.,
218 2015) based on salience (I,II), credibility (III, IV) and legitimacy (V-VII):

- 219 I. Does flow persistence relate to important aspects of watershed behaviour, complementing
220 existing metrics such as the ‘flashiness index’ and ‘base flow separation’ techniques?
- 221 II. Does its quantification help to select management actions?
- 222 III. Is there consistency of numerical results?
- 223 IV. How sensitive is it to bias and random error in data sources?
- 224 V. Does it match local knowledge?
- 225 VI. Can it be used to empower local stakeholders of watershed management?
- 226 VII. Can it inform local risk management?

227 **2 Flow persistence in water balance equations**

228 **2.1 Recursive model**

229 One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, related to
230 the volumetric flow (discharge) via rating curves (Maidment, 1992). Without knowing details of
231 upstream rainfall and the pathways the rain takes to reach the river, observation of the daily
232 fluctuations in water level allows important inferences to be made. It is also of direct utility: sudden
233 rises can lead to floods without sufficient warning, while rapid decline makes water utilization
234 difficult. Indeed, a common local description of watershed degradation is that rivers become more
235 'flashy' and less predictable, having lost a buffer or 'sponge' effect (Joshi et al., 2004; Ranieri et al.,
236 2004; Rahayu et al., 2013). A simple model of river flow at time t , Q_t , is that it is similar to that of the
237 day before (Q_{t-1}), multiplied with F_p , a dimensionless parameter called 'flow persistence' (van
238 Noordwijk et al., 2011) plus an additional stochastic term $Q_{a,t}$:

239
$$Q_t = F_p Q_{t-1} + Q_{a,t} \quad [1].$$

240 Q_t is for this analysis expressed in mm d^{-1} , which means that measurements in $\text{m}^3 \text{s}^{-1}$ need to be
241 divided by the relevant catchment area, with appropriate unit conversion. If river flow were
242 constant, it would be perfectly predictable, i.e. F_p would be 1.0 and $Q_{a,t}$ zero; in contrast, an F_p -value
243 equal to zero and $Q_{a,t}$ directly reflecting erratic rainfall represents the lowest possible level of
244 predictability.

245 The F_p parameter is conceptually identical to the 'recession constant' commonly used in hydrological
246 models, typically assessed during an extended dry period when the $Q_{a,t}$ term is negligible and
247 streamflow consists of base flow only (Tallaksen, 1995); empirical deviations from a straight line in a
248 plot of the logarithm of Q against time are common and point to multiple rather than a single
249 groundwater pool that contributes to base flow. The larger catchment area has a possibility to get
250 additional flow from multiple independent groundwater contribution.

251 As we will demonstrate in a next section, it is possible to derive F_p even when $Q_{a,t}$ is not negligible. In
252 climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent F_p
253 between wet and dry parts of the hydrologic year. A possible interpretation, to be further explored,
254 is that decrease over the years of F_p indicates 'watershed degradation' (i.e. greater contrast between
255 high and low flows), and an increase 'improvement' or 'rehabilitation' (i.e. more stable flows).

256 If we consider the sum of river flow over a period of time (from 1 to T) we obtain

257
$$\sum_1^T Q_t = F_p \sum_1^T Q_{t-1} + \sum_1^T Q_{a,t} \quad [2].$$

258 If the period is sufficiently long period for Q_T minus Q_0 (the values of Q_t for $t=T$ and $t=0$, respectively)
259 to be negligibly small relative to the sum over all t 's, we may equate $\sum_1^T Q_t$ with $\sum_1^T Q_{t-1}$ and obtain a
260 first way of estimating the F_p value:

261
$$F_p = 1 - \sum_1^T Q_{a,t} / \sum_1^T Q_t \quad [3].$$

262 The stochastic $Q_{a,t}$ can be interpreted in terms of what hydrologists call 'effective rainfall' (i.e. rainfall
263 minus on-site evapotranspiration, assessed over a preceding time period t_x since previous rain
264 event):

265
$$Q_t = F_p Q_{t-1} + (1-F_p)(P_{tx} - E_{tx}) \quad [4].$$

266 Where P_{tx} is the (spatially weighted) precipitation on day t (or preceding precipitation released as
267 snowmelt on day t) in mm d^{-1} ; E_{tx} , also in mm d^{-1} , is the preceding evapotranspiration that allowed
268 for infiltration during this rainfall event (*i.e.* evapotranspiration since the previous soil-replenishing
269 rainfall that induced empty pore space in the soil for infiltration and retention), or replenishment of
270 a water film on aboveground biomass that will subsequently evaporate. More complex attributions
271 are possible, aligning with the groundwater replenishing bypass flow and the water isotopic
272 fractionation involved in evaporation (Evaristo et al., 2015).

273 The consistency of multiplying effective rainfall with $(1-F_p)$ can be checked by considering the
274 geometric series $(1-F_p)$, $(1-F_p) F_p$, $(1-F_p) F_p^2$, ..., $(1-F_p) F_p^n$ which adds up to $(1-F_p)(1 - F_p^n)/(1-F_p)$ or $1 - F_p^n$. This approaches 1 for large n , suggesting that all of the water attributed to time t , *i.e.* $P_t - E_{tx}$,
275 will eventually emerge as river flow. For $F_p = 0$ all of $(P_t - E_{tx})$ emerges on the first day, and river flow
276 is as unpredictable as precipitation itself. For $F_p = 1$ all of $(P_t - E_{tx})$ contributes to the stable daily flow
277 rate, and it takes an infinitely long period of time for the last drop of water to get to the river. For
278 declining F_p , $(1 > F_p > 0)$, river flow gradually becomes less predictable, because a greater part of the
279 stochastic precipitation term contributes to variable rather than evened-out river flow.
280

281 Taking long term summations of the right- and left- hand sides of Eq.(4) we obtain:

$$282 \Sigma Q_t = \Sigma (F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})) = F_p \Sigma Q_{t-1} + (1-F_p)(\Sigma P_t - \Sigma E_{tx}) \quad [5].$$

283 Which is consistent with the basic water budget, $\Sigma Q = \Sigma P - \Sigma E$, at time scales long enough for
284 changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean daily
285 river flow are independent of F_p . This does not preclude that processes of watershed degradation or
286 restoration that affect the partitioning of P over Q and E also affect F_p .

287 **2.2 Base flow**

288 Clarifying the Q_a contribution is equivalent with one of several ways to separate base flow from peak
289 flows. Rearranging Eq.(3) we obtain

$$290 \Sigma_1^T Q_{a,t} = (1 - F_p) \Sigma_1^T Q_t \quad [6].$$

291 The $\Sigma Q_{a,t}$ term reflects the sum of peak flows in mm. Its complement, $F_p \Sigma Q_t$, reflects the sum of base
292 flow, also in mm. For $F_p = 1$ (the theoretical maximum) we conclude that all $Q_{a,t}$ must be zero, and all
293 flow is 'base flow'.

294 **2.3 Low flows**

295 The lowest flow expected in an annual cycle is $Q_x F_p^{N_{\max}}$ where Q_x is flow on the first day without rain
296 and N_{\max} the longest series of dry days. Taken at face value, a decrease in F_p has a strong effect on
297 low-flows, with a flow of 10% of Q_x reached after 45, 22, 14, 10, 8 and 6 days for $F_p = 0.95, 0.9, 0.85,$
298 0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the
299 cumulative dry season flow if the dry period is sufficiently long, is $Q_x/(1-F_p)$. If F_p decreases to F_{px} but
300 the groundwater reservoir ($\text{Res} = Q_x/(1-F_p)$) is not affected, initial flows in the dry period will be
301 higher ($Q_x F_{px}^i (1-F_{px}) \text{ Res} > Q_x F_p^i (1-F_p) \text{ Res}$ for $i < \log((1-F_{px})/(1-F_p))/\log(F_p/F_{px})$). It thus matters how
302 low flows are evaluated: from the perspective of the lowest level reached, or as cumulative flow.
303 The combination of climate, geology and land form are the primary determinants of cumulative low
304 flows, but if land cover reduces the recharge of groundwater there may be impacts on dry season
305 flow, that are not directly reflected in F_p .

306 If a single F_p value would account for both dry and wet season, the effects of changing F_p on low
307 flows may well be more pronounced than those on flood risk. Empirical tests are needed of the
308 dependence of F_p on Q (see below). Analysis of the way an aggregate F_p depends on the dominant
309 flow pathways provides a basis for differentiating F_p within a hydrologic year.
310

311 **2.4 Flow-pathway dependence of flow persistence**

312 The patch-level partitioning of water between infiltration and overland flow is further modified at
313 hillslope level, with a common distinction between three pathways that reach streams: overland
314 flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 2004). An additional
315 interpretation of Eq.(1), potentially adding to our understanding of results but not needed for
316 analysis of empirical data, can be that three pathways of water through a landscape contribute to
317 river flow (Barnes, 1939): groundwater release with $F_{p,g}$ values close to 1.0, overland flow with $F_{p,o}$
318 values close to 0, and interflow with intermediate $F_{p,i}$ values.

319 $Q_t = F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o} + Q_{a,t}$ [7],

320 $F_p = (F_{p,g} Q_{t-1,g} + F_{p,i} Q_{t-1,i} + F_{p,o} Q_{t-1,o}) / Q_{t-1}$ [8].

321 On this basis a decline or increase in overall weighted average F_p can be interpreted as indicator of a
322 shift of dominant runoff pathways through time within the watershed. Dry season flows are
323 dominated by $F_{p,g}$. The effective F_p in the rainy season can be interpreted as indicating the relative
324 importance of the other two flow pathways. F_p reflects the fractions of total river flow that are based
325 on groundwater, overland flow and interflow pathways:

326 $F_p = F_{p,g} (\Sigma Q_{t,g} / \Sigma Q_t) + F_{p,o} (\Sigma Q_{t,o} / \Sigma Q_t) + F_{p,i} (\Sigma Q_{t,i} / \Sigma Q_t)$ [9].

327 Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to
328 enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated conditions
329 throughout the soil profile may also induce overland flow, especially near valley bottoms (Bonell,
330 1993; Bruijnzeel, 2004). Thus, the value of $F_{p,o}$ can be substantially above zero if the rainfall has a
331 significant temporal autocorrelation, with heavy rainfall on subsequent days being more likely than
332 would be expected from general rainfall frequencies. If rainfall following a wet day is more likely to
333 occur than following a dry day, as is commonly observed in Markov chain analysis of rainfall patterns
334 (Jones and Thornton, 1997; Bardossy and Plate, 1991), the overland flow component of total flow
335 will also have a partial temporal autocorrelation, adding to the overall predictability of river flow. In
336 a hypothetical climate with evenly distributed rainfall, we can expect F_p to be 1.0 even if there is no
337 infiltration and the only pathway available is overland flow. Even with rainfall that is variable at any
338 point of observation but has low spatial correlation it is possible to obtain F_p values of (close to) 1.0
339 in a situation with (mostly) overland flow (Ranieri et al., 2004).

340 **2.5 Relationship between flow persistence and flashiness index**

341 The Richards-Baker 'R-B Flashiness index' (Baker et al. 2004) is defined as

342 $FI = \sum_t |\Delta Q_t| / \sum_t Q_t = \sum_{ti} (Q_t - Q_{t-1}) + \sum_{td} (Q_{t-1} - Q_t)$ [10]

343 with ti indicating all times t that $Q_t > Q_{t-1}$ and td indicating all times t that $Q_t < Q_{t-1}$. Over a
344 timeframe that flow has no net trend, the sum of increments ($\sum_{ti} (Q_t - Q_{t-1})$) is equal to the sum of
345 declines ($\sum_{td} (Q_{t-1} - Q_t)$).

346 Substituting equation [5] in [10] we obtain:

347 $FI = 2(1-F_p)(0.5 \Delta S + \sum_{ti} (P_t - E_{tx} - Q_t)) / \sum_t Q_t = 2(1-F_p)(-0.5 \Delta S + \sum_{td} (-P_t + E_{tx} + Q_t)) / \sum_t Q_t$ [11]

348 With ΔS representing change in catchment storage; $\Delta S = (1-F_p)(-\sum_{ti} (P_t - E_{tx} - Q_t) + \sum_{td} (-P_t + E_{tx} + Q_t))$.

349 This suggests that $FI = 2(1-F_p)$ is a first approximation and becomes zero for $F_p = 1$. These
350 approximations require that changes in the catchment have no influence on P_t or E_{tx} values. If E_{tx} is
351 negatively affected (either by a change in vegetation or by insufficient buffering, reducing water
352 availability on non-rainfall days) flashiness will increase, beyond the main effects on F_p .

353 The rainfall term, counted positive for all days with flow increase and negatively for days with
354 declining flow, hints at one of the major reasons why the flashiness index tends to get smaller when
355 larger catchment areas are involved: rainfall will tend to get more evenly distributed over time,
356 unless the spatial correlation of rainfall is (close to) 1 and all rainfall derives from fronts passing over
357 the area uniformly. Where (part of) precipitation occurs as snow, the timing of snow melt defines P_t
358 as used here. Where vegetation influences timing and synchrony of snowmelt, this will be reflected
359 in the flashiness index. It may not directly influence flow persistence, but will be accounted for in the
360 flow description that uses flow persistence as key parameter.

361 **3. Methods**

362 **3.1 River flow data for four tropical watersheds**

363 To test the applicability of the F_p metric and explore its properties, data from four Southeast Asian
364 watersheds were used, that will be described and further analyzed in part II. The first watershed
365 data set is the Way Besai (414.4 km^2) in Lampung province, Sumatra, Indonesia (Verbist et al., 2010).
366 With an elevation between 720–1831 m a.s.l., the Way Besai is dominated by various coffee
367 production systems (64%), with remaining forest (18%), horticulture and crops (12%) and other land
368 uses (6%). Daily rainfall data from 1976 – 2007, was generated by interpolation of eight rainfall
369 stations using Thiessen polygons; data were obtained from BMKG (*Agency on Meteorology,*
370 *Climatology and Geophysics*), PU (Public Work Agency) and PLN (*National Electricity Company*). The
371 average of annual rainfall was 2474 mm, with observed values in the range 1216 – 3277 mm. River
372 flow data at the outflow of the Way Besai was also obtained from PU and PUSAIR (*Centre for*
373 *Research and Development on Water Resources*), with an average of river flow of $16.7 \text{ m}^3/\text{s}$.

374 Data from three other watersheds were used to explore the variation of F_p across multiple years and
375 its relationship with the Flashiness Index: Bialo (111.7 km^2) in South Sulawesi, Indonesia with
376 Agroforestry as the dominant land cover type, Cidanau (241.6 km^2) in West Java, Indonesia,
377 dominated by mixed Agroforestry land uses but with a peat swamp before the final outlet and Mae
378 Chaem (3892 km^2) in Northern Thailand, part of the upper Ping Basin, and dominated by evergreen,
379 deciduous and pine forest. Detailed information on these watersheds and the data sources is
380 provided in Paper II.

381 **3.2 Numerical examples**

382 For 'Monte Carlo' simulations a river flow model representing equation [1] was implemented in a
383 spreadsheet model that is available from the authors on request. Fixed values for F_p were used in
384 combination with a stochastic $Q_{a,t}$ value. The latter was obtained from a random generator (rand)

385 with two settings for a (truncated) sinus-based daily rainfall probability: A) one for situations that
386 have approximately 120 rainy days, and an annual Q of around 1600 mm, and B) one that leads to
387 around 45 rainy days and an annual total around 600 mm. Maximum daily $Q_{a,t}$ was chosen as 60 mm
388 in both cases. For the figures, realizations for various F_p values were retained that were within 10%
389 of this number of rainy days and annual flow total, to focus on the effects of F_p as such.

390 **3.3 Flow persistence as a simple flood risk indicator**

391 For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as:

392 $Q_t = \sum_j^t F_p^{t-j} (1-F_p) p_j P_j$ [12].

393 Where p_j reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal
394 trends) and P_j is the rain depth (drawn from a uniform distribution). From this model the effects of F_p
395 (and hence of changes in F_p) on maximum daily flow rates, plus maximum flow totals assessed over a
396 2-5 d period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall in
397 the default case – see below). Relative flood protection was calculated as the difference between
398 peak flows (assessed for 1-5 d duration after a 1 year ‘warm-up’ period) for a given F_p versus those
399 for $F_p = 0$, relative to those at $F_p = 0$.

400 **3.4 An algorithm for deriving F_p from a time series of stream flow data**

401 Equation (3) provides a first method to derive F_p from empirical data if these cover a full hydrologic
402 year. In situations where there is no complete hydrograph and/or in situations where we want to
403 quantify F_p for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change
404 in the storage term of the water budget equation cannot be ignored, we need an algorithm for
405 estimating F_p from a series of daily Q_t observations.

406 Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a
407 groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). As we
408 can assume for such periods that $Q_{a,t} = 0$, we obtain $F_p = Q_t / Q_{t-1}$, under these circumstances. We
409 cannot be sure, however, that this $F_{p,g}$ estimate also applies in the rainy season, because overall wet-
410 season F_p will include contributions by $F_{p,o}$ and $F_{p,i}$ as well (compare Eq. 9). In locations without a
411 distinct dry season, we need an alternative method.

412 A biplot of Q_t against Q_{t-1} will lead to a scatter of points above a line with slope F_p , with points above
413 the line reflecting the contributions of $Q_{a,t} > 0$, while the points that plot on the F_p line itself
414 represent $Q_{a,t} = 0 \text{ mm d}^{-1}$. There is no independent source of information on the frequency at which
415 $Q_{a,t} = 0$, nor what the statistical distribution of $Q_{a,t}$ values is if it is non-zero. Calculating back from the
416 Q_t series we can obtain an estimate ($Q_{a,Fptry}$) of $Q_{a,t}$ for any given estimate ($F_{p,try}$) of F_p , and select the
417 most plausible F_p value. For high $F_{p,try}$ estimates there will be many negative $Q_{a,Fptry}$ values, for low
418 $F_{p,try}$ estimates all $Q_{a,Fptry}$ values will be larger. An algorithm to derive a plausible F_p estimate can thus
419 make use of the corresponding distribution of ‘apparent Q_a ’ values as estimates of $F_{p,try}$, calculated
420 as $Q_{a,try} = Q_t - F_{p,try} Q_{t-1}$. While $Q_{a,t}$ cannot be negative in theory, small negative Q_a estimates are likely
421 when using real-world data with their inherent errors. The FlowPer F_p algorithm (van Noordwijk et
422 al., 2011) derives the distribution of $Q_{a,try}$ estimates for a range of $F_{p,try}$ values (Figure 3B) and selects
423 the value $F_{p,try}$ that minimizes the variance $\text{Var}(Q_{a,Fptry})$ (or its standard deviation) (Figure 3C). It is
424 implemented in a spreadsheet workbook that can be downloaded from the ICRAF website
425 (<http://www.worldAgroforestry.org/output/flowper-flow-persistence-model>)

426 ➔ Figure 3

427 A consistency test is needed that the high-end Q_t values relate to Q_{t+1} in the same was as do low or
428 medium Q_t values. Visual inspection of Q_{t+1} versus Q_t , with the derived F_p value, provides a
429 qualitative view of the validity of this assumption. The F_p algorithm can be applied to any population
430 of (Q_{t-1}, Q_t) pairs, e.g. selected from a multiyear data set on the basis of 3-month periods within the
431 hydrological year.

432 **3.5 Flashiness and flow separation**

433 Hydrographs analysed for F_p were also used for calculating the Richards-Baker or R-B Flashiness
434 index (Baker et al. 2004) by summing the absolute values of all daily changes in flow. Two common
435 flow separation algorithms (fixed and sliding interval methods, Furey and Gupta, 2001) were used to
436 estimate the base flow fraction at an annual basis. The average of the two was compared to F_p .

437 **4 Results**

438 **4.1 Numerical examples**

439 Figure 4 provides two examples, for annual river flows of around 1600 and 600 mm y^{-1} , of the way a
440 change in F_p values (based on Eq. 1) influences the pattern of river flow for a unimodal rainfall
441 regime with a well-developed dry season. The increasing 'spikiness' of the graph as F_p is lowered,
442 regardless of annual flow, indicates reduced predictability of flow on any given day during the wet
443 season on the basis of the flow on the preceding day.

444 ⇒ Figure 4

445 A bi-plot of river flow on subsequent days for the same simulations (Figure 5) shows two main
446 effects of reducing the F_p value: the scatter increases, and the slope of the lower envelope
447 containing the swarm of points is lowered (as it equals F_p). Both of these changes can provide entry
448 points for an algorithm to estimate F_p from empirical time series, provided the basic assumptions of
449 the simple model apply and the data are of acceptable quality.

450 ⇒ Figure 5

451 For the numerical examples shown in Figure 4, the relative increase of the maximum daily flow when
452 the F_p value decreased from a value close to 1 (0.98) to nearly 0 depended on the rainfall regime;
453 with lower annual rainfall but the same maximum daily rainfall, the response of peak flows to
454 decrease in F_p became stronger.

455 **4.2 Flood intensity and duration**

456 Figure 6 shows the effect of F_p values in the range 0 to 1 on the maximum flows obtained with a
457 random time series of 'effective rainfall', compared to results for $F_p = 0$. Maximum flows were
458 considered at time scales of 1 to 5 days, in a moving average routine. This way a relative flood
459 protection, expressed as reduction of peak flow, could be related to F_p (Figure 6A).

460 ⇒ Figure 6

461 Relative flood protection rapidly decreased from its theoretical value of 100% at $F_p = 1$ (when there
462 was no variation in river flow), to less than 10% at F_p values of around 0.5. Relative flood protection
463 was slightly lower when the assessment period was increased from 1 to 5 days (between 1 and 3 d it
464 decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting effects are at play here: a

465 lower F_p means that a larger fraction ($1-F_p$) of the effective rainfall contributes to river flow, but the
466 increased flow is less persistent. In the example the flood protection in situations where the rainfall
467 during 1 or 2 d causes the peak is slightly stronger than where the cumulative rainfall over 3-5 d
468 causes floods, as typically occurs downstream.

469 As we expect from equation 5 that peak flow is to $(1-F_p)$ times peak rainfall amounts, the effect of a
470 change in F_p not only depends on the change in F_p that we are considering, but also on its initial
471 value. Higher initial F_p values will lead to more rapid increases in high flows for the same reduction in
472 F_p (Figure 6B). However, flood duration rather responds to changes in F_p in a curvilinear manner, as
473 flow persistence implies flood persistence (once flooding occurs), but the greater the flow
474 persistence the less likely such a flooding threshold is passed (Figure 6C). The combined effect may
475 be restricted to about 3 d of increase in flood duration for the parameter values used in the default
476 example, but for different parametrization of the stochastic ϵ other results might be obtained.

477 **4.3 Algorithm for F_p estimates from river flow time series**

478 The algorithm has so far returned non-ambiguous F_p estimates on any modelled time series data of
479 river flow, as well as for all empirical data set we tested (including all examples tested in part II),
480 although there probably are data sets on which it can breakdown. Visual inspection of Q_{t-1}/Q_t biplots
481 (as in Figure 4) can provide clues to non-homogenous data sets, to potential situations where
482 effective F_p depends on flow level Q_t and where data are not consistent with a straight-line lower
483 envelope. Where river flow estimates were derived from a model with random elements, however,
484 variation in F_p estimates was observed, that suggests that specific aspects of actual rainfall, beyond
485 the basic characteristics of a watershed and its vegetation, do have at least some effect. Such effects
486 deserve to be further explored for a set of case studies, as their strength probably depends on
487 context.

488 **4.4 Flow persistence compared to base flow and flashiness index**

489 Figure 7 compares results for a hydrograph of a single year for the Way Besai catchment, described
490 in more detail in paper II. While there is agreement on most of what is indicated as baseflow, the
491 short term response to peaks in the flow differ, with baseflow in the F_p method more rapidly
492 increasing after peak events.

493 \Rightarrow Figure 7

494 When compared across multiple years for four Southeast Asian catchments (figure 8), there is partial
495 agreement in the way interannual variation is described in each catchment, while numerical values
496 are similar. However, the ratio of what is indicated as baseflow according to the F_p method and
497 according to standard hydrograph separation varies from 1.05 to 0.86.

498 \Rightarrow Figure 8

499 Figure 9 compares numerical results for the R-B Flashiness Index with F_p for the four test catchments
500 and for a number of hydrographs constructed as in Fig. 3A. The two concepts are inversely related,
501 as expected from equation [11], but where F_p is constrained to the 0-1 interval, the R-B Flashiness
502 Index can attain values up to 2.0, with the value for $F_p = 0$ depending on properties of the local
503 rainfall regime. Where hydrographs were generated with a simple flow model with F_p parameter as
504 key variable, the flashiness index is more tightly related to, especially for higher F_p values, than
505 where both flashiness index and F_p were derived from existing flow data (Figure 9B versus 9A). The

506 difference in slope between the four watersheds in Fig. 9A appears to be primarily related to aspects
507 of the local rainfall pattern that deserve further analysis in larger data sets of this nature.

508 \Rightarrow Figure 9

509

510 5 Discussion

511 We will discuss the flow persistence metric based on the seven questions raised from the
512 perspectives of salience, credibility and legitimacy and refer back to figure 2 that clarified how
513 ecosystem structure, ecosystem function and human land use interact in causal loops that can lead
514 to flood damage, its control and/or prevention.

515 5.1 Salience

516 Key *salience* aspects are “Does flow persistence relate to important aspects of watershed
517 behaviour?” and “Does it help to select management actions?”. A major finding in the derivation of
518 F_p was that the flow persistence measured at daily time scale can be logically linked to the long-term
519 water balance under the assumption that the watershed is defined on the basis of actual
520 groundwater flows, and that the proportion of peak rainfall that translates to peak river flow equals
521 the complement of flow persistence. This feature links effects on floods of changes in watershed
522 quality, as commonly expressed in curve numbers and flashiness indices, to effects on low flows, as
523 commonly expressed in base flow metrics. The F_p parameter as such does not predict when and
524 where flooding will occur, but it does help to assess to what extent another condition of the
525 watershed, with either higher or lower F_p would translate the same rainfall into larger or small peak
526 water flows. This is salient, especially if the relative contributions of (anthropogenic) land cover and
527 the (exogenous, probabilistic) specifics of the rainfall pattern can be further teased apart (see part
528 II). Where F_p may describe the descending branch of hydrographs at a relevant time scale, details of
529 the ascending branch beyond the maximum daily flow reached may be relevant for reducing flood
530 damage, and may require more detailed study at higher temporal resolution.

531 Figures 3 and 6 show that most of the effects of a decreasing F_p value on peak discharge (which is
532 the basis for downstream flooding) occur between F_p values of 1 and 0.7, with the relative flood
533 protection value reduced to 10% when F_p reaches 0.5. As indicated in Figure 2, peak discharge is only
534 one of the factors contributing to flood risk in terms of human casualties and physical damage. Flood
535 risks are themselves nonlinearly and in strongly topography-specific ways related to the volume of
536 river flow after extreme rainfall events. While the expected fraction of rainfall that contributes to
537 direct flow is linearly related to rainfall via $(1-F_p)$, flooding risk as such will have a non-linear
538 relationship with rainfall, that depends on topography and antecedent rainfall. Catchment changes,
539 such as increases or decreases in percentage tree cover, will generally have a non-linear relationship
540 with F_p as well as with flooding risks. The F_p value has an inverse effect on the fraction of recent
541 rainfall that becomes river flow, but the effect on peak flows is less, as higher F_p values imply higher
542 base flow. The way these counteracting effects balance out depends on details of the local rainfall
543 pattern (including its Markov chain temporal autocorrelation), as well as the downstream
544 topography and risk of people being at the wrong time at a given place, but the F_p value is an
545 efficient way of summarizing complex land use mosaics and upstream topography in its effect on
546 river flow. The difference between wet-season and dry-season F_p deserves further analysis. In
547 climates with a real rainless dry-season, dry season F_p is dominated by the groundwater release
548 fraction of the watershed, regardless of land cover, while in wet season it depends on the mix

549 (weighted average) of flow pathways. The degree to which F_p can be influenced by land cover needs
550 to be assessed for each landscape and land cover combination, including the locally relevant forest
551 and forest derived land classes, with their effects on interception, soil infiltration and time pattern of
552 transpiration. The F_p value can summarize results of models that explore land use change scenarios
553 in local context. To select the specific management actions that will maintain or increase F_p a locally
554 calibrated land use/hydrology model is needed, such as GenRiver (part II), DHV (Bergström, 1995) or
555 SWAT (Yen et al., 2015).

556 The “health” wording has been used as a comprehensive concept of the way a) climate forcing, b)
557 watershed vegetation and soil conditions and c) engineering interventions interact on functional
558 aspects of river flow. Ma et al (2014) described a method to separate these three influences on river
559 flow. In the four catchments we used as example there have been no major dams or reservoirs
560 installed upstream of the points of measurement. Where these do exist the specific operating rules
561 of reservoirs need to be included in any model and these can have a major influence on downstream
562 flow, depending on the primary use for power generation, dry season irrigation or stabilizing river
563 flow for riverine transport. Although a higher F_p value will in most cases be desirable (and a decrease
564 in F_p undesirable), we may expect that In an ecological perspective on watershed health, the change
565 in low flows that can occur in the flow regime of degrading and intensively managed watersheds
566 alike, depending on the management rules for reservoirs, is at least as relevant as changes in flood
567 risks, as many aquatic organisms thrive during floods (Pahl-Wostl et al., 2013; Poff et al., 2010).
568 Downstream biota can be expected to have adapted to the pre-human flow conditions, inherent F_p
569 and variability. Decreased variability of flow achieved by engineering interventions (e.g. a reservoir
570 with constant release of water to generate hydropower) may have negative consequences for fish
571 and other biota (Richter et al., 2003; McCluney et al., 2014). In an extensive literature review Poff
572 and Zimmerman (2010) found no general, transferable quantitative relationships between flow
573 alteration and ecological response, but the risk of ecological change increases with increasing
574 magnitude of flow alteration.

575 Various geographically defined watershed health concepts are in use (see for example
576 <https://www.epa.gov/hwp/healthy-watersheds-projects-region-5>; City of Fort Collins, 2015,
577 employing a range of specific indicators, including the ‘R-B flashiness index’ (Baker et al. 2004). The
578 definition of watershed health, like that of human health has evolved over time. Human health was
579 seen as a state of normal function that could be disrupted from time to time by disease. In 1948 the
580 World Health Organization (1958) proposed a definition that aimed higher, linking health to well-
581 being, in terms of physical, mental, and social aspects, and not merely the absence of disease and
582 infirmity. Health became seen as the ability to maintain homeostasis and recover from injury, but
583 remained embedded in the environment in which humans function.

584 **5.2 Credibility**

585 Key credibility questions are “Consistency of numerical results?” and “How sensitive are results to
586 bias and random error in data sources?”. A key strength of our flow persistence parameter, that it
587 can be derived from a limited number of observations of river flow at a single point along the river,
588 without knowledge of rainfall events and catchment conditions, is also its major weakness. If rainfall
589 data exist, and especially rainfall data that apply to each subcatchment, the Q_a term doesn’t have to
590 be treated as a random variable and event-specific information on the flow pathways may be
591 inferred for a more precise account of the hydrograph. But for the vast majority of rivers in the
592 tropics, advances in remotely sensed rainfall data are needed to achieve that situation and F_p may be

593 all that is available to inform public debates on the **location-specific** relation between forests and
594 floods.

595 The main conclusions from the numerical examples analysed so far are that intra-annual variability
596 of F_p values between wet and dry seasons was around 0.2, interannual variability in either annual or
597 seasonal F_p was generally in the 0.1 range, while the difference between observed and simulated
598 flow data as basis for F_p calculations was mostly less than 0.1. With current methods, it seems that
599 effects of land cover change on flow persistence that shift the F_p value by about 0.1 are the limit of
600 what can be asserted from empirical data (with shifts of that order in a single year a warning sign
601 rather than a firmly established change). When derived from observed river flow data F_p is suitable
602 for monitoring change (degradation, restoration) and can be a serious candidate for monitoring
603 performance in outcome-based ecosystem service management contracts. In interpreting changes in
604 F_p as caused by changes in the condition in the watershed, however, changes in specific properties of
605 the rainfall regime must be excluded. At the scale of paired catchment studies this assumption may
606 be reasonable, but in temporal change (or using specific events as starting point for analysis), it is
607 not easy to disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not
608 only responds to, but also influences rainfall (arrow 10 in Figure 2; van Noordwijk et al., 2015b)
609 further complicates the analysis across scales.

610 As indicated, the F_p method is related to earlier methods used in streamflow hydrograph separation
611 of base flow and quick flow. While textbooks (Ward and Robinson, 2000; Hornberger et al 2014)
612 tend to be critical of the lack of objectivity of graphical methods, algorithms are used for deriving the
613 minimum flow in a fixed or sliding period of reference as base flow (Sloto and Crouse, 1996; Furey
614 and Gupta, 2001). The time interval used for deriving the minimum flow depends on catchment size.

615 Recursive models that describe flow in a next time interval on the basis of a fraction of that in the
616 preceding time interval with a term for additional flow due to additional rainfall have been used in
617 analysis of peak flow event before, with time intervals as short as 1 minute rather than the 1 day we
618 use here (Rose, 2004). Through reference to an overall mass balance a relationship similar to what
619 we found here (F_p times preceding flow plus $1 - F_p$ times recent inputs) was also used in such
620 models. To our knowledge, the method we describe here at daily timescales has not been used
621 before.

622 The idea that the form of the storage-discharge function can be estimated from analysis of
623 streamflow fluctuations has been explored before for a class of catchments in which discharge is
624 determined by the volume of water in storage (Kirchner, 2009). Such catchments behave as simple
625 first-order nonlinear dynamical systems and can be characterized in a single-equation rainfall-runoff
626 model that predicted streamflow, in a test catchment in Wales, as accurately as other models that
627 are much more highly parameterized. This model of the dQ/dt versus Q relationship can also be
628 analytically inverted; thus, it can, according to Kirchner (2009), be used to “do hydrology backward,”
629 that is, to infer time series of whole-catchment precipitation directly from fluctuations in
630 streamflow. The slope of the log-log relationship between flow recession (dQ/dt) and Q that
631 Kirchner (2009) used is conceptually similar to the F_p metric we derived here, but the specific
632 algorithm to derive the parameter from empirical data differs. **Further exploration of the underlying**
633 **assumptions is needed.** Estimates of dQ/dt are sensitive to noise in the measurement of Q and the
634 possibly frequent and small increases in Q can be separated from the expected flow recession in the
635 algorithm we presented here.

636 **Table 1 compares a number of properties (Salience and Legitimacy in properties 1-4, Credibility**
637 **dimensions in 5-10) for the R-B Flashiness Index (Baker et al. 2004) and flow persistence. The main**

638 advantage of continuing with the flashiness index is that there is an empirical basis for comparisons
639 and the index has been included in existing 'watershed health' monitoring programs, especially in
640 the USA. The main advantage of including F_p is that it can be estimated from incomplete flow
641 records, has a clear link to peak flow events and has a more direct relationship with underlying flow
642 pathways, changes in rainfall (or snowmelt) and evapotranspiration, reflecting land cover change.

643 ➔ Table 1

644 Seifert and Beven (2009) discussed the increase in predictive skill of models depending on the
645 amount of location-specific data that can be used to constrain them. They found that the ensemble
646 prediction of multiple models for a single location clearly outperformed the predictions using single
647 parameter sets and that surprisingly little runoff data was necessary to identify model
648 parameterizations that provided good results for 'ungauged' test periods in cases where actual
649 measurements were available. Their results indicated that a few runoff measurements can contain
650 much of the information content of continuous runoff time series. The way these conclusions might
651 be modified if continuous measurements for limited time periods, rather than separated single data
652 points on river flow could be used, remains to be explored. Their study indicated that results may
653 differ significantly between catchments and critical tests of F_p across multiple situations are
654 obviously needed, as paper II will provide.

655 In discussions and models of temperate zone hydrology (Bergström, 1995; Seifert, 1999) snowmelt is
656 a major component of river flow and effects of forest cover on spring temperatures are important to
657 the buffering of the annual peaks in flow that tend to occur in this season. Application of the F_p
658 method to data describing such events has yet to be done.

659 **5.3 Legitimacy**

660 *Legitimacy* aspects are "Does it match local knowledge?" and "Can it be used to empower local
661 stakeholders of watershed management?" and "Can it inform risk management?". As the F_p
662 parameter captures the predictability of river flow that is a key aspect of degradation according to
663 local knowledge systems, its results are much easier to convey than full hydrographs or exceedance
664 probabilities of flood levels. By focusing on observable effects at river level, rather than prescriptive
665 recipes for land cover ("Reforestation"), the F_p parameter can be used to more effectively compare
666 the combined effects of land cover change, changes in the riparian wetlands and engineered water
667 storage reservoirs, in their effect on flow buffering. It is a candidate for shifting environmental
668 service reward contracts from input to outcome based monitoring (van Noordwijk et al., 2012). As
669 such it can be used as part of a negotiation support approach to natural resources management in
670 which levelling off on knowledge and joint fact finding in blame attribution are key steps to
671 negotiated solutions that are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et
672 al., 2015). Quantification of F_p can help assess tactical management options (Burt et al., 2014) as in a
673 recent suggestion to minimize negative downstream impacts of forestry operations on stream flow
674 by avoiding land clearing and planting operations in locally wet La Niña years. But the most
675 challenging aspect of the management of flood, as any other environmental risk, is that the
676 frequency of disasters is too low to intuitively influence human behaviour where short-term risk
677 taking benefits are attractive. Wider social pressure is needed for investment in watershed health
678 (as a type of insurance premium) to be mainstreamed, as individuals waiting to see evidence of
679 necessity are too late to respond. In terms of flooding risk, actions to restore or retain watershed
680 health can be similarly justified as insurance premium. It remains to be seen whether or not the
681 transparency of the F_p metric and its intuitive appeal are sufficient to make the case in public debate

682 when opportunity costs of foregoing reductions in flow buffering by profitable land use are to be
683 compensated and shared (Burt et al., 2014).

684 **5.4 Conclusions and specific questions for a set of case studies**

685 In conclusion, the F_p metric appears to allow an efficient way of summarizing complex landscape
686 processes into a single parameter that reflects the effects of landscape management within the
687 context of the local climate. If rainfall patterns change but the landscape does not, the resultant flow
688 patterns may reflect a change in watershed health (van Noordwijk et al., 2016). Flow persistence is
689 the result of rainfall persistence and the temporal delay provided by the pathway water takes
690 through the soil and the river system. High flow persistence indicates a reliable water supply, while
691 minimizing peak flow events. Wider tests of the F_p metric as boundary object in science-practice-
692 policy boundary chains (Kirchhoff et al., 2015; Leimona et al., 2015) are needed. Further tests for
693 specific case studies can clarify how changes in tree cover (deforestation, reforestation,
694 agroforestation) in different contexts influence river flow dynamics and F_p values. Sensitivity to
695 specific realizations of underlying time-space rainfall patterns needs to be quantified, before
696 changes in F_p can be attributed to changed 'watershed health', rather than chance events.

697 **Data availability**

698 The algorithm used is freely available. Specific data used in the case studies are explained and
699 accounted for in Part II.

700 **Author contributions**

701 Meine van Noordwijk designed method and paper, Lisa Tanika refined the empirical algorithm and
702 handled the case study data and modelling for part II, and Betha Lusiana contributed statistical
703 analysis; all contributed and approved the final manuscript

704 **Acknowledgements**

705 This research is part of the Forests, Trees and Agroforestry research program of the CGIAR. Several
706 colleagues contributed to the development and early tests of the F_p method. Thanks are due to Eike
707 Luedeling, Sonya Dewi, Sampurno Bruijnzeel and three anonymous reviewers for comments on an
708 earlier version of the manuscript.

709 **References**

710 Alila, Y., Kura, P.K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm sheds light
711 on age-old controversies, *Water Resour. Res.*, 45, W08416, 2009.

712 Andréassian, V.: Waters and forests: from historical controversy to scientific debate, *Journal of
713 Hydrology*, 291, 1–27, 2004.

714 Baker, D.B., Richards, R.P., Loftus, T.T. and Kramer, J.W.: A new flashiness index: Characteristics and
715 applications to midwestern rivers and streams. *Journal of the American Water Resources
716 Association*, Paper No. 03095, 2004.

717 Baldassarre, G.D., Kooy, M., Kemerink, J.S., and Brandimarte, L.: Towards understanding the dynamic
718 behaviour of floodplains as human-water systems, *Hydrology and Earth System Sciences*, 17(8),
719 3235–3244, 2013.

720 Bardossy, A. and Plate, E.J.: Modeling daily rainfall using a semi-Markov representation of
721 circulation pattern occurrence, *Journal of Hydrology*, 122(1), 33-47, 1991.

722 Band, L.E., Patterson, P., Nemani, R., and Running, S.W.: Forest ecosystem processes at the
723 watershed scale: incorporating hillslope hydrology, *Agricultural and Forest Meteorology*, 63(1-2),
724 93-126, 1993.

725 Barnes, B.S.: The structure of discharge-recession curves, *Eos, Transactions American Geophysical
726 Union*, 20(4), 721-725, 1939.

727 Beck, H. E., Bruijnzeel, L. A., Van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., and Schellekens, J.: The
728 impact of forest regeneration on streamflow in 12 mesoscale humid tropical
729 catchments, *Hydrology and Earth System Sciences*, 17(7), 2613-2635, 2013.

730 Bergström, S.: The HBV model. In: Singh, V.P., (Ed.), *Computer Models of Watershed Hydrology*, Ch.
731 13, pp. 443-476, Water Resources Publications, Highlands Ranch, Colorado, USA, 1130 pp., 1995.

732 Beven, K.J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, 2011

733 Bishop, J. and Pagiola, S. (Eds.): *Selling forest environmental services: market-based mechanisms for
734 conservation and development*, Taylor & Francis, Abingdon (UK), 2012.

735 Bonell, M.: Progress in the understanding of runoff generation dynamics in forests, *Journal of
736 Hydrology*, 150, 217-275, 1993.

737 Bonell, M. and Bruijnzeel, L.A. (eds.): *Forests, water and people in the humid tropics: past, present
738 and future hydrological research for integrated land and water management*. Cambridge
739 University Press, Cambridge (UK), 2005.

740 Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S.H., and Brook, B.W.: Global evidence that deforestation
741 amplifies flood risk and severity in the developing world, *Global Change Biol*, 13, 2379–2395,
742 2007.

743 Brauman, K.A., Daily, G.C., Duarte, T.K.E., and Mooney, H.A.: The nature and value of ecosystem
744 services: an overview highlighting hydrologic services, *Annu. Rev. Environ. Resour.*, 32, 67-98,
745 2007.

746 Bruijnzeel, L.A.: *Hydrology of Moist Tropical Forests and Effects of Conversion: a State of Knowledge
747 Review*. IHP-UNESCO Humid Tropical Programme, Paris, 224 pp, 1990.

748 Bruijnzeel, L.A.: Hydrological functions of tropical forests: not seeing the soil for the trees, *Agr.
749 Ecosyst. Environ.*, 104, 185–228, 2004.

750 Burt, T.P., Howden, N.J.K., McDonnell, J.J., Jones, J.A., and Hancock, G.R.: Seeing the climate through
751 the trees: observing climate and forestry impacts on streamflow using a 60-year record,
752 *Hydrological Processes*, doi: 10.1002/hyp.10406, 2014.

753 City of Fort Collins, River Health Assessment Framework la Poudre River.
754 <http://www.fcgov.com/naturalareas/pdf/river-health-report-final-appendix.pdf>, 2015.

755 Clark, W. C., Tomich, T. P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N. M., and McNie,
756 E.: Boundary work for sustainable development: natural resource management at the
757 Consultative Group on International Agricultural Research (CGIAR), *Proc. Nat. Acad. Sci.*,
758 doi:10.1073/pnas.0900231108, 2011.

759 Delfs, J.O., Park, C.H., and Kolditz, O.: A sensitivity analysis of Hortonian flow, *Advances in Water*
760 *Resources*, 32(9), 1386-1395, 2009.

761 Efstratiadis, A., Koussis, A.D., Koutsoyiannis, D. and Mamassis, N.: Flood design recipes vs. reality: can
762 predictions for ungauged basins be trusted? *Natural Hazards and Earth System Sciences*, 14(6), 1417-1428,
763 2014.

764 Evaristo, J., Jasechko, S., and McDonnell, J.J.: Global separation of plant transpiration from
765 groundwater and streamflow, *Nature*, 525(7567), 91-94, 2015.

766 Farber, S.C., Costanza, R. and Wilson, M.A.: Economic and ecological concepts for valuing ecosystem
767 services. *Ecological economics*, 41(3), 375-392, 2002.

768 Furey, P.R. and Gupta, V.K.: A physically based filter for separating base flow from streamflow time
769 series. *Water Resources Research*, 37(11), 2709-2722, 2001.

770 Galudra, G. and Sirait, M.: A discourse on Dutch colonial forest policy and science in Indonesia at the
771 beginning of the 20th century. *International Forestry Review* 11(4), 524-533, 2009

772 Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G.: The soil and water assessment tool: historical
773 development, applications, and future research directions. *Transactions of the ASABE*, 50(4), 1211-1250,
774 2007.

775 Graf, W.L., Wohl, E., Sinha, T. and Sabo, J.L., 2010. Sedimentation and sustainability of western American
776 reservoirs. *Water Resources Research*, 46(12), 2010.

777 Grimaldi, S., Petroselli, A. and Romano, N.: Green-Ampt Curve-Number mixed procedure as an empirical tool
778 for rainfall-runoff modelling in small and ungauged basins. *Hydrological Processes*, 27(8), 1253-1264,
779 2013.

780 Ghimire, C.P., Bruijnzeel, L.A., Lubczynski, M.W., and Bonell, M.: Negative trade-off between changes
781 in vegetation water use and infiltration recovery after reforesting degraded pasture land in the
782 Nepalese Lesser Himalaya, *Hydrology and Earth System Sciences*, 18(12), 4933-4949, 2014.

783 Herschy, R.W.: The world's maximum observed floods. *Flow Measurement and Instrumentation* 13
784 (5-6), 231-235, 2002.

785 Hornberger, G.M., Wiberg, P.L., D'Odorico, P. and Raffensperger, J.P.: *Elements of physical*
786 *hydrology*. John Hopkins University Press, 2014.

787 Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W.,
788 Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H.V.,
789 Hughes, D. A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S.,
790 Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C.: A decade of Predictions
791 in Ungauged Basins (PUB)—a review, *Hydrological sciences journal*, 58(6), 1198-1255, 2013.

792 Ilstedt, U., Tobella, A.B., Bazié, H.R., Bayala, J., Verbeeten, E., Nyberg, G., Sanou, J., Benegas, L.,
793 Murdiyarsa, D., Laudon, H., and Sheil, D.: Intermediate tree cover can maximize groundwater
794 recharge in the seasonally dry tropics, *Scientific reports*, 6, 2016

795 Jones, P.G. and Thornton, P.K.: Spatial and temporal variability of rainfall related to a third-order
796 Markov model, *Agricultural and Forest Meteorology*, 86(1), 127-138, 1997.

797 Jongman, B., Winsemius, H. C., Aerts, J. C., de Perez, E. C., van Aalst, M. K., Kron, W., and Ward, P. J.:
798 Declining vulnerability to river floods and the global benefits of adaptation, In: *Proceedings of*
799 *the National Academy of Sciences*, 112(18), E2271-E2280, 2015.

800 Joshi, L., Schalenbourg, W., Johansson, L., Khasanah, N., Stefanus, E., Fagerström, M.H., and van
801 Noordwijk, M.: Soil and water movement: combining local ecological knowledge with that of
802 modellers when scaling up from plot to landscape level, In: van Noordwijk, M., Cadisch, G. and
803 Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB International,
804 Wallingford (UK), 349-364, 2004.

805 Kirchhoff, C.J., Esselman, R., and Brown, D.: Boundary Organizations to Boundary Chains: Prospects
806 for Advancing Climate Science Application, Climate Risk Management,
807 doi:10.1016/j.crm.2015.04.001, 2015.

808 Kirchner, J.W.: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff
809 modeling, and doing hydrology backward. *Water Resources Research*, 45(2).
810 DOI: 10.1029/2008WR006912, 2009.

811 Lacombe, G. and McCartney, M.: Evaluating the flow regulating effects of ecosystems in the Mekong
812 and Volta river basins, Colombo, Sri Lanka, International Water Management Institute (IWMI)
813 Research Report 166, doi: 10.5337/2016.202, 2016.

814 Lacombe, G., Ribolzi, O., de Rouw, A., Pierret, A., Latsachak, K., Silvera, N., Pham Dinh, R., Orange, D.,
815 Janeau, J.-L., Soulileuth, B., Robain, H., Taccoen, A., Sengphaathith, P., Mouche, E.,
816 Sengtaheuanghoun, O., Tran Duc, T., and Valentin, C.: Afforestation by natural regeneration or
817 by tree planting: Examples of opposite hydrological impacts evidenced by long-term field
818 monitoring in the humid tropics, *Hydrology and Earth System Sciences Discussions*, 12, 12615-
819 12648, 2015.

820 Leimona, B., Lusiana, B., van Noordwijk, M., Mulyoutami, E., Ekadinata, A., and Amaruzama, S.:
821 Boundary work: knowledge co-production for negotiating payment for watershed services in
822 Indonesia, *Ecosystems Services*, 15, 45–62, 2015.

823 Liu, W., Wei, X., Fan, H., Guo, X., Liu, Y., Zhang, M., and Li, Q.: Response of flow regimes to
824 deforestation and reforestation in a rain-dominated large watershed of subtropical
825 China, *Hydrological Processes*, 29, 5003-5015 , 2015.

826 Lusiana, B., van Noordwijk, M., Suyamto, D., Joshi, L., and Cadisch, G.: Users' perspectives on validity
827 of a simulation model for natural resource management, *International Journal of Agricultural
828 Sustainability*, 9(2), 364-378, 2011.

829 Ma, X., Xu, J. and van Noordwijk, M.: Sensitivity of streamflow from a Himalayan catchment to
830 plausible changes in land cover and climate, *Hydrological Processes*, 24, 1379–1390, 2010.

831 Ma, X., Lu, X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change, vegetation
832 restoration, and engineering measures to the reduction of suspended sediment in the Kejie
833 catchment, southwest China, *Hydrol. Earth Syst. Sci.*, 18, 1979–1994, 2014.

834 Maidment, D.R.: *Handbook of hydrology*, McGraw-Hill Inc., 1992.

835 Malmer, A., Murdiyarso, D., Bruijnzeel L.A., and Ilstedt, U.: Carbon sequestration in tropical forests
836 and water: a critical look at the basis for commonly used generalizations, *Global Change
837 Biology*, 16(2), 599-604, 2010.

838 Marchi, L., Borga, M., Preciso, E. and Gaume, E.: Characterisation of selected extreme flash floods in Europe
839 and implications for flood risk management. *Journal of Hydrology*, 394(1), 118-133, 2010.

840 McCluney, K.E., Poff, N.L., Palmer, M.A., Thorp, J.H., Poole, G.C., Williams, B.S., Williams, M.R., and
841 Baron, J.S.: Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river
842 basins with human alterations, *Frontiers in Ecology and the Environment*, 12(1), 48-58, 2014.

843 Milly, P.C.D., Wetherald, R., Dunne, K.A., and Delworth, T.L.: Increasing risk of great floods in a
844 changing climate, *Nature*, 415(6871), 514-517, 2002.

845 Oliveira, P.T.S., Nearing, M.A., Hawkins, R.H., Stone, J.J., Rodrigues, D.B.B., Panachuki, E. and Wendland, E.:
846 Curve number estimation from Brazilian Cerrado rainfall and runoff data. *Journal of Soil and Water
847 Conservation*, 71(5), 420-429, 2016

848 Pahl-Wostl, C., Arthington, A., Bogardi, J., Bunn, S.E., Hoff, H., Lebel, L., Nikitina, E., Palmer, M., Poff, L.N.,
849 Richards, K. and Schlüter, M.: Environmental flows and water governance: managing sustainable water
850 uses. *Current Opinion in Environmental Sustainability*, 5(3), pp.341-351, 2013.

851 Palmer, M.A.: Reforming watershed restoration: science in need of application and applications in
852 need of science, *Estuaries and coasts*, 32(1), 1-17, 2009.

853 Poff, N.L. and Zimmerman, J.K.: Ecological responses to altered flow regimes: a literature review to inform the
854 science and management of environmental flows. *Freshwater Biology*, 55(1), 194-205, 2010.

855 Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C.: The
856 natural flow regime. *BioScience*, 47(11), 769-784, 1997.

857 Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., Apse, C., Bledsoe,
858 B.P., Freeman, M.C. and Henriksen, J.: The ecological limits of hydrologic alteration (ELOHA): a new
859 framework for developing regional environmental flow standards. *Freshwater Biology*, 55(1), 147-170,
860 2010

861 Ponce, V.M. and Hawkins, R.H.: Runoff curve number: Has it reached maturity? *Journal of Hydrologic
862 Engineering*, 1(1), 11-19, 1996

863 Rahayu, S., Widodo, R.H., van Noordwijk, M., Suryadi, I., and Verbist, B.: Water monitoring in
864 watersheds. Bogor, Indonesia, World Agroforestry Centre (ICRAF) SEA Regional Program,, 2013

865 Ranieri, S.B.L., Stirzaker, R., Suprayogo, D., Purwanto, E., de Willigen, P., and van Noordwijk, M.:
866 Managing movements of water, solutes and soil: from plot to landscape scale. In: van Noordwijk,
867 M., Cadisch, G. and Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB
868 International, Wallingford (UK), 329-347, 2004.

869 Richter, B.D., Mathews, R., Harrison, D.L., and Wigington, R.: Ecologically sustainable water
870 management: managing river flows for ecological integrity, *Ecological applications*, 13(1), 206-
871 224, 2003.

872 Rodríguez-Iturbe, I. and Rinaldo, A.: *Fractal river basins: chance and self-organization*, Cambridge
873 University Press, Cambridge, 2001.

874 Rose, C.W.: *An introduction to the environmental physics of soil, water and watersheds*. Cambridge
875 University Press, Cambridge (UK) 2004.

876 Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., and Lambin, E.: Forest
877 transitions: towards a global understanding of land use change, *Global Environmental
878 Change*, 15(1), 23-31, 2005.

879 Seibert, J.: Regionalisation of parameters for a conceptual rainfall-runoff model. *Agricultural and
880 Forest Meteorology* 98-99: 279-293, 1999.

881 Seibert, J., Beven, K.J.: Gauging the ungauged basin: how many discharge measurements are
882 needed? *Hydrol. Earth Syst. Sci.*, 13, 883–892, 2009

883 Sloto, R.A. and Crouse, M.Y.: *HYSEP, a computer program for streamflow hydrograph separation and*
884 *analysis*. US Department of the Interior, US Geological Survey, 1996.

885 Sumarga, E., Hein, L., Hooijer, A., and Vernimmen, R.: Hydrological and economic effects of oil palm
886 cultivation in Indonesian peatlands, *Ecology and Society*, 21(2), 2016.

887 Tallaksen, L.M.: A review of baseflow recession analysis, *J Hydrol.*, 165, 349-370, 1995.

888 Tan-Soo, J.S., Adnan, N., Ahmad, I., Pattanayak, S.K., and Vincent, J.R.: Econometric Evidence on
889 Forest Ecosystem Services: Deforestation and Flooding in Malaysia. *Environmental and Resource*
890 *Economics*, on-line: <http://link.springer.com/article/10.1007/s10640-014-9834-4>, 2014.

891 Turner, R.K. and Daily, G.C.: The ecosystem services framework and natural capital
892 conservation. *Environmental and Resource Economics*, 39(1), 25-35, 2008

893 Van de Giesen, N.C., Stomph, T.J., and De Ridder, N.: Scale effects of Hortonian overland flow and
894 rainfall-runoff dynamics in a West African catena landscape, *Hydrological Processes*, 14, 165-
895 175, 2000.

896 Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W. and Diels, J.: Estimating the parameters of
897 the Green-Ampt infiltration equation from rainfall simulation data: Why simpler is better. *Journal of*
898 *Hydrology*, 476, 332-344, 2013.

899 van Dijk, A.I., van Noordwijk, M., Calder, I.R., Bruijnzeel, L.A., Schellekens, J., and Chappell, N.A.:
900 Forest-flood relation still tenuous – comment on ‘Global evidence that deforestation amplifies
901 flood risk and severity in the developing world’, *Global Change Biology*, 15, 110-115, 2009.

902 van Noordwijk, M., van Roode, M., McCallie, E.L., and Lusiana, B.: Erosion and sedimentation as
903 multiscale, fractal processes: implications for models, experiments and the real world, In: F.
904 Penning de Vries, F. Agus and J. Kerr (Eds.) *Soil Erosion at Multiple Scales, Principles and*
905 *Methods for Assessing Causes and Impacts*. CAB International, Wallingford, 223-253, 1998.

906 van Noordwijk, M., Agus, F., Verbist, B., Hairiah, K., and Tomich, T.P.: Managing Watershed Services,
907 In: Scherr, S.J. and McNeely, J.A. (Eds) *Ecoagriculture Landscapes. Farming with Nature: The*
908 *Science and Practice of Ecoagriculture*, Island Press, Washington DC, 191 – 212, 2007.

909 van Noordwijk, M., Widodo, R.H., Farida, A., Suyamto, D., Lusiana, B., Tanika, L., and Khasanah, N.:
910 GenRiver and FlowPer: Generic River and Flow Persistence Models. User Manual Version 2.0.
911 Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, 2011.

912 van Noordwijk, M., Leimona, B., Jindal, R., Villamor, G.B., Vardhan, M., Namirembe, S., Catacutan, D.,
913 Kerr, J., Minang, P.A., and Tomich, T.P.: Payments for Environmental Services: evolution towards
914 efficient and fair incentives for multifunctional landscapes, *Annu. Rev. Environ. Resour.*, 37, 389-
915 420, 2012.

916 van Noordwijk, M., Lusiana, B., Leimona, B., Dewi, S., and Wulandari, D.: Negotiation-support toolkit
917 for learning landscapes, Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia
918 Regional Program, 2013.

919 van Noordwijk, M., Leimona, B., Xing, M., Tanika, L., Namirembe, S., and Suprayogo, D.: Water-
920 focused landscape management. Climate-Smart Landscapes: Multifunctionality In Practice. eds
921 Minang PA et al.. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 179-192, 2015a.

922 van Noordwijk, M., Bruijnzeel, S., Ellison, D., Sheil, D., Morris, C., Gutierrez, V., Cohen, J., Sullivan, C.,
923 Verbist, B., and Muys, B.: Ecological rainfall infrastructure: investment in trees for sustainable
924 development, ASB Brief no 47. Nairobi. ASB Partnership for the Tropical Forest Margins, 2015b.

925 van Noordwijk M, Kim Y-S, Leimona B, Hairiah K, Fisher LA,: Metrics of water security, adaptive
926 capacity and Agroforestry in Indonesia. Current Opinion on Environmental Sustainability (in
927 press: <http://dx.doi.org/10.1016/j.cosust.2016.10.004>), 2016.

928 Verbist, B., Poesen, J., van Noordwijk, M. Widianto, Suprayogo, D., Agus, F., and Deckers, J.: Factors
929 affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic
930 Agroforestry landscape, Catena, 80, 34-46, 2010.

931 Ward, R.C. and Robinson, M.: *Principles of hydrology*. 4th edition. New York: McGraw-Hill, 2000.

932 Weiler, M. and McDonnell, J.: Virtual experiments: a new approach for improving process
933 conceptualization in hillslope hydrology, Journal of Hydrology, 285(1), 3-18, 2004

934 Winsemius, H.C., van Beek, L.P.H., Jongman, B., Ward, P.J., and Bouwman, A.: A framework for global
935 river flood risk assessments, Hydrol Earth Syst Sci, 17, 1871–1892, 2013.

936 World Health Organization: The first ten years of the World Health Organization. Geneva: WHO,
937 1958

938 Yen, H., White, M.J., Jeong, J., Arabi, M. and Arnold, J.G.: Evaluation of alternative surface runoff
939 accounting procedures using the SWAT model, International Journal of Agricultural and
940 Biological Engineering, 8(3), 54-68, 2015.

941 Zhou, G., Wei, X., Luo, Y., Zhang, M., Li, Y., Qiao, Y., Liu, H., and Wang, C.: Forest recovery and river
942 discharge at the regional scale of Guangdong Province, China, Water Resources Research, 46(9),
943 W09503, doi:10.1029/2009WR00829, 2010.

944

A. Interests↔Understanding↔Metrics

multistakeholder resource management processes

→ Monitoring → Diagnosis → Tradeoff analysis → Innovation → Scenarios → Negotiations →

Basis of current land use policies:

Deforestation → increased flood risk
Reforestation → reduced flood risk

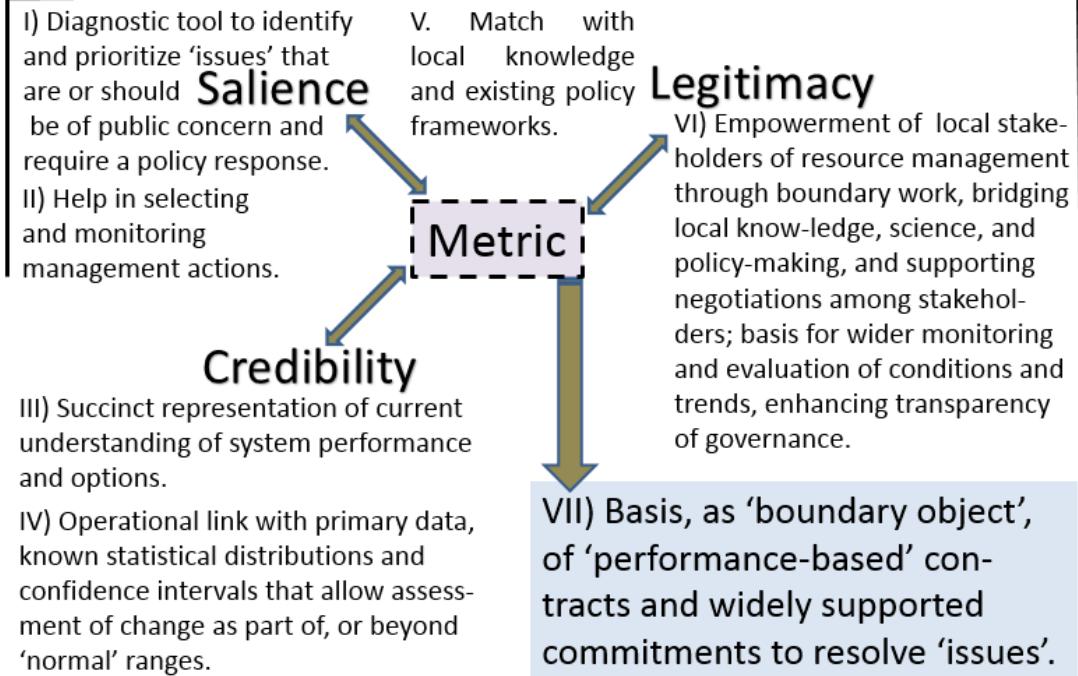
Forestry perspective

Ecohydrology perspective

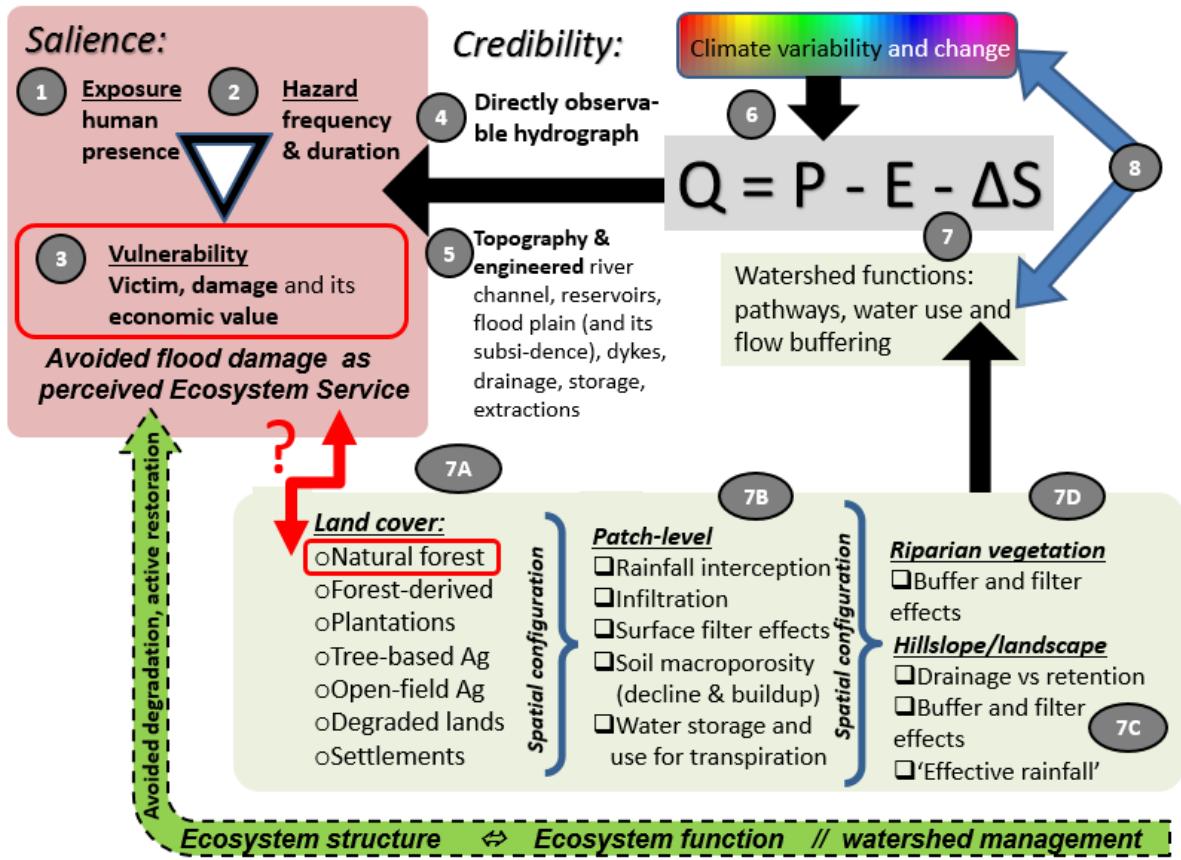
Relationship between land cover & river flow
depends on complex interactions, non-linearities, partial reversibility, climate variability

Engineering of river storage and flow can control all relevant risks, once these are quantified

Engineering perspective

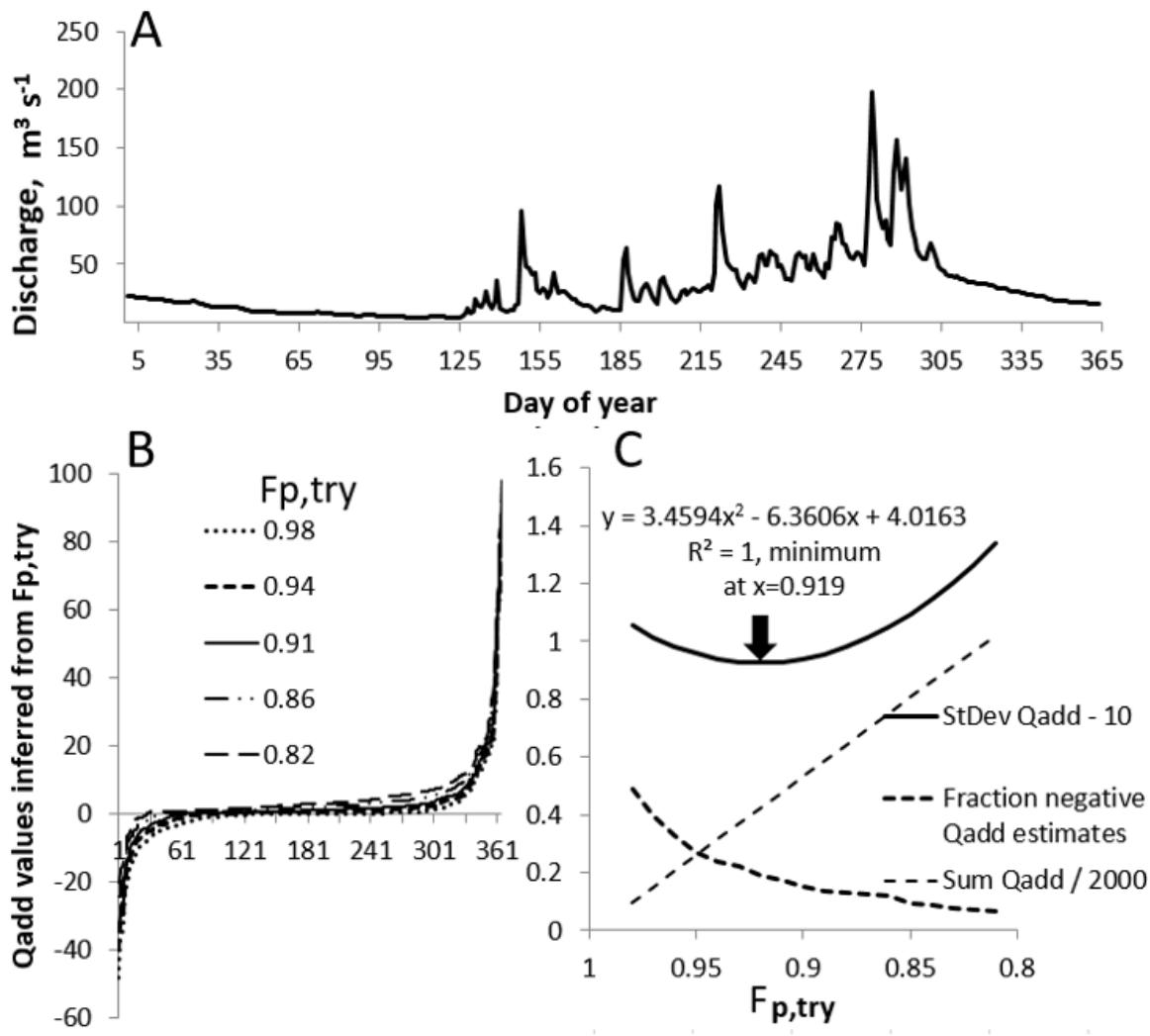

Climate Change adaptation view

Climate change creates new challenges, requiring costly adaptation measures, but climate policy and finance needs clear attribution, cause & effect links


Local land users want river flow to be **predictable** but also like to have flexibility in how land use is regulated as part of ecosystem services management

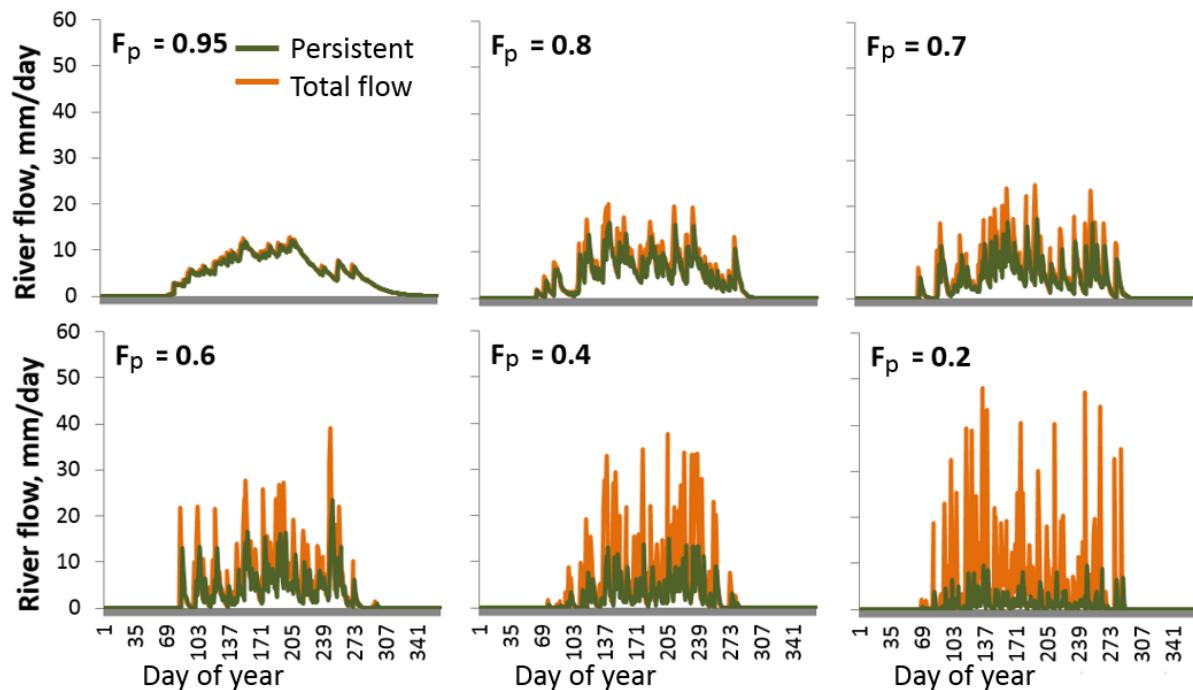
Local landscape stakeholders

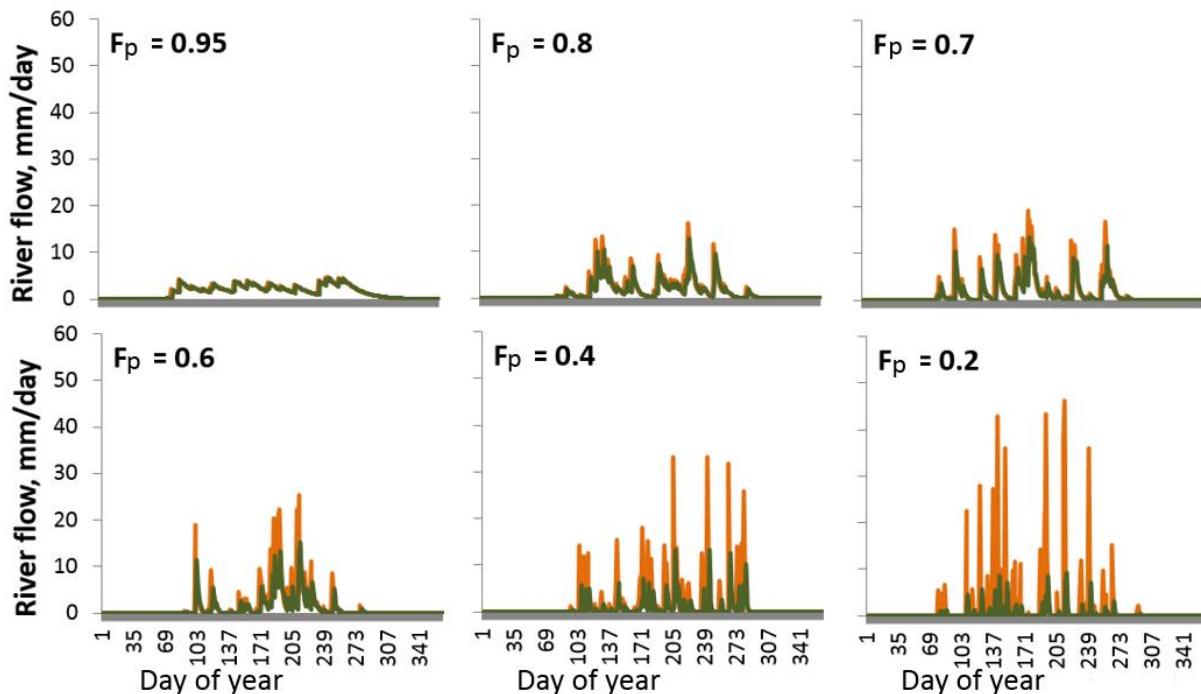
B.



948 Figure 1. A. Multiple perspectives on the way flood risk is to be understood, monitored and handled
949 according to different knowledge systems; B. Basic requirements for a 'metric' to be used in public
950 discussions of natural resource management issues that deserve to be resolved and acted upon
951 (modified from van Noordwijk et al., 2016)

952


953 Figure 2. Steps in a causal pathway that relates the salience of 'avoided flood damage as
 954 ecosystem service' to the interaction of exposure (1; being in the wrong place at critical
 955 times), hazard (2; spatially explicit flood frequency and duration) and human determinants
 956 of vulnerability (3); the hazard component depends, in common scientific analysis, on the
 957 pattern of river flow described in a hydrograph (4), which in turn is understood to be
 958 influenced by conditions along the river channel (5), precipitation and potential
 959 evapotranspiration (E_{pot}) as climatic factors (6) and the condition in the watershed (7)
 960 determining evapotranspiration (E_{act}), temporary water storage (ΔS) and water partitioning
 961 over overland flow and infiltration; these watershed functions in turn depend on the
 962 interaction of terrain (topography, soils, geology), vegetation and human land use; current
 963 understanding of a two-way interaction between vegetation and rainfall adds further
 964 complexity (8)

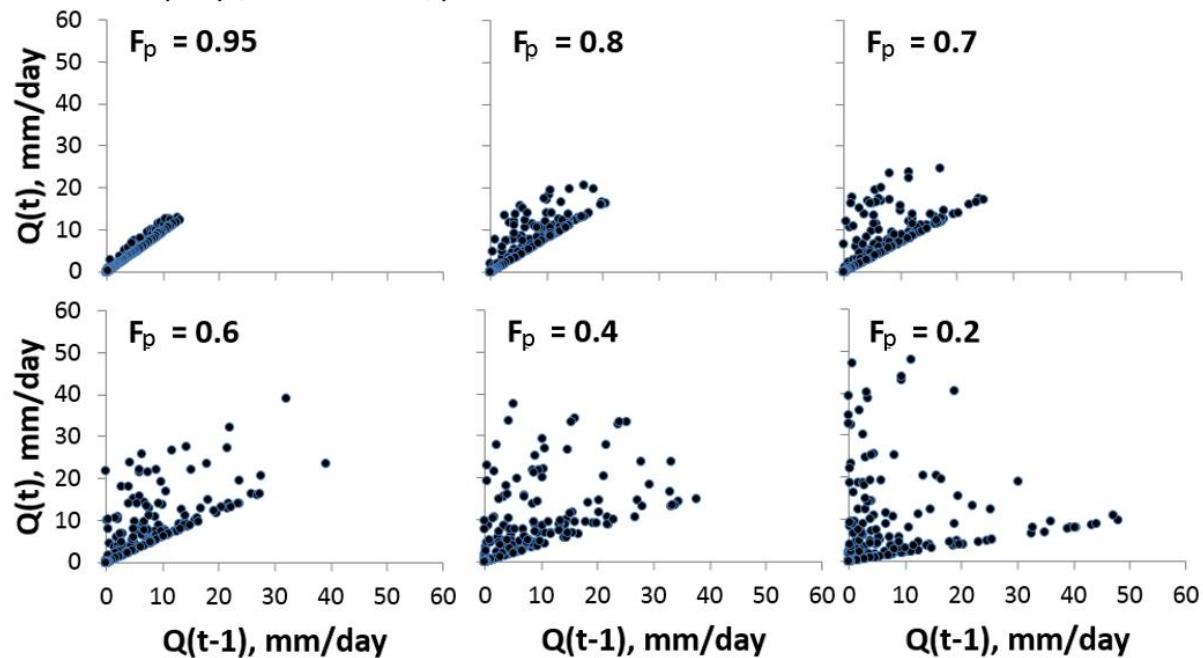

965

966 Figure 3. Example of the derivation of best fitting $F_{p,try}$ value for an example hydrograph (A) on the
 967 basis of the inferred Q_a distribution (cumulative frequency in B), and three properties of this
 968 distribution (C): its sum, frequency of negative values and standard deviation; the $F_{p,try}$ minimum
 969 of the latter is derived from the parameters of a fitted quadratic equation

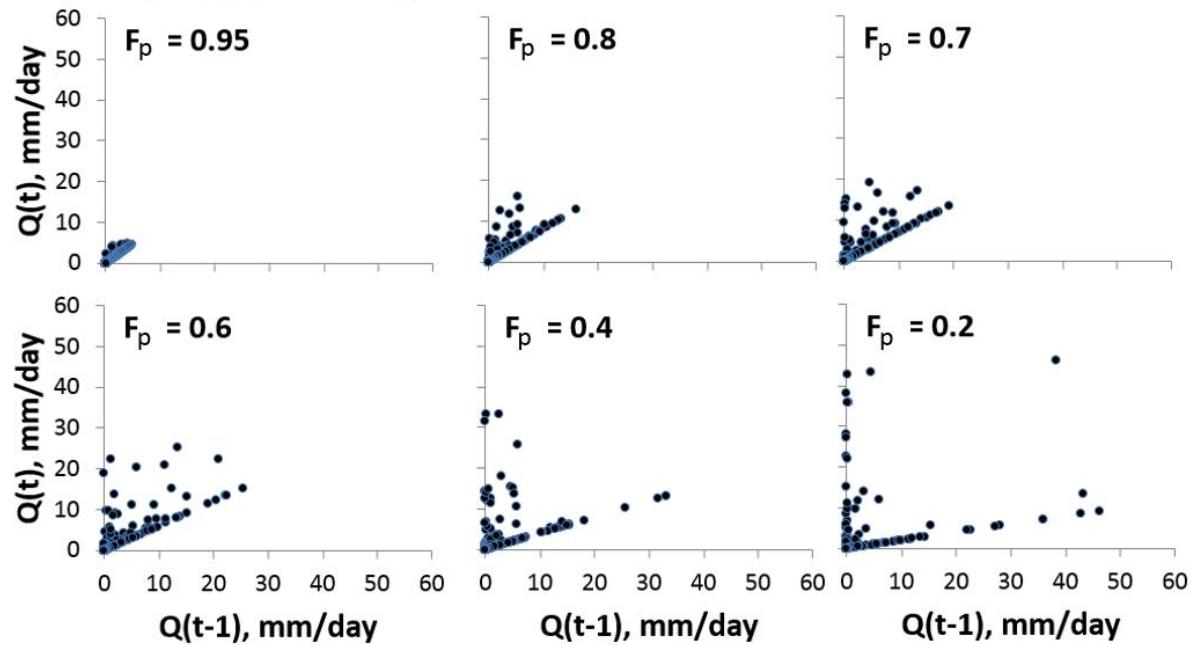
970

A. 120 rainy days, $Q \sim 1600 \text{ mm/yr}$

971


B. 45 rainy days, $Q \sim 600 \text{ mm/yr}$

972


Figure 4. Effects of the F_p parameter on hydrographs of daily river flow generated by a random rainfall generator, with persistent and additional flow components indicated, for two settings with total rainfall of approximately 1600 and 600 mm/yr (NB river flow is here expressed as mm d^{-1} rather than as $\text{m}^3 \text{s}^{-1}$ as in figure 3)

977

978

A. 120 rainy days, $Q \sim 1600 \text{ mm/yr}$

979

B. 45 rainy days, $Q \sim 600 \text{ mm/yr}$

980

981 Figure 5A and B. **Temporal autocorrelation of river flow** for the same simulations as Figure 4; the
 982 lower envelope of the points indicated slope F_p , the points above this line the effect of fresh
 983 additions to river flow

984

985

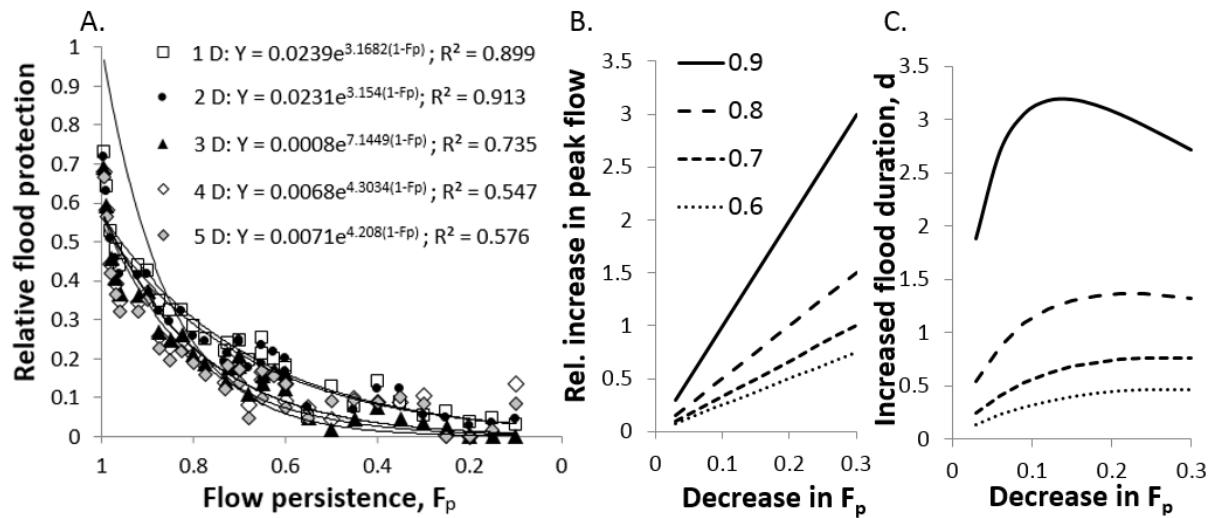
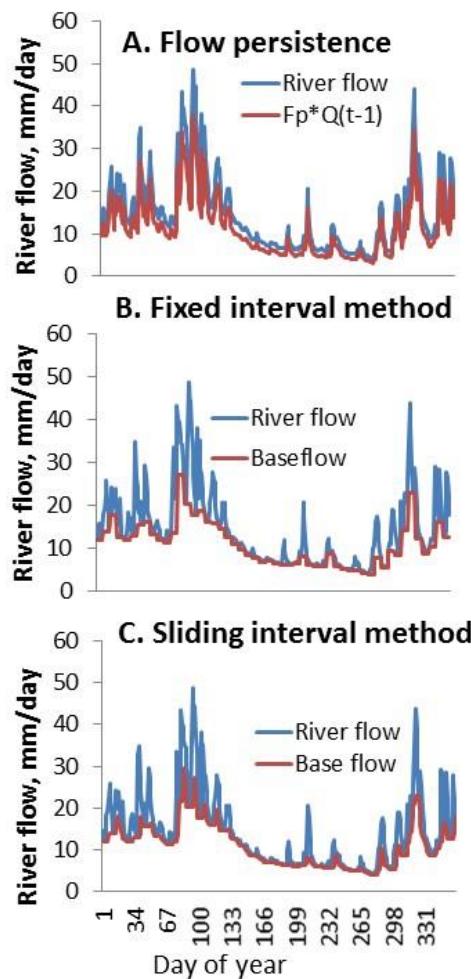
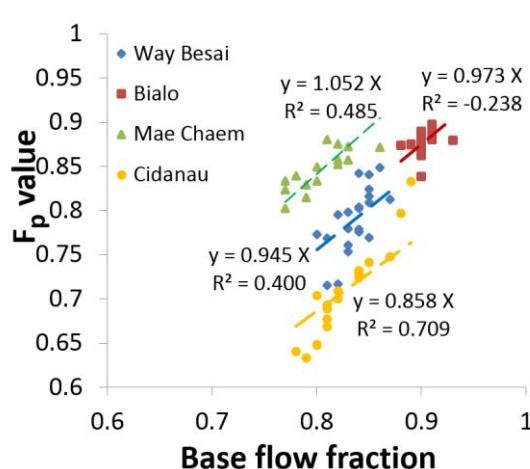




Figure 6. A. Effects of flow persistence on the relative flood protection (decrease in maximum flow measured over a 1 – 5 d period relative to a case with $F_p = 0$ (a few small negative points were replaced by small positive values to allow the exponential fit); B and C. effects of a decrease in flow persistence on the volume of water involved in peak flows (B; relative to the volume at F_p is 0.6 – 0.9) and in the duration (in d) of floods (C)

995
996 Figure 7. Comparison of base flow separation of a hydrograph according to the flow
997 persistence method (A) and two common flow separation methods, respectively with
998 fixed (B) and sliding intervals (C)
999

1000
1001
1002 Figure 8. Comparison of yearly data for four Southeast Asian watersheds analysed with
1003 common flow separation methods (average of results in Fig. 7) and the flow persistence
1004 method
1005
1006

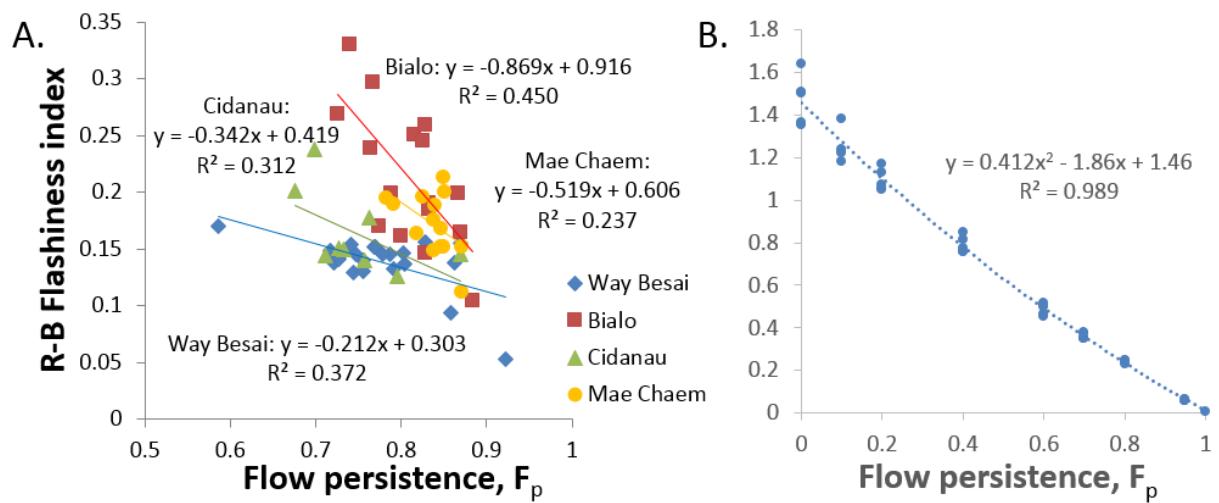


Figure 9. Comparison of the Richards-Baker Flashiness Index (Baker et al., 2004) and the flow persistence metric F_p for A) four Southeast Asian watersheds, B) a series of hydrographs as in Fig. 4A, with 5 replicates per F_p value

1007
1008
1009
1010
1011

Table 1. Comparison of properties of the Flashiness Index and Flow persistence F_p

Flashiness Index (Baker et al. 2004)	Flow persistence (as defined here)
1. Has direct appeal to non-technical audiences	Potentially similar
2. Where reservoir management rules imply major changes in ΔS , flashiness still describes implications for flow regimes	Is focused on the effects of changes in (upper) catchment land cover, not where reservoir management determines flow
3. Values depend on the scale of evaluating river flow; no absolute criteria for what is 'healthy'	Similar
4. Increase generally not desirable	Decrease generally not desirable
5. Varies in range [0-2], may need normalizing by division by 2	Varies in range [0-1]
6. Requires full year flow record to be calculated	Can be estimated from any set of sequential flow observations
7. Empirical metric, no direct link to underlying process understanding	Overall F_p can be understood as weighted average of the F_p 's of contributing flow pathways (overland, subsurface and groundwater-based)
8. No directly visible relationship between peak and low flow characteristics	The F_p term low flows and the $(1 - F_p)$ term for peak flows show the water balance logic of a link between peak and low flows
9. Aggregates changes in flow regime; no directly visible link between the performance metric, rainfall (or snow melt) and (vegetation dependent) evapotranspiration	The main water balance terms are directly reflected in the flow descriptions based on F_p
10. Substantial empirical data bases available for comparison and meta studies	Not yet

1014 Flood risk reduction and flow buffering as ecosystem
1015 services: II. Land use and rainfall intensity effects in
1016 Southeast Asia

1017 Meine van Noordwijk^{1,2}, Lisa Tanika¹, Betha Lusiana¹

1018 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia}

1019 [2]{Wageningen University, Plant Production Systems, Wageningen, the Netherlands}

1020 Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org)

1021 **Abstract** (currently 399 words...)

1022 Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of
1023 rainfall. This 'ecosystem service' is inherent to geology and climate, but buffering also
1024 responds to human use and misuse of the landscape. Buffering can be part of management
1025 feedback loops if salient, credible and legitimate indicators are used. The flow persistence
1026 parameter F_p in a parsimonious recursive model of river flow (Part I) couples the
1027 transmission of extreme rainfall events ($1 - F_p$), to the annual base flow fraction of a
1028 watershed (F_p). Here we compare F_p estimates from four meso-scale watersheds in
1029 Indonesia (Cidanau, Way Besai, and Bialo) and Thailand (Mae Chaem), with varying climate,
1030 geology and land cover history, at a decadal time scale. The likely response in each of these
1031 four to variation in rainfall properties (incl. the maximum hourly rainfall intensity) and land
1032 cover (comparing scenarios with either more or less forest and tree cover than the current
1033 situation) was explored through a basic daily water balance model, GenRiver. This model
1034 was calibrated for each site on existing data, before being used for alternative land cover
1035 and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) F_p
1036 values were consistently lower than dry-season values for all four sites. Across the four
1037 catchments F_p values decreased with increasing annual rainfall, but specific aspects of
1038 watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use
1039 change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly
1040 totals for rainfall) around the values considered typical for each landscape was predicted to
1041 cause a decrease in F_p values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of
1042 F_p to changes in land use change plus changes in rainfall intensity depends on other
1043 characteristics of the watersheds, and generalizations made on the basis of one or two case
1044 studies may not hold, even within the same climatic zone. A wet-season F_p value above 0.7
1045 was achievable in forest-Agroforestry mosaic case studies. Interannual variability in F_p is
1046 large relative to effects of land cover change. Multiple (5-10) years of paired-plot data would
1047 generally be needed to reject no-change null-hypotheses on the effects of land use change
1048 (degradation and restoration). F_p trends over time serve as a holistic scale-dependent
1049 performance indicator of degrading/recovering watershed health and can be tested for
1050 acceptability and acceptance in a wider social-ecological context.

1051 **Introduction**

1052 Inherent properties (geology, geomorphology) interact with climate and human modification of
1053 vegetation, soils, drainage and riparian wetlands in effectuating the degree of buffering that
1054 watersheds provide (Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the

1055 space-time dynamics of rainfall is an ecosystem service, reducing the exposure of people living on
1056 geomorphological floodplains to high-flow events, and increasing predictability and river flow in dry
1057 periods (Joshi et al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation and with a
1058 sealed surface, river flow will directly respond to the spatial distribution of rainfall, with only the
1059 travel time to any point of specific interest influencing the temporal pattern of river flow. Any
1060 persistence or predictability of river flow in such a situation will reflect temporal autocorrelation of
1061 rainfall, beyond statistical predictability in seasonal rainfall patterns. On the other side of the
1062 spectrum, river flow can be constant every day, beyond the theoretical condition of constant rainfall,
1063 in a watershed that provides perfect buffering, by passing all water through groundwater pools that
1064 have sufficient storage capacity at any time during the year. Both infiltration-limited (Hortonian) and
1065 saturation-induced use of more rapid flow pathways (inter and overland flows) will reduce the flow
1066 persistence and make it, at least in part, dependent on rainfall events. Separating the effects of land
1067 cover (land use), engineering and rainfall on the actual flow patterns of rivers remains a considerable
1068 challenge (Ma et al., 2014; Verbist et al., 2019). It requires data, models and concepts that can serve
1069 as effective boundary object in communication with stakeholders (Leimona et al. 2015; van
1070 Noordwijk et al. 2012, 2016). There is a long tradition in using forest cover as such a boundary
1071 object, but there is only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et
1072 al., 2009; van Noordwijk et al. 2015a; part I).

1073 In part I, we introduced a flow persistence parameter (F_p) that links the two, asymmetrical aspects of
1074 flow dynamics: translating rainfall excess into river flow, and gradually releasing water stored in the
1075 landscape. The direct link between these two aspects can be seen from equation [4] in part I:

$$1076 Q_t = F_p Q_{t-1} + (1-F_p)(P_t - E_{tx})$$

1077 Where Q_t and Q_{t-1} represent river flow on subsequent days, P_{tx} the precipitation on day t (or
1078 preceding precipitation released as snowmelt on day t) and E_{tx} the preceding evapotranspiration
1079 since the previous precipitation event, creating storage space in the soils of the watershed. The first
1080 term on the right-hand side of the equation represents the gradual release of stored water, causing
1081 a slow decline of flow as the pools feeding this flow are gradually depleted. The second term reflects
1082 the part of fresh additions of water are partitioned over immediate river flow and the increase of
1083 stocks from which water can be gradually released. The derivation of the link depended on the long
1084 term water balance, and thus assumed that all out- and inflows are accounted for in the watershed.

1085 Commonly used rainfall-runoff models (including the curve number approach and SWAT models)
1086 only focus on the second term of the above equation (Ponce et al., 1996; Gassman et al., 2007),
1087 without link to the first. Various empirical methods for deriving 'base flow' are in use, but details of
1088 the calculation procedure matter. Results in part I for a number of contrasting meso-scale
1089 watersheds in Southeast Asia suggested that interannual variation in F_p within a given watershed
1090 correlates with both the R-B Flashiness Index (Baker et al., 2004) and the base-flow fraction of
1091 annual river flow. However, the slope of these relationships varied between watersheds. Here, in
1092 part II we will further analyse the F_p results for these watersheds that were selected to represent
1093 variation in rainfall and land cover, and test the internal consistency of results based on historical
1094 data: two located in the humid and one in the subhumid tropics of Indonesia, and one in the
1095 unimodal subhumid tropics of northern Thailand.

1096 After exploring the patterns of variation in F_p estimates derived from actual river flow records, we
1097 will quantify the sensitivity of the F_p metric to variations in rainfall intensity and its response, on a
1098 longer timescale to land cover change. To do so, we will use a model that uses basic water balance
1099 concepts: rainfall interception, infiltration, water use by vegetation, overland flow, interflow and

1100 groundwater release, to a spatially structured watershed where travel time from sub watersheds to
1101 any point of interest modifies the predicted river flow. In the specific model used land cover effects
1102 on soil conditions, interception and seasonal water use have been included. After testing whether F_p
1103 values derived from model outputs match those based on empirical data where these exist, we rely
1104 on the basic logic of the model to make inference on the relative importance of modifying rainfall
1105 and land cover inputs. With the resulting temporal variation in calculated F_p values, we consider the
1106 time frame at which observed shifts in F_p can be attributed to factors other than chance (that means:
1107 null-hypotheses of random effects can be rejected with accepted chance of Type I errors).

1108 **2. Methods**

1109 **2.1 GenRiver model for effects of land cover on river flow**

1110 The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a
1111 daily time step and a flexible spatial subdivision of a watershed that influences the routing of water
1112 and employs spatially explicit rainfall. At patch level, vegetation influences interception, retention
1113 for subsequent evaporation and delayed transfer to the soil surface, as well as the seasonal demand
1114 for water. Vegetation (land cover) also influences soil porosity and infiltration, modifying the
1115 inherent soil properties. Water in the root zone is modelled separately for each land cover within a
1116 subcatchment, the groundwater stock is modelled at subcatchment level. The spatial structure of a
1117 watershed and the routing of surface flows influences the time delays to any specified point of
1118 interest, which normally includes the outflow of the catchment. Land cover change scenarios are
1119 interpolated annually between time-series (measured or modelled) data. The model may use
1120 measured rainfall data, or use a rainfall generator that involves Markov chain temporal
1121 autocorrelation (rain persistence). As our data sources are mostly restricted to daily rainfall
1122 measurements and the infiltration model compares instantaneous rainfall to infiltration capacity, a
1123 stochastic rainfall intensity was applied at subcatchment level, driven by the mean as parameter and
1124 a standard deviation for a normal distribution (truncated at 3 standard deviations from the mean)
1125 proportional to it via a coefficient of variation as parameter. For the Mae Chaem site in N Thailand
1126 data by Dairaku et al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia
1127 we used 30 mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the
1128 GenRiver model. The model itself, a manual and application case studies are freely available
1129 (<http://www.worldAgroforestry.org/output/genriver-genetic-river-model-river-flow>; van Noordwijk
1130 et al., 2011).

1131 **2.2 Empirical data-sets, model calibration**

1132 Table 1 and Figure 1 provide summary characteristics and the location of river flow data used in four
1133 meso-scale watersheds for testing the F_p algorithm and application of the GenRiver model. Figure 1
1134 includes a water tower category in the agro-ecological zones; this is defined on the basis of a ratio of
1135 precipitation and potential evapotranspiration of more than 0.65, and a product of that ratio and
1136 relative elevation exceeding 0.277.

1137 ⇒ Table 1
1138 ⇒ Figure 1

1139 As major parameters for the GenRiver model were not independently measured for the respective
1140 watersheds, we tuned (calibrated) the model by modifying parameters within a predetermined
1141 plausible range, and used correspondence with measured hydrograph as test criterion (Kobolt et al.
1142 2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target above 0.5) and bias (less than
1143 25%) as test criteria and targets. Meeting these performance targets (Moriasi et al., 2007), we

1144 accepted the adjusted models as basis for describing current conditions and exploring model
1145 sensitivity. The main site-specific parameter values are listed in Table 2 and (generic) land cover
1146 specific default parameters in Table 3.

1147 ⇒ Table 2

1148 ⇒ Table 3

1149 Table 4 describes the six scenarios of land use change that were evaluated in terms of their
1150 hydrological impacts. Further description on the associated land cover distribution for each scenario
1151 in the four different watersheds is depicted in Appendix 2.

1152 ⇒ Table 4

1153 **2.3 Bootstrapping to estimate the minimum observation**

1154 The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly used
1155 to generate 'surrogate population' for the purpose of approximating the sampling distribution of a
1156 statistic. In this study, the bootstrap approach was used to estimate the minimum number of
1157 observation (or yearly data) required for a pair-wise comparison test between two time-series of
1158 stream flow or discharge data (representing two scenarios of land use distributions) to be
1159 distinguishable from a null-hypothesis of no effect. The pair-wise comparison test used was
1160 Kolmogorov-Smirnov test that is commonly used to test the distribution of discharge data (Zhang et al,
1161 2006). We built a simple macro in R (R Core Team, 2015) that entails the following steps:

1162 (i) Bootstrap or resample with replacement 1000 times from both time-series discharge data
1163 with sample size n ;

1164 (ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge data,
1165 and record the P-value;

1166 (iii) Perform (i) and (ii) for different size of n , ranging from 5 to 50.

1167 (iv) Tabulate the p-value from the different sample size n , and determine the value of n when the
1168 p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). The
1169 associated n represents the minimum number of observations required.

1170 Appendix 3 provides an example of the macro in R used for this analysis.

1171 **3. Results**

1172 **3.1 Empirical data of flow persistence as basis for model parameterization**

1173 Inter-annual variability of F_p estimates derived for the four catchments (Figure 2) was of the order of
1174 0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. For all years
1175 and locations, rainy season F_p values, with mixed flow pathways, were consistently below dry-season
1176 values, dominated by groundwater flows. If we can expect $F_{p,i}$ and $F_{p,o}$ (see equation 8 in part I) to be
1177 approximately 0.5 and 0, this difference between wet and dry periods implies a 40% contribution of
1178 interflow in the wet season, a 20% contribution of overland flow or any combination of the two
1179 effects.

1180 Overall the estimates from modelled and observed data are related with 16% deviating more than
1181 0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria for the

1182 hydrographs were met by the calibrated models for each site, we tentatively accept the model to be
1183 a basis for sensitivity study of F_p to modifications to land cover and/or rainfall

1184 \Rightarrow Figure 2

1185 \Rightarrow Figure 3

1186 **3.2 Comparing F_p effects of rainfall intensity and land cover change**

1187 A direct comparison of model sensitivity to changes in mean rainfall intensity and land use change
1188 scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 shifted the F_p
1189 value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but by 0.128 in Way
1190 Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change scenarios on F_p was
1191 smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and relatively large in Bialo and Mae
1192 Chaem, at 0.080 and 0.084, respectively (Figure 4B). The order of F_p across the land use change
1193 scenarios was mostly consistent between the watersheds, but the contrast between the
1194 Reforestation and NatForest scenario was largest in Mae Chaem and smallest in Way Besai. In
1195 Cidanau, Way Besai and Mae Chaem, variations in rainfall were 2.2 to 3.1 times more effective than
1196 land use change in shifting F_p , in Bialo its relative effect was only 58%. Apparently, the sensitivity to
1197 changes in land use change plus changes in rainfall intensity depends on other characteristics of the
1198 watersheds, and generalizations made on the basis of one or two case studies may not hold, even
1199 within the same climatic zone.

1200 \Rightarrow Figure 4

1201 **3.3 Further analysis of F_p effects for scenarios of land cover change**

1202 Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and the
1203 'degraded lands' the lowest F_p value (Figure 5), but there are remarkable differences as well: in
1204 Cidanau the interannual variation in F_p is clearly larger than land cover effects, while in the Way
1205 Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a peat swamp
1206 between most of the catchment and the measuring point buffers most of landcover related variation
1207 in flow, but not the interannual variability. Considering the frequency distributions of F_p values over
1208 a 20 year period, we see one watershed (Way Besai) where the forest stands out from all others, and
1209 one (Bialo) where the degraded lands are separate from the others. Given the degree of overlap of
1210 the frequency distributions, it is clear that multiple years of empirical observations will be needed
1211 before a change can be affirmed.

1212 Figure 5 shows the frequency distributions of expected effect sizes on F_p of a comparison of any land
1213 cover with either forest or degraded lands. Table 5 translates this information to the number of
1214 years that a paired plot (in the absence of measurement error) would have to be maintained to
1215 reject a null-hypothesis of no effect, at $p=0.05$. As the frequency distributions of F_p differences of
1216 paired catchments do not match a normal distribution, a Kolmogorov-Smirnov test can be used to
1217 assess the probability that a no-difference null hypothesis can yield the difference found. By
1218 bootstrapping within the years where simulations supported by observed rainfall data exist, we
1219 found for the Way Besai catchment, for example, that 20 years of data would be needed to assert (at
1220 $P = 0.05$) that the Reforestation scenario differs from Agroforestation, and 16 years that it differs
1221 from Actual and 11 years that it differs from Degrade. In practice, that means that empirical
1222 evidence that survives statistical tests will not emerge, even though effects on watershed health are
1223 real.

1224 \Rightarrow Figure 5

1225 \Rightarrow Table 5

1226 At process-level the increase in 'overland flow' in response to soil compaction due to land cover
1227 change has a clear and statistically significant relationship with decreasing F_p values in all catchments
1228 (Figure 6), but both year-to-year variation within a catchment and differences between catchments
1229 influence the results as well, leading to considerable spread in the biplot. Contrary to expectations,
1230 the disappearance of 'interflow' by soil compaction is not reflected in measurable change in F_p value.
1231 The temporal difference between overland and interflow (one or a few days) gets easily blurred in
1232 the river response that integrates over multiple streams with variation in delivery times; the
1233 difference between overland- or interflow and baseflow is much more pronounced. Apparently,
1234 according to our model, the high macroporosity of forest soils that allows interflow and may be the
1235 'sponge' effect attributed to forest, delays delivery to rivers by one or a few days, with little effect on
1236 the flow volumes at locations downstream where flow of multiple days accumulates. The difference
1237 between overland- or interflow and baseflow in time-to-river of rainfall peaks is much more
1238 pronounced.

1239 \Rightarrow Figure 6

1240 Tree cover has two contradicting effects on baseflow: it reduces the surplus of rainfall over
1241 evapotranspiration (annual water yield) by increased evapotranspiration (especially where
1242 evergreen trees or trees with a large canopy interception are involved), but it potentially increases
1243 soil macroporosity that supports infiltration and interflow, with relatively little effect on water
1244 holding capacity measured as 'field capacity' (after runoff and interflow have removed excess
1245 water). Figure 7 shows that the total volume of baseflow differs more between sites and their
1246 rainfall pattern than it varies with tree cover. Between years total evapotranspiration and baseflow
1247 totals are positively correlated, but for a given rainfall there is a trade-off. Overall these results
1248 support the conclusion that generic effects of deforestation on decreased flow persistence, and of
1249 (agro)/(re)-forestation on increased flow persistence are small relative to interannual variability due
1250 to specific rainfall patterns, and that it will be hard for any empirical data process to pick-up such
1251 effects, even if they are qualitatively aligned with valid process-based models.

1252 \Rightarrow Figure 7

1253 4. Discussion

1254 In the discussion of Part I the credibility questions on replicability of the F_p metric and its sensitivity
1255 to details of rainfall pattern versus land cover as potential causes of variation were seen as requiring
1256 case studies in a range of contexts. Although the four case studies in Southeast Asia presented here
1257 cannot be claimed to represent the global variation in catchment behaviour (with absence of a
1258 snowpack and its dynamics as an obvious element of flow buffering not included), the diversity of
1259 responses among these four already point to challenges for any generic interpretation of the degree
1260 of flow persistence that can be achieved under natural forest cover, as well as its response to land
1261 cover change.

1262 The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand show
1263 that values of F_p above 0.9 are scarce in the case studies provided, but values above 0.8 were found,
1264 or inferred by the model, for forested landscapes. Agroforestry landscapes generally presented F_p
1265 values above 0.7, while open-field agriculture or degraded soils led to F_p values of 0.5 or lower. Due
1266 to differences in local context, it may not be feasible to relate typical F_p values to the overall
1267 condition of a watershed, but temporal change in F_p can indicate degradation or restoration if a
1268 location-specific reference can be found. The difference between wet and dry season F_p can be
1269 further explored in this context. The dry season F_p value primarily reflects the underlying geology,

1270 with potential modification by engineering and operating rules of reservoirs, the wet season F_p is
1271 generally lower due to partial shifts to overland and interflow pathways. Where further uncertainty
1272 is introduced by the use of modelled rather than measured river flow, the lack of fit of models
1273 similar to the ones we used here would mean that scenario results are indicative of directions of
1274 change rather than a precision tool for fine-tuning combinations of engineering and land cover
1275 change as part of integrated watershed management.

1276 The differences in relative response of the watersheds to changes in mean rainfall intensity and land
1277 cover change, suggest that generalizations derived from one or a few case studies are to be
1278 interpreted cautiously. If land cover change would influence details of the rainfall generation process
1279 (arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et al., 2014; van
1280 Noordwijk et al., 2015b) this can easily dominate over effects via interception, transpiration and soil
1281 changes.

1282 Our results indicate an intra-annual variability of F_p values between wet and dry seasons of around
1283 0.2 in the case studies, while interannual variability in either annual or seasonal F_p was generally in
1284 the 0.1 range. The difference between observed and simulated flow data as basis for F_p calculations
1285 was mostly less than 0.1. With current methods, it seems that effects of land cover change on flow
1286 persistence that shift the F_p value by about 0.1 are the limit of what can be asserted from empirical
1287 data (with shifts of that order in a single year a warning sign rather than a firmly established change).
1288 When derived from observed river flow data F_p is suitable for monitoring change (degradation,
1289 restoration) and can be a serious candidate for monitoring performance in outcome-based
1290 ecosystem service management contracts. Choice of the part of the year for which F_p changes are
1291 used as indicator may have to depend on the seasonal patterns of rainfall.

1292 In view of our results the lack of robust evidence in the literature of effects of change in forest and
1293 tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets contain
1294 considerable variability. Yet, such effects are consistent with current process and scaling knowledge
1295 of watersheds.

1296 In summarizing findings on the F_p metric, we can compare it with existing ones across the seven
1297 questions raised in Fig. 1 of part I. Comparator metrics can derive from various data sources,
1298 including the amount (and/or quality) of forest cover upstream, the fraction of flows that is
1299 technically controlled, direct records of river flow (over a short or longer time period), records of
1300 rainfall and/or models that combine landscape properties, climate and land cover. Tentative scoring
1301 for these metrics (Table 6) suggest that the F_p metric is an efficient tool for data-scarce
1302 environments, as it indicates aspects of hydrographs that so far required multi-annual records of
1303 river flow.

1304 →Table 6

1305 Conclusion

1306 Overall, our analysis suggests that the level of flow buffering achieved depends on both land cover
1307 (including its spatial configuration and effects on soil properties) and space-time patterns of rainfall
1308 (including maximum rainfall intensity as determinant of overland flow). Generalizations on dominant
1309 influence of either, derived from one or a few case studies are to be interpreted cautiously. If land
1310 cover change would influence details of the rainfall generation process this can easily dominate over
1311 effects via interception, transpiration and soil changes. Multi-year data will generally be needed to
1312 attribute observed changes in flow buffering to degradation/restoration of watersheds, rather than
1313 specific rainfall events. With current methods, it seems that effects of land cover change on flow

1314 persistence that shift the F_p value by about 0.1 are the limit of what can be asserted from empirical
1315 data, with shifts of that order in a single year a warning sign rather than a firmly established change.
1316 When derived from observed river flow data F_p is suitable for monitoring change (degradation,
1317 restoration) and can be a serious candidate for monitoring performance in outcome-based
1318 ecosystem service management contracts. Watershed health is here characterized through the flow
1319 pattern it generates, leaving the attribution to land cover, rainfall pattern and engineering of that
1320 pattern and of changes in pattern to further location-specific analysis, just as a symptom of a high
1321 body temperature can indicate health, but not diagnose the specific illness causing it.

1322 The data sets analysed so far did not indicate that the flow persistence at high flows differed from
1323 that at lower flows **within the same season**, but in other circumstances this may not be the case and
1324 further care may be needed to use F_p values beyond the measurement period in which they were
1325 derived. **While a major strength of the F_p method over existing procedures for parameterizing curve**
1326 **number estimates, for example, is that the latter depend on scarce observations during extreme**
1327 **events and F_p can be estimated for any part of the flow record, the reliability of F_p estimates will still**
1328 **increase with the length of the observation period.**

1329 Further tests on the performance of the F_p metric and its standard incorporation into the output
1330 modules of river flow and watershed management models will broaden the basis for interpreting the
1331 value ranges that can be expected for well-functioning watersheds in various conditions of climate,
1332 topography, soils, vegetation and engineering interventions. Such a broader empirical base could
1333 test the possible use of F_p as performance metric for watershed rehabilitation efforts.

1334 **Data availability**

1335 Table 7 specifies the rainfall and river flow data we used for the four basins and specifies the links to
1336 detailed descriptions.

1337 \Rightarrow Table 7

1338 **Acknowledgements**

1339 This research is part of the Forests, Trees and Agroforestry research program of the CGIAR. Several
1340 colleagues contributed to the development and early tests of the F_p method. Thanks are due to
1341 Thoha Zulkarnain for assistance with Figure 1 and to Eike Luedeling, Sonya Dewi, Sampurno
1342 Bruijnzeel and two anonymous reviewers for comments on an earlier version of the manuscript.

1343 **References**

1344 Andréassian, V.: Waters and forests: from historical controversy to scientific debate, *Journal of*
1345 *Hydrology*, 291, 1–27, 2004.

1346 Baker, D.B., Richards, R.P., Loftus, T.T. and Kramer, J.W.: A new flashiness index: Characteristics and
1347 applications to midwestern rivers and streams. *Journal of the American Water Resources*
1348 *Association*, Paper No. 03095, 2004.

1349 Bruijnzeel, L.A.: Hydrological functions of tropical forests: not seeing the soil for the trees, *Agr.*
1350 *Ecosyst. Environ*, 104, 185–228, 2004.

1351 Dairaku K., Emori, S., and Taikan, T.: Rainfall Amount, Intensity, Duration, and Frequency
1352 Relationships in the Mae Chaem Watershed in Southeast Asia, *Journal of Hydrometeorology*, 5,
1353 458–470, 2004.

1354 Efron, B and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other
1355 Measures of Statistical Accuracy. *Statistical Science* 1 (1): 54-75, 1986.

1356 Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G.: The soil and water assessment tool: historical
1357 development, applications, and future research directions. *Transactions of the ASABE*, 50(4), 1211-1250,
1358 2007.

1359 Joshi, L., Schalenbourg, W., Johansson, L., Khasanah, N., Stefanus, E., Fagerström, M.H., and van
1360 Noordwijk, M.: Soil and water movement: combining local ecological knowledge with that of
1361 modellers when scaling up from plot to landscape level, In: van Noordwijk, M., Cadisch, G. and
1362 Ong, C.K. (Eds.) *Belowground Interactions in Tropical Agroecosystems*, CAB International,
1363 Wallingford (UK), 349-364, 2004.

1364 Kobold, M., Suselj, K., Polajnar, J., and Pogacnik, N.: Calibration Techniques Used For HBV
1365 Hydrological Model In Savinja Catchment, In: XXIVth Conference of the Danubian Countries On
1366 The Hydrological Forecasting And Hydrological Bases Of Water Management, 2008.

1367 Kusumastuti, D.I., Jokowinarno, D., van Rafi'i, C.H., and Yuniarti, F.: Analysis of rainfall characteristics
1368 for flood estimation in Way Awi watershed, *Civil Engineering Dimension*, 18, 31-37, 2016

1369 Leimona, B., Lusiana, B., van Noordwijk, M., Mulyoutami, E., Ekadinata, A., and Amaruzama, S.:
1370 Boundary work: knowledge co-production for negotiating payment for watershed services in
1371 Indonesia, *Ecosystems Services*, 15, 45-62, 2015.

1372 Ma, X., Lu, X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change, vegetation
1373 restoration, and engineering measures to the reduction of suspended sediment in the Kejie
1374 catchment, southwest China, *Hydrol. Earth Syst. Sci.*, 18, 1979-1994, 2014.

1375 Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L.: Model
1376 Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations,
1377 American Society of Agricultural and Biological Engineers, 20(3), 885-900, 2001

1378 Morris, C.E., Conen, F., Huffman, A., Phillips, V., Pöschl, U., and Sands, D.C.: Bioprecipitation: a
1379 feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice
1380 nucleators in the atmosphere, *Glob Change Biol*, 20, 341-351. 2014.

1381 Ponce, V.M. and Hawkins, R.H.: Runoff curve number: Has it reached maturity? *Journal of Hydrologic
1382 Engineering*, 1(1), 11-19, 1996

1383 R Core Team R: A language and environment for statistical computing. R Foundation for Statistical
1384 Computing, Vienna, Austria, URL <http://www.R-project.org/>, 2015

1385 Tan-Soo, J.S., Adnan, N., Ahmad, I., Pattanayak, S.K., and Vincent, J.R.: Econometric Evidence on
1386 Forest Ecosystem Services: Deforestation and Flooding in Malaysia. *Environmental and Resource
1387 Economics*, on-line: <http://link.springer.com/article/10.1007/s10640-014-9834-4>, 2014.

1388 van Dijk, A.I., van Noordwijk, M., Calder, I.R., Bruijnzeel, L.A., Schellekens, J., and Chappell, N.A.:
1389 Forest-flood relation still tenuous – comment on ‘Global evidence that deforestation amplifies
1390 flood risk and severity in the developing world’, *Global Change Biology*, 15, 110-115, 2009.

1391 van Noordwijk, M., Widodo, R.H., Farida, A., Suyamto, D., Lusiana, B., Tanika, L., and Khasanah, N.:
1392 GenRiver and FlowPer: Generic River and Flow Persistence Models. User Manual Version 2.0,
1393 Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, 2011.

1394 van Noordwijk, M., Leimona, B., Jindal, R., Villamor, G.B., Vardhan, M., Namirembe, S., Catacutan, D.,
1395 Kerr, J., Minang, P.A., and Tomich, T.P.: Payments for Environmental Services: evolution towards
1396 efficient and fair incentives for multifunctional landscapes, *Annu. Rev. Environ. Resour.*, 37, 389-
1397 420, 2012.

1398 van Noordwijk, M., Leimona, B., Xing, M., Tanika, L., Namirembe, S., and Suprayogo, D.: Water-
1399 focused landscape management. *Climate-Smart Landscapes: Multifunctionality In Practice*, eds
1400 Minang PA et al.. Nairobi, Kenya: World Agroforestry Centre (ICRAF), 179-192, 2015a.

1401 van Noordwijk, M., Bruijnzeel, S., Ellison, D., Sheil, D., Morris, C., Gutierrez, V., Cohen, J., Sullivan, C.,
1402 Verbist, B., and Muys, B.: Ecological rainfall infrastructure: investment in trees for sustainable
1403 development, ASB Brief no 47, Nairobi, ASB Partnership for the Tropical Forest Margins, 2015b.

1404 van Noordwijk, M., Kim, Y-S., Leimona, B., Hairiah, K., Fisher, L.A.: Metrics of water security,
1405 adaptive capacity and Agroforestry in Indonesia. *Current Opinion on Environmental Sustainability*
1406 (in press: <http://dx.doi.org/10.1016/j.cosust.2016.10.004>). 2016

1407 Verbist, B., Poesen, J., van Noordwijk, M. Widianto, Suprayogo, D., Agus, F., and Deckers, J.: Factors
1408 affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic
1409 Agroforestry landscape, *Catena*, 80, 34-46, 2010.

1410 Zhang, Q., Liu, C., Xu, C., Xu, and Jiang T.: Observed trends of annual maximum water level and
1411 streamflow during past 130 years in the Yangtze River basin, China, *Journal of Hydrology*, 324,
1412 255-265, 2006.

1413

1414 Table 1. Basic physiographic characteristics of the four study watersheds

Parameter	Bialo	Cidanau	Mae Chaem	Way Besai
Location	South Sulawesi, Indonesia	West Java, Indonesia	Northern Thailand	Lampung, Sumatera, Indonesia
Coordinates	5.43 S, 120.01 E	6.21 S, 105.97 E	18.57 N, 98.35 E	5.01 S, 104.43 E
Area (km ²)	111.7	241.6	3892	414.4
Elevation (m a.s.l.)	0 – 2874	30 – 1778	475-2560	720-1831
Flow pattern	Parallel	Parallel (with two main river flow that meet in the downstream area)	Parallel	Radial
Land cover type	Forest (13%) Agroforest (59%) Crops (22%) Others (6%)	Forest (20%) Agroforest (32%) Crops (33%) Others (11%) Swamp(4%)	Forest (evergreen, deciduous and pine) (84%) Crops (15%) Others (1%)	Forest (18%) Coffee (monoculture and multistrata) (64%) Crop and Horticulture (12%) Others (6%)
Mean annual rainfall, mm	1695	2573	1027	2474
Wet season	April – June	January - March	July - September	January - March
Dry season	July - September	July - September	January - March	July - September
Mean annual runoff, mm	947	917	259	1673
Major soils	Inceptisols	Inceptisols	Ultisols, Entisols	Andisols

1415

1416 Table 2. Parameters of the GenRiver model used for the four site specific simulations (van Noordwijk et al., 2011 for definitions of terms; sequence of parameters follows the pathway of water)

Parameter	Definition	Unit	Bialo	Cidanau	Mae Chaem	Way Besai
RainIntensMean	Average rainfall intensity	mm hr ⁻¹	30	30	3	30
RainIntensCoefVar	Coefficient of variation of rainfall intensity	mm hr ⁻¹	0.8	0.3	0.5	0.3

RainInterceptDripRt	Maximum drip rate of intercepted rain	mm hr ⁻¹	80	10	10	10
RainMaxIntDripDur	Maximum dripping duration of intercepted rain	hr	0.8	0.5	0.5	0.5
InterceptEffectontrans	Rain interception effect on transpiration	-	0.35	0.8	0.3	0.8
MaxInfRate	Maximum infiltration capacity	mm d ⁻¹	580	800	150	720
MaxInfSubsoil	Maximum infiltration capacity of the sub soil	mm d ⁻¹	80	120	150	120
PerFracMultiplier	Daily soil water drainage as fraction of groundwater release fraction	-	0.35	0.13	0.1	0.1
MaxDynGrWatStore	Dynamic groundwater storage capacity	mm	100	100	300	300
GWReleaseFracVar	Groundwater release fraction, applied to all subcatchments	-	0.15	0.03	0.05	0.1
Tortuosity	Stream shape factor	-	0.4	0.4	0.6	0.45
Dispersal Factor	Drainage density	-	0.3	0.4	0.3	0.45
River Velocity	River flow velocity	m s ⁻¹	0.4	0.7	0.35	0.5

1419 Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds
 1420 (BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer function;
 1421 see van Noordwijk et al., 2011)

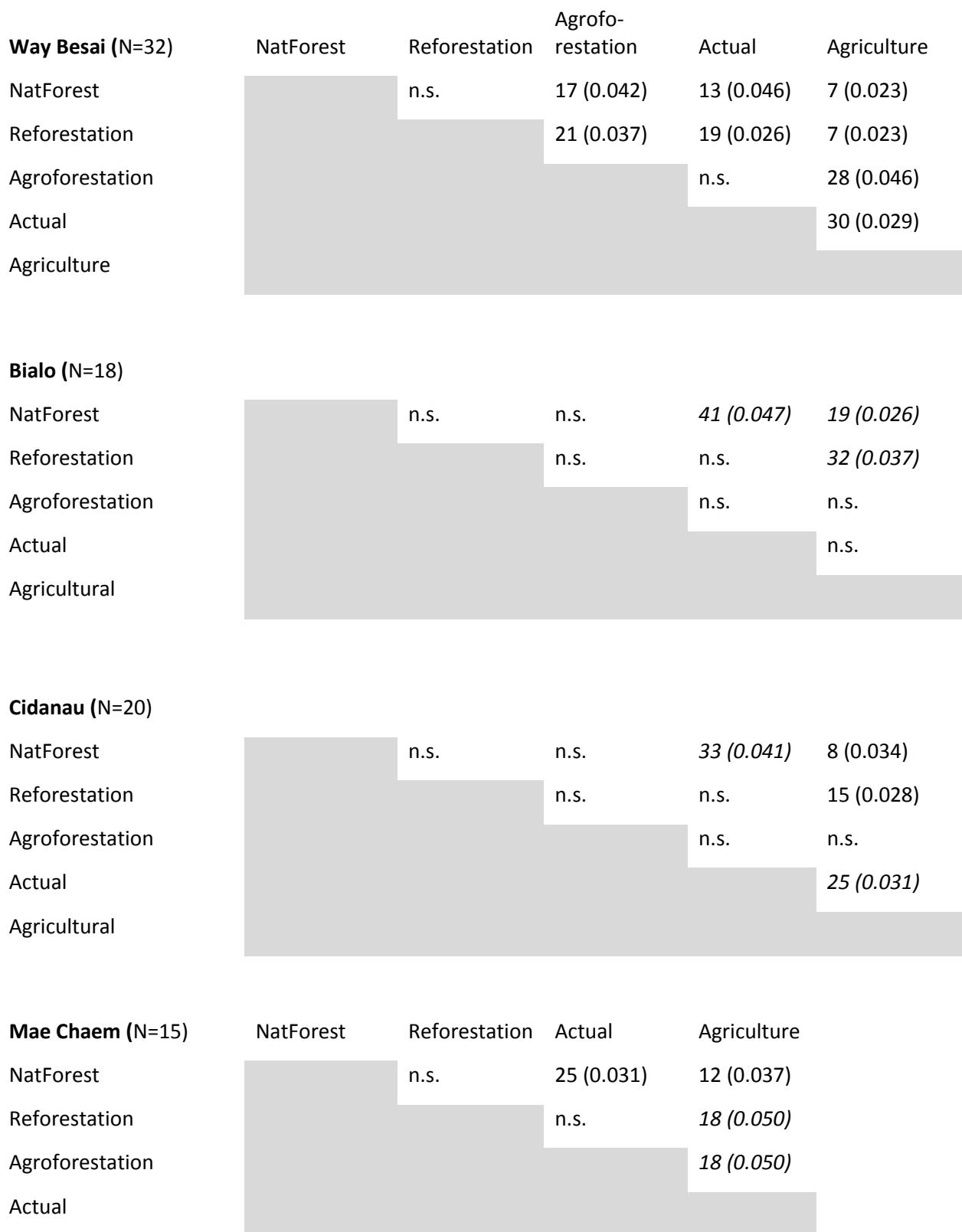
Land cover Type	Potential interception (mm/d)	Relative drought threshold	BD/BDref
Forest ¹	3.0 - 4.0	0.4 - 0.5	0.8 - 1.1
Agroforestry ²	2.0 - 3.0	0.5 - 0.6	0.95 - 1.05
Monoculture tree ³	1.0	0.55	1.08
Annual crops	1.0 - 3.0	0.6 - 0.7	1.1 - 1.5
Horticulture	1.0	0.7	1.07
Rice field ⁴	1.0 - 3.0	0.9	1.1 - 1.2
Settlement	0.05	0.01	1.3
Shrub and grass	2.0 - 3.0	0.6	1.0 - 1.07
Cleared land	1.0 - 1.5	0.3 - 0.4	1.1 - 1.2

1422 Note: 1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest
 1423 2. Agroforestry: mixed garden, coffee, cocoa, clove
 1424 3. Monoculture : coffee
 1425 4. Rice field: irrigation and rainfed
 1426

1427 Table 4. Land use scenarios explored for four watersheds

Scenario	Description
NatForest	Full natural forest, hypothetical reference scenario
Reforestation	Reforestation, replanting shrub, cleared land, grass land and some agricultural area with forest
Agroforestation	Agroforestry scenario, maintaining Agroforestry areas and converting shrub, cleared land, grass land and some of agricultural area into Agroforestry
Actual	Baseline scenario, based on the actual condition of land cover change during the modelled time period
Agriculture	Agriculture scenario, converting some of tree based plantations, cleared land, shrub and grass land into rice fields or dry land agriculture, while maintain existing forest
Degrading	No change in already degraded areas, while converting most of forest and Agroforestry area into rice fields and dry land agriculture

1428


1429

1430 Table 5. Number of years of observations required to estimate flow persistence to reject the null-
 1431 hypothesis of 'no land use effect', at p-value = 0.05 using Kolmogorov-Smirnov test. The probability
 1432 of the test statistic in the first significant number is provided between brackets and where the
 1433 number of observations exceeds the time series available, results are given in *italics*

A. Natural Forest as reference

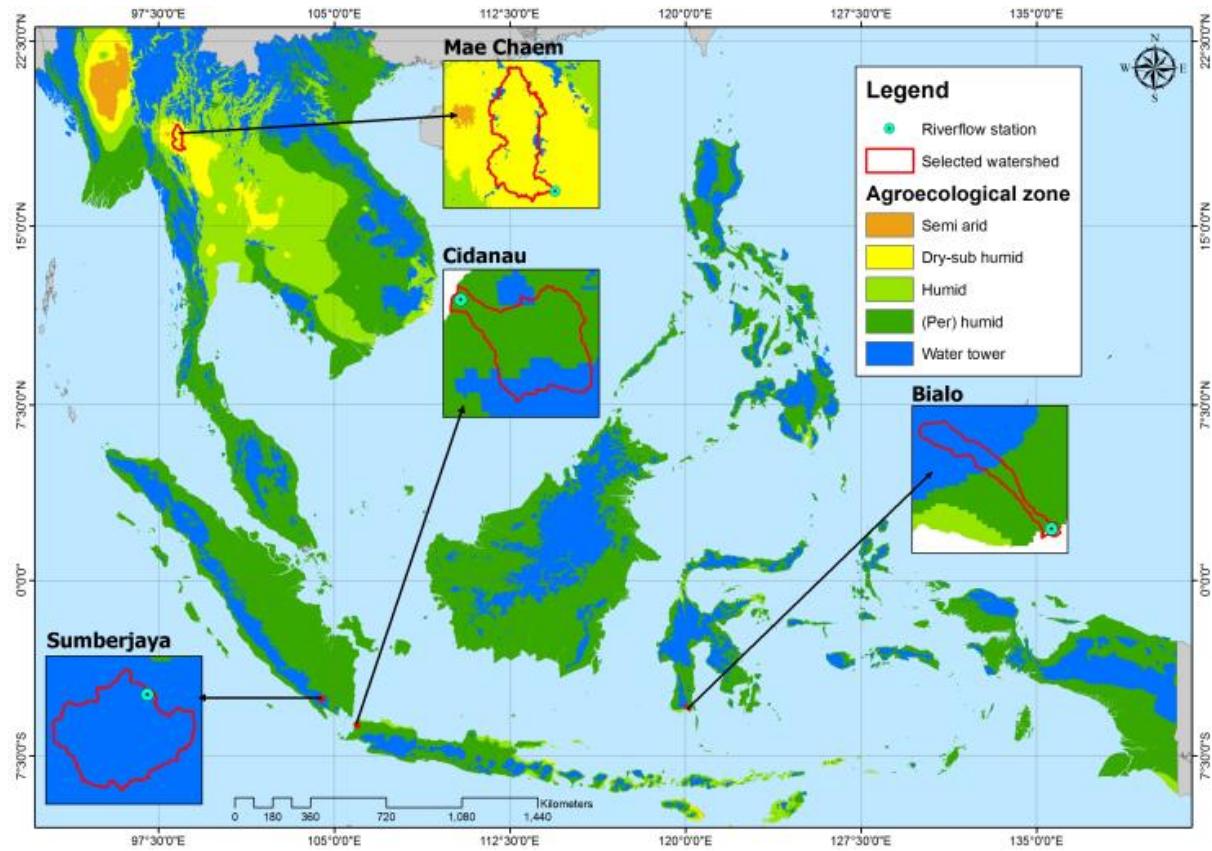
	Reforestation	Agroforestation	Actual	Agricultural
Way Besai (N=32)				
Reforestation		20 (0.035)	16 (0.037)	13 (0.046)
Agroforestation			n.s.	n.s.
Actual				n.s.
Agricultural				
Degrading				
 Bialo (N=18)				
Reforestation		n.s.	n.s.	37 (0.04)
Agroforestation			n.s.	n.s.
Actual				n.s.
Agricultural				
Degrading				
 Cidanau (N=20)				
Reforestation		n.s.	n.s.	32 (0.037)
Agroforestation			n.s.	n.s.
Actual				n.s.
Agricultural				
Degrading				
 Mae Chaem (N=15)				
Reforestation		n.s.	23 (0.049)	18 (0.050)
Agroforestation			45 (0.037)	33 (0.041)
Actual				33 (0.041)
Agricultural				

B. Degrading scenario as reference

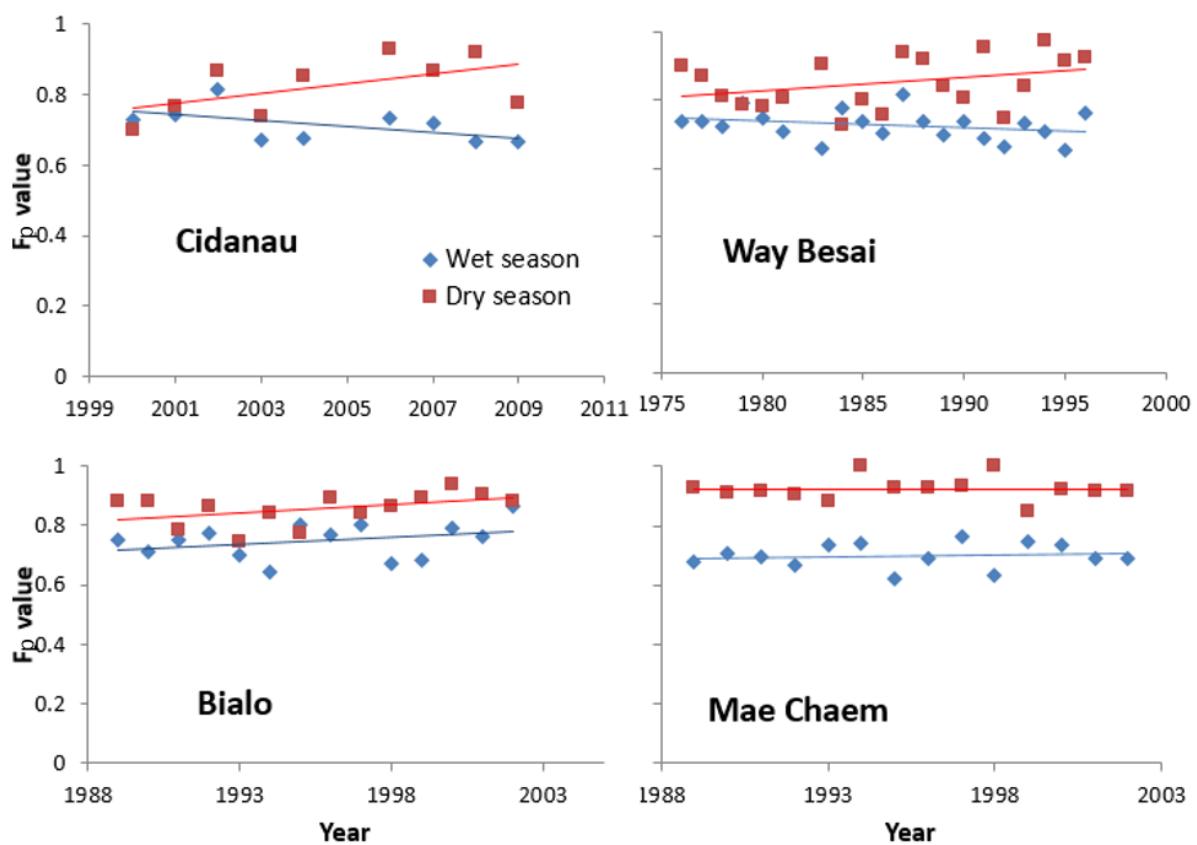
1435 Table 6. Comparison of metrics at various points in the causal network (Fig. 2 of Paper I) that can
 1436 support watershed management and prevention of flood damage on the list of seven issues (I – VII)
 1437 introduced in Fig. 1 Paper I*.

Terrain-based (7A and 5 in Fig. 2 of part I)			Based on river flow characteristics (4 in Fig. 2 of part I)						Integrated (5-7) terrain + climate + land use + river flow models	
Is- sues*	Forest cover	Fraction of flow technically regulated	Q_{\max} / Q_{\min}	Flashiness index	Flow frequency analysis	Curve-number (rainfall-runoff)	Base-flow	Flow persistence, F_p	Spatial analysis	Spatial water flow model
Range	0-100%	0-100%	1 - ω	0 - 2		1 - 100	0-100%	0 - 1		
IA	No	Yes	No	Yes	Yes	No	Yes	Partially	Yes	
IB	No	Yes	No	No	Yes	No	Yes	Partially	Yes	
IIA	Not	Partially	Not	Not	Yes	Partially	Partially	Partially	Partially	Partially
IIB	Partially	Yes	Not	Not	Not	Partially	Partially	Partially	Partially	Yes
IIC	Not	Partially	Not	Partially	Partially	Not	Partially	Partially	Partially	Yes
III	Partially	Partially	Not	Partially	Yes	Partially	Partially	Partially	Partially	Yes
IVA	Single	-	Single	Single	Multi	Multi	Single	Single	Single	Single
IVB	Robust	Robust	Sensitive	Sensitive	Sensitive	Sensitive	Robust	Robust	Robust	Robust
V	Partially	Not	Not	Yes	No	No	Partially	Yes	Partially	Partially
VI	Not	Not	Not	Partially	Not	Not	Not	Yes	Partially	Partially
VII	Not	Neutral	Not	Yes	Yes	Neutral	Neutral	Yes	Yes	Yes

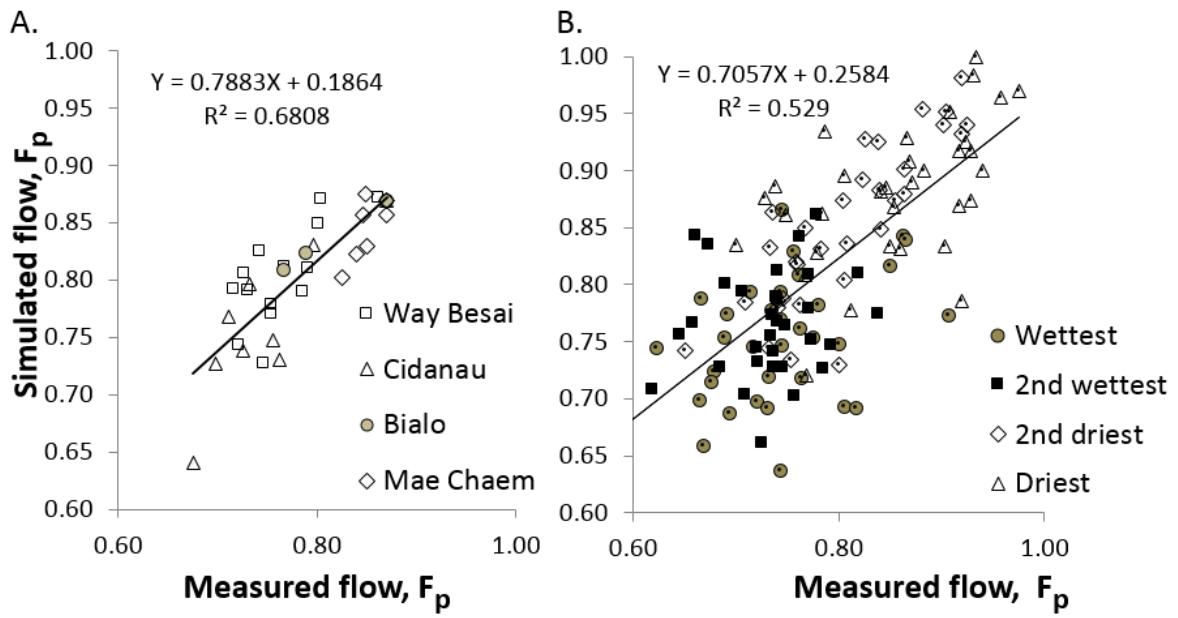
1438


- 1439 I. Does the indicator relate to important aspects of watershed behaviour (A. Flood damage
 1440 prevention; B. Low flow water availability)?
- 1441 II. Does its quantification help to select management actions? (A. Risk assessment, insurance
 1442 design; B. Spatial planning, engineering interventions; C. Fine-tuning land use)
- 1443 III. Is it consistent with current understanding of key processes
- 1444 IV. Are data requirements feasible (A. Lowest temporal resolution for estimates (years); B.
 1445 Consistency of numerical results and sensitivity to bias and random error in data sources?)
- 1446 V. Does it match local knowledge and concerns?
- 1447 VI. Can it be used to empower local stakeholders of watershed management through
 1448 performance (outcome) based contracts?
- 1449 VII. Can it inform local risk management?

1451 Table 7. Data availability

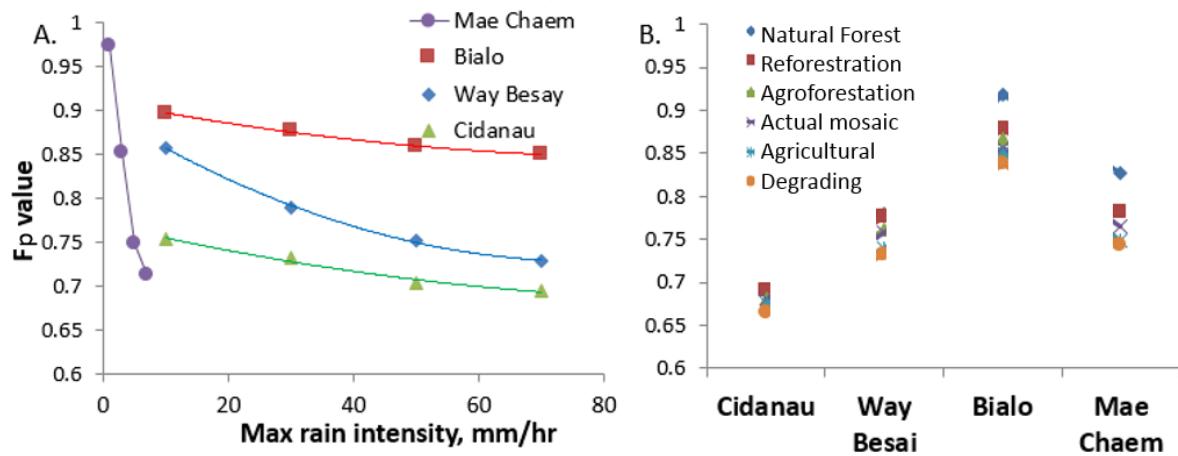

	Bialo	Cidanau	Mae Chaem	Way Besai
Rainfall data	1989-2009, Source: BWS Sulawesi ^a and PUSAIR ^b ; Average rainfall data from the stations Moti, Bulo-bulo, Seka and Onto	1998-2008, source: BMKG ^c	1998-2002, source: WRD55, MTD22, RYP48, GMT13, WRD 52	1976-2007, Source: BMKG, PU ^d and PLN ^e (interpolation of 8 rainfall stations using Thiessen polygon)
River flow data	1993-2010, source; BWS Sulawesi and PUSAIR	2000-2009, source: KTI ^f	1954-2003, source: ICHARM ^g	1976-1998, source: PU and PUSAIR
Reference of detailed report	http://old.icraf.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=PP0343-14	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=PO0292-13	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=MN0048-11	http://worldAgroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=MN0048-11

1452 Note:


1453 ^a BWS: Balai Wilayah Sungai (*Regional River Agency*)1454 ^bPUSAIR: Pusat Litbang Sumber Daya Air (*Centre for Research and Development on Water Resources*)1455 ^cBMKG: Badan Meteorologi Klimatologi dan Geofisika (*Agency on Meteorology, Climatology and Geophysics*)1457 ^dPU: Dinas Pekerjaan Umum (*Public Work Agency*)1458 ^ePLN: Perusahaan Listrik Negara (*National Electric Company*)1459 ^fKTI: Krakatau Tirta Industri, a private steel company1460 ^gICARM: The International Centre for Water Hazard and Risk Management

1463 Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water
 1464 towers are defined on the basis of ability to generate river flow and being in the upper part of a
 1465 watershed)

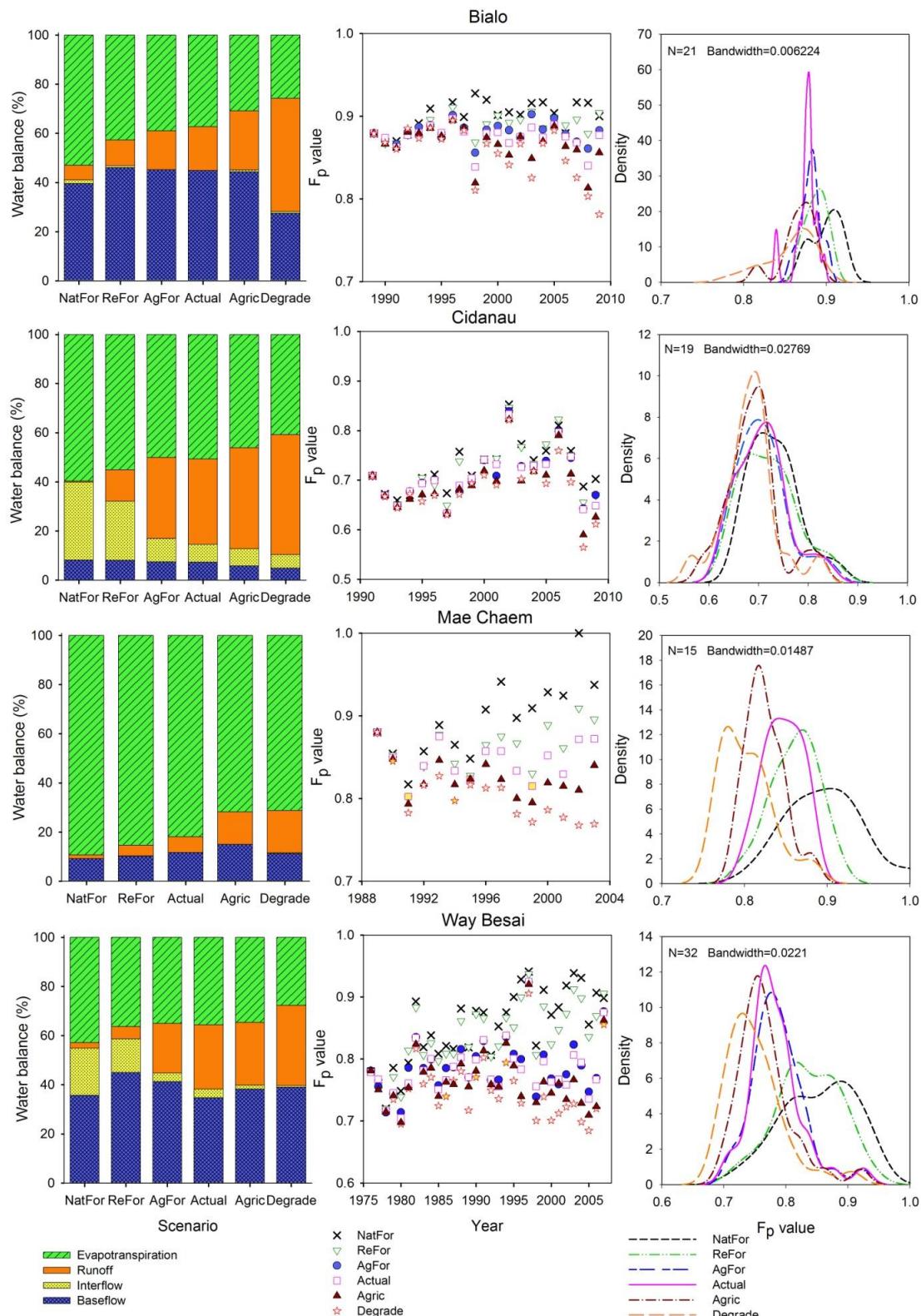
1469 Figure 2. Flow persistence (F_p) estimates derived from measurements in four Southeast Asian
 1470 watersheds, separately for the wettest and driest 3-month periods of the year



1473

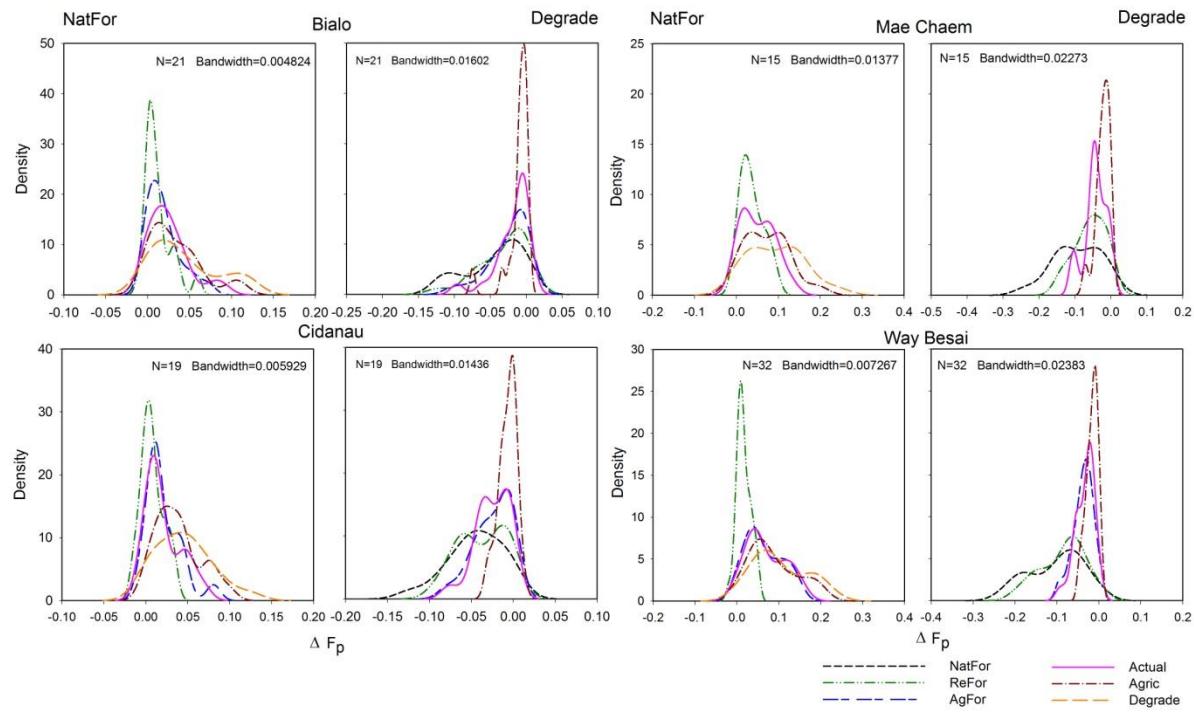
1474 Figure 3. Inter- (A) and intra- (B) annual variation in the F_p parameter derived from empirical versus
1475 modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B)

1476


1477

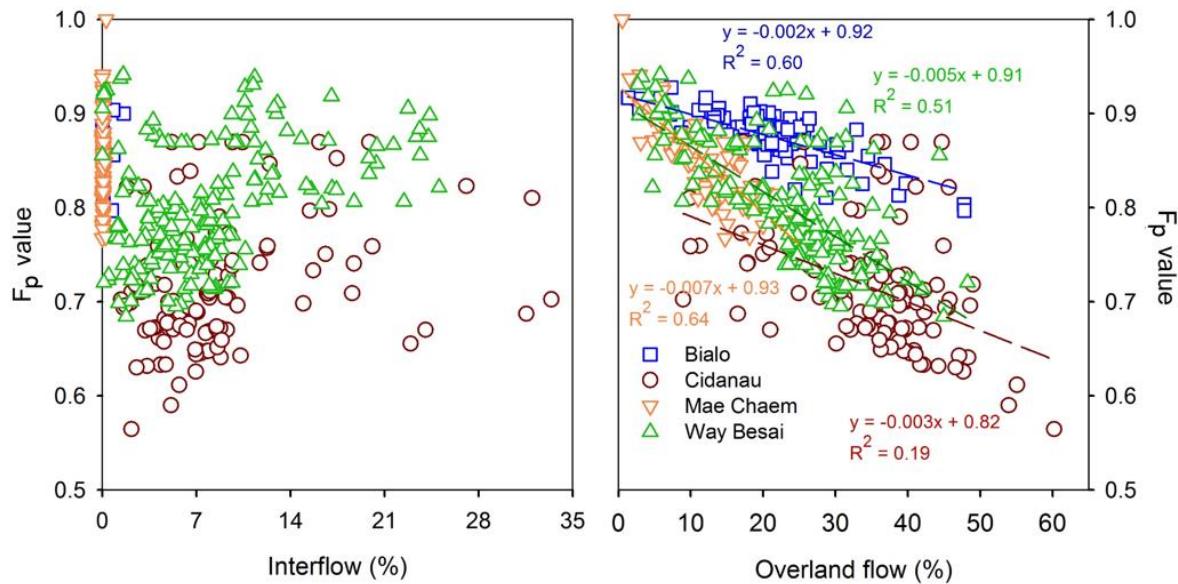
1478

1479 Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B)
 1480 change scenarios of Table 4 across the four watersheds

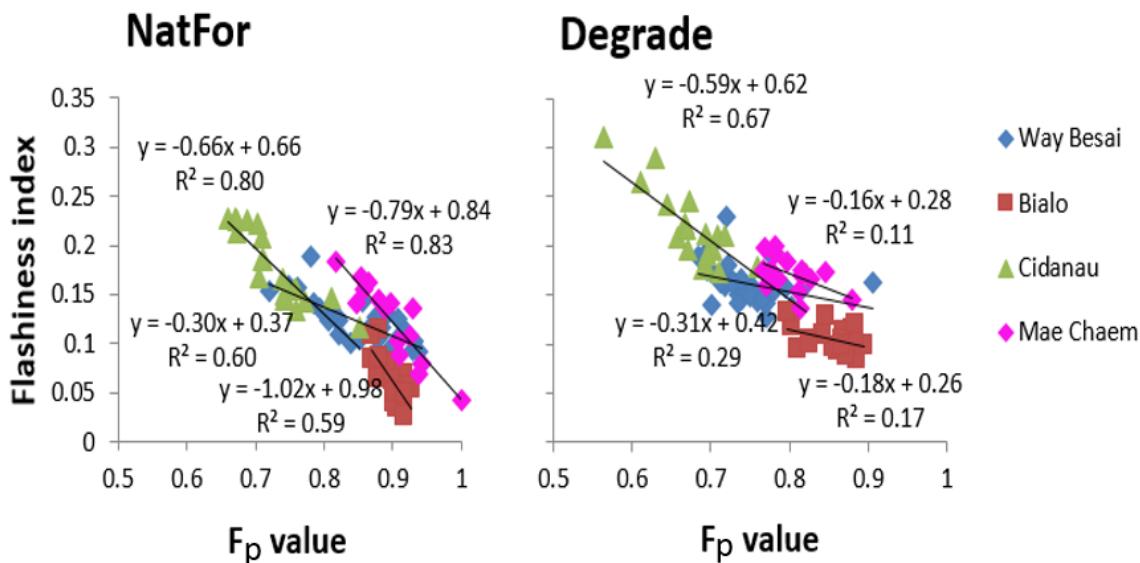

1481

1482

1483 Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four
 1484 watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall records;
 1485 the left side panels show average water balance for each land cover scenario, the middle panels
 1486 the F_p values per year and land use, the right-side panels the derived frequency distributions
 1487 (best fitting Weibull distribution)


1488

1489


1490 Figure 6. Frequency distribution of expected difference in F_p in 'paired plot' comparisons where land
1491 cover is the only variable; left panels: all scenarios compared to 'Reforestation', right panel: all
1492 scenarios compared to degradation; graphs are based on a kernel density estimation (smoothing)
1493 approach

1494

1495

1496 Figure 7. Correlations of F_p with fractions of rainfall that take overland flow and interflow pathways
 1497 through the watershed, across all years and land use scenarios of Figure App2
 1498

1499

1500 Figure 8. Relationship between F_p value and R-B Flashiness index across years in four Southeast Asian
 1501 watersheds under a 'natural forest' and 'degradation' scenario, simulated with the GenRiver model

1502 Appendix 1. GenRiver model for effects of land cover on river flow

1503 The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological model
1504 that simulates river flow based on water balance concept with a daily time step and a flexible spatial
1505 subdivision of a watershed that influences the routing of water. The core of the GenRiver model is a
1506 “patch” level representation of a daily water balance, driven by local rainfall and modified by the
1507 land cover and land cover change and soil properties. The model starts accounting of rainfall or
1508 /precipitation (P) and traces the subsequent flows and storage in the landscape that can lead to
1509 either evapotranspiration (E), river flow (Q) or change in storage (ΔS) (Figure App1):

1510 $P = Q + E + \Delta S$ [1]

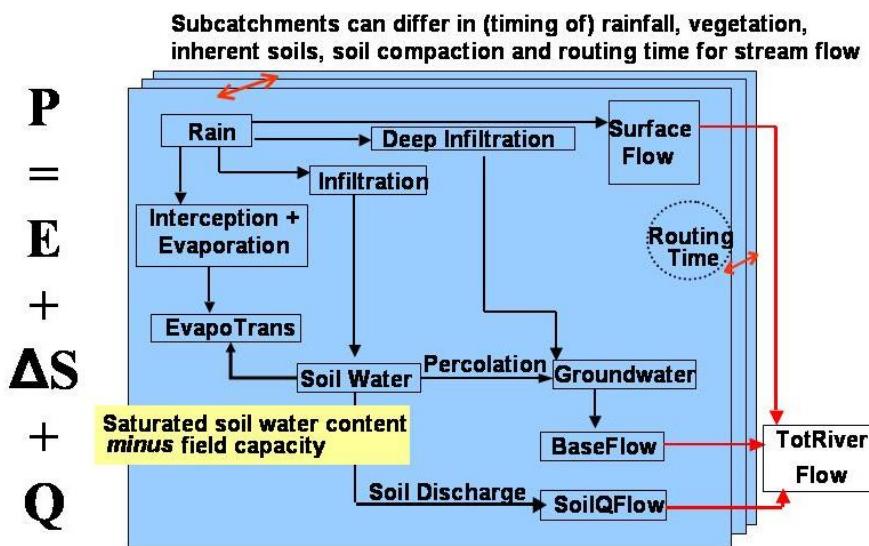
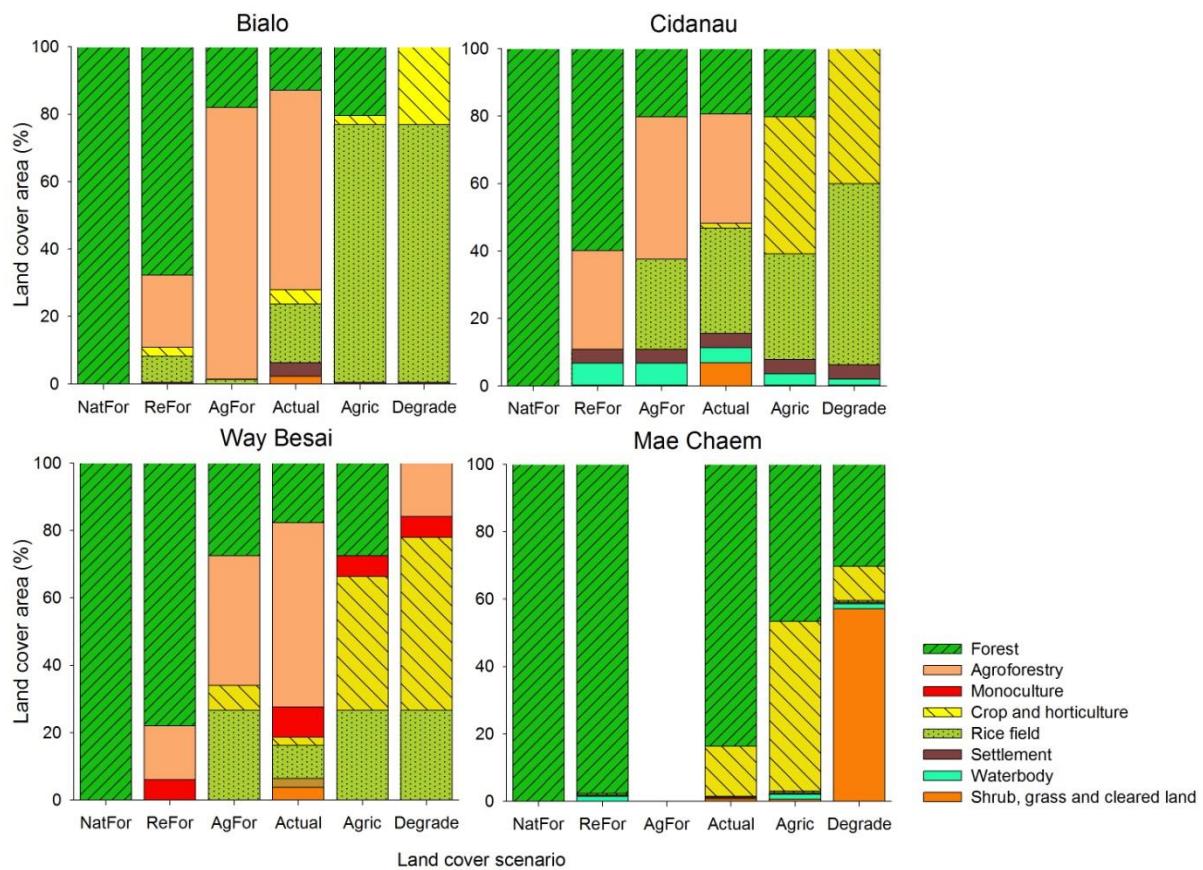


Figure App1.Overview of the GenRiver model

1511

1512 The model may use measured rainfall data, or use a rainfall generator that involves Markov chain
1513 temporal autocorrelation (rain persistence). The model can represent spatially explicit rainfall, with
1514 stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 2) and partial
1515 spatial correlation of daily rainfall between subcatchments. Canopy interception leads to direct
1516 evaporation of an amount of water controlled by the thickness of waterfilm on the leaf area that
1517 depends on the land cover, and a delay of water reaching the soil surface (parameter
1518 RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other components
1519 of evapotranspiration is controlled by the InterceptEffectontrans parameter that in practice may
1520 depend on the time of day rainfall occurs and local climatic conditions such as windspeed)


1521 At patch level, vegetation influences interception, retention for subsequent evaporation and delayed
1522 transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land cover) also
1523 influences soil porosity and infiltration, modifying the inherent soil properties. Groundwater pool
1524 dynamics are represented at subcatchment rather than patch level, integrating over the landcover
1525 fractions within a subcatchment. The output of the model is river flow which is aggregated from
1526 three types of stream flow: surface flow on the day of the rainfall event; interflow on the next day;
1527 and base flow gradually declining over a period of time. The multiple subcatchments that make up
1528 the catchment as a whole can differ in basic soil properties, land cover fractions that affect

1529 interception, soil structure (infiltration rate) and seasonal pattern of water use by the vegetation.
1530 The subcatchment will also typically differ in “routing time” or in the time it takes the streams and
1531 river to reach any specified observation point (with default focus on the outflow from the
1532 catchment). The model itself (currently implemented in Stella plus Excel), a manual and application
1533 case studies are freely available (<http://www.worldAgroforestry.org/output/genriver-generic-river-model-river-flow>;van Noordwijk et al., 2011).

1535

1536 Appendix 2. Watershed-specific consequences of the land use change scenarios

1537 The generically defined land use change scenarios (Table 4) led to different land cover proportions,
1538 depending on the default land cover data for each watershed, as shown in Figure App2.

1539
1540 Figure App2. Land use distribution of the various land use scenarios explored for the four
1541 watersheds (see Table 4)

1542

```

1543 Appendix 3. Example of a macro in R to estimate number of observation required using bootstrap
1544 approach.

1545

1546 #The bootstrap procedure is to calculate the minimum sample size (number of observation) required
1547 #for a significant land use effect on Fp
1548 #bialo1 is a dataset contains delta Fp values for two different from Bialo watershed
1549
1550 #read data
1551 bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",")
1552
1553 #name each parameter
1554 BL1 <- bialo1$ReFor
1555 BL5 <- bialo1$Degrade
1556
1557 N = 1000 #number replication
1558
1559 n <- c(5:50) #the various sample size
1560
1561 J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset)
1562
1563 P15= matrix(ncol=J, nrow=R) #variable for storing p-value
1564 P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile
1565
1566 for (j in 1:J) #estimating for different n
1567
1568 #bootstrap sampling
1569 {
1570 for (i in 1:N)
1571 {
1572 #sampling data
1573 S1=sample(BL1, n[j], replace = T)
1574 S5=sample(BL5, n[j], replace = T)
1575
1576 #Kolmogorov-Smirnov test for equal distribution and get the p-Value
1577 KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15$p.value
1578 }
1579
1580 #Confidence interval of CI
1581 P15Q3[j] <- quantile(P15[,j], 0.975)
1582
1583 }
1584
1585 #saving P value data and CI
1586
1587 write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v
1588 /

```