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Abstract 1 

We present and discuss a candidate for a single parameter representation of the complex 

concept of watershed health that does align short and long term responses, and provides 

bounds to the levels of unpredictability. Flow buffering in landscapes is commonly 

interpreted as ecosystem service, but needs quantification, as flood damage reflects 

insufficient adaptation of human presence and activity to location and variability of river 

flow in a given climate. Increased variability and reduced predictability of river flow is a 

common sign, in public discourse, of degrading watersheds, combining increased flooding 

risk and reduced low flows. Geology, landscape form, soil porosity, litter layer and surface 

features, drainage pathways, vegetation and space-time patterns of rainfall interact in 

complex scale-dependent patterns of river flow, but the anthropogenic aspects tend to get 

discussed on a one-dimensional scale of degradation and restoration, or in other parts of the 

literature as due to climate change. A strong tradition in public discourse associates changes 

on such degradation-restoration axis with binary deforestation-reforestation shifts. 

Empirical evidence for such link that may exist at high spatial resolution may not be a safe 

basis for securing required flow buffering in landscapes at large. We define a dimensionless 

flow persistence parameter Fp that represents predictability of river flow in a recursive flow 

model. Analysis suggests that buffering has two logically interlinked effects: a smaller 

fraction of fresh rainfall enters the streams, and flow becomes more persistent, in that the 

ratio of the flow on subsequent days has a higher minimum level. As a potential indicator of 

watershed health (or quality), the Fp metric (or its change over time from what appears to be 

the local norm) matches local knowledge concepts, captures key aspects of the river flow 

dynamic and can be unambiguously derived from empirical river flow data. Further 

exploration of responsiveness of Fp in watersheds with different characteristics to the 

interaction of land cover and the specific realization of space-time patterns of rainfall in a 

limited observation period is needed to test the interpretation of Fp as indicator of 

watershed condition.  

1 Introduction 

Degradation of watersheds and its consequences for river flow regime and flooding intensity and 

frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et 

al., 2013). Current watershed rehabilitation programs that focus on increasing tree cover in upper 

watersheds are only partly aligned with current scientific evidence of effects of large-scale tree 

planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van Noordwijk et 

al., 2007, 2015a; Verbist et al., 2010). The relationship between floods and change in forest quality 

and quantity, and the availability of evidence for such a relationship at various scales has been 

widely discussed over the past decades (Andréassian, 2004; Bruijnzeel, 2004; Bradshaw et al., 2007; 

van Dijk et al., 2009). Measurements in Cote d’Ivoire, for example, showed strong scale dependence 

of runoff from 30-50% at 1 m2 point scale, to 4% at 130 ha watershed scale, linked to spatial 

variability of soil properties plus variations in rainfall patterns (Van de Giesen et al., 2000). The ratio 

between peak and average flow decreases from headwater streams to main rivers in a predictable 

manner;  while mean annual discharge scales with (area)1.0, maximum river flow was found to scale 

with (area)0.7 on average (Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The 

determinants of peak flow are thus scale-dependent, with space-time correlations in rainfall 

interacting with subcatchment-level flow buffering at any point along the river. Whether and where 

peak flows lead to flooding depends on the capacity of the rivers to pass on peak flows towards 



downstream lakes or the sea, assisted by riparian buffer areas with sufficient storage capacity 

(Baldasarre et al., 2013); reducing local flooding risk by increased drainage increases flooding risk 

downstream, challenging the nested-scales management of watersheds to find an optimal spatial 

distribution, rather then minimization, of flooding probabilities. Well-studied effects of forest 

conversion on peak flows in small upper stream catchments (Alila et al., 2009) do not necessarily 

translate to flooding downstream. As summarized by Beck et al. (2013) meso- to macroscale 

catchment studies (>1 and >10 000 km2, respectively) in the tropics, subtropics, and warm 

temperate regions have mostly failed to demonstrate a clear relationship between river flow and 

change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack of effect, 

however. Detectability of effects depends on their relative size, the accuracy of the measurement 

devices, length of observation period, and background variability of the signal.  A recent econometric 

study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, after appropriate corrections 

for space-time correlates in the data-set for 31 meso- and macroscale basins (554-28,643 km2), 

conversion of inland rain forest to monocultural plantations of oil palm or rubber increased the 

number of flooding days reported, but not the number of flood events, while conversion of wetland 

forests to urban areas reduced downstream flood duration. This Malaysian study may be the first 

credible empirical evidence at this scale. The difference between results for flood duration and flood 

frequency and the result for draining wetland forests warrant further scrutiny. Consistency of these 

findings with river flow models based on a water balance and likely pathways of water under the 

influence of change in land cover and land use has yet to be shown. Two recent studies for Southern 

China confirm the conventional perspective that deforestation increases high flows, but are 

contrasting in effects of reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong 

Province in China and concluded that forest recovery had not changed the annual water yield (or its 

underpinning water balance terms precipitation and evapotranspiration), but had a statistically 

significant positive effect on dry season (low) flows.  Liu et al. (2015), however, found for the 

Meijiang watershed (6983 km2) in subtropical China that while historical deforestation had 

decreased the magnitudes of low flows (daily flows ≦ Q95%) by 30.1%, low flows were not 

significantly improved by reforestation. They concluded that recovery of low flows by reforestation 

may take much longer time than expected probably because of severe soil erosion and resultant loss 

of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited period of 

time can be the combined and interactive effects of variations in the local rainfall regime, land cover 

effects on soil structure and engineering modifications of water flow that can be teased apart with 

modelling tools (Ma et al., 2014). 

Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ from 

those of plantation forestry, while forest statistics do not normally differentiate between these 

different land covers. In a regression study of the high and low flow regimes in the Volta and 

Mekong river basins Lacombe and McCartney (2016) found that in the variation among tributaries 

various aspects of land cover and land cover change had explanatory power. Between the two 

basins, however, these aspects differed. In the Mekong basin variation in forest cover had no direct 

effect on flows, but extending paddy areas resulted in a decrease in downstream low flows, probably 

by increasing evapotranspiration in the dry season. In the Volta River Basin, the conversion of forests 

to crops (or a reduction of tree cover in the existing parkland system) induced greater downstream 

flood flows. This observation is aligned with the experimental identification of an optimal, 

intermediate tree cover from the perspective of groundwater recharge in parklands in Burkina Faso 

(Ilstedt et al., 2016).  

The statistical challenges of attribution of cause and effect in such data-sets are considerable with 

land use/land cover effects interacting with spatially and temporally variable rainfall, geological 



configuration and the fact that land use is not changing in random fashion or following any pre-

randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 catchments 

in Puerto Rico by Beck et al. (2013) did not find significant relationships between the change in 

forest cover or urban area, and change in various flow characteristics, despite indications that 

regrowing forests increased evapotranspiration. Yet, the concept of a ‘regulating function’ on river 

flow regime for forests and other semi-natural ecosystems is widespread. The considerable human 

and economic costs of flooding at locations and times beyond where this is expected make the 

presumed ‘regulating function’ on flood reduction of high value (Brauman et al., 2007) – if only we 

could be sure that the effect is real, beyond the local scales (< 10 km2) of paired catchments where 

ample direct empirical proof exists (Bruijnzeel, 1990, 2004). These observations imply that percent 

tree cover (or other forest related indicators) is probably not a good metric for judging the 

ecosystem services provided by a watershed (of different levels of ‘health’), and that a metric more 

directly reflecting changes in river flow may be needed. Here we will explore a simple recursive 

model of river flow (van Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can 

account for the types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014), 

and (iii) may constitute a suitable performance indicator to monitor watershed ‘health‘ through 

time.  

 Figure 1 

Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure and 

vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, while 

exposure depends on topographic position interacting with human presence, and vulnerability can 

be modified by engineering at a finer scale and be further reduced by advice to leave an area in high-

risk periods. A recent study (Jongman et al., 2015) found that human fatalities and material losses 

between 1980 and 2010 expressed as a share of the exposed population and gross domestic product 

were decreasing with rising income. The planning needed to avoid extensive damage requires 

quantification of the risk of higher than usual discharges, especially at the upper tail end of the flow 

frequency distribution. 

The statistical scarcity, per definition, of ‘extreme events’ and the challenge of data collection where 

they do occur, make it hard to rely on empirical data as such. Existing data on flood frequency and 

duration, as well as human and economic damage are influenced by topography, human population 

density and economic activity, responding to engineered infrastructure (step 4 and 5 in Figure 1), as 

well as the extreme rainfall events that are their proximate cause. Subsidence due to groundwater 

extraction in urban areas of high population density is a specific problem for a number of cities built 

on floodplains (such as Jakarta and Bangkok), but subsidence of drained peat areas has also been 

found to increase flooding risks elsewhere (Sumarga et al., 2016). Common hydrological analysis of 

flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood events, for example) does not 

separately attribute flood magnitude to rainfall and land use properties, and analysis of likely change 

in flood frequencies in the context of climate change adaptation has been challenging (Milly et al., 

2002; Ma et al., 2014). There is a lack of simple performance indicators for watershed health at its 

point of relating precipitation P and river flow Q (step 2 in Figure 1) that align with local observations 

of river behaviour and concerns about its change and that can reconcile local, public/policy and 

scientific knowledge, thereby helping negotiated change in watershed management (Leimona et al., 

2015). The behaviour of rivers depends on many climatic (step 1 in Figure 1) and terrain factors (step 

7-9 in Figure 1) that make it a challenge to differentiate between anthropogenically induced 

ecosystem structural change and soil degradation (step 7a) on one hand and intrinsic variability on 

the other. Arrow 10 in Figure 1 represents the direct influence of climate on vegetation, but also a 



possible reverse influence (van Noordwijk et al., 2015b). Hydrological models tend to focus on 

predicting hydrographs at one or more temporal scales, and are usually tested on data-sets from 

limited locations. Despite many decades (if not centuries) of hydrological modelling, current 

hydrologic theory, models and empirical methods have been found to be largely inadequate for 

sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts to resolve this through 

harmonization of modelling strategies have so far failed. Existing models differ in the number of 

explanatory variables and parameters they use, but are generally dependent on empirical data of 

rainfall that are available for specific measurement points but not at the spatial resolution that is 

required for a close match between measured and modelled river flow. Spatially explicit models 

have conceptual appeal (Ma et al., 2010) but have too many degrees of freedom and too many 

opportunities for getting right answers for wrong reasons if used for empirical calibration (Beven, 

2011). Parsimonious, parameter-sparse models are appropriate for the level of evidence available to 

constrain them, but these parameters are themselves implicitly influenced by many aspects of 

existing and changing features of the watershed, making it hard to use such models for scenario 

studies of changing land use and change in climate forcing. Here we present a more direct approach 

deriving a metric of flow predictability that can bridge local concerns and concepts to quantified 

hydrologic function: the ‘flow persistence’ parameter (step 2 in Figure 1).   

Figure 1 clarified how ecosystem structure, ecosystem function and human land use interact in 

causal loops that can lead to flood damage, its control and/or prevention. Various geographically 

defined watershed health concepts are in use (see for example https://www.epa.gov/hwp/healthy-

watersheds-projects-region-5; City of Fort Collins, 2015, employing a range of specific indicators, 

including a ‘flashiness index’ (Baker et al. 2004). The spatial aspects of such indicators tend to 

combine the underlying geology, geomorphology, vegetation and climate, with aspects of 

anthropogenic change. A holistic ‘watershed health’ concept may have to include all three elements, 

similar to the way a human health concept involves a physical condition of the human body 

responding to external environment (e.g. levels of air pollution) and human behaviour that 

influences exposure and its consequences. The definition of human health has evolved over time. 

Human health was seen as a state of normal function that could be disrupted from time to time by 

disease. In 1948 the World Health Organization (1958) proposed a definition that aimed higher, 

linking health to well-being, in terms of physical, mental, and social aspects, and not merely the 

absence of disease and infirmity. Health became seen as the ability to maintain homeostasis and 

recover from injury, but remained embedded in the environment in which humans function. There 

probably is space for a new synthetic indicator or metric. 

In this contribution to the debate we will first define the metric ‘flow persistence’ in the context of 

temporal autocorrelation of river flow and then derive a way to estimate its numerical value. In part 

II we will apply the algorithm to river flow data for a number of contrasting meso-scale watersheds. 

In the discussion of this paper we will consider the new flow persistence metric in terms of three 

groups of criteria for usable knowledge (Clark et al., 2011; Lusiana et al., 2011; Leimona et al., 2015) 

based on salience (1,2), credibility (3,4) and legitimacy (5-7): 

1. Does flow persistence relate to important aspects of watershed behaviour?  

2. Does its quantification help to select management actions? 

3. Is there consistency of numerical results? 

4. How sensitive is it to bias and random error in data sources? 

https://www.epa.gov/hwp/healthy-watersheds-projects-region-5
https://www.epa.gov/hwp/healthy-watersheds-projects-region-5


5. Does it match local knowledge?  

6. Can it be used to empower local stakeholders of watershed management?  

7. Can it inform local risk management?  

Questions 3 and 4 will get specific attention in part II.  

2 Recursive river flow model and flow persistence  

2.1 Basic equations 

One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, related to 

the volumetric flow (discharge) via rating curves (Maidment, 1992). Without knowing details of 

upstream rainfall and the pathways the rain takes to reach the river, observation of the daily 

fluctuations in water level allows important inferences to be made. It is also of direct utility: sudden 

rises can lead to floods without sufficient warning, while rapid decline makes water utilization 

difficult. Indeed, a common local description of watershed degradation is that rivers become more 

‘flashy’ and less predictable, having lost a buffer or ‘sponge‘ effect (Joshi et al., 2004; Ranieri et al., 

2004; Rahayu et al., 2013). A simple model of river flow at time t, Qt, is that it is similar to that of the 

day before (Qt-1), to the degree Fp, a dimensionless parameter called ‘flow persistence’ (van 

Noordwijk et al., 2011) plus an additional stochastic term Qa,t: 

Qt =Fp Qt-1 + Qa,t                                                   [1]. 

Qt is for this analysis expressed in mm d-1, which means that measurements in m3 s-1 need to be 

divided by the relevant catchment area, with appropriate unit conversion. If river flow were 

constant, it would be perfectly predictable, i.e. Fp would be 1.0 and Qa,t zero; in contrast, an Fp-value 

equal to zero and Qa,t directly reflecting erratic rainfall represents the lowest possible level of 

predictability.  

The Fp parameter is conceptually identical to the ‘recession constant’ commonly used in hydrological 

models, typically assessed during an extended dry period when the Qa,t term is negligible and 

streamflow consists of base flow only (Tallaksen, 1995); empirical deviations from a straight line in a 

plot of the logarithm of Q against time are common and point to multiple rather than a single 

groundwater pool that contributes to base flow. The larger catchment area has a possibility to get 

additional flow from multiple independent groundwater contribution. 

As we will demonstrate in a next section, it is possible to derive Fp even when Qa,t is not negligible. In 

climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent Fp 

between wet and dry parts of the hydrologic year. A possible interpretation, to be further explored, 

is that decrease over the years of Fp indicates ‘watershed degradation’ (i.e. greater contrast between 

high and low flows), and an increase ‘improvement’ or ‘rehabilitation’ (i.e. more stable flows). 

If we consider the sum of river flow over a period of time (from 1 to T) we obtain 

Σ1
T Qt =Fp Σ1

T Qt-1 + Σ1
T Qa,t                               [2]. 

If the period is sufficiently long period for QT minus Q0 (the values of Qt for t=T and t=0, respectively) 

to be negligibly small relative to the sum over all t‘s, we may equate Σ1
T Qt with Σ1

T Qt-1 and obtain a 

first way of estimating the Fp value: 



Fp = 1 – Σ1
T Qa,t / Σ1

T Qt                                        [3]. 

Rearranging Eq.(3) we obtain 

Σ1
T Qa,t = (1 – Fp) Σ1

T Qt          [4]. 

The ΣQa,t term reflects the sum of peak flows in mm, while Fp ΣQt  reflects the sum of base flow, also 

in mm. Clarifying the Qa contribution is equivalent with one of several ways to separate base flow 

from peak flows. For Fp = 1 (the theoretical maximum) we conclude that all Qa,t must be zero, and all 

flow is ‘base flow‘.  

The stochastic Qa,t can be interpreted in terms of what hydrologists call ‘effective rainfall’ (i.e. rainfall 

minus on-site evapotranspiration, assessed over a preceding time period tx since previous rain 

event): 

Qt =Fp Qt-1 + (1-Fp)(Ptx – Etx)                                                   [5]. 

Where Ptx is the (spatially weighted) precipitation (assuming no snow or ice, which would shift the 

focus to snowmelt) in mm d-1; Etx , also in mm d-1, is the preceding evapotranspiration that allowed 

for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-replenishing 

rainfall that induced empty pore space in the soil for infiltration and retention), or replenishment of 

a waterfilm on aboveground biomass that will subsequently evaporate. More complex attributions 

are possible, aligning with the groundwater replenishing bypass flow  and the water isotopic 

fractionation involved in evaporation (Evaristo et al., 2015).  

The consistency of multiplying effective rainfall with (1-Fp) can be checked by considering the 

geometric series (1-Fp), (1-Fp) Fp, (1-Fp) Fp
2, …, (1-Fp) Fp

n which adds up to (1-Fp)(1 - Fp
n)/(1-Fp) or 1 - 

Fp
n.  This approaches 1 for large n, suggesting that all of the water attributed to time t, i.e. Pt – Etx, 

will eventually emerge as river flow. For Fp = 0 all of (Pt – Etx) emerges on the first day, and river flow 

is as unpredictable as precipitation itself. For Fp = 1 all of (Pt – Etx) contributes to the stable daily flow 

rate, and it takes an infinitely long period of time for the last drop of water to get to the river. For 

declining Fp, (1 > Fp > 0), river flow gradually becomes less predictable, because a greater part of the 

stochastic precipitation term contributes to variable rather than evened-out river flow.  

Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain: 

ΣQt =Σ(Fp Qt-1 + (1-Fp)(Pt – Etx)) = Fp Σ Qt-1 + (1-Fp)( Σ Pt – Σ Etx))        [6]. 

Which is consistent with the basic water budget, ΣQ = ΣP – ΣE, at time scales long enough for 

changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean daily 

river flow are independent of Fp. This does not preclude that processes of watershed degradation or 

restoration that affect the partitioning of P over Q and E also affect Fp.  

2.2 Low flows 

The lowest flow expected in an annual cycle is Qx Fp
Nmax where Qx is flow on the first day without rain 

and Nmax the longest series of dry days. Taken at face value, a decrease in Fp has a strong effect on 

low-flows, with a flow of 10% of Qx reached after 45, 22, 14, 10, 8 and 6 days for Fp = 0.95, 0.9, 0.85, 

0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the 

cumulative dry season flow if the dry period is sufficiently long, is Qx/(1-Fp). If Fp decreases to Fpx but 

the groundwater reservoir (Res = Qx/(1-Fp)) is not affected, initial flows in the dry period will be 

higher (Qx Fpx
i (1-Fpx) Res > Qx Fp

i (1-Fp) Res for i < log((1-Fpx)/(1-Fp))/log(Fp/Fpx)). It thus matters how 



low flows are evaluated: from the perspective of the lowest level reached, or as cumulative flow. 

The combination of climate, geology and land form are the primary determinants of cumulative low 

flows, but if land cover reduces the recharge of groundwater there may be impacts on dry season 

flow, that are not directly reflected in Fp. 

If a single Fp value would account for both dry and wet season, the effects of changing Fp on low 

flows may well be more pronounced than those on flood risk. Empirical tests are needed of the 

dependence of Fp on Q (see below). Analysis of the way an aggregate Fp depends on the dominant 

flow pathways provides a basis for differentiating Fp within a hydrologic year.  
2.3 Flow-pathway dependence of flow persistence 

The patch-level partitioning of water between infiltration and overland flow is further modified at 

hillslope level, with a common distinction between three pathways that reach streams: overland 

flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 2004). An additional 

interpretation of Eq.(1), potentially adding to our understanding of results but not needed for 

analysis of empirical data, can be that three pathways of water through a landscape contribute to 

river flow (Barnes, 1939): groundwater release with Fp,g values close to 1.0, overland flow with Fp,o 

values close to 0, and interflow with intermediate Fp,i values. 

Qt =Fp,g Qt-1,g + Fp,i Qt-1,i + Fp,o Qt-1,o + Qa,t         [7], 

Fp = (Fp,g Qt-1,g + Fp,i Qt-1,i  + Fp,o Qt-1,o)/Qt-1          [8]. 

On this basis a decline or increase in overall weighted average Fp can be interpreted as indicator of a 

shift of dominant runoff pathways through time within the watershed. Dry season flows are 

dominated by Fp,g. The effective Fp in the rainy season can be interpreted as indicating the relative 

importance of the other two flow pathways. Fp reflects the fractions of total river flow that are based 

on groundwater, overland flow and interflow pathways: 

Fp = Fp,g (ΣQt,g / ΣQt) +  Fp,o (ΣQt,o /ΣQt) +  Fp,i (ΣQt,i / ΣQt)                [9]. 

Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to 

enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated conditions 

throughout the soil profile may also induce overland flow, especially near valley bottoms (Bonell, 

1993; Bruijnzeel, 2004). Thus, the value of Fp,o
 can be substantially above zero if the rainfall has a 

significant temporal autocorrelation, with heavy rainfall on subsequent days being more likely than 

would be expected from general rainfall frequencies. If rainfall following a wet day is more likely to 

occur than following a dry day, as is commonly observed in Markov chain analysis of rainfall patterns 

(Jones and Thornton, 1997; Bardossy and Plate, 1991), the overland flow component of total flow 

will also have a partial temporal autocorrelation, adding to the overall predictability of river flow. In 

a hypothetical climate with evenly distributed rainfall, we can expect Fp to be 1.0 even if there is no 

infiltration and the only pathway available is overland flow. Even with rainfall that is variable at any 

point of observation but has low spatial correlation it is possible to obtain Fp values of (close to) 1.0 

in a situation with (mostly) overland flow (Ranieri at al., 2004).  



3. Methods  

3.1 Numerical examples 

Figure 2 provides two examples, for annual river flows of around 1600 and 600 mm y-1, of the way a 

change in Fp values (based on Eq. 1) influences the pattern of river flow for a unimodal rainfall 

regime with a well-developed dry season. The figures were constructed in a Monte Carlo realization 

of rainfall based on a (truncated) sinus-based probability of rainfall and stochastic rainfall depth to 

derive the (Ptx – Etx) term, with the Qa,t values derived as (1 – Fp) (Ptx – Etx). The increasing ‘spikiness’ 

of the graph as Fp is lowered, regardless of annual flow, indicates reduced predictability of flow on 

any given day during the wet season on the basis of the flow on the preceding day. A bi-plot of river 

flow on subsequent days for the same simulations (Figure 3) shows two main effects of reducing the 

Fp value: the scatter increases, and the slope of the lower envelope containing the swarm of points is 

lowered (as it equals Fp). Both of these changes can provide entry points for an algorithm to estimate 

Fp from empirical time series, provided the basic assumptions of the simple model apply and the 

data are of acceptable quality (see Section 3 below). For the numerical examples shown in Figure 2, 

the relative increase of the maximum daily flow when the Fp value decreased from a value close to 1 

(0.98) to nearly 0 depended on the rainfall regime; with lower annual rainfall but the same 

maximum daily rainfall, the response of peak flows to decrease in Fp became stronger.  

 Figure 2 

 Figure 3 

3.2 Flow persistence as a simple flood risk indicator 

For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as: 

Qt =Σj
t Fp

t-j (1-Fp) pj Pj          [10]. 

Where pj reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal 

trends) and Pj is the rain depth (drawn from a uniform distribution). From this model the effects of Fp 

(and hence of changes in Fp) on maximum daily flow rates, plus maximum flow totals assessed over a 

2-5 d period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall in 

the default case – see below). Relative flood protection was calculated as the difference between 

peak flows (assessed for 1-5 d duration after a 1 year ‘warm-up‘ period) for a given Fp versus those 

for Fp = 0, relative to those at Fp = 0. 

3.3 An algorithm for deriving Fp from a time series of stream flow data 

Equation (3) provides a first method to derive Fp from empirical data if these cover a full hydrologic 

year. In situations where there is no complete hydrograph and/or in situations where we want to 

quantify Fp for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change 

in the storage term of the water budget equation cannot be ignored, we need an algorithm for 

estimating Fp from a series of daily Qt observations.  

Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a 

groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). As we 

can assume for such periods that Qa,t = 0, we obtain Fp = Qt /Qt-1, under these circumstances. We 

cannot be sure, however, that this Fp,g estimate also applies in the rainy season, because overall wet-

season Fp will include contributions by Fp,o and Fp,i as well (compare Eq. 9). In locations without a 

distinct dry season, we need an alternative method. 



A biplot of Qt against Qt-1 (as in Figure 3) will lead to a scatter of points above a line with slope Fp, 

with points above the line reflecting the contributions of Qa,t >0, while the points that plot on the Fp 

line itself represent Qa,t = 0 mm d-1. There is no independent source of information on the frequency 

at which Qa,t = 0, nor what the statistical distribution of Qa,t values is if it is non-zero. Calculating back 

from the Qt series we can obtain an estimate (Qa,Fptry) of Qa,t for any given estimate (Fp,try) of Fp, and 

select the most plausible Fp value. For high Fp,try estimates there will be many negative Qa,Fptry values, 

for low Fp,try estimates all Qa,Fptry values will be larger. An algorithm to derive a plausible Fp estimate 

can thus make use of the corresponding distribution of ‘apparent Qa‘ values as estimates of Fp,try , 

calculated as Qa,try = Qt - Fp,try Qt-1. While Qa,t cannot be negative in theory, small negative Qa 

estimates are likely when using real-world data with their inherent errors. The FlowPer Fp algorithm 

(van Noordwijk et al., 2011) derives the distribution of Qa,try estimates for a range of Fp,try values 

(Figure 4B) and selects the value Fp,try that minimizes the variance Var(Qa,Fptry) (or its standard 

deviation) (Figure 4C). It is implemented in a spreadsheet workbook that can be downloaded from 

the ICRAF website  (http://www.worldagroforestry.org/output/flowper-flow-persistence-model) 

Figure 4 

A consistency test is needed that the high-end Qt values relate to Qt+1 in the same was as do low or 

medium Qt values. Visual inspection of Qt+1 versus Qt, with the derived Fp value, provides a 

qualitative view of the validity of this assumption. The Fp algorithm can be applied to any population 

of (Qt-1, Qt) pairs, e.g. selected from a multiyear data set on the basis of 3-month periods within the 

hydrological year. 

4 Results 

4.1 Flood intensity and duration  

Figure 5 shows the effect of Fp values in the range 0 to 1 on the maximum flows obtained with a 

random time series of ‘effective rainfall‘, compared to results for Fp = 0. Maximum flows were 

considered at time scales of 1 to 5 days, in a moving average routine. This way a relative flood 

protection, expressed as reduction of peak flow, could be related to Fp (Figure 5A).  

 Figure 5  

Relative flood protection rapidly decreased from its theoretical value of 100% at Fp = 1 (when there 

was no variation in river flow), to less than 10% at Fp values of around 0.5. Relative flood protection 

was slightly lower when the assessment period was increased from 1 to 5 days (between 1 and 3 d it 

decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting effects are at play here: a 

lower Fp means that a larger fraction (1-Fp) of the effective rainfall contributes to river flow, but the 

increased flow is less persistent. In the example the flood protection in situations where the rainfall 

during 1 or 2 d causes the peak is slightly stronger than where the cumulative rainfall over 3-5 d 

causes floods, as typically occurs downstream.  

As we expect from equation 5 that peak flow is to (1-Fp) times peak rainfall amounts, the effect of a 

change in Fp not only depends on the change in Fp that we are considering, but also on its initial 

value. Higher initial Fp values will lead to more rapid increases in high flows for the same reduction in 

Fp (Figure 5B). However, flood duration rather responds to changes in Fp in a curvilinear manner, as 

flow persistence implies flood persistence (once flooding occurs), but the greater the flow 

persistence the less likely such a flooding threshold is passed (Figure 5C). The combined effect may 

http://www.worldagroforestry.org/output/flowper-flow-persistence-model


be restricted to about 3 d of increase in flood duration for the parameter values used in the default 

example, but for different parametrization of the stochastic ε other results might be obtained.  

4.2 Algorithm for Fp estimates from river flow time series 

The algorithm has so far returned non-ambiguous Fp estimates on any modelled time series data of 

river flow, as well as for all empirical data set we tested (including all examples tested in part II), 

although there probably are data sets on which it can breakdown. Visual inspection of Qt-1/Qt biplots 

(as in Figure 3) can provide clues to non-homogenous data sets, to potential situations where 

effective Fp depends on flow level Qt and where data are not consistent with a straight-line lower 

envelope. Where river flow estimates were derived from a model with random elements, however, 

variation in Fp estimates was observed, that suggests that specific aspects of actual rainfall, beyond 

the basic characteristics of a watershed and its vegetation, do have at least some effect. Such effects 

deserve to be further explored for a set of case studies, as their strength probably depends on 

context.  

5 Discussion 

We will discuss the flow persistence metric based on the questions raised from the perspectives of 

salience, credibility and legitimacy. 

5.1 Salience 

Key salience aspects are “Does flow persistence relate to important aspects of watershed 

behaviour?” and “Does it help to select management actions?”. A major finding in the derivation of 

Fp was that the flow persistence measured at daily time scale can be logically linked to the long-term 

water balance, and that the proportion of peak rainfall that translates to peak river flow equals the 

complement of flow persistence. This feature links effects on floods of changes in watershed quality 

to effects on low flows, although not in a linear relationship. The Fp parameter as such does not 

predict when and where flooding will occur, but it does help to assess to what extent another 

condition of the watershed, with either higher or lower Fp would translate the same rainfall into 

larger or small peak water flows. This is salient, especially if the relative contributions of 

(anthropogenic) land cover and the (exogenous, probabilistic) specifics of the rainfall pattern can be 

further teased apart (see part II). Where Fp may describe the descending branch of hydrographs at a 

relevant time scale, details of the ascending branch beyond the maximum daily flow reached may be 

relevant for reducing flood damage, and may require more detailed study at higher temporal 

resolution. 

A key strength of our flow persistence parameter, that it can be derived from observing river flow at 

a single point along the river, without knowledge of rainfall events and catchment conditions, is also 

its major weakness. If rainfall data exist, and especially rainfall data that apply to each 

subcatchment, the Qa term doesn’t have to be treated as a random variable and event-specific 

information on the flow pathways may be inferred for a more precise account of the hydrograph. 

But for the vast majority of rivers in the tropics, advances in remotely sensed rainfall data are 

needed to achieve that situation and Fp may be all that is available to inform public debates on the 

relation between forests and floods.  

Figures 2 and 5 show that most of the effects of a decreasing Fp value on peak discharge (which is 

the basis for downstream flooding) occur between Fp values of 1 and 0.7, with the relative flood 



protection value reduced to 10% when Fp reaches 0.5. As indicated in Figure 1, peak discharge is only 

one of the factors contributing to flood risk in terms of human casualties and physical damage. Flood 

risks are themselves nonlinearly and in strongly topography-specific ways related to the volume of 

river flow after extreme rainfall events. While the expected fraction of rainfall that contributes to 

direct flow is linearly related to rainfall via (1-Fp), flooding risk as such will have a non-linear 

relationship with rainfall, that depends on topography and antecedent rainfall. Catchment changes, 

such as increases or decreases in percentage tree cover, will generally have a non-linear relationship 

with Fp as well as with flooding risks. The Fp value has an inverse effect on the fraction of recent 

rainfall that becomes river flow, but the effect on peak flows is less, as higher Fp values imply higher 

base flow. The way these counteracting effects balance out depends on details of the local rainfall 

pattern (including its Markov chain temporal autocorrelation), as well as the downstream 

topography and risk of people being at the wrong time at a given place, but the Fp value is an 

efficient way of summarizing complex land use mosaics and upstream topography in its effect on 

river flow. The difference between wet-season and dry-season Fp deserves further analysis. In 

climates with a real rainless dry-season, dry season Fp is dominated by the groundwater release 

fraction of the watershed, regardless of land cover, while in wet season it depends on the mix 

(weighted average) of flow pathways. The degree to which Fp can be influenced by land cover needs 

to be assessed for each landscape and land cover combination, including the locally relevant forest 

and forest derived land classes, with their effects on interception, soil infiltration and time pattern of 

transpiration. The Fp value can summarize results of models that explore land use change scenarios 

in local context. To select the specific management actions that will maintain or increase Fp a locally 

calibrated land use/hydrology model is needed, such as GenRiver (part II), DHV (Bergström, 1995) or 

SWAT (Yen et al., 2015).  

Although a higher Fp value will in most cases be desirable (and a decrease in Fp undesirable), we may 

expect that downstream biota have adjusted to the pre-human flow conditions and its inherent Fp 

and variability. Decreased variability of flow achieved by engineering interventions (e.g. a reservoir 

with constant release of water to generate hydropower) may have negative consequences for fish 

and other biota (Richter et al., 2003; McCluney et al., 2014). 

The “health” concept we use is a comprehensive one of the way climate forcing, watershed 

vegetation and soil conditions and engineering interventions interact on functional aspects of river 

flow. In the catchments we considered in part II there have been no major dams or reservoirs 

installed. Ma et al (2014) described a method to separate these three influences on river flow. 

Where these do exist the specific operating rules of reservoirs need to be included in any model and 

these can have a major influence on downstream flow, depending on the primary use for power 

generation, dry season irrigation or stabilizing river flow for riverine transport. 

The most damaging floods in any landscape are the result of extreme events that, by their very 

nature, are hardly represented in any data set. Where Fp is derived from empirical data, 

extrapolation to rainfall conditions beyond what occurred in the measurement period will, 

regardless of the method used, have increased uncertainty. The same applies to existing methods 

for estimating 1:100 or 1:1000 year floods. 

5.2 Credibility 

Key credibility questions are “Consistency of numerical results?” and “How sensitive are results to 

bias and random error in data sources?”. This is further discussed in part II, after a number of case 

studies has been studied. The main conclusions are that intra-annual variability of Fp values between 



wet and dry seasons was around 0.2 in the case studies, interannual variability in either annual or 

seasonal Fp was generally in the 0.1 range, while the difference between observed and simulated 

flow data as basis for Fp calculations was mostly less than 0.1. With current methods, it seems that 

effects of land cover change on flow persistence that shift the Fp value by about 0.1 are the limit of 

what can be  asserted from empirical data (with shifts of that order in a single year a warning sign 

rather than a firmly established change). When derived from observed river flow data Fp is suitable 

for monitoring change (degradation, restoration) and can be a serious candidate for monitoring 

performance in outcome-based ecosystem service management contracts. In interpreting changes in 

Fp as caused by changes in the condition in the watershed, however, changes in specific properties of 

the rainfall regime must be excluded. At the scale of paired catchment studies this assumption may 

be reasonable, but in temporal change (or using specific events as starting point for analysis), it is 

not easy to disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not 

only responds to, but also influences rainfall (arrow 10 in Figure 1; van Noordwijk et al., 2015b) 

further complicates the analysis across scales. 

As indicated, the Fp method is related to earlier methods used in streamflow hydrograph separation 

of base flow and quick flow. While textbooks (Ward and Robinson, 2000; Hornberger et al 2014) 

tend to be critical of the lack of objectivity of graphical methods, algorithms are used for deriving the 

minimum flow in a fixed or sliding period of reference as base flow (Sloto and Crouse, 1996; Furey 

and Gupta, 2001). The time interval used for deriving the minimum flow depends on catchment size. 

Figure 6 compares results for a hydrograph of a single year of one of the catchments described in 

more detail in paper II. While there is agreement on most of what is indicated ass baseflow, the 

short term response to peaks in the flow differ, with baseflow in the Fp method more rapidly 

increasing after peak events. When compared across multiple years for the four catchments 

described in detail in paper II (figure 7), there is partial agreement in the way interannual variation is 

described in each catchment, while numerical values are similar, but the ratio of what is indicated as 

baseflow according to the Fp method and according to standard hydrograph separation varies from 

1.05 to 0.86. 

 Figure 6 

 Figure 7 

Recursive models that describe flow in a next time interval on the basis of a fraction of that in the 

preceding time interval with a term for additional flow due to additional rainfall have been used in 

analysis of peak flow event before, with time intervals as short as 1 minute rather than the 1 day we 

use here (Rose, 2004). Through reference to an overall mass balance a relationship similar to what 

we found here (Fp times preceding flow plus 1 – Fp times recent inputs) was also used in such 

models. To our knowledge, the method we describe here at daily timescales has not been used 

before. 

The idea that the form of the storage-discharge function can be estimated from analysis of 

streamflow fluctuations has been explored before for a class of catchments in which discharge is 

determined by the volume of water in storage (Kirchner, 2009). Such catchments behave as simple 

first-order nonlinear dynamical systems and can be characterized in a single-equation rainfall-runoff 

model that predicted streamflow, in a test catchment in Wales, as accurately as other models that 

are much more highly parameterized. This model of the dQ/dt versus Q relationship can also be 

analytically inverted; thus, it can be used to “do hydrology backward,” that is, to infer time series of 

whole-catchment precipitation directly from fluctuations in streamflow. The slope of the log-log 

relationship between flow recession (dQ/dt) and Q that Kirchner (2009) used is conceptually similar 

to the Fp metric we derived here, but the specific algorithm to derive the parameter from empirical 



data differs. Estimates of dQ/dt are sensitive to noise in the measurement of Q and the possibly 

frequent and small increases in Q can be separated from the expected flow recession in the 

algorithm we presented here. 

Baker et al. (2004) defined a ‘Richards-Baker Flashiness Index’ as ∑1
n |(qi  - qi-1)| / ∑1

n
 qi. It is based on 

a similar idea as Fp, but derived from the absolute value of observed changes in flow relative to the 

average flow. Figure 8 compares numerical results for this index with Fp for a number of hydrographs 

constructed as in Fig. 2A. The two concepts are inversely related, but where Fp is constrained to the 

0-1 interval, the R-B Flashiness Index can attain values up to 2.0, with the value for Fp = 0 reflecting 

the local rainfall regime and its probability of rainfall on subsequent days. 

 Figure 8 

Seifert and Beven (2009) discussed the increase in predictive skill of models depending on the 

amount of location-specific data that can be used to constrain them. They found that the ensemble 

prediction of multiple models for a single location clearly outperformed the predictions using single 

parameter sets and that surprisingly little runoff data was necessary to identify model 

parameterizations that provided good results for “ungauged” test periods in cases where actual 

measurements were available. Their results indicated that a few runoff measurements can contain 

much of the information content of continuous runoff time series. The way these conclusions might 

be modified if continuous measurements for limited time periods, rather than separated single data 

points on river flow could be used, remains to be explored. Their study indicated that results may 

differ significantly between catchments and critical tests of Fp across multiple situations are 

obviously needed, as paper II will provide.  

In discussions and models of temperate zone hydrology (Bergström, 1995; Seifert, 1999) snowmelt is 

a major component of river flow and effects of forest cover on spring temperatures are important to 

the buffering of the annual peaks in flow that tend to occur in this season. Application of the Fp 

method to data describing such events has yet to be done. 

5.3 Legitimacy 

Legitimacy aspects are “Does it match local knowledge?” and “Can it be used to empower local 

stakeholders of watershed management?” and “Can it inform risk management?”. As the Fp 

parameter captures the predictability of river flow that is a key aspect of degradation according to 

local knowledge systems, its results are much easier to convey than full hydrographs or exceedance 

probabilities of flood levels. By focusing on observable effects at river level, rather than prescriptive 

recipes for land cover (“reforestation”), the Fp parameter can be used to more effectively compare 

the combined effects of land cover change, changes in the riparian wetlands and engineered water 

storage reservoirs, in their effect on flow buffering. It is a candidate for shifting environmental 

service reward contracts from input to outcome based monitoring (van Noordwijk et al., 2012).  As 

such it can be used as part of a negotiation support approach to natural resources management in 

which  levelling off on knowledge and joint fact finding in blame attribution are key steps to 

negotiated solutions that are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et 

al., 2015). Quantification of Fp can help assess tactical management options (Burt et al., 2014) as in a 

recent suggestion to minimize negative downstream impacts of forestry operations on stream flow 

by avoiding land clearing and planting operations in locally wet La Niña years. But the most 

challenging aspect of the management of flood, as any other environmental risk, is that the 

frequency of disasters is too low to intuitively influence human behaviour where short-term risk 



taking benefits are attractive. Wider social pressure is needed for investment in watershed health 

(as a type of insurance premium) to be mainstreamed, as individuals waiting to see evidence of 

necessity are too late to respond. In terms of flooding risk, actions to restore or retain watershed 

health can be similarly justified as insurance premium. It remains to be seen whether or not the 

transparency of the Fp metric and its intuitive appeal are sufficient to make the case in public debate 

when opportunity costs of foregoing reductions in flow buffering by profitable land use are to be 

compensated and shared (Burt et al., 2014). 

5.4 Conclusions and specific questions for a set of case studies 

In conclusion, the Fp metric appears to allow an efficient way of summarizing complex landscape 

processes into a single parameter that reflects the effects of landscape management within the 

context of the local climate. If rainfall patterns change but the landscape does not, the resultant flow 

patterns may reflect a change in watershed health (van Noordwijk et al., 2016). Flow persistence is 

the result of rainfall persistence and the temporal delay provided by the pathway water takes 

through the soil and the river system. High flow persistence indicates a reliable water supply, while 

minimizing peak flow events.  Wider tests of the Fp metric as boundary object in science-practice-

policy boundary chains (Kirchhoff et al., 2015; Leimona et al., 2015) are needed. Further tests for 

specific case studies can clarify how changes in tree cover (deforestation, reforestation, 

agroforestation) in different contexts influence river flow dynamics and Fp values. Sensitivity to 

specific realizations of underlying time-space rainfall patterns needs to be quantified, before 

changes in Fp can be attributed to changed ‘watershed health‘, rather than chance events. 
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Figure 1. Steps in a causal pathway that relates rainfall (1) via watershed conditions (2) to the 

pattern of river flow described in a hydrograph (3), which can get modified by the conditions 

along the river channel into a hazard of flood frequency and duration (4); jointly with exposure 

(being in the wrong place at critical times, 5) and vulnerability (6) this determines flood damage; 

in avoiding flood damage, the condition in the watershed with its landcover and spatial 

configuration (7) influences the patch level water partitioning over overland flow and infiltration 

(8), while hillslope level configuration further influences flow pathways (9) and land cover 

potentially influences rainfall (10) 

 

  



 

 

 

Figure 2. Examples of daily river flow, split into a base flow and additional flow component, for two 

examples at different total rainfall of a unimodal sinus-based rainfall probability multiplied with a 

rainfall depth calculated as 60^rand(0.1) mm/day (~120 rainy days, annual Q ~ 1600 mm) in 

watersheds characterized by Fp values ranging from 0.95 to 0.2 



  

 

 

Figure 3A and B. Biplots of Q(t) versus Q(t-1) for the same simulations as Figure 2 

 



 

  
Figure 4. Example of the derivation of best fitting Fp,try value for an example hydrograph (A) 

(expressed as m3 s-1 rather than mm d-1 as figures 2 and 3)  on the basis of the inferred Qa 

distribution (cumulative frequency in B), and three properties of this distribution (C): its sum, 

frequency of negative values and standard deviation; the Fp,try minimum of the latter is derived 

from the parameters of a fitted quadratic equation 



 
 

Figure 5. A. Effects of flow persistence on the relative flood protection (decrease in 

maximum flow measured over a 1 – 5 d period relative to a case with Fp = 0 (a few small 

negative points were replaced by small positive values to allow the exponential fit); B and 

C. effects of a decrease in flow persistence on the volume of water involved in peak flows 

(B; relative to the volume at Fp is 0.6 – 0.9) and in the duration (in d) of floods (C) 
  



 
Figure 6. Comparison of baseflow separation of a hydrograph according to the flow 

persistence method (A) and two common flow separation methods, respectively with fixed 

(B) and sliding intervals (C) 

 
 

Figure 7. Comparison of yearly data for four watersheds (see paper II) analysed with 

common flow separation methods (as in Fig. 6) and the flow persistence method  

 

 



 
Figure 8. Comparison of the Richards-Baker Flashiness Index (Baker et al., 2004) and the 

flow persistence metric Fp for a series of hydrographs as in Fig. 2A, with 5 replicates per 

Fp value 

 

 



Flood risk reduction and flow buffering as ecosystem 

services: II. Land use and rainfall intensity effects in 

Southeast Asia 

Meine van Noordwijk1,2, Lisa Tanika1, Betha Lusiana1 [1]{World Agroforestry Centre (ICRAF), SE Asia 

program, Bogor, Indonesia} 

 [2]{Wageningen University, Plant Production Systems, Wageningen, the Netherlands} 

Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org) 

Abstract 

The way watersheds buffer the temporal pattern of river flow relative to the temporal 

pattern of rainfall is an important ecosystem service. Part of this buffering is inherent to its 

geology and climate, but another part is responding to human use and misuse of the 

landscape, and can be part of management feedback loops if salient, credible and legitimate 

indicators can be found and used. Dissecting the anthropogenic change from exogenous 

variability (e.g. the specific time-space pattern of rainfall during an observation period) is 

relevant for designing and monitoring of watershed management interventions. Part I 

introduced the concept of flow persistence, key to a parsimonious recursive model of river 

flow. It also discussed the operational derivation of the Fp parameter. Here we compare Fp 

estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai, and Bialo) and 

Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal 

time scale. The likely response in each of these four to variation in rainfall properties (incl. 

the maximum hourly rainfall intensity) and land cover (comparing scenarios with either 

more or less forest and tree cover than the current situation) was explored through a basic 

daily water balance model, GenRiver. This model was calibrated for each site on existing 

data, before being used to explore alternative land cover and rainfall parameter settings. In 

both data and model runs, the wet-season (3-monthly) Fp values were consistently lower 

than dry-season values for all four sites. Across the four catchments Fp values decreased 

with increasing annual rainfall, but specific aspects of watersheds, such as the riparian 

swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. 

Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the 

values considered typical for each landscape was predicted to decrease Fp values by 

between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use 

change plus changes in rainfall intensity depends on other characteristics of the watersheds, 

and generalizations made on the basis of one or two case studies may not hold, even within 

the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-

agroforestry mosaic case studies. Interannual variability in Fp was found to be large relative 

to effects of land cover change and likely reflects sensitivity in the model of Hortonian 

overland flow to variations in rainfall intensity. Multiple (5-10) years of paired-plot data 

would generally be needed to reject no-change null-hypotheses on the effects of land use 

change (degradation and restoration). While empirical evidence of such effects at scale is 

understandably scarce, Fp trends over time serve as a holistic scale-dependent performance 

indicator of degrading/recovering watershed health and can be tested for acceptability and 

acceptance in a wider socio-ecological context. 

mailto:m.vannoordwijk@cgiar.org


Introduction 

Inherent properties (geology, geomorphology) interact with climate and human modification of 

vegetation, soils, drainage and riparian wetlands in the degree of buffering that watersheds provide 

(Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the space-time dynamics of 

rainfall is an ecosystem service, reducing the exposure of people living on geomorphological 

floodplains to high-flow events, and increasing predictability and river flow in dry periods (Joshi et 

al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation and with a sealed surface, 

river flow will directly respond to the spatial distribution of rainfall, with only the travel time to any 

point of specific interest influencing the temporal pattern of river flow. Any persistence or 

predictability of river flow in such a situation will reflect temporal autocorrelation of rainfall, beyond 

statistical predictability in seasonal rainfall patterns. On the other side of the spectrum, river flow 

can be constant every day, beyond the theoretical condition of constant rainfall, in a watershed that 

provides perfect buffering, by passing all water through groundwater pools that have sufficient 

storage capacity at any time during the year. Both infiltration-limited (Hortonian) and saturation-

induced use of more rapid flow pathways (inter and overland flows) will reduce the flow persistence 

and make it, at least in part, dependent on rainfall events. Separating the effects of land cover (land 

use), engineering and rainfall on the actual flow patterns of rivers remains a considerable challenge 

(Ma et al., 2014; Verbist et al., 2019). It requires data, models and concepts that can serve as 

effective boundary object in communication with stakeholders (Leimona et al. 2015; van Noordwijk 

et al. 2012, 2016). There is a long tradition in using forest cover as such a boundary object, but there 

is only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et al., 2009; van 

Noordwijk et al. 2015a). 

In part I, we introduced a flow persistence parameter (Fp) that links the two, asymmetrical aspects of 

flow dynamics: translating rainfall excess into river flow, and gradually releasing water stored in the 

landscape.  Here, in part II we will apply the Fp algorithm to river flow data for a number of 

contrasting meso-scale watersheds in Southeast Asia. These were selected to represent variation in 

rainfall and land cover, and test the internal consistency of results based on historical data: two 

located in the humid and one in the subhumid tropics of Indonesia, and one in the unimodal 

subhumid tropics of northern Thailand.  

After exploring the patterns of variation in Fp estimates derived from river flow records, we will 

quantify the sensitivity of the Fp metric to variations in rainfall intensity and its response, on a longer 

timescale to land cover change. To do so, we will use a model that uses basic water balance 

concepts: rainfall interception, infiltration, water use by vegetation, overland flow, interflow and 

groundwater release, to a spatially structured watershed where travel time from sub watersheds to 

any point of interest modifies the predicted river flow. In the specific model used land cover effects 

on soil conditions, interception and seasonal water use have been included. After testing whether Fp 

values derived from model outputs match those based on empirical data where these exist, we rely 

on the basic logic of the model to make inference on the relative importance of modifying rainfall 

and land cover inputs. With the resulting temporal variation in calculated Fp values, we consider the 

time frame at which observed shifts in Fp can be attributed to factors other than chance (that means: 

null-hypotheses of random effects can be rejected with accepted chance of Type I errors).  

2. Methods 

2.1 GenRiver model for effects of land cover on river flow 

The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a 

daily time step and a flexible spatial subdivision of a watershed that influences the routing of water 



and employs spatially explicit rainfall. At patch level, vegetation influences interception, retention 

for subsequent evaporation and delayed transfer to the soil surface, as well as the seasonal demand 

for water. Vegetation (land cover) also influences soil porosity and infiltration, modifying the 

inherent soil properties. Water in the root zone is modelled separately for each land cover within a 

subcatchment, the groundwater stock is modelled at subcatchment level. The spatial structure of a 

watershed and the routing of surface flows influences the time delays to any specified point of 

interest, which normally includes the outflow of the catchment. Land cover change scenarios are 

interpolated annually between time-series (measured or modelled) data. The model may use 

measured rainfall data, or use a rainfall generator that involves Markov chain temporal 

autocorrelation (rain persistence). As our data sources are mostly restricted to daily rainfall 

measurements and the infiltration model compares instantaneous rainfall to infiltration capacity, a 

stochastic rainfall intensity was applied at subcatchment level, driven by the mean as parameter and 

a standard deviation for a normal distribution (truncated at 3 standard deviations from the mean) 

proportional to it via a coefficient of variation as parameter. For the Mae Chaem site in N Thailand 

data by Dairaku et al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia 

we used 30 mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the 

GenRiver model. The model itself, a manual and application case studies are freely available 

(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow;van Noordwijk 

et al., 2011). 

2.2 Empirical data-sets, model calibration 

Table 1 and Figure 1 provide summary characteristics and the location of river flow data  used in four 

meso-scale watersheds for testing the Fp algorithm and application of the GenRiver model. Figure 1 

includes a water tower category in the agro-ecological zones; this is defined on the basis of a ratio of 

precipitation and potential evapotranspiration of more than 0.65, and a product of that ratio and 

relative elevation exceeding 0.277. 

 Table 1 

 Figure 1 

As major parameters for the GenRiver model were not independently measured for the respective 

watersheds, we tuned (calibrated) the model by modifying parameters within a predetermined 

plausible range, and used correspondence with measured hydrograph as test criterion (Kobolt et al. 

2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target above 0.5) and bias (less than 

25%) as test criteria and targets. Meeting these performance targets (Moriasi et al., 2007), we 

accepted the adjusted models as basis for describing current conditions and exploring model 

sensitivity. The main site-specific parameter values are listed in Table 2 and (generic) land cover 

specific default parameters in Table 3.  

 Table 2 

 Table 3 

Table 4 describes the six scenarios of land use change that were evaluated in terms of their 

hydrological impacts. Further description on the associated land cover distribution for each scenario 

in the four different watersheds is depicted in Appendix 2.  

 Table 4 

2.3 Bootstrapping to estimate the minimum observation 

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow


The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly used 

to generate ‘surrogate population‘ for the purpose of approximating the sampling distribution of a 

statistic. In this study, the bootstrap approach was used to estimate the minimum number of 

observation (or yearly data) required for a pair-wise comparison test between two time-series of 

stream flow or discharge data (representing two scenarios of land use distributions) to be 

distinguishable from a null-hypothesis of no effect. The pair-wise comparison test used was 

Kolmogorov-Smirnov test that is commonly used to test the distribution of discharge data (Zhang eta 

al, 2006). We built a simple macro in R (R Core Team, 2015) that entails the following steps: 

(i) Bootstrap or resample with replacement 1000 times from both time-series discharge data 

with sample size n; 

(ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge data, 

and record the P-value; 

(iii) Perform (i) and (ii) for different size of n, ranging from 5 to 50.  

(iv) Tabulate the p-value from the different sample size n, and determine the value of n when the 

p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). The 

associated n represents the minimum number of observations required.  

Appendix 3 provides an example of the macro in R used for this analysis.   

3. Results 

3.1 Empirical data of flow persistence as basis for model parameterization 

Inter-annual variability of Fp estimates derived for the four catchments (Figure 2) was of the order of 

0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. For all for the 

years and locations, rainy season Fp values, with mixed flow pathways, were consistently below dry-

season values, dominated by groundwater flows. If we can expect Fp,i and Fp,o (see equation 8 in part 

I) to be approximately 0.5 and 0, this difference between wet and dry periods implies a 40% 

contribution of interflow in the wet season, a 20% contribution of overland flow or any combination 

of the two effects. 

Overall the estimates from modelled and observed data are related with 16% deviating more than 

0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria for the 

hydrographs were met by the calibrated models for each site, we tentatively accept the model to be 

a basis for sensitivity study of  Fp to modifications to land cover and/or rainfall  

 Figure 2 

 Figure 3 

3.2 Comparing Fp effects of rainfall intensity and land cover change 

A direct comparison of model sensitivity to changes in mean rainfall intensity and land use change 

scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 shifted the Fp 

value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but by 0.128 in Way 

Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change scenarios on Fp was 

smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and relatively large in Bialo and Mae 

Chaem, at 0.080 and 0.084, respectively (Figure 4B). The order of Fp across the land use change 



scenarios was mostly consistent between the watersheds, but the contrast between the ReFor and 

NatFor scenario was largest in Mae Chaem and smallest in Way Besai. In Cidanau, Way Besai and 

Mae Chaem, variations in rainfall were 2.2 to 3.1 times more effective than land use change in 

shifting Fp, in Bialo its relative effect was only 58%. Apparently, the sensitivity to changes in land use 

change plus changes in rainfall intensity depends on other characteristics of the watersheds, and 

generalizations made on the basis of one or two case studies may not hold, even within the same 

climatic zone. 

 Figure 4 

3.3 Further analysis of Fp effects for scenarios of land cover change 

Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and the 

'degraded lands' the lowest Fp value (Figure 5), but there are remarkable differences as well: in 

Cidanau the interannual variation in Fp is clearly larger than land cover effects, while in the Way 

Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a peat swamp 

between most of the catchment and the measuring point buffers most of landcover related variation 

in flow, but not the interannual variability. Considering the frequency distributions of Fp values over 

a 20 year period, we see one watershed (Way Besai) where the forest stands out from all others, and 

one (Bialo) where the degraded lands are separate from the others. Given the degree of overlap of 

the frequency distributions, it is clear that multiple years of empirical observations will be needed 

before a change can be affirmed.  

Figure 5 shows the frequency distributions of expected effect sizes on Fp of a comparison of any land 

cover with either forest or degraded lands. Table 5 translates this information to the number of 

years that a paired plot (in the absence of measurement error) would have to be maintained to 

reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions of Fp differences of 

paired catchments do not match a normal distribution, a Kolmorov-Smirnov test can be used to 

assess the probability that a no-difference null hypothesis can yield the difference found. By 

bootstrapping within the years where simulations supported by observed rainfall data exist, we 

found for the Way Besai catchment, for example, that 20 years of data would be needed to assert (at 

P = 0.05) that the ReFor scenario differs from AgFor, and 16 years that it differs from Actual and 11 

years that it differs from Degrade. In practice, that means that empirical evidence that survives 

statistical tests will not emerge, even though effects on watershed health are real. 

 Figure 5 

 Table 5 

At process-level the increase in ‘overland flow’ in response to soil compaction due to land cover 

change has a clear and statistically significant relationship with decreasing Fp values in all catchments 

(Figure 6), but both year-to-year variation within a catchment and differences between catchments 

influence the results as well, leading to considerable spread in the biplot. Contrary to expectations, 

the disappearance of 'interflow' by soil compaction is not reflected in measurable change in Fp value. 

The temporal difference between overland and interflow (one or a few days) gets easily blurred in 

the river response that integrates over multiple streams with variation in delivery times; the 

difference between overland- or interflow and baseflow is much more pronounced. Apparently, 

according to our model, the high macroporosity of forest soils that allows interflow and may be the 

'sponge' effect attributed to forest, delays delivery to rivers by one or a few days, with little effect on 

the flow volumes at locations downstream where flow of multiple days accumulates.  The difference 



between overland- or interflow and baseflow in time-to-river of rainfall peaks is much more 

pronounced. 

 Figure 6 

Tree cover has two contradicting effects on baseflow:  it reduces the surplus of rainfall over 

evapotranspiration (annual water yield) by increased evapotranspiration (especially where 

evergreen trees are involved), but it potentially increases soil macroporosity that supports 

infiltration and interflow, with relatively little effect on water holding capacity measured as 'field 

capacity' (after runoff and interflow have removed excess water). Figure 7 shows that the total 

volume of baseflow differs more between sites and their rainfall pattern than it varies with tree 

cover. Between years total evapotranspiration and baseflow totals are positively correlated,  but for 

a given rainfall there is a trade-off. Overall these results support the conclusion that generic effects 

of deforestation on decreased flow persistence, and of (agro)/(re)-forestation on increased flow 

persistence are small relative to interannual variability due to specific rainfall patterns, and that it 

will be hard for any empirical data process to pick-up such effects, even if they are qualitatively 

aligned with valid process-based models.  

 Figure 7 

4. Discussion 

In the discussion of Part I the credibility questions on replicability of the Fp metric and its sensitivity 

to details of rainfall pattern versus land cover as potential causes of variation were seen as requiring 

case studies in a range of contexts. Although the four case studies in Southeast Asia presented here 

cannot be claimed to represent the global variation in catchment behaviour (with absence of a 

snowpack and its dynamics as an obvious element of flow buffering not included), the diversity of 

responses among these four already point to challenges for any generic interpretation of the degree 

of flow persistence that can be achieved under natural forest cover, as well as its response to land 

cover change.  

The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand show 

that  values of Fp above 0.9 are scarce in the case studies provided, but values above 0.8 were found, 

or inferred by the model, for forested landscapes. Agroforestry landscapes generally presented Fp 

values above 0.7, while open-field agriculture or degraded soils led to Fp values of 0.5 or lower. Due 

to differences in local context, it may not be feasible to relate typical Fp values to the overall 

condition of a watershed, but temporal change in Fp can indicate degradation or restoration if a 

location-specific reference can be found. The difference between wet and dry season Fp can be 

further explored in this context. The dry season Fp value primarily reflects the underlying geology, 

with potential modification by engineering and operating rules of reservoirs, the wet season Fp is 

generally lower due to partial shifts to overland and interflow pathways.  Where further uncertainty 

is introduced by the use of modelled rather than measured river flow, the lack of fit of models 

similar to the ones we used here would mean that scenario results are indicative of directions of 

change rather than a precision tool for fine-tuning combinations of engineering and land cover 

change as part of integrated watershed management. 

The differences in relative response of the watersheds to changes in mean rainfall intensity and land 

cover change, suggest that generalizations derived from one or a few case studies are to be 

interpreted cautiously. If land cover change would influence details of the rainfall generation process 

(arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et al., 2014; van 



Noordwijk et al., 2015b) this can easily dominate over effects via interception, transpiration and soil 

changes.  

Our results indicate an intra-annual variability of Fp values between wet and dry seasons of around 

0.2 in the case studies, while interannual variability in either annual or seasonal Fp was generally in 

the 0.1 range. The difference between observed and simulated flow data as basis for Fp calculations 

was mostly less than 0.1. With current methods, it seems that effects of land cover change on flow 

persistence that shift the Fp value by about 0.1 are the limit of what can be  asserted from empirical 

data (with shifts of that order in a single year a warning sign rather than a firmly established change). 

When derived from observed river flow data Fp is suitable for monitoring change (degradation, 

restoration) and can be a serious candidate for monitoring performance in outcome-based 

ecosystem service management contracts. Choice of the part of the year for which Fp changes are 

used as indicator may have to depend on the seasonal patterns of rainfall. 

In view of our results the lack of robust evidence in the literature of effects of change in forest and 

tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets contain 

considerable variability. Yet, such effects are consistent with current process and scaling knowledge 

of watersheds.  

Conclusion 

Overall, our analysis suggests that the level of flow buffering achieved depends on both land cover 

(including its spatial configuration and effects on soil properties) and space-time patterns of rainfall 

(including maximum rainfall intensity as determinant of overland flow). Generalizations on dominant 

influence of either, derived from one or a few case studies are to be interpreted cautiously. If land 

cover change would influence details of the rainfall generation process this can easily dominate over 

effects via interception, transpiration and soil changes. Multi-year data will generally be needed to 

attribute observed changes in flow buffering to degradation/restoration of watersheds, rather than 

specific rainfall events. With current methods, it seems that effects of land cover change on flow 

persistence that shift the Fp value by about 0.1 are the limit of what can be  asserted from empirical 

data, with shifts of that order in a single year a warning sign rather than a firmly established change. 

When derived from observed river flow data Fp is suitable for monitoring change (degradation, 

restoration) and can be a serious candidate for monitoring performance in outcome-based 

ecosystem service management contracts. Watershed health is here characterized through the flow 

pattern it generates, leaving the attribution to land cover, rainfall pattern and engineering of that 

pattern and of changes in pattern to further location-specific analysis, just as a symptom of a high 

body temperature can indicate health, but not diagnose the specific illness causing it. 

The data sets did not indicate that the flow persistence at high flows differed from that at lower 

flows, but in other circumstances this may not be the case and further care may be needed to use Fp 

values beyond the measurement period in which they were derived. 

Further tests on the performance of the Fp metric and its standard incorporation into the output 

modules of river flow and watershed management models will broaden the basis for interpreting the 

value ranges that can be expected for well-functioning watersheds in various conditions of climate, 

topography, soils, vegetation and engineering interventions. Such a broader empirical base could 

test the possible use of Fp as performance metric for watershed rehabilitation efforts.   

Data availability 



Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the links to 

detailed descriptions. 

 Table 6 
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Table 1. Basic physiographic characteristics of the four study watersheds 

Parameter Bialo Cidanau Mae Chaem Way Besai 

Location South Sulawesi, 

Indonesia 

West Java, Indonesia Northern Thailand Lampung, Sumatera, 

Indonesia 

Coordinates 5.43 S, 120.01 E 6.21 S, 105.97 E 18.57 N, 98.35 E 5.01 S, 104.43 E 

Area (km2) 111.7 241.6 3892 414.4 

Elevation 

(m a.s.l.) 

0 – 2874 30 – 1778 475-2560 720-1831 

Flow 

pattern 

Parallel Parallel (with two 

main river flow that 

meet in the 

downstream area) 

Parallel Radial 

Land cover 

type  

Forest (13%) 

Agroforest (59%) 

Crops (22%) 

Others (6%) 

Forest (20%) 

Agroforest (32%) 

Crops (33%) 

Others (11%) 

Swamp(4%) 

Forest (evergreen, 

deciduous and pine) 

(84%) 

Crops (15%) 

Others (1%) 

Forest (18%) 

Coffee (monoculture 

and multistrata) (64%) 

Crop and Horticulture 

(12%) 

Others (6%) 

Mean 

annual 

rainfall, mm 

1695 2573 1027 2474 

Wet season April – June January - March July - September January - March 

Dry season July - September July - September January - March July - September 

Mean 

annual 

runoff, mm 

947 917 259 1673 

Major soils Inceptisols Inceptisols Ultisols, Entisols Andisols 

 

Table 2. Parameters of the GenRiver model used for the four site specific simulations (van Noordwijk 

et al., 2011 for definitions of terms; sequence of parameters follows the pathway of water) 

Parameter Definition Unit Bialo Cidanau Mae Chaem Way Besai 

RainIntensMean Average rainfall intensity  mm hr-1 30 30 3 30 

RainIntensCoefVar Coefficient of variation of 

rainfall intensity 

mm hr-1 0.8 0.3 0.5 0.3 



RainInterceptDripRt Maximum drip rate of 

intercepted rain  

mm hr-1 80 10 10 10 

RainMaxIntDripDur Maximum dripping 

duration of intercepted 

rain 

hr 0.8 0.5 0.5 0.5 

InterceptEffectontrans Rain interception effect on 

transpiration 

- 0.35 0.8 0.3 0.8 

MaxInfRate Maximum infiltration 

capacity  

mm d-1 580 800 150 720 

MaxInfSubsoil Maximum infiltration 

capacity of the sub soil 

mm d-1 80 120 150 120 

PerFracMultiplier  Daily soil water drainage as 

fraction of groundwater 

release fraction 

- 0.35 0.13 0.1 0.1 

MaxDynGrWatStore Dynamic groundwater 

storage capacity 

mm 100 100 300 300 

GWReleaseFracVar  Groundwater release 

fraction, applied to all 

subcatchments  

- 0.15 0.03 0.05 0.1 

Tortuosity Stream shape factor - 0.4 0.4 0.6 0.45 

Dispersal Factor Drainage density - 0.3 0.4 0.3 0.45 

River Velocity  River flow velocity m s-1 0.4 0.7 0.35 0.5 

  



Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds 

(BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer function; 

see van Noordwijk et al., 2011) 

 

Land cover Type 

Potential 

interception 

(mm/d) 

Relative drought 

threshold 
BD/BDref 

Forest1 3.0 - 4.0 0.4 - 0.5 0.8 - 1.1 

Agroforestry2 2.0 - 3.0 0.5 - 0.6 0.95 - 1.05 

Monoculture tree3 1.0 0.55 1.08 

Annual crops 1.0 - 3.0 0.6 - 0.7 1.1 - 1.5 

Horticulture 1.0 0.7 1.07 

Rice field4 1.0 - 3.0 0.9 1.1 - 1.2 

Settlement 0.05 0.01 1.3 

Shrub and grass 2.0 - 3.0 0.6 1.0 - 1.07 

Cleared land 1.0 - 1.5 0.3 - 0.4 1.1 - 1.2 

Note:     1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest 

2. Agroforestry: mixed garden, coffee, cocoa, clove 

3. Monoculture : coffee 

4. Rice field: irrigation and rainfed  



Table 4. Land use scenarios explored for four watersheds  

Scenario Description 

NatFor Full natural forest, hypothetical reference scenario 

ReFor Reforestation, replanting shrub, cleared land, grass land and some 

agricultural area with forest  

AgFor Agroforestry scenario, maintaining agroforestry areas and converting 

shrub, cleared land, grass land and some of agricultural area into 

agroforestry  

Actual Baseline scenario, based on the actual condition of land cover change 

during the modelled time period 

Agric Agriculture scenario, converting some of tree based plantations, cleared 

land, shrub and grass land into rice fields or dry land agriculture, while 

maintain existing forest 

Degrading No change in already degraded areas, while converting most of forest and 

agroforestry area into rice fields and dry land agriculture 

 



Table 5. Number of years of observations required to estimate flow persistence to reject the null-

hypothesis of ‘no land use effect‘ at p-value = 0.05 using Kolmogorov-Smirnov test. The  probability 

of the test statistic in the first significant number is provided between brackets and  where the 

number of observations exceeds the time series available, results are given in italics 

A. Natural Forest as reference   

     
Way Besai (N=32) ReFor AgFor Actual Agric 

ReFor   20 (0.035) 
16 
(0.037) 

13 
(0.046) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Bialo (N=18) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 
37 
(0.04) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Cidanau (N=20) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 
32 
(0.037) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Mae Chaem (N=15) ReFor Actual Agric Degrade 

ReFor   n.s. 
23 
(0.049) 

18 
(0.050) 



Actual     
45 
(0.037) 

33 
(0.041) 

Agric       
33 
(0.041) 

Degrading         

  



B. Degrading scenario as reference   

      
Way Besai (N=32) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. 
17 
(0.042) 

13 
(0.046) 

7 
(0.023) 

ReFor     
21 
(0.037) 

19 
(0.026) 

7 
(0.023) 

AgFor       n.s. 
28 
(0.046) 

Actual         
30 
(0.029) 

Agric           

      

      
Bialo (N=18) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 
41 
(0.047) 

19 
(0.026) 

ReFor     n.s. n.s. 
32 
(0.037) 

AgFor       n.s. n.s. 

Actual         n.s. 

Agric           

      

      
Cidanau (N=20) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 
33 
(0.041) 

8 
(0.034) 

ReFor     n.s. n.s. 
15 
(0.028) 

AgFor       n.s. n.s. 

Actual         
25 
(0.031) 

Agric           

      

      
Mae Chaem (N=15) NatFor ReFor Actual Agric 

 

NatFor   n.s. 
25 
(0.031) 

12 
(0.037) 

 



ReFor     n.s. 
18 
(0.050) 

 

Actual       
18 
(0.050) 

 
Agric         

 
  



Table 6. Data availability 

 Bialo Cidanau Mae Chaem Way Besai 

Rainfall 

data 

1989-2009, Source: 

BWS Sulawesia and 

PUSAIRb; Average 

rainfall data from the 

stations Moti, Bulo-

bulo, Seka and Onto 

1998-2008, source: 

BMKGc 

1998-2002, source: 

WRD55, MTD22, 

RYP48, GMT13, WRD 

52 

1976-2007, Source: 

BMKG, PUd and PLNe 

(interpolation of 8 rainfall 

stations using Thiessen 

polygon) 

River flow 

data 

1993-2010, source; 

BWS Sulawesi and 

PUSAIR 

2000-2009, source: KTIf 1954-2003, source: 

ICHARMg 

1976-1998, source: PU 

and PUSAIR 

Reference 

of detailed 

report 

http://old.icraf.org/re

gions/southeast_asia

/publications?do=vie

w_pub_detail&pub_n

o=PP0343-14 

http://worldagroforest

ry.org/regions/southea

st_asia/publications?d

o=view_pub_detail&pu

b_no=PO0292-13 

http://worldagrofores

try.org/regions/south

east_asia/publications

?do=view_pub_detail

&pub_no=MN0048-11 

http://worldagroforestry.

org/regions/southeast_asi

a/publications?do=view_p

ub_detail&pub_no=MN00

48-11 

Note:  

a BWS: Balai Wilayah Sungai (Regional River Agency) 

bPUSAIR: Pusat Litbang Sumber Daya Air (Centre for Research and Development on Water Resources) 

cBMKG: Badan Meteorologi Klimatologi dan Geofisika (Agency on Meterology, Climatology and 

Geophysics) 

dPU: Dinas Pekerjaan Unum (Public Work  Agency) 

ePLN: Perusahaan Listrik Negara (National Electric Company) 

fKTI: Krakatau Tirta Industri, a private steel company 

fICHARM: The International Centre for Water Hazard and Risk Management 



  

 

Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water 

towers are defined on the basis of ability to generate river flow and being in the upper part of a 

watershed)  

  



 

 

Figure 2. Flow persistence (Fp) estimates derived from measurements in four watersheds, separately 
for the wettest and driest 3-month periods of the year 

 



 

Figure 3. Inter- (A) and intra- (B) annual variation in the Fp parameter derived from empirical versus 

modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B) 

 

  



  

Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B) the land use 

change scenarios of Table 4 across the four watersheds 



 

Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four 

watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall records; 

the left side panels show average water balance for each land cover scenario, the middle panels 

the Fp values per year and land use, the right-side panels the derived frequency distributions 

(best fitting Weibull distribution) 



 

 

Figure 6. Frequency distribution of expected difference in Fp in ‘paired plot’ comparisons where land 

cover is the only variable; left panels: all scenarios compared to ‘reforestation’, right panel: all 

scenarios compared to degradation; graphs are based on a kernel density estimation (smoothing) 

approach  



 

Figure 7. Correlations of Fp with fractions of rainfall that take overland flow and interflow pathways 

through the watershed, across all years and land use scenarios of Figure App2  

 

  



Appendix 1. GenRiver model for effects of land cover on river flow 

The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological model 

that simulates river flow based on water balance concept with a daily time step and a flexible spatial 

subdivision of a watershed that influences the routing of water. The core of the GenRiver model is a 

“patch” level representation of a daily water balance, driven by local rainfall and modified by the 

land cover and land cover change and soil properties. The model starts accounting of rainfall or 

precipitation (P) and traces the subsequent flows and storage in the landscape that can lead to 

either evapotranspiration (E), river flow (Q) or change in storage (ΔS) (Figure App1): 

P = Q + E + ΔS        [1] 

 

Figure App1.Overview of the GenRiver model 

 

The model may use measured rainfall data, or use a rainfall generator that involves Markov chain 

temporal autocorrelation (rain persistence). The model can represent spatially explicit rainfall, with 

stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 2) and partial 

spatial correlation of daily rainfall between subcatchments. Canopy interception leads to direct 

evaporation of an amount of water controlled by the thickness of waterfilm on the leaf area that 

depends on the land cover, and a delay of water reaching the soil surface (parameter 

RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other components 

of evapotranspiration is controlled by the InterceptEffectontrans parameter that in practice may 

depend on the time of day rainfall occurs and local climatic conditions such as windspeed) 

At patch level, vegetation influences interception, retention for subsequent evaporation and delayed 

transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land cover) also 

influences soil porosity and infiltration, modifying the inherent soil properties. Groundwater pool 

dynamics are represented at subcatchment rather than patch level, integrating over the landcover 

fractions within a subcatchment. The output of the model is river flow which is aggregated from 

three types of stream flow: surface flow on the day of the rainfall event; interflow on the next day; 

and base flow gradually declining over a period of time. The multiple subcatchments that make up 

the catchment as a whole can differ in basic soil properties, land cover fractions that affect 

interception, soil structure (infiltration rate) and seasonal pattern of water use by the vegetation. 



The subcatchment will also typically differ in “routing time” or in the time it takes the streams and 

river to reach any specified observation point (with default focus on the outflow from the 

catchment). The model itself (currently implemented in Stella plus Excel), a manual and application 

case studies are freely available (http://www.worldagroforestry.org/output/genriver-genetic-river-

model-river-flow ;van Noordwijk et al., 2011). 

  

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow
http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow


Appendix 2. Watershed-specific consequences of the land use change scenarios 

The generically defined land use change scenarios (Table 4) led to different land cover proportions, 

depending on the default land cover data for each watershed, as shown in Figure App2. 

Figure App2. Land use distribution of the various land use scenarios explored for the four 

watersheds (see Table 4)   

  



Appendix 3. Example of a macro in R to estimate number of observation required using bootstrap 

approach. 

 

#The bootstrap procedure is to calculate the minimum sample size (number of observation) required 
#for a significant land use effect on Fp 
#bialo1 is a dataset contains delta Fp values for two different from Bialo watershed 
 
#read data 
bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",") 
 
#name each parameter 
BL1 <- bialo1$ReFor 
BL5 <- bialo1$Degrade 
 
N = 1000 #number replication 
 
n <- c(5:50) #the various sample size 
 
J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset) 
 
P15= matrix(ncol=J, nrow=R) #variable for storing p-value 
P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile 
 
for (j in 1:J) #estimating for different n 
 
#bootstrap sampling 
{ 
for (i in 1:N) 
{ 
#sampling data 
S1=sample(BL1, n[j], replace = T) 
S5=sample(BL5, n[j], replace = T) 
 
#Kolmogorov-Smirnov test for equal distribution and get the p-Value 
KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15$p.value 
} 
 
#Confidence interval of CI 
P15Q3[j] <- quantile(P15[,j], 0.975) 
 
} 
 
#saving P value data and CI 
 
write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v 
/ 

 


