hess-2015-538 Response to editor's comments of 29 October 2016

Dear Editor

We were pleased to note the progress that both reviewers have now recommended publication of
the manuscript and we certainly appreciate the rigour of the review and editorial process.

Editor Decision: Publish subject to
revisions (further review by Editor and
Referees) (29 Oct 2016) by Prof. Jan Seibert
Comments to the Author:

Thanks for your efforts with the revisions,
which clarified a number of points. At the
same time, reading your manuscript again, I
also realized that there are still a number of
issues:

Our responses:

In response to your remaining comments we
have made some further changes to the
manuscript that we hope address the
remaining issues:

1) The runoff values you present in figures 2-4
seem unrealistically high. Could you please
comment on these values. As it is not just one
figure, I am afraid there is something
fundamentally wrong - or I misunderstand
something.

Indeed the example presented in Figures 2 and
3 was from an exceptionally wet climate, with
about 6000 mm y-1 of rainfall. We have
replaced the figure with one for a 1600 mm y-1
example which is more typical of the humid
tropics. We have not altered Fig 4 which
includes some high flow rates.

2) Your approach basically is similar what
people previously have used as flow separation
techniques. While I can see your point that
you are using these techniques here with a
different goal, I still think that it for the sake
of scientific clarity is mandatory to clearly link
to the previous work and to better describe
what is similar/different with your approach.

Thank you for the suggestion. We have further
explored the relationship between the Fp
method and existing flow separation
procedures and added a paragraph discussing
two new figures: one that illustrates how
different methods interpret a given
hydrograph, and one that compares
interannual variation in the different metrics
derived from the four catchments described in
further detail in Paper 2.

We added:

“As indicated, the F, method is related to
earlier methods used in streamflow hydrograph
separation of base flow and quick flow. While
textbooks (Ward and Robinson, 2000;
Hornberger et al 2014) tend to be critical of the
lack of objectivity of graphical methods,
algorithms are used for deriving the minimum
flow in a fixed or sliding period of reference as
base flow (Sloto and Crouse, 1996; Furey and
Gupta, 2001). The time interval used for
deriving the minimum flow depends on
catchment size. Figure 6 compares results for a
hydrograph of a single year of one of the
catchments described in more detail in paper Il
While there is agreement on most of what is
indicated ass baseflow, the short term response
to peaks in the flow differ, with baseflow in the
Fo method more rapidly increasing after peak
events. When compared across multiple years




for the four catchments describe in detail in
paper Il, there is partial agreement in the way
interannual variation is described in each
catchment, while numerical values are similar,
but the ratio of what is indicated as baseflow
according to the F, method and according to
standard hydrograph separation varies from
1.05t0 0.86.”

We also added:

“Recursive models that describe flow in a next
time interval on the basis of a fraction of that in
the preceding time interval with a term for
additional flow due to additional rainfall have
been used in analysis of peak flow event
before, with time intervals as short as 1 minute
rather than the 1 day we use here (Rose, 2004).
Through reference to an overall mass balance a
relationship similar to what we found here (F,
times preceding flow plus 1 — F, times recent
inputs) was also used in such models. To our
knowledge, the method we describe here at
daily timescales has not been used before.”

And

“The idea that the form of the storage-
discharge function can be estimated from
analysis of streamflow fluctuations has
been explored before for a class of
catchments in which discharge is
determined by the volume of water in
storage (Kirchner, 2009). Such catchments
behave as simple first-order nonlinear
dynamical systems and can be
characterized in a single-equation rainfall-
runoff model that predicted streamflow, in a
test catchment in Wales, as accurately as
other models that are much more highly
parameterized. This model of the dQ/dt
versus Q relationship can also be
analytically inverted; thus, it can be used to
“do hydrology backward,” that is, to infer
time series of whole-catchment precipitation
directly from fluctuations in streamflow. The
slope of the log-log relationship between
flow recession (dQ/dt) and Q that Kirchner
(2009) used is conceptually similar to the Fp
metric we derived here, but the specific
algorithm to derive the parameter from
empirical data differs. Estimates of dQ/dt
are sensitive to noise in the measurement
of Q and the possibly frequent and small




increases in Q can be separated from the
expected flow recession in the algorithm we
presented here.”

And

“Seifert and Beven (2009) discussed the
increase in predictive skill of models depending
on the amount of location-specific data that
can be used to constrain them. They found that
the ensemble prediction of multiple models for
a single location clearly outperformed the
predictions using single parameter sets and
that surprisingly little runoff data was necessary
to identify model parameterizations that
provided good results for “ungauged” test
periods in cases where actual measurements
were available. Their results indicated that a
few runoff measurements can contain much of
the information content of continuous runoff
time series. The way these conclusions might
be modified if continuous measurements for
limited time periods, rather than separated
single data points on river flow could be used,
remains to be explored. Their study indicated
that results may differ significantly between
catchments and critical tests of Fp across
multiple situations are obviously needed, as
paper Il will provide. “

3) Fp is affected by both rainfall time series
and catchment characteristics. It is therefore
not clear to me whther Fp really is a good
measure of catchment status since Fp also
could change without any catchment change if
rainfall distributions change.

Indeed, that is the conclusion we formulate in
the second paper, based on the case studies
analysed. Where F, describes behaviour of a
river with direct relevance for downstream
populations, it is reflecting the “health” of the
way a watershed interacts with its climate,
rather than the land cover as such.

We added:

“In conclusion, the F, metric appears to allow
an efficient way of summarizing complex
landscape processes into a single parameter
that reflects the effects of landscape
management within the context of the local
climate. If rainfall patterns change but the
landscape does not, the resultant flow patterns
may reflect a change in watershed health (van
Noordwijk et al., 2016).”

4) Human impacts can both increase and
decrease Fp, again, I am wondering whether
Fp really is a good measure of 'watershed
health'

We try to provide empirical evidence to help
readers answer this question for themselves.
The “health” concept we use is a
comprehensive one of the way climate,
watershed and engineering interventions
interact on functional aspects of river flow.




5) You claim that Fp is related to flood risks.
can this be shown on real data? I am not so
sure I would agree. Your approach basically
assumes that catchment changes result in
linear changes in flood risks, but this is
obviously often not the case. For instance, if a
medium-size reservoir is build, this would
increase Fp, but the largest floods would
hardly be influenced (because then the
reservoir is filled anyway). I guess, another
issue here is that the Fp values are based on
the continuous, average catchment behavior,
whereas floods are single extreme events.

We added:

“Flood risks are themselves nonlinearly and in
strongly topography-specific ways related to
the volume of river flow after extreme rainfall
events. While the expected fraction of rainfall
that contributes to direct flow is linearly related
to rainfall via (1-Fp), flooding risk as such will
have a non-linear relationship with rainfall, that
depends on topography and antecedent
rainfall. Catchment changes, such as increases
or decreases in percentage tree cover, will
generally have a non-linear relationship with F,
as well as with flooding risks.”

In the rivers we considered there has been no
major dams or reservoirs installed, and where
they do exist the specific operating rules need
to be included in any model. We have clarified
this restriction of the empirical data in the
discussion.

“The “health” concept we use is a
comprehensive one of the way climate,
watershed and engineering interventions
interact on functional aspects of river flow. In
the catchments we considered in part Il there
have been no major dams or reservoirs
installed. Ma et al (2014) described a method
to separate these three influences on river
flow. Where these do exist the specific
operating rules of reservoirs need to be
included in any model and these can have a
major influence on downstream flow,
depending on the primary use for power
generation, dry season irrigation or stabilizing
river flow for riverine transport.”

6) Your approach is not at all applicable to
catchments with snow. This should be stated
even clearer.

We had stated such, but made it even clearer —
working in the tropics one may tend to forget
the importance of snowmelt for river flow and
flooding in your part of the world... We added:
“In discussions and models of temperate zone
hydrology (Bergstrom, 1995; Seifert, 1999)
snowmelt is a major component of river flow
and effects of forest cover on spring
temperatures are important to the buffering of
the annual peaks in flow that tend to occur in
this season. Application of the F, method to
data describing such events has yet to be
done.”
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Abstract 1

We present and discuss a candidate for a single parameter representation of the complex
concept of watershed quality that does align short and long term responses, and provides
bounds to the levels of unpredictability. Flow buffering in landscapes is commonly
interpreted as ecosystem service, but needs quantification, as flood damage reflects
insufficient adaptation of human presence and activity to location and variability of river
flow in a given climate. Increased variability and reduced predictability of river flow is a
common sign, in public discourse, of degrading watersheds, combining increased flooding
risk and reduced low flows. Geology, landscape form, soil porosity, litter layer and surface
features, drainage pathways, vegetation and space-time patterns of rainfall interact in
complex space-time patterns of river flow, but the anthropogenic aspects tend to get
discussed on a one-dimensional scale of degradation and restoration, or in other parts of the
literature as due to climate change. A strong tradition in public discourse associates changes
on such degradation-restoration axis with binary deforestation-reforestation shifts.
Empirical evidence for such link that may exist at high spatial resolution may not be a safe
basis for securing required flow buffering in landscapes at large. We define a dimensionless
FlowPer parameter F, that represents predictability of river flow in a recursive flow model.
Analysis suggests that buffering has two interlinked effects: a smaller fraction of fresh
rainfall enters the streams, and flow becomes more persistent, in that the ratio of the flow
on subsequent days has a higher minimum level. As a potential indicator of watershed
health (or quality), the F, metric (or its change over time from what appears to be the local
norm) matches local knowledge concepts, captures key aspects of the river flow dynamic
and can be unambiguously derived from empirical river flow data. Further exploration of
responsiveness of Fy to the interaction of land cover and the specific realization of space-
time patterns of rainfall in a limited observation period is needed to test the interpretation
of F, as indicator of watershed health (or quality) in the way this is degrading or restoring
through land cover change and modifications of the overland and surface flow pathways,
given inherent properties such as geology, geomorphology and climate.

1 Introduction

Degradation of watersheds and its consequences for river flow regime and flooding intensity and
frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et
al., 2013). Current watershed rehabilitation programs that focus on increasing tree cover in upper
watersheds are only partly aligned with current scientific evidence of effects of large-scale tree
planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van Noordwijk et
al., 2007, 2015a; Verbist et al., 2010). The relationship between floods and change in forest quality
and quantity, and the availability of evidence for such a relationship at various scales has been
widely discussed over the past decades (Andréassian, 2004; Bruijnzeel, 2004; Bradshaw et al., 2007,
van Dijk et al., 2009). Measurements in Cote d’lvoire, for example, showed strong scale dependence
of runoff from 30-50% at 1 m? point scale, to 4% at 130 ha watershed scale, linked to spatial
variability of soil properties plus variations in rainfall patterns (Van de Giesen et al., 2000). The ratio
between peak and average flow decreases from headwater streams to main rivers in a predictable
manner; while mean annual discharge scales with (area)’°, maximum river flow was found to scale
with (area)®’ on average (Rodriguez-lturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The
determinants of peak flow are thus scale-dependent, with space-time correlations in rainfall
interacting with subcatchment-level flow buffering at any point along the river. Whether and where
peak flows lead to flooding depends on the capacity of the rivers to pass on peak flows towards
downstream lakes or the sea, assisted by riparian buffer areas with sufficient storage capacity
(Baldasarre et al., 2013); reducing local flooding risk by increased drainage increases flooding risk
downstream, challenging the nested-scales management of watersheds to find an optimal spatial



distribution, rather then minimization, of flooding probabilities. Well-studied effects of forest
conversion on peak flows in small upper stream catchments (Alila et al., 2009) do not necessarily
translate to flooding downstream. As summarized by Beck et al. (2013) meso- to macroscale
catchment studies (>1 and >10 000 km?, respectively) in the tropics, subtropics, and warm
temperate regions have mostly failed to demonstrate a clear relationship between river flow and
change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack of effect,
however. Detectability of effects depends on their relative size, the accuracy of the measurement
devices, background variability of the signal and length of observation period. A recent econometric
study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, after appropriate corrections
for space-time correlates in the data-set for 31 meso- and macroscale basins (554-28,643 km?),
conversion of inland rain forest to monocultural plantations of oil palm or rubber increased the
number of flooding days reported, but not the number of flood events, while conversion of wetland
forests to urban areas reduced downstream flood duration. This Malaysian study may be the first
credible empirical evidence at this scale. The difference between results for flood duration and flood
frequency and the result for draining wetland forests warrant further scrutiny. Consistency of these
findings with river flow models based on a water balance and likely pathways of water under the
influence of change in land cover and land use has yet to be shown. Two recent studies for Southern
China confirm the conventional perspective that deforestation increases high flows, but are
contrasting in effects of reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong
Province in China and concluded that forest recovery had not changed the annual water yield (or its
underpinning water balance terms precipitation and evapotranspiration), but had a statistically
significant positive effect on dry season (low) flows. Liu et al. (2015), however, found for the
Meijiang watershed (6983 km2) in subtropical China that while historical deforestation had
decreased the magnitudes of low flows (daily flows = Q95%) by 30.1%, low flows were not
significantly improved by reforestation. They concluded that recovery of low flows by reforestation
may take much longer time than expected probably because of severe soil erosion and resultant loss
of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited period of
time can be the combined and interactive effects of variations in the local rainfall regime, land cover
effects on soil structure and engineering modifications of water flow, that can be teased apart with
modelling tools (Ma et al., 2014).

Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ from
those of plantation forestry, while forest statistics do not normally differentiate between these
different land covers. In a regression study of the high and low flow regimes in the Volta and
Mekong river basins Lacombe and McCartney (2016) found that in the variation among tributaries
various aspects of land cover and land cover change had explanatory power. Between the two
basins, however, these aspects differed. In the Mekong basin variation in forest cover had no direct
effect on flows, but extending paddy areas resulted in a decrease in downstream low flows, probably
by increasing evapotranspiration in the dry season. In the Volta River Basin, the conversion of forests
to crops (or a reduction of tree cover in the existing parkland system) induced greater downstream
flood flows. This observation is aligned with the experimental identification of an optimal,
intermediate tree cover from the perspective of groundwater recharge in parklands in Burkina Faso
(llstedt et al., 2016).

The statistical challenges of attribution of cause and effect in such data-sets are considerable with
land use/land cover interacting with spatially and temporally variable rainfall, geological
configuration and the fact that land use is not changing in random fashion or following any pre-
randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 catchments
in Puerto Rico by Beck et al. (2013) did not find significant relationships between the change in
forest cover or urban area, and change in various flow characteristics, despite indications that
regrowing forests increased evapotranspiration. Yet, the concept of a ‘regulating function’ on river
flow regime for forests and other semi-natural ecosystems is widespread. The considerable human
and economic costs of flooding at locations and times beyond where this is expected make the



presumed ‘regulating function’ on flood reduction of high value (Brauman et al., 2007) — if only we
could be sure that the effect is real, beyond the local scales (< 10 km?) of paired catchments where
ample direct empirical proof exists (Bruijnzeel, 1990, 2004). These observations imply that percent
tree cover (or other forest related indicators) is probably not a good metric for judging the
ecosystem services provided by a watershed (of different levels of ‘health’), and that a metric more
directly reflecting changes in river flow may be needed. Here we will explore a simple recursive
model of river flow (van Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can
account for the types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014),
and (iii) may constitute a suitable performance indicator to monitor watershed ‘health’ through
time.

= Figure 1

Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure and
vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, while
exposure depends on topographic position interacting with human presence, and vulnerability can
be modified by engineering at a finer scale and be further reduced by advice to leave an area in high-
risk periods. A recent study (Jongman et al., 2015) found that human fatalities and material losses
between 1980 and 2010 expressed as a share of the exposed population and gross domestic product
were decreasing with rising income. The planning needed to avoid extensive damage requires
guantification of the risk of higher than usual discharges, especially at the upper tail end of the flow
frequency distribution.

The statistical scarcity, per definition, of ‘extreme events’ and the challenge of data collection where
they do occur, make it hard to rely on empirical data as such. Existing data on flood frequency and
duration, as well as human and economic damage are influenced by topography, human population
density and economic activity, interacting with engineered infrastructure (step 4 and 5 in Figure 1),
as well as the extreme rainfall events that are their proximate cause. Subsidence due to
groundwater extraction in urban areas of high population density is a specific problem for a number
of cities built on floodplains (such as Jakarta and Bangkok), but subsidence of drained peat areas has
also been found to increase flooding risks elsewhere (Sumarga et al., 2016). Common hydrological
analysis of flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood events, for example) does
not separately attribute flood magnitude to rainfall and land use properties, and analysis of likely
change in flood frequencies in the context of climate change adaptation has been challenging (Milly
et al,, 2002; Ma et al., 2014). There is a lack of simple performance indicators for watershed health
at its point of relating precipitation P and river flow Q (step 2 in Figure 1) that align with local
observations of river behaviour and concerns about its change and that can reconcile local,
public/policy and scientific knowledge, thereby helping negotiated change in watershed
management (Leimona et al., 2015). The behaviour of rivers depends on many climatic (step 1 in
Figure 1) and terrain factors (step 7-9 in Figure 1) that make it a challenge to differentiate between
anthropogenically induced ecosystem structural change and soil degradation (step 7a) on one hand
and intrinsic variability on the other. Arrow 10 in Figure 1 represents the direct influence of climate
on vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological
models tend to focus on predicting hydrographs at one or more temporal scales, and are usually
tested on data-sets from limited locations. Despite many decades (if not centuries) of hydrological
modelling, current hydrologic theory, models and empirical methods have been found to be largely
inadequate for sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts to resolve this
through harmonization of modelling strategies have so far failed. Existing models differ in the
number of explanatory variables and parameters they use, but are generally dependent on empirical
data of rainfall that are available for specific measurement points but not at the spatial resolution
that is required for a close match between measured and modelled river flow. Spatially explicit
models have conceptual appeal (Ma et al., 2010) but have too many degrees of freedom and too
many opportunities for getting right answers for wrong reasons if used for empirical calibration
(Beven, 2011). Parsimonious, parameter-sparse models are appropriate for the level of evidence



available to constrain them, but these parameters are themselves implicitly influenced by many
aspects of existing and changing features of the watershed, making it hard to use such models for
scenario studies of interacting land use and climate change. Here we present a more direct approach
deriving a metric of flow predictability that can bridge local concerns and concepts to quantified
hydrologic function: the ‘flow persistence’ parameter (step 2 in Figure 1).

In this contribution to the debate we will first define the metric ‘flow persistence’ in the context of
temporal autocorrelation of river flow and then derive a way to estimate its numerical value. In part
I we will apply the algorithm to river flow data for a number of contrasting meso-scale watersheds.
In the discussion of this paper we will consider the new flow persistence metric in terms of three
groups of criteria for usable knowledge (Clark et al., 2011; Lusiana et al., 2011; Leimona et al., 2015)
based on salience (1,2), credibility (3,4) and legitimacy (5-7):

1. Does flow persistence relate to important aspects of watershed behaviour?
2. Does its quantification help to select management actions?

3. Is there consistency of numerical results?

4. How sensitive is it to bias and random error in data sources?

5. Does it match local knowledge?

6. Can it be used to empower local stakeholders of watershed management?

7. Canitinform local risk management?

Questions 3 and 4 will get specific attention in part II.

2 Recursive river flow model and flow persistence

2.1 Basic equations

One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, related to
the volumetric flow (discharge) via rating curves (Maidment, 1992). Without knowing details of
upstream rainfall and the pathways the rain takes to reach the river, observation of the daily
fluctuations in water level allows important inferences to be made. It is also of direct utility: sudden
rises can lead to floods without sufficient warning, while rapid decline makes water utilization
difficult. Indeed, a common local description of watershed degradation is that rivers become more
‘flashy’ and less predictable, having lost a buffer or ‘sponge’ effect (Joshi et al., 2004; Ranieri et al.,
2004; Rahayu et al., 2013). A simple model of river flow at time t, Qs is that it is similar to that of the
day before (Q:.1), to the degree F,, a dimensionless parameter called ‘flow persistence’ (van
Noordwijk et al., 2011) plus an additional stochastic term Q. :

Qi =Fp Qr1+ Qap [1].

Q. is for this analysis expressed in mm d, which means that measurements in m3 s need to be
divided by the relevant catchment area, with appropriate unit conversion. If river flow were
constant, it would be perfectly predictable, i.e. F, would be 1.0 and Qa; zero; in contrast, an Fy-value
equal to zero and Q. directly reflecting erratic rainfall represents the lowest possible level of
predictability.

The F, parameter is conceptually identical to the ‘recession constant’ commonly used in hydrological
models, typically assessed during an extended dry period when the Q. term is negligible and
streamflow consists of base flow only (Tallaksen, 1995); empirical deviations from a straight line in a
plot of the logarithm of Q against time are common and point to multiple rather than a single



groundwater pool that contributes to base flow. The larger catchment area has a possibility to get
additional flow from multiple independent groundwater contribution.

As we will demonstrate in a next section, it is possible to derive F, even when Q. is not negligible. In
climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent F,
between wet and dry parts of the hydrologic year. A possible interpretation, to be further explored,
is that decrease over the years of F, indicates ‘watershed degradation’ (i.e. greater contrast between
high and low flows), and an increase ‘improvement’ or ‘rehabilitation’ (i.e. more stable flows).

If we consider the sum of river flow over a period of time (from 1 to T) we obtain

21T Qe =Fp 21T Qea+ 21T Qa [2].

If the period is sufficiently long period for Qr minus Qo (the values of Q; for t=T and t=0, respectively)
to be negligibly small relative to the sum over all t‘s, we may equate ;" Q; with ;" Q.1 and obtain a
first way of estimating the F,value:

Fp=1-21"Qat/ 22" Qs [3].
Rearranging Eq.(3) we obtain
21 Qar=(1-Fp) 21" [4].

The 2Q,+ term reflects the sum of peak flows in mm, while F, 2Q; reflects the sum of base flow, also
in mm. Clarifying the Q, contribution is equivalent with one of several ways to separate base flow
from peak flows. For F, = 1 (the theoretical maximum) we conclude that all Q. must be zero, and all
flow is ‘base flow’.

The stochastic Q. can be interpreted in terms of what hydrologists call ‘effective rainfall’ (i.e. rainfall
minus on-site evapotranspiration, assessed over a preceding time period tx since previous rain
event):

Qt =Fp Qt—l + (1'Fp)(Ptx - Etx) [5]

Where Py is the (spatially weighted) precipitation (assuming no snow or ice, which would shift the
focus to snowmelt) in mm d%; Ey, also in mm d?, is the preceding evapotranspiration that allowed
for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-replenishing
rainfall that induced empty pore space in the soil for infiltration and retention), or replenishment of
a waterfilm on aboveground biomass that will subsequently evaporate. More complex attributions
are possible, aligning with the groundwater replenishing bypass flow and the water isotopic
fractionation involved in evaporation (Evaristo et al., 2015).

The consistency of multiplying effective rainfall with (1-F,) can be checked by considering the
geometric series (1-Fp), (1-Fp) Fp, (1-Fp) Fp?, ..., (1-Fp) Fp" which adds up to (1-Fp)(1 - F,")/(1-Fp) or 1 -
Fo". This approaches 1 for large n, suggesting that all of the water attributed to time t, i.e. Pt — Ey,
will eventually emerge as river flow. For F, = 0 all of (Pt — Ei) emerges on the first day, and river flow
is as unpredictable as precipitation itself. For F, = 1 all of (P: — E«) contributes to the stable daily flow
rate, and it takes an infinitely long period of time for the last drop of water to get to the river. For
declining Fy, (1 > F, > 0), river flow gradually becomes less predictable, because a greater part of the
stochastic precipitation term contributes to variable rather than evened-out river flow.

Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain:

$Q; =5(Fp Qe + (1-Fp)(Pt — En)) = Fp £ Qu1 + (1-Fp)( £ Pe— 5 Ex)) [6].

Which is consistent with the basic water budget, 2Q = 2P — ZE, at time scales long enough for
changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean daily
river flow are independent of F,. This does not preclude that processes of watershed degradation or
restoration that affect the partitioning of P over Q and E also affect F,.

2.2 Low flows

The lowest flow expected in an annual cycle is QF,"™*where Qy is flow on the first day without rain
and Nmax the longest series of dry days. Taken at face value, a decrease in Fy has a strong effect on
low-flows, with a flow of 10% of Q, reached after 45, 22, 14, 10, 8 and 6 days for F, = 0.95, 0.9, 0.85,
0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the



cumulative dry season flow if the dry period is sufficiently long, is Q«/(1-Fp). If F, decreases to Fp« but
the groundwater reservoir (Res = Qx/(1-Fp)) is not affected, initial flows in the dry period will be
higher (QxFpx (1-Fpx) Res> QxF,' (1-F,) Res for i < log((1-Fpx)/(1-Fp))/10g(Fp/Fpx)). It thus matters how
low flows are evaluated: from the perspective of the lowest level reached, or as cumulative flow.
The combination of climate, geology and land form are the primary determinants of cumulative low
flows, but if land cover reduces the recharge of groundwater there may be impacts on dry season
flow, that are not directly reflected in Fp.

If a single F, value would account for both dry and wet season, the effects of changing F, on low
flows may well be more pronounced than those on flood risk. Empirical tests are needed of the
dependence of F, on Q (see below). Analysis of the way an aggregate F, depends on the dominant
flow pathways provides a basis for differentiating F, within a hydrologic year.

2.3 Flow-pathway dependence of flow persistence

The patch-level partitioning of water between infiltration and overland flow is further modified at
hillslope level, with a common distinction between three pathways that reach streams: overland
flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 2004). An additional
interpretation of Eq.(1), potentially adding to our understanding of results but not needed for
analysis of empirical data, can be that three pathways of water through a landscape contribute to
river flow (Barnes, 1939): groundwater release with F,g values close to 1.0, overland flow with F,,
values close to 0, and interflow with intermediate Fy; values.

Qt =Fp,g Qt-l,g + Fp,i Qt-l,i + Fp,o Qt—l,o + Qa,t [7];

Fp = (Fp,g Qt-l,g + Fp,i Qt-l,i + Fp,o Qt—l,o)/Qt—l [8]

On this basis a decline or increase in overall weighted average F,can be interpreted as indicator of a
shift of dominant runoff pathways through time within the watershed. Dry season flows are
dominated by Fy .. The effective F, in the rainy season can be interpreted as indicating the relative
importance of the other two flow pathways. F, reflects the fractions of total river flow that are based
on groundwater, overland flow and interflow pathways:

Fo=Fog(2Qug/ ZQ:) + Fpo (2Quo /ZQy) + Fpi (2Qui / 2Qu) [9].

Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to
enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated conditions
throughout the soil profile may also induce overland flow, especially near valley bottoms (Bonell,
1993; Bruijnzeel, 2004). Thus, the value of F,,can be substantially above zero if the rainfall has a
significant temporal autocorrelation, with heavy rainfall on subsequent days being more likely than
would be expected from general rainfall frequencies. If rainfall following a wet day is more likely to
occur than following a dry day, as is commonly observed in Markov chain analysis of rainfall patterns
(Jones and Thornton, 1997; Bardossy and Plate, 1991), the overland flow component of total flow
will also have a partial temporal autocorrelation, adding to the overall predictability of river flow. In
a hypothetical climate with evenly distributed rainfall, we can expect F, to be 1.0 even if there is no
infiltration and the only pathway available is overland flow. Even with rainfall that is variable at any
point of observation but has low spatial correlation it is possible to obtain F, values of (close to) 1.0
in a situation with (mostly) overland flow (Ranieri at al., 2004).

3. Methods

3.1 Numerical example

Figure 2 provides an example of the way a change in F, values (based on Eq. 1) influences the
pattern of river flow for a unimodal rainfall regime with a well-developed dry season. The figure was
constructed in a Monte Carlo realization of rainfall based on a (truncated) sinus-based probability of



rainfall and rectangular rainfall depth to derive the (P« — E) term, with the Q. values derived as (1 —
Fo) (P — Etx). The increasing ‘spikiness’ of the graph as F, is lowered indicates reduced predictability
of flow on any given day during the wet season on the basis of the flow on the preceding day. A bi-
plot of river flow on subsequent days for the same simulations (Figure 3) shows two main effects of
reducing the F, value: the scatter increases, and the slope of the lower envelope containing the
swarm of points is lowered (as it equals Fy). Both of these changes can provide entry points for an
algorithm to estimate F, from empirical time series, provided the basic assumptions of the simple
model apply and the data are of acceptable quality (see Section 3 below). For the numerical example
shown in Figure 2, the maximum daily flow doubled from 50 to 100 mm when the F, value decreased
from a value close to 1 (0.98) to nearly 0.

= Figure 2

= Figure 3

3.2 Flow persistence as a simple flood risk indicator

For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as:
Q: =2} Fo' (1-Fp) p; P [10].

Where pj reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal
trends) and P; is the rain depth (drawn from a uniform distribution). From this model the effects of F
(and hence of changes in Fp) on maximum daily flow rates, plus maximum flow totals assessed over a
2-5 d period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall in
the default case — see below). Relative flood protection was calculated as the difference between
peak flows (assessed for 1-5 d duration after a 1 year ‘warm-up‘ period) for a given F, versus those
for Fp =0, relative to those at F,= 0.

3.3 An algorithm for deriving F, from a time series of stream flow data

Equation (3) provides a first method to derive F, from empirical data if these cover a full hydrologic
year. In situations where there is no complete hydrograph and/or in situations where we want to
quantify Fy for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change
in the storage term of the water budget equation cannot be ignored, we need an algorithm for
estimating F, from a series of daily Q: observations.

Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a
groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). As we
can assume for such periods that Q. = 0, we obtain F, = Q; /Q:1, under these circumstances. We
cannot be sure, however, that this F, ¢ estimate also applies in the rainy season, because overall wet-
season F, will include contributions by F,, and Fy; as well (compare Eqg. 9). In locations without a
distinct dry season, we need an alternative method.

A biplot of Q; against Q:1 (as in Figure 3) will lead to a scatter of points above a line with slope F,
with points above the line reflecting the contributions of Q. >0, while the points that plot on the F,
line itself represent Q.+ = 0 mm d. There is no independent source of information on the frequency
at which Qat = 0, nor what the statistical distribution of Q, values is if it is non-zero. Calculating back
from the Q; series we can obtain an estimate (Qa rptry) Of Qa for any given estimate (Fp,uy) of Fp, and
select the most plausible F, value. For high F,«, estimates there will be many negative Qa gptry Values,
for low Fytry estimates all Qa rotry Values will be larger. An algorithm to derive a plausible F, estimate
can thus make use of the corresponding distribution of ‘apparent Q. values as estimates of Fyry,
calculated as Qatry = Qt - Fptry Qr-1. While Qar cannot be negative in theory, small negative Q,
estimates are likely when using real-world data with their inherent errors. The FlowPer F, algorithm
(van Noordwijk et al., 2011) derives the distribution of Q,y estimates for a range of F, ., values
(Figure 4B) and selects the value Fy«y that minimizes the variance Var(Qa rotry) (Or its standard
deviation) (Figure 4C). It is implemented in a spreadsheet workbook that can be downloaded from
the ICRAF website (http://www.worldagroforestry.org/output/flowper-flow-persistence-model)
=>Figure 4

A consistency test is needed that the high-end Q; values relate to Qi1 in the same was as do low or
medium Q; values. Visual inspection of Qi1 versus Q;, with the derived F, value, provides a
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gualitative view of the validity of this assumption. The F, algorithm can be applied to any population
of (Qt1, Qi) pairs, e.g. selected from a multiyear data set on the basis of 3-month periods within the
hydrological year.

4 Results

4.1 Flood intensity and duration

Figure 5 shows the effect of F, values in the range 0 to 1 on the maximum flows obtained with a
random time series of ‘effective rainfall, compared to results for F,= 0. Maximum flows were
considered at time scales of 1 to 5 days, in a moving average routine. This way a relative flood
protection, expressed as reduction of peak flow, could be related to F, (Figure 5A).

= Figure 5

Relative flood protection rapidly decreased from its theoretical value of 100% at F, = 1 (when there
was no variation in river flow), to less than 10% at F, values of around 0.5. Relative flood protection
was slightly lower when the assessment period was increased from 1 to 5 days (between 1 and 3 d it
decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting effects are at play here: a
lower F, means that a larger fraction (1-F;) of the effective rainfall contributes to river flow, but the
increased flow is less persistent. In the example the flood protection in situations where the rainfall
during 1 or 2 d causes the peak is slightly stronger than where the cumulative rainfall over 3-5 d
causes floods, as typically occurs downstream.

As we expect from equation 5 that peak flow is to (1-F;) times peak rainfall amounts, the effect of a
change in Fy not only depends on the change in F, that we are considering, but also on its initial
value. Higher initial F, values will lead to more rapid increases in high flows for the same reduction in
Fo (Figure 5B). However, flood duration rather responds to changes in F, in a curvilinear manner, as
flow persistence implies flood persistence (once flooding occurs), but the greater the flow
persistence the less likely such a flooding threshold is passed (Figure 5C). The combined effect may
be restricted to about 3 d of increase in flood duration for the parameter values used in the default
example, but for different parametrization of the stochastic € other results might be obtained.

4.2 Algorithm for Fp estimates from river flow time series

The algorithm has so far returned non-ambiguous F, estimates on any modelled time series data of
river flow, as well as for all empirical data set we tested (including all examples tested in part Il),
although there probably are data sets on which it can breakdown. Visual inspection of Q:.1/Q; biplots
(as in Figure 3) can provide clues to non-homogenous data sets, to potential situations where
effective F,depends on flow level Q: and where data are not consistent with a straight-line lower
envelope. Where river flow estimates were derived from a model with random elements, however,
variation in F, estimates was observed, that suggests that specific aspects of actual rainfall, beyond
the basic characteristics of a watershed and its vegetation, do have at least some effect. Such effects
deserve to be further explored for a set of case studies, as their strength probably depends on
context.

5 Discussion
We will discuss the flow persistence metric based on the questions raised from the perspectives of
salience, credibility and legitimacy.

5.1 Salience

Key salience aspects are “Does flow persistence relate to important aspects of watershed
behaviour?” and “Does it help to select management actions?”. A major finding in the derivation of



Fp was that the flow persistence measured at daily time scale can be logically linked to the long-term
water balance, and that the proportion of peak rainfall that translates to peak river flow equals the
complement of flow persistence. This feature links effects on floods of changes in watershed quality
to effects on low flows, although not in a linear relationship. The F, parameter as such does not
predict when and where flooding will occur, but it does help to assess to what extent another
condition of the watershed, with either higher or lower F, would translate the same rainfall into
larger or small peak water flows. This is salient, especially if the relative contributions of
(anthropogenic) land cover and the (exogenous, probabilistic) specifics of the rainfall pattern can be
further teased apart (see part Il). Where F, may describe the descending branch of hydrographs at a
relevant time scale, details of the ascending branch beyond the maximum daily flow reached may be
relevant for reducing flood damage, and may require more detailed study at higher temporal
resolution.

A key strength of our flow persistence parameter, that it can be derived from observing river flow at
a single point along the river, without knowledge of rainfall events and catchment conditions, is also
its major weakness. If rainfall data exist, and especially rainfall data that apply to each
subcatchment, the Q, term doesn’t have to be treated as a random variable and event-specific
information on the flow pathways may be inferred for a more precise account of the hydrograph.
But for the vast majority of rivers in the tropics, advances in remotely sensed rainfall data are
needed to achieve that situation and F, may be all that is available to inform public debates on the
relation between forests and floods.

Figures 2 and 5 show that most of the effects of a decreasing F, value on peak discharge (which is
the basis for downstream flooding) occur between Fyvalues of 1 and 0.7, with the relative flood
protection value reduced to 10% when F, reaches 0.5. As indicated in Figure 1, peak discharge is only
one of the factors contributing to flood risk in terms of human casualties and physical damage. Flood
risks are themselves nonlinearly and in strongly topography-specific ways related to the volume of
river flow after extreme rainfall events. While the expected fraction of rainfall that contributes to
direct flow is linearly related to rainfall via (1-Fp), flooding risk as such will have a non-linear
relationship with rainfall, that depends on topography and antecedent rainfall. Catchment changes,
such as increases or decreases in percentage tree cover, will generally have a non-linear relationship
with F, as well as with flooding risks. The Fy value has an inverse effect on the fraction of recent
rainfall that becomes river flow, but the effect on peak flows is less, as higher F, values imply higher
base flow. The way these counteracting effects balance out depends on details of the local rainfall
pattern (including its Markov chain temporal autocorrelation), as well as the downstream
topography and risk of people being at the wrong time at a given place, but the F, value is an
efficient way of summarizing complex land use mosaics and upstream topography in its effect on
river flow. The difference between wet-season and dry-season F, deserves further analysis. In
climates with a real rainless dry-season, dry season F, is dominated by the groundwater release
fraction of the watershed, regardless of land cover, while in wet season it depends on the mix
(weighted average) of flow pathways. The degree to which F, can be influenced by land cover needs
to be assessed for each landscape and land cover combination, including the locally relevant forest
and forest derived land classes, with their effects on interception, soil infiltration and time pattern of
transpiration. The F, value can summarize results of models that explore land use change scenarios
in local context. To select the specific management actions that will maintain or increase F; a locally
calibrated land use/hydrology model is needed, such as GenRiver (part Il), DHV (Bergstrém, 1995) or
SWAT (Yen et al., 2015).

Although a higher F, value will in most cases be desirable (and a decrease in F, undesirable), we may
expect that downstream biota have adjusted to the pre-human flow conditions and its inherent F,
and variability. Decreased variability of flow achieved by engineering interventions (e.g. a reservoir
with constant release of water to generate hydropower) may have negative consequences for fish
and other biota (Richter et al., 2003; McCluney et al., 2014).



The “health” concept we use is a comprehensive one of the way climate, watershed and engineering
interventions interact on functional aspects of river flow. In the catchments we considered in part Il
there have been no major dams or reservoirs installed. Ma et al (2014) described a method to
separate these three influences on river flow. Where these do exist the specific operating rules of
reservoirs need to be included in any model and these can have a major influence on downstream
flow, depending on the primary use for power generation, dry season irrigation or stabilizing river
flow for riverine transport.

5.2 Credibility

Key credibility questions are “Consistency of numerical results?” and “How sensitive are results to
bias and random error in data sources?”. This is further discussed in part Il, after a number of case
studies has been studied. The main conclusions are that intra-annual variability of F, values between
wet and dry seasons was around 0.2 in the case studies, interannual variability in either annual or
seasonal F, was generally in the 0.1 range, while the difference between observed and simulated
flow data as basis for F, calculations was mostly less than 0.1. With current methods, it seems that
effects of land cover change on flow persistence that shift the F, value by about 0.1 are the limit of
what can be asserted from empirical data (with shifts of that order in a single year a warning sign
rather than a firmly established change). When derived from observed river flow data F;, is suitable
for monitoring change (degradation, restoration) and can be a serious candidate for monitoring
performance in outcome-based ecosystem service management contracts. In interpreting changes in
Fp as caused by changes in the condition in the watershed, however, changes in specific properties of
the rainfall regime must be excluded. At the scale of paired catchment studies this assumption may
be reasonable, but in temporal change (or using specific events as starting point for analysis), it is
not easy to disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not
only responds to, but also influences rainfall (arrow 10 in Figure 1; van Noordwijk et al., 2015b)
further complicates the analysis across scales.
As indicated, the F, method is related to earlier methods used in streamflow hydrograph separation
of base flow and quick flow. While textbooks (Ward and Robinson, 2000; Hornberger et al 2014)
tend to be critical of the lack of objectivity of graphical methods, algorithms are used for deriving the
minimum flow in a fixed or sliding period of reference as base flow (Sloto and Crouse, 1996; Furey
and Gupta, 2001). The time interval used for deriving the minimum flow depends on catchment size.
Figure 6 compares results for a hydrograph of a single year of one of the catchments described in
more detail in paper Il. While there is agreement on most of what is indicated ass baseflow, the
short term response to peaks in the flow differ, with baseflow in the F, method more rapidly
increasing after peak events. When compared across multiple years for the four catchments
described in detail in paper Il (figure 7), there is partial agreement in the way interannual variation is
described in each catchment, while numerical values are similar, but the ratio of what is indicated as
baseflow according to the F, method and according to standard hydrograph separation varies from
1.05 to 0.86.

= Figure 6

= Figure 7

Recursive models that describe flow in a next time interval on the basis of a fraction of that in the
preceding time interval with a term for additional flow due to additional rainfall have been used in
analysis of peak flow event before, with time intervals as short as 1 minute rather than the 1 day we
use here (Rose, 2004). Through reference to an overall mass balance a relationship similar to what
we found here (F, times preceding flow plus 1 — F,, times recent inputs) was also used in such
models. To our knowledge, the method we describe here at daily timescales has not been used
before.

The idea that the form of the storage-discharge function can be estimated from analysis of streamflow
fluctuations has been explored before for a class of catchments in which discharge is determined by



the volume of water in storage (Kirchner, 2009). Such catchments behave as simple first-order
nonlinear dynamical systems and can be characterized in a single-equation rainfall-runoff model that
predicted streamflow, in a test catchment in Wales, as accurately as other models that are much more
highly parameterized. This model of the dQ/dt versus Q relationship can also be analytically inverted:;
thus, it can be used to “do hydrology backward,” that is, to infer time series of whole-catchment
precipitation directly from fluctuations in streamflow. The slope of the log-log relationship between
flow recession (dQ/dt) and Q that Kirchner (2009) used is conceptually similar to the F, metric we
derived here, but the specific algorithm to derive the parameter from empirical data differs. Estimates
of dQ/dt are sensitive to noise in the measurement of Q and the possibly frequent and small increases
in Q can be separated from the expected flow recession in the algorithm we presented here.

Seifert and Beven (2009) discussed the increase in predictive skill of models depending on the
amount of location-specific data that can be used to constrain them. They found that the ensemble
prediction of multiple models for a single location clearly outperformed the predictions using single
parameter sets and that surprisingly little runoff data was necessary to identify model
parameterizations that provided good results for “ungauged” test periods in cases where actual
measurements were available. Their results indicated that a few runoff measurements can contain
much of the information content of continuous runoff time series. The way these conclusions might
be modified if continuous measurements for limited time periods, rather than separated single data
points on river flow could be used, remains to be explored. Their study indicated that results may
differ significantly between catchments and critical tests of F, across multiple situations are
obviously needed, as paper Il will provide.

In discussions and models of temperate zone hydrology (Bergstrom, 1995; Seifert, 1999) snowmelt is
a major component of river flow and effects of forest cover on spring temperatures are important to
the buffering of the annual peaks in flow that tend to occur in this season. Application of the F,
method to data describing such events has yet to be done.

5.3 Legitimacy

Legitimacy aspects are “Does it match local knowledge?” and “Can it be used to empower local
stakeholders of watershed management?” and “Can it inform risk management?”. As the F,
parameter captures the predictability of river flow that is a key aspect of degradation according to
local knowledge systems, its results are much easier to convey than full hydrographs or exceedance
probabilities of flood levels. By focusing on observable effects at river level, rather than prescriptive
recipes for land cover (“reforestation”), the F, parameter can be used to more effectively compare
the combined effects of land cover change, changes in the riparian wetlands and engineered water
storage reservoirs, in their effect on flow buffering. It is a candidate for shifting environmental
service reward contracts from input to outcome based monitoring (van Noordwijk et al., 2012). As
such it can be used as part of a negotiation support approach to natural resources management in
which levelling off on knowledge and joint fact finding in blame attribution are key steps to
negotiated solutions that are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et
al., 2015). Quantification of F, can help assess tactical management options (Burt et al., 2014) asin a
recent suggestion to minimize negative downstream impacts of forestry operations on stream flow
by avoiding land clearing and planting operations in locally wet La Nifa years. But the most
challenging aspect of the management of flood, as any other environmental risk, is that the
frequency of disasters is too low to intuitively influence human behaviour where short-term risk
taking benefits are attractive. Wider social pressure is needed for investment in watershed health
(as a type of insurance premium) to be mainstreamed, as individuals waiting to see evidence of
necessity are too late to respond. In terms of flooding risk, actions to restore or retain watershed
health can be similarly justified as insurance premium. It remains to be seen whether or not the
transparency of the F, metric and its intuitive appeal are sufficient to make the case in public debate
when opportunity costs of foregoing reductions in flow buffering by profitable land use are to be
compensated and shared (Burt et al., 2014).



5.4 Conclusions and specific questions for a set of case studies

In conclusion, the F, metric appears to allow an efficient way of summarizing complex landscape
processes into a single parameter that reflects the effects of landscape management within the
context of the local climate. If rainfall patterns change but the landscape does not, the resultant flow
patterns may reflect a change in watershed health (van Noordwijk et al., 2016). Flow persistence is
the result of rainfall persistence and the temporal delay provided by the pathway water takes
through the soil and the river system. High flow persistence indicates a reliable water supply, while
minimizing peak flow events. Wider tests of the F, metric as boundary object in science-practice-
policy boundary chains (Kirchhoff et al., 2015; Leimona et al., 2015) are needed. Further tests for
specific case studies can clarify how changes in tree cover (deforestation, reforestation,
agroforestation) in different contexts influence river flow dynamics and F, values. Sensitivity to
specific realizations of underlying time-space rainfall patterns needs to be quantified, before
changes in F, can be attributed to ‘watershed quality’, rather than chance events.
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accounted for in Part II.
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Figure 1. Steps in a causal pathway that relates rainfall (1) via watershed conditions (2) to the
pattern of river flow described in a hydrograph (3), which can get modified by the conditions
along the river channel into a hazard of flood frequency and duration (4); jointly with exposure
(being in the wrong place at critical times, 5) and vulnerability (6) this determines flood damage;
in avoiding flood damage, the condition in the watershed with its landcover and spatial
configuration (7) influences the patch level water partitioning over overland flow and infiltration
(8), while hillslope level configuration further influences flow pathways (9) and land cover
potentially influences rainfall (10)
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Figure 2. Example of daily river flow, split into a base flow and additional flow component, for
unimodal sinus-based rainfall probability multiplied with a rainfall depth calculated as
60”rand(0.1) mm/day (~120 rainy days, annual Q ~ 1600 mm) in watersheds characterized by F,
values ranging from 0.95 to 0.2
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Abstract

The way watersheds buffer the temporal pattern of river flow relative to the temporal
pattern of rainfall is an important ecosystem service. Part of this buffering is inherent to its
geology and climate, but another part is responding to human use and misuse of the
landscape, and can be part of management feedback loops if salient, credible and legitimate
indicators can be found and used. Dissecting the anthropogenic change from exogenous
variability (e.g. the specific time-space pattern of rainfall during an observation period) is
relevant for designing and monitoring of watershed management interventions. Part |
introduced the concept of flow persistence, key to a parsimonious recursive model of river
flow. It also discussed the operational derivation of the F, parameter. Here we compare Fp
estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai, and Bialo) and
Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal
time scale. The likely response in each of these four to variation in rainfall properties (incl.
the maximum hourly rainfall intensity) and land cover (comparing scenarios with either
more or less forest and tree cover than the current situation) was explored through a basic
daily water balance model, GenRiver. This model was calibrated for each site on existing
data, before being used to explore alternative land cover and rainfall parameter settings. In
both data and model runs, the wet-season (3-monthly) F, values were consistently lower
than dry-season values for all four sites. Across the four catchments F,, values decreased
with increasing annual rainfall, but specific aspects of watersheds, such as the riparian
swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed.
Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the
values considered typical for each landscape was predicted to decrease F, values by
between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of F, to changes in land use
change plus changes in rainfall intensity depends on other characteristics of the watersheds,
and generalizations made on the basis of one or two case studies may not hold, even within
the same climatic zone. A wet-season F, value above 0.7 was achievable in forest-
agroforestry mosaic case studies. Interannual variability in F, was found to be large relative
to effects of land cover change and likely reflects sensitivity in the model of Hortonian
overland flow to variations in rainfall intensity. Multiple (5-10) years of paired-plot data
would generally be needed to reject no-change null-hypotheses on the effects of land use
change (degradation and restoration). While empirical evidence of such effects at scale is
understandably scarce, F, trends over time serve as a holistic scale-dependent performance
indicator of degrading/recovering watershed health and can be tested for acceptability and
acceptance in a wider socio-ecological context.

Introduction

Inherent properties (geology, geomorphology) interact with climate and human modification of

vegetation, soils, drainage and riparian wetlands in the degree of buffering that watersheds provide

(Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the space-time dynamics of

rainfall is an ecosystem service, reducing the exposure of people living on geomorphological

floodplains to high-flow events, and increasing predictability and river flow in dry periods (Joshi et
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al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation and with a sealed surface,
river flow will directly respond to the spatial distribution of rainfall, with only the travel time to any
point of specific interest influencing the temporal pattern of river flow. Any persistence or
predictability of river flow in such a situation will reflect temporal autocorrelation of rainfall, beyond
statistical predictability in seasonal rainfall patterns. On the other side of the spectrum, river flow
can be constant every day, beyond the theoretical condition of constant rainfall, in a watershed that
provides perfect buffering, by passing all water through groundwater pools that have sufficient
storage capacity at any time during the year. Both infiltration-limited (Hortonian) and saturation-
induced use of more rapid flow pathways (inter and overland flows) will reduce the flow persistence
and make it, at least in part, dependent on rainfall events. Separating the effects of land cover (land
use), engineering and rainfall on the actual flow patterns of rivers remains a considerable challenge
(Ma et al., 2014; Verbist et al., 2019). It requires data, models and concepts that can serve as
effective boundary object in communication with stakeholders (Leimona et al. 2015; van Noordwijk
et al. 2012). There is a long tradition in using forest cover as such a boundary object, but there is
only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et al., 2009; van
Noordwijk et al. 2015a).

In part |, we introduced a flow persistence parameter (Fp) that links the two, asymmetrical aspects of
flow dynamics: translating rainfall excess into river flow, and gradually releasing water stored in the
landscape. Here, in part Il we will apply the Fp algorithm to river flow data for a number of
contrasting meso-scale watersheds in Southeast Asia. These were selected to represent variation in
rainfall and land cover, and test the internal consistency of results based on historical data: two
located in the humid and one in the subhumid tropics of Indonesia, and one in the unimodal
subhumid tropics of northern Thailand.

After exploring the patterns of variation in F, estimates derived from river flow records, we will
qguantify the sensitivity of the F, metric to variations in rainfall intensity and its response, on a longer
timescale to land cover change. To do so, we will use a model that uses basic water balance
concepts: rainfall interception, infiltration, water use by vegetation, overland flow, interflow and
groundwater release, to a spatially structured watershed where travel time from sub watersheds to
any point of interest modifies the predicted river flow. In the specific model used land cover effects
on soil conditions, interception and seasonal water use have been included. After testing whether Fp
values derived from model outputs match those based on empirical data where these exist, we rely
on the basic logic of the model to make inference on the relative importance of modifying rainfall
and land cover inputs. With the resulting temporal variation in calculated F, values, we consider the
time frame at which observed shifts in F, can be attributed to factors other than chance (that means:
null-hypotheses of random effects can be rejected with accepted chance of Type | errors).

2. Methods

2.1 GenRiver model for effects of land cover on river flow

The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a
daily time step and a flexible spatial subdivision of a watershed that influences the routing of water
and employs spatially explicit rainfall. At patch level, vegetation influences interception, retention
for subsequent evaporation and delayed transfer to the soil surface, as well as the seasonal demand
for water. Vegetation (land cover) also influences soil porosity and infiltration, modifying the
inherent soil properties. Water in the root zone is modelled separately for each land cover within a
subcatchment, the groundwater stock is modelled at subcatchment level. The spatial structure of a
watershed and the routing of surface flows influences the time delays to any specified point of
interest, which normally includes the outflow of the catchment. Land cover change scenarios are
interpolated annually between time-series (measured or modelled) data. The model may use
measured rainfall data, or use a rainfall generator that involves Markov chain temporal
autocorrelation (rain persistence). As our data sources are mostly restricted to daily rainfall
measurements and the infiltration model compares instantaneous rainfall to infiltration capacity, a
stochastic rainfall intensity was applied at subcatchment level, driven by the mean as parameter and
a standard deviation for a normal distribution (truncated at 3 standard deviations from the mean)



proportional to it via a coefficient of variation as parameter. For the Mae Chaem site in N Thailand
data by Dairaku et al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia
we used 30 mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the
GenRiver model. The model itself, a manual and application case studies are freely available
(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow;van Noordwijk
etal.,, 2011).
2.2 Empirical data-sets, model calibration
Table 1 and Figure 1 provide summary characteristics and the location of river flow data used in four
meso-scale watersheds for testing the F, algorithm and application of the GenRiver model. Figure 1
includes a water tower category in the agro-ecological zones; this is defined on the basis of a ratio of
precipitation and potential evapotranspiration of more than 0.65, and a product of that ratio and
relative elevation exceeding 0.277.

= Tablel

= Figure 1

As major parameters for the GenRiver model were not independently measured for the respective
watersheds, we tuned (calibrated) the model by modifying parameters within a predetermined
plausible range, and used correspondence with measured hydrograph as test criterion (Kobolt et al.
2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target above 0.5) and bias (less than
25%) as test criteria and targets. Meeting these performance targets (Moriasi et al., 2007), we
accepted the adjusted models as basis for describing current conditions and exploring model
sensitivity. The main site-specific parameter values are listed in Table 2 and (generic) land cover
specific default parameters in Table 3.

= Table 2

= Table 3

Table 4 describes the six scenarios of land use change that were evaluated in terms of their
hydrological impacts. Further description on the associated land cover distribution for each scenario
in the four different watersheds is depicted in Appendix 2.

= Table4

2.3 Bootstrapping to estimate the minimum observation

The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly used
to generate ‘surrogate population’ for the purpose of approximating the sampling distribution of a
statistic. In this study, the bootstrap approach was used to estimate the minimum number of
observation (or yearly data) required for a pair-wise comparison test between two time-series of
stream flow or discharge data (representing two scenarios of land use distributions) to be
distinguishable from a null-hypothesis of no effect. The pair-wise comparison test used was
Kolmogorov-Smirnov test that is commonly used to test the distribution of discharge data (Zhang eta
al, 2006). We built a simple macro in R (R Core Team, 2015) that entails the following steps:

(i) Bootstrap or resample with replacement 1000 times from both time-series discharge data

with sample size n;

(i)  Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge data,

and record the P-value;

(iii)  Perform (i) and (ii) for different size of n, ranging from 5 to 50.
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(iv) Tabulate the p-value from the different sample size n, and determine the value of n when the
p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). The
associated n represents the minimum number of observations required.

Appendix 3 provides an example of the macro in R used for this analysis.
3. Results

3.1 Empirical data of flow persistence as basis for model parameterization
Inter-annual variability of F, estimates derived for the four catchments (Figure 2) was of the order of
0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. For all for the
years and locations, rainy season F, values, with mixed flow pathways, were consistently below dry-
season values, dominated by groundwater flows. If we can expect Fy; and F,, (see equation 8 in part
I) to be approximately 0.5 and 0, this difference between wet and dry periods implies a 40%
contribution of interflow in the wet season, a 20% contribution of overland flow or any combination
of the two effects.
Overall the estimates from modelled and observed data are related with 16% deviating more than
0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria for the
hydrographs were met by the calibrated models for each site, we tentatively accept the model to be
a basis for sensitivity study of F, to modifications to land cover and/or rainfall

= Figure 2

= Figure 3
3.2 Comparing Fp effects of rainfall intensity and land cover change

A direct comparison of model sensitivity to changes in mean rainfall intensity and land use change
scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 shifted the Fp
value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but by 0.128 in Way
Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change scenarios on F, was
smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and relatively large in Bialo and Mae
Chaem, at 0.080 and 0.084, respectively (Figure 4B). The order of F, across the land use change
scenarios was mostly consistent between the watersheds, but the contrast between the ReFor and
NatFor scenario was largest in Mae Chaem and smallest in Way Besai. In Cidanau, Way Besai and
Mae Chaem, variations in rainfall were 2.2 to 3.1 times more effective than land use change in
shifting Fy, in Bialo its relative effect was only 58%. Apparently, the sensitivity to changes in land use
change plus changes in rainfall intensity depends on other characteristics of the watersheds, and
generalizations made on the basis of one or two case studies may not hold, even within the same
climatic zone.

= Figure 4

3.3 Further analysis of F, effects for scenarios of land cover change

Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and the
'degraded lands' the lowest F, value (Figure 5), but there are remarkable differences as well: in
Cidanau the interannual variation in F is clearly larger than land cover effects, while in the Way
Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a peat swamp
between most of the catchment and the measuring point buffers most of landcover related variation
in flow, but not the interannual variability. Considering the frequency distributions of F, values over
a 20 year period, we see one watershed (Way Besai) where the forest stands out from all others, and
one (Bialo) where the degraded lands are separate from the others. Given the degree of overlap of
the frequency distributions, it is clear that multiple years of empirical observations will be needed
before a change can be affirmed.

Figure 5 shows the frequency distributions of expected effect sizes on F, of a comparison of any land
cover with either forest or degraded lands. Table 5 translates this information to the number of



years that a paired plot (in the absence of measurement error) would have to be maintained to
reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions of F, differences of
paired catchments do not match a normal distribution, a Kolmorov-Smirnov test can be used to
assess the probability that a no-difference null hypothesis can yield the difference found. By
bootstrapping within the years where simulations supported by observed rainfall data exist, we
found for the Way Besai catchment, for example, that 20 years of data would be needed to assert (at
P = 0.05) that the ReFor scenario differs from AgFor, and 16 years that it differs from Actual and 11
years that it differs from Degrade. In practice, that means that empirical evidence that survives
statistical tests will not emerge, even though effects on watershed health are real.

= Figure 5

= Table 5

At process-level the increase in ‘overland flow’ in response to soil compaction due to land cover
change has a clear and statistically significant relationship with decreasing F, values in all catchments
(Figure 6), but both year-to-year variation within a catchment and differences between catchments
influence the results as well, leading to considerable spread in the biplot. Contrary to expectations,
the disappearance of 'interflow' by soil compaction is not reflected in measurable change in F; value.
The temporal difference between overland and interflow (one or a few days) gets easily blurred in
the river response that integrates over multiple streams with variation in delivery times; the
difference between overland- or interflow and baseflow is much more pronounced. Apparently,
according to our model, the high macroporosity of forest soils that allows interflow and may be the
'sponge' effect attributed to forest, delays delivery to rivers by one or a few days, with little effect on
the flow volumes at locations downstream where flow of multiple days accumulates. The difference
between overland- or interflow and baseflow in time-to-river of rainfall peaks is much more
pronounced.

= Figure 6

Tree cover has two contradicting effects on baseflow: it reduces the surplus of rainfall over
evapotranspiration (annual water yield) by increased evapotranspiration (especially where
evergreen trees are involved), but it potentially increases soil macroporosity that supports
infiltration and interflow, with relatively little effect on water holding capacity measured as 'field
capacity' (after runoff and interflow have removed excess water). Figure 7 shows that the total
volume of baseflow differs more between sites and their rainfall pattern than it varies with tree
cover. Between years total evapotranspiration and baseflow totals are positively correlated, but for
a given rainfall there is a trade-off. Overall these results support the conclusion that generic effects
of deforestation on decreased flow persistence, and of (agro)/(re)-forestation on increased flow
persistence are small relative to interannual variability due to specific rainfall patterns, and that it
will be hard for any empirical data process to pick-up such effects, even if they are qualitatively
aligned with valid process-based models.

= Figure 7

4. Discussion

In the discussion of Part | the credibility questions on replicability of the F, metric and its sensitivity
to details of rainfall pattern versus land cover as potential causes of variation were seen as requiring
case studies in a range of contexts. Although the four case studies in Southeast Asia presented here
cannot be claimed to represent the global variation in catchment behaviour (with absence of a
snowpack and its dynamics as an obvious element of flow buffering not included), the diversity of
responses among these four already point to challenges for any generic interpretation of the degree
of flow persistence that can be achieved under natural forest cover, as well as its response to land
cover change.

The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand show
that values of Fp above 0.9 are scarce in the case studies provided, but values above 0.8 were found,



or inferred by the model, for forested landscapes. Agroforestry landscapes generally presented Fp
values above 0.7, while open-field agriculture or degraded soils led to F;, values of 0.5 or lower. Due
to differences in local context, it may not be feasible to relate typical F, values to the overall
condition of a watershed, but temporal change in F, can indicate degradation or restoration if a
location-specific reference can be found. The difference between wet and dry season F, can be
further explored in this context. The dry season F,value primarily reflects the underlying geology,
with potential modification by engineering and operating rules of reservoirs, the wet season F; is
generally lower due to partial shifts to overland and interflow pathways. Where further uncertainty
is introduced by the use of modelled rather than measured river flow, the lack of fit of models
similar to the ones we used here would mean that scenario results are indicative of directions of
change rather than a precision tool for fine-tuning combinations of engineering and land cover
change as part of integrated watershed management.

The differences in relative response of the watersheds to changes in mean rainfall intensity and land
cover change, suggest that generalizations derived from one or a few case studies are to be
interpreted cautiously. If land cover change would influence details of the rainfall generation process
(arrow 10 in Figure 1 of part |; e.g. through release of ice-nucleating bacteria Morris et al., 2014; van
Noordwijk et al., 2015b) this can easily dominate over effects via interception, transpiration and soil
changes.

Our results indicate an intra-annual variability of F, values between wet and dry seasons of around
0.2 in the case studies, while interannual variability in either annual or seasonal F, was generally in
the 0.1 range. The difference between observed and simulated flow data as basis for F, calculations
was mostly less than 0.1. With current methods, it seems that effects of land cover change on flow
persistence that shift the F, value by about 0.1 are the limit of what can be asserted from empirical
data (with shifts of that order in a single year a warning sign rather than a firmly established change).
When derived from observed river flow data F; is suitable for monitoring change (degradation,
restoration) and can be a serious candidate for monitoring performance in outcome-based
ecosystem service management contracts.

In view of our results the lack of robust evidence in the literature of effects of change in forest and
tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets contain
considerable variability. Yet, such effects are consistent with current process and scaling knowledge
of watersheds.

Conclusion

Overall, our analysis suggests that the level of flow buffering achieved depends on both land cover
(including its spatial configuration and effects on soil properties) and space-time patterns of rainfall
(including maximum rainfall intensity as determinant of overland flow). Generalizations on dominant
influence of either, derived from one or a few case studies are to be interpreted cautiously. If land
cover change would influence details of the rainfall generation process this can easily dominate over
effects via interception, transpiration and soil changes. Multi-year data will generally be needed to
attribute observed changes in flow buffering to degradation/restoration of watersheds, rather than
specific rainfall events. With current methods, it seems that effects of land cover change on flow
persistence that shift the F, value by about 0.1 are the limit of what can be asserted from empirical
data, with shifts of that order in a single year a warning sign rather than a firmly established change.
When derived from observed river flow data F;, is suitable for monitoring change (degradation,
restoration) and can be a serious candidate for monitoring performance in outcome-based
ecosystem service management contracts.

Further tests on the performance of the F, metric and its standard incorporation into the output
modules of river flow and watershed management models will broaden the basis for interpreting the
value ranges that can be expected for well-functioning watersheds in various conditions of climate,
topography, soils, vegetation and engineering interventions. Such a broader empirical base could
test the possible use of F, as performance metric for watershed rehabilitation efforts.

Data availability



Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the links to
detailed descriptions.

= Table6
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Table 1. Basic physiographic characteristics of the four study watersheds

Parameter Bialo Cidanau Mae Chaem Way Besai
Location South Sulawesi, West Java, Indonesia Northern Thailand Lampung, Sumatera,
Indonesia Indonesia
Coordinates 5.43S,120.01E 6.215,105.97 E 18.57N,98.35E 5.015,104.43E
Area (km?) 111.7 241.6 3892 414.4
Elevation 0-2874 30-1778 475-2560 720-1831
(ma.s.l)
Flow Parallel Parallel (with two Parallel Radial
pattern main river flow that
meet in the
downstream area)
Land cover  Forest (13%) Forest (20%) Forest (evergreen, Forest (18%)
type Agroforest (59%) Agroforest (32%) deciduous and pine) Coffee (monoculture
Crops (22%) Crops (33%) (84%) and multistrata) (64%)
Others (6%) Others (11%) Crops (15%) Crop and Horticulture
Swamp(4%) Others (1%) (12%)
Others (6%)
Mean 1695 2573 1027 2474
annual
rainfall, mm
Wet season  April —June January - March July - September January - March
Dry season  July - September July - September January - March July - September
Mean 947 917 259 1673
annual
runoff, mm
Major soils  Inceptisols Inceptisols Ultisols, Entisols Andisols

Table 2. Parameters of the GenRiver model used for the four site specific simulations (van Noordwijk
et al., 2011 for definitions of terms; sequence of parameters follows the pathway of water)

Parameter Definition Unit Bialo Cidanau Mae Chaem Way Besai
RainlntensMean Average rainfall intensity mmhr! 30 30 3 30
RainIntensCoefVar Coefficient of variation of mmhr! 0.8 0.3 0.5 0.3
rainfall intensity

RainInterceptDripRt Maximum drip rate of mmhr! 80 10 10 10
intercepted rain

RainMaxIntDripDur Maximum dripping hr 0.8 0.5 0.5 0.5
duration of intercepted
rain

InterceptEffectontrans  Rain interception effecton - 0.35 0.8 0.3 0.8
transpiration

MaxInfRate Maximum infiltration mm d? 580 800 150 720
capacity

MaxInfSubsoil Maximum infiltration mm d? 80 120 150 120
capacity of the sub soil

PerFracMultiplier Daily soil water drainage as - 0.35 0.13 0.1 0.1
fraction of groundwater
release fraction

MaxDynGrWatStore Dynamic groundwater mm 100 100 300 300

storage capacity



GWReleaseFracVar

Tortuosity
Dispersal Factor
River Velocity

Groundwater release
fraction, applied to all
subcatchments
Stream shape factor
Drainage density
River flow velocity

0.15

0.4
0.3
0.4

0.03

0.4
0.4
0.7

0.05

0.6
0.3
0.35

0.1

0.45
0.45
0.5




Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds
(BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer function;
see van Noordwijk et al., 2011)

Potential Relative drought
Land cover Type interception BD/BDref
(mm/d) threshold
Forest? 3.0-4.0 0.4-0.5 0.8-1.1
Agroforestry? 2.0-3.0 0.5-0.6 0.95-1.05
Monoculture tree? 1.0 0.55 1.08
Annual crops 1.0-3.0 0.6-0.7 1.1-15
Horticulture 1.0 0.7 1.07
Rice field* 1.0-3.0 0.9 1.1-1.2
Settlement 0.05 0.01 1.3
Shrub and grass 2.0-3.0 0.6 1.0-1.07
Cleared land 1.0-1.5 03-04 1.1-1.2

Note: 1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest
2. Agroforestry: mixed garden, coffee, cocoa, clove
3. Monoculture : coffee
4. Rice field: irrigation and rainfed



Table 4. Land use scenarios explored for four watersheds

Scenario Description

NatFor Full natural forest, hypothetical reference scenario

ReFor Reforestation, replanting shrub, cleared land, grass land and some
agricultural area with forest

AgFor Agroforestry scenario, maintaining agroforestry areas and converting
shrub, cleared land, grass land and some of agricultural area into
agroforestry

Actual Baseline scenario, based on the actual condition of land cover change
during the modelled time period

Agric Agriculture scenario, converting some of tree based plantations, cleared
land, shrub and grass land into rice fields or dry land agriculture, while
maintain existing forest

Degrading No change in already degraded areas, while converting most of forest and

agroforestry area into rice fields and dry land agriculture




Table 5. Number of years of observations required to estimate flow persistence to reject the null-
hypothesis of ‘no land use effect’ at p-value = 0.05 using Kolmogorov-Smirnov test. The probability
of the test statistic in the first significant number is provided between brackets and where the
number of observations exceeds the time series available, results are given in italics

A. Natural Forest as reference

Way Besai (N=32) ReFor AgFor Actual Agric
16 13
ReFor 20 (0.035) (0.037) (0.046)
AgFor n.s. n.s.
Actual n.s.
Agric
Degrading
Bialo (N=18) ReFor AgFor Actual Agric
37
ReFor n.s. n.s. (0.04)
AgFor n.s. n.s.
Actual n.s.
Agric
Degrading
Cidanau (N=20) ReFor AgFor Actual Agric
32
ReFor n.s. n.s. (0.037)
AgFor n.s. n.s.
Actual n.s.
Agric
Degrading
Mae Chaem (N=15) ReFor Actual Agric Degrade
23 18
ReFor n.s. (0.049) (0.050)
45 33
Actual (0.037) (0.041)
33
Agric (0.041)

Degrading




B. Degrading scenario as reference

Way Besai (N=32) NatFor ReFor AgFor Actual Agric
17 13 7
NatFor n.s. (0.042) (0.046) (0.023)
21 19 7
ReFor (0.037) (0.026) (0.023)
28
AgFor n.s. (0.046)
30
Actual (0.029)
Agric
Bialo (N=18) NatFor ReFor AgFor Actual Agric
41 19
NatFor n.s. n.s. (0.047) (0.026)
32
ReFor n.s. n.s. (0.037)
AgFor n.s. n.s.
Actual n.s.
Agric
Cidanau (N=20) NatFor ReFor AgFor Actual Agric
33 8
NatFor n.s. n.s. (0.041) (0.034)
15
ReFor n.s. n.s. (0.028)
AgFor n.s. n.s.
25
Actual (0.031)
Agric
Mae Chaem (N=15) NatFor ReFor Actual Agric
25 12
NatFor n.s. (0.031) (0.037)
18
ReFor n.s. (0.050)
18
Actual (0.050)

Agric




Table 6. Data availability

Bialo Cidanau Mae Chaem Way Besai

Rainfall 1989-2009, Source: 1998-2008, source: 1998-2002, source: 1976-2007, Source:

data BWS Sulawesi® and BMKG* WRD55, MTD22, BMKG, PUY and PLN®
PUSAIR®; Average RYP48, GMT13, WRD (interpolation of 8 rainfall
rainfall data from the 52 stations using Thiessen
stations Moti, Bulo- polygon)
bulo, Seka and Onto

River flow 1993-2010, source; 2000-2009, source: KTI"  1954-2003, source: 1976-1998, source: PU

data BWS Sulawesi and ICHARMS® and PUSAIR
PUSAIR

Reference http://old.icraf.org/re http://worldagroforest http://worldagrofores http://worldagroforestry.

of detailed  gions/southeast_asia  ry.org/regions/southea try.org/regions/south  org/regions/southeast_asi

report /publications?do=vie  st_asia/publications?d  east_asia/publications a/publications?do=view_p
w_pub_detail&pub_n o=view_pub_detail&pu ?do=view_pub_detail ub_detail&pub_no=MNOO
0=PP0343-14 b_no=P00292-13 &pub_no=MNO0048-11 48-11

Note:

@BWS: Balai Wilayah Sungai (Regional River Agency)
bPUSAIR: Pusat Litbang Sumber Daya Air (Centre for Research and Development on Water Resources)
‘BMKG: Badan Meteorologi Klimatologi dan Geofisika (Agency on Meterology, Climatology and
Geophysics)
4PU: Dinas Pekerjaan Unum (Public Work Agency)

ePLN: Perusahaan Listrik Negara (National Electric Company)

fKTI: Krakatau Tirta Industri, a private steel company
ICHARM: The International Centre for Water Hazard and Risk Management

15 00N
"

TN
1

[egcy
L

7°300°S
L

105°0'0°E

N2W0TE

120°00°E

1277300
n

135°00°E

mJJ
0 180 330

- J
720 1.080

1440

Legend

D Selected wa
Semi arid

[ Huis
- (Per) humid
- Wiater tower

® Riverfiow station

Agroecological zone

| Dry-sub humid

=
@z
T
22°3UN

tershed

150N

S7%0UE 10500°E

12°300°E

120'00°E

127°300°E

135'00°E



Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water
towers are defined on the basis of ability to generate river flow and being in the upper part of a
watershed)
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Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four
watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall records;
the left side panels show average water balance for each land cover scenario, the middle panels
the Fp values per year and land use, the right-side panels the derived frequency distributions
(best fitting Weibull distribution)
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Figure 6. Frequency distribution of expected difference in F, in ‘paired plot’ comparisons where land
cover is the only variable; left panels: all scenarios compared to ‘reforestation’, right panel: all

scenarios compared to degradation; graphs are based on a kernel density estimation (smoothing)
approach
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through the watershed, across all years and land use scenarios of Figure App2



Appendix 1. GenRiver model for effects of land cover on river flow

The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological model
that simulates river flow based on water balance concept with a daily time step and a flexible spatial
subdivision of a watershed that influences the routing of water. The core of the GenRiver model is a
‘patch” level representation of a daily water balance, driven by local rainfall and modified by the
land cover and land cover change and soil properties. The model starts accounting of rainfall or
precipitation (P) and traces the subsequent flows and storage in the landscape that can lead to
either evapotranspiration (E), river flow (Q) or change in storage (AS) (Figure App1):

P=Q+E+AS [1]

Subcatchments can differ in (timing of) rainfall, vegetation,
inherent soils, soil compaction and routing time for stream flow

P =
Rain |,/ Deep Infiltration | " Purface
Flow

Intercephon A [ R
Routmg
E Evaporation Routing |
g3 ,

EvapoTrans

Percolation |

+ Saturated soil water content

minus field capacity st TotRiver

s Flow
Q Soil Discharge SoilQFlow! 7 §

Figure Appl.Overview of the GenRiver model

The model may use measured rainfall data, or use a rainfall generator that involves Markov chain
temporal autocorrelation (rain persistence). The model can represent spatially explicit rainfall, with
stochastic rainfall intensity (parameters RainlntensMean, RainIintensCoefVar in Table 2) and partial
spatial correlation of daily rainfall between subcatchments. Canopy interception leads to direct
evaporation of an amount of water controlled by the thickness of waterfilm on the leaf area that
depends on the land cover, and a delay of water reaching the soil surface (parameter
RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other components
of evapotranspiration is controlled by the InterceptEffectontrans parameter, that in practice may
depend on the time of day rainfall occurs and local climatic conditions such as windspeed)

At patch level, vegetation influences interception, retention for subsequent evaporation and delayed
transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land cover) also
influences soil porosity and infiltration, modifying the inherent soil properties. Groundwater pool
dynamics are represented at subcatchment rather than patch level, integrating over the landcover
fractions within a subcatchment. The output of the model is river flow which is contribution from
three types of stream flow: surface flow on the day of the rainfall event; interflow on the next day;
and base flow as the slow flow. the multiple subcatchments that make up the catchment as a whole
can differ in basic soil properties, land cover fractions that affect interception, soil structure
(infiltration rate) and seasonal pattern of water use by the vegetation. The subcatchment will also
typically differ in “routing time” or in the time it takes the streams and river to reach any specified
observation point (with default focus on the outflow from the catchment). The model itself
(currently implemented in Stella plus Excel), a manual and application case studies are freely
available (http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow ;van
Noordwijk et al., 2011).
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Appendix 2. Watershed-specific consequences of the land use change scenarios
The generically defined land use change scenarios (Table 4) led to different land cover proportions,
depending on the default land cover data for each watershed, as shown in Figure App2.
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Figure App2. Land use distribution of the various land use scenarios explored for the four
watersheds (see Table 4)



Appendix 3. Example of a macro in R to estimate number of observation required using bootstrap
approach.

#The bootstrap procedure is to calculate the minimum sample size (humber of observation) required
#for a significant land use effect on Fp
#bialol is a dataset contains delta Fp values for two different from Bialo watershed

#read data
bialol <- read.table("bialol.csv", header=TRUE, sep=",")

#name each parameter
BL1 <- bialo1SReFor
BL5 <- bialo1SDegrade

N = 1000 #number replication
n <- ¢(5:50) #the various sample size
] <- 46 #ithe number of sample size being tested (~ number of actual year observed in the dataset)

P15= matrix(ncol=J, nrow=R) #fvariable for storing p-value
P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile

for (j in 1)) #estimating for different n

#bootstrap sampling

{

for (iin 1:N)

{

#sampling data

Sl=sample(BL1, n[j], replace =T)
S5=sample(BL5, n[j], replace =T)

#Kolmogorov-Smirnov test for equal distribution and get the p-Value
KS15 <- ks.test(S1, S5, alt = c¢("two.sided"), exact = F) P15[i,j] <- KS15Sp.value
}

#Confidence interval of Cl
P15Q3[j] <- quantile(P15[,j], 0.975)

}

#saving P value data and Cl

write.table(P15, file = "pValuel5.txt") write.table(P15Q3, file = "P15Q3.txt")v



