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Dear Editor 
We were pleased to note the progress that both reviewers have now recommended publication of 
the manuscript and we certainly appreciate the rigour of the review and editorial process. 
 
Editor Decision: Publish subject to 
revisions (further review by Editor and 

Referees) (29 Oct 2016) by Prof. Jan Seibert 
Comments to the Author: 
Thanks for your efforts with the revisions, 
which clarified a number of points. At the 
same time, reading your manuscript again, I 
also realized that there are still a number of 
issues: 

Our responses: 
 
In response to your remaining comments we 
have made some further changes to the 
manuscript that we hope address the 
remaining issues: 
 

1) The runoff values you present in figures 2-4 
seem unrealistically high. Could you please 

comment on these values. As it is not just one 
figure, I am afraid there is something 
fundamentally wrong - or I misunderstand 
something. 

Indeed the example presented in Figures 2 and 
3 was from an exceptionally wet climate, with 
about 6000 mm y-1 of rainfall. We have 
replaced the figure with one for a 1600 mm y-1 
example which is more typical of the humid 
tropics. We have not altered Fig 4 which 
includes some high flow rates. 

2) Your approach basically is similar what 
people previously have used as flow separation 
techniques. While I can see your point that 

you are using these techniques here with a 
different goal, I still think that it for the sake 
of scientific clarity is mandatory to clearly link 
to the previous work and to better describe 
what is similar/different with your approach. 

Thank you for the suggestion. We have further 
explored the relationship between the Fp 
method and existing flow separation 
procedures and added a paragraph discussing 
two new figures: one that illustrates how 
different methods interpret a given 
hydrograph, and one that compares 
interannual variation in the different metrics 
derived from the four catchments described in 
further detail in Paper 2.  
 
We added: 
“As indicated, the Fp method is related to 
earlier methods used in streamflow hydrograph 
separation of base flow and quick flow. While 
textbooks (Ward and Robinson, 2000; 
Hornberger et al 2014) tend to be critical of the 
lack of objectivity of graphical methods, 
algorithms are used for deriving the minimum 
flow in a fixed or sliding period of reference as 
base flow (Sloto and Crouse, 1996; Furey and 

Gupta, 2001). The time interval used for 
deriving the minimum flow depends on 
catchment size. Figure 6 compares results for a 
hydrograph of a single year of one of the 
catchments described in more detail in paper II. 
While there is agreement on most of what is 
indicated ass baseflow, the short term response 
to peaks in the flow differ, with baseflow in the 
Fp method more rapidly increasing after peak 
events. When compared across multiple years 



for the four catchments describe in detail in 
paper II, there is partial agreement in the way 
interannual variation is described in each 
catchment, while numerical values are similar, 
but the ratio of what is indicated as baseflow 
according to the Fp method and according to 
standard hydrograph separation varies from 
1.05 to 0.86.” 
 
We also added: 
“Recursive models that describe flow in a next 
time interval on the basis of a fraction of that in 
the preceding time interval with a term for 
additional flow due to additional rainfall have 
been used in analysis of peak flow event 
before, with time intervals as short as 1 minute 
rather than the 1 day we use here (Rose, 2004). 
Through reference to an overall mass balance a 
relationship similar to what we found here (Fp 
times preceding flow plus 1 – Fp times recent 
inputs) was also used in such models. To our 
knowledge, the method we describe here at 
daily timescales has not been used before.” 
 
And 
 
“The idea that the form of the storage-

discharge function can be estimated from 
analysis of streamflow fluctuations has 
been explored before for a class of 
catchments in which discharge is 
determined by the volume of water in 
storage (Kirchner, 2009). Such catchments 
behave as simple first-order nonlinear 
dynamical systems and can be 
characterized in a single-equation rainfall-
runoff model that predicted streamflow, in a 
test catchment in Wales, as accurately as 
other models that are much more highly 
parameterized. This model of the dQ/dt 
versus Q relationship can also be 
analytically inverted; thus, it can be used to 
“do hydrology backward,” that is, to infer 
time series of whole-catchment precipitation 
directly from fluctuations in streamflow. The 
slope of the log-log relationship between 
flow recession (dQ/dt) and Q that Kirchner 
(2009) used is conceptually similar to the Fp 

metric we derived here, but the specific 
algorithm to derive the parameter from 
empirical data differs. Estimates of dQ/dt 
are sensitive to noise in the measurement 
of Q and the possibly frequent and small 



increases in Q can be separated from the 
expected flow recession in the algorithm we 
presented here.” 

And 
“Seifert and Beven (2009) discussed the 
increase in predictive skill of models depending 
on the amount of location-specific data that 
can be used to constrain them. They found that 
the ensemble prediction of multiple models for 
a single location clearly outperformed the 
predictions using single parameter sets and 
that surprisingly little runoff data was necessary 
to identify model parameterizations that 
provided good results for “ungauged” test 
periods in cases where actual measurements 
were available. Their results indicated that a 
few runoff measurements can contain much of 
the information content of continuous runoff 
time series. The way these conclusions might 
be modified if continuous measurements for 
limited time periods, rather than separated 
single data points on river flow could be used, 
remains to be explored. Their study indicated 
that results may differ significantly between 
catchments and critical tests of Fp across 
multiple situations are obviously needed, as 
paper II will provide. “ 
 

3) Fp is affected by both rainfall time series 

and catchment characteristics. It is therefore 

not clear to me whther Fp really is a good 
measure of catchment status since Fp also 
could change without any catchment change if 
rainfall distributions change. 

Indeed, that is the conclusion we formulate in 
the second paper, based on the case studies 
analysed. Where Fp describes behaviour of a 
river with direct relevance for downstream 
populations, it is reflecting the “health” of the 
way a watershed interacts with its climate, 
rather than the land cover as such. 
We added: 
“In conclusion, the Fp metric appears to allow 
an efficient way of summarizing complex 
landscape processes into a single parameter 
that reflects the effects of landscape 
management within the context of the local 
climate. If rainfall patterns change but the 
landscape does not, the resultant flow patterns 
may reflect a change in watershed health (van 
Noordwijk et al., 2016).” 

4) Human impacts can both increase and 
decrease Fp, again, I am wondering whether 
Fp really is a good measure of 'watershed 
health' 

We try to provide empirical evidence to help 
readers answer this question for themselves. 
The “health” concept we use is a 
comprehensive one of the way climate, 
watershed and engineering interventions 
interact on functional aspects of river flow.  



5) You claim that Fp is related to flood risks. 
can this be shown on real data? I am not so 

sure I would agree. Your approach basically 

assumes that catchment changes result in 
linear changes in flood risks, but this is 
obviously often not the case. For instance, if a 
medium-size reservoir is build, this would 
increase Fp, but the largest floods would 
hardly be influenced (because then the 

reservoir is filled anyway). I guess, another 
issue here is that the Fp values are based on 
the continuous, average catchment behavior, 
whereas floods are single extreme events. 

We added: 
“Flood risks are themselves nonlinearly and in 
strongly topography-specific ways related to 
the volume of river flow after extreme rainfall 
events. While the expected fraction of rainfall 
that contributes to direct flow is linearly related 
to rainfall via (1-Fp), flooding risk as such will 
have a non-linear relationship with rainfall, that 
depends on topography and antecedent 
rainfall. Catchment changes, such as increases 
or decreases in percentage tree cover, will 
generally have a non-linear relationship with Fp 
as well as with flooding risks.“ 
 
In the rivers we considered there has been no 
major dams or reservoirs installed, and where 
they do exist the specific operating rules need 
to be included in any model. We have clarified 
this restriction of the empirical data in the 
discussion. 
“The “health” concept we use is a 
comprehensive one of the way climate, 
watershed and engineering interventions 
interact on functional aspects of river flow. In 
the catchments we considered in part II there 
have been no major dams or reservoirs 
installed. Ma et al (2014) described a method 
to separate these three influences on river 
flow. Where these do exist the specific 
operating rules of reservoirs need to be 
included in any model and these can have a 
major influence on downstream flow, 
depending on the primary use for power 
generation, dry season irrigation or stabilizing 
river flow for riverine transport.” 

6) Your approach is not at all applicable to 
catchments with snow. This should be stated 
even clearer. 

We had stated such, but made it even clearer – 
working in the tropics one may tend to forget 
the importance of snowmelt for river flow and 
flooding in your part of the world… We added: 
“In discussions and models of temperate zone 
hydrology (Bergström, 1995; Seifert, 1999) 
snowmelt is a major component of river flow 
and effects of forest cover on spring 
temperatures are important to the buffering of 
the annual peaks in flow that tend to occur in 
this season. Application of the Fp method to 
data describing such events has yet to be 
done.” 

 
 
 
 



Major changes highlighted: 

Flood risk reduction and flow buffering as ecosystem 
services: I. Theory on a flow persistence indicator for 
watershed health 
Meine van Noordwijk1,2, Lisa Tanika1, Betha Lusiana1  
 [1]{World Agroforestry Centre (ICRAF), SE Asia program, Bogor, Indonesia} 
 [2]{Wageningen University, Plant Production Systems, Wageningen, the Netherlands} 
Correspondence to: Meine van Noordwijk (m.vannoordwijk@cgiar.org) 

mailto:m.vannoordwijk@cgiar.org


Abstract 1 

We present and discuss a candidate for a single parameter representation of the complex 
concept of watershed quality that does align short and long term responses, and provides 
bounds to the levels of unpredictability. Flow buffering in landscapes is commonly 
interpreted as ecosystem service, but needs quantification, as flood damage reflects 
insufficient adaptation of human presence and activity to location and variability of river 
flow in a given climate. Increased variability and reduced predictability of river flow is a 
common sign, in public discourse, of degrading watersheds, combining increased flooding 
risk and reduced low flows. Geology, landscape form, soil porosity, litter layer and surface 
features, drainage pathways, vegetation and space-time patterns of rainfall interact in 
complex space-time patterns of river flow, but the anthropogenic aspects tend to get 
discussed on a one-dimensional scale of degradation and restoration, or in other parts of the 
literature as due to climate change. A strong tradition in public discourse associates changes 
on such degradation-restoration axis with binary deforestation-reforestation shifts. 
Empirical evidence for such link that may exist at high spatial resolution may not be a safe 
basis for securing required flow buffering in landscapes at large. We define a dimensionless 
FlowPer parameter Fp that represents predictability of river flow in a recursive flow model. 
Analysis suggests that buffering has two interlinked effects: a smaller fraction of fresh 
rainfall enters the streams, and flow becomes more persistent, in that the ratio of the flow 
on subsequent days has a higher minimum level. As a potential indicator of watershed 
health (or quality), the Fp metric (or its change over time from what appears to be the local 
norm) matches local knowledge concepts, captures key aspects of the river flow dynamic 
and can be unambiguously derived from empirical river flow data. Further exploration of 
responsiveness of Fp to the interaction of land cover and the specific realization of space-
time patterns of rainfall in a limited observation period is needed to test the interpretation 
of Fp as indicator of watershed health (or quality) in the way this is degrading or restoring 
through land cover change and modifications of the overland and surface flow pathways, 
given inherent properties such as geology, geomorphology and climate. 

1 Introduction 

Degradation of watersheds and its consequences for river flow regime and flooding intensity and 
frequency are a widespread concern (Brauman et al., 2007; Bishop and Pagiola, 2012; Winsemius et 
al., 2013). Current watershed rehabilitation programs that focus on increasing tree cover in upper 
watersheds are only partly aligned with current scientific evidence of effects of large-scale tree 
planting on streamflow (Ghimire et al., 2014; Malmer et al., 2010; Palmer, 2009; van Noordwijk et 
al., 2007, 2015a; Verbist et al., 2010). The relationship between floods and change in forest quality 
and quantity, and the availability of evidence for such a relationship at various scales has been 
widely discussed over the past decades (Andréassian, 2004; Bruijnzeel, 2004; Bradshaw et al., 2007; 
van Dijk et al., 2009). Measurements in Cote d’Ivoire, for example, showed strong scale dependence 
of runoff from 30-50% at 1 m2 point scale, to 4% at 130 ha watershed scale, linked to spatial 
variability of soil properties plus variations in rainfall patterns (Van de Giesen et al., 2000). The ratio 
between peak and average flow decreases from headwater streams to main rivers in a predictable 
manner;  while mean annual discharge scales with (area)1.0, maximum river flow was found to scale 
with (area)0.7 on average (Rodríguez-Iturbe and Rinaldo, 2001; van Noordwijk et al., 1998). The 
determinants of peak flow are thus scale-dependent, with space-time correlations in rainfall 
interacting with subcatchment-level flow buffering at any point along the river. Whether and where 
peak flows lead to flooding depends on the capacity of the rivers to pass on peak flows towards 
downstream lakes or the sea, assisted by riparian buffer areas with sufficient storage capacity 
(Baldasarre et al., 2013); reducing local flooding risk by increased drainage increases flooding risk 
downstream, challenging the nested-scales management of watersheds to find an optimal spatial 



distribution, rather then minimization, of flooding probabilities. Well-studied effects of forest 
conversion on peak flows in small upper stream catchments (Alila et al., 2009) do not necessarily 
translate to flooding downstream. As summarized by Beck et al. (2013) meso- to macroscale 
catchment studies (>1 and >10 000 km2, respectively) in the tropics, subtropics, and warm 
temperate regions have mostly failed to demonstrate a clear relationship between river flow and 
change in forest area. Lack of evidence cannot be firmly interpreted as evidence for lack of effect, 
however. Detectability of effects depends on their relative size, the accuracy of the measurement 
devices, background variability of the signal and length of observation period.  A recent econometric 
study for Peninsular Malaysia by Tan-Soo et al. (2014) concluded that, after appropriate corrections 
for space-time correlates in the data-set for 31 meso- and macroscale basins (554-28,643 km2), 
conversion of inland rain forest to monocultural plantations of oil palm or rubber increased the 
number of flooding days reported, but not the number of flood events, while conversion of wetland 
forests to urban areas reduced downstream flood duration. This Malaysian study may be the first 
credible empirical evidence at this scale. The difference between results for flood duration and flood 
frequency and the result for draining wetland forests warrant further scrutiny. Consistency of these 
findings with river flow models based on a water balance and likely pathways of water under the 
influence of change in land cover and land use has yet to be shown. Two recent studies for Southern 
China confirm the conventional perspective that deforestation increases high flows, but are 
contrasting in effects of reforestation. Zhou et al. (2010) analysed a 50-year data set for Guangdong 
Province in China and concluded that forest recovery had not changed the annual water yield (or its 
underpinning water balance terms precipitation and evapotranspiration), but had a statistically 
significant positive effect on dry season (low) flows.  Liu et al. (2015), however, found for the 
Meijiang watershed (6983 km2) in subtropical China that while historical deforestation had 
decreased the magnitudes of low flows (daily flows ≦ Q95%) by 30.1%, low flows were not 
significantly improved by reforestation. They concluded that recovery of low flows by reforestation 
may take much longer time than expected probably because of severe soil erosion and resultant loss 
of soil infiltration capacity after deforestation. Changes in river flow patterns over a limited period of 
time can be the combined and interactive effects of variations in the local rainfall regime, land cover 
effects on soil structure and engineering modifications of water flow, that can be teased apart with 
modelling tools (Ma et al., 2014). 
Lacombe et al. (2015) documented that the hydrological effects of natural regeneration differ from 
those of plantation forestry, while forest statistics do not normally differentiate between these 
different land covers. In a regression study of the high and low flow regimes in the Volta and 
Mekong river basins Lacombe and McCartney (2016) found that in the variation among tributaries 
various aspects of land cover and land cover change had explanatory power. Between the two 
basins, however, these aspects differed. In the Mekong basin variation in forest cover had no direct 
effect on flows, but extending paddy areas resulted in a decrease in downstream low flows, probably 
by increasing evapotranspiration in the dry season. In the Volta River Basin, the conversion of forests 
to crops (or a reduction of tree cover in the existing parkland system) induced greater downstream 
flood flows. This observation is aligned with the experimental identification of an optimal, 
intermediate tree cover from the perspective of groundwater recharge in parklands in Burkina Faso 
(Ilstedt et al., 2016).  
The statistical challenges of attribution of cause and effect in such data-sets are considerable with 
land use/land cover interacting with spatially and temporally variable rainfall, geological 
configuration and the fact that land use is not changing in random fashion or following any pre-
randomized design (Alila et al., 2009; Rudel et al., 2005). Hydrological analysis across 12 catchments 
in Puerto Rico by Beck et al. (2013) did not find significant relationships between the change in 
forest cover or urban area, and change in various flow characteristics, despite indications that 
regrowing forests increased evapotranspiration. Yet, the concept of a ‘regulating function’ on river 
flow regime for forests and other semi-natural ecosystems is widespread. The considerable human 
and economic costs of flooding at locations and times beyond where this is expected make the 



presumed ‘regulating function’ on flood reduction of high value (Brauman et al., 2007) – if only we 
could be sure that the effect is real, beyond the local scales (< 10 km2) of paired catchments where 
ample direct empirical proof exists (Bruijnzeel, 1990, 2004). These observations imply that percent 
tree cover (or other forest related indicators) is probably not a good metric for judging the 
ecosystem services provided by a watershed (of different levels of ‘health’), and that a metric more 
directly reflecting changes in river flow may be needed. Here we will explore a simple recursive 
model of river flow (van Noordwijk et al., 2011) that (i) is focused on (loss of) predictability, (ii) can 
account for the types of results obtained by the cited recent Malaysian study (Tan-Soo et al., 2014), 
and (iii) may constitute a suitable performance indicator to monitor watershed ‘health‘ through 
time.  
 Figure 1 

Figure 1 is compatible with a common dissection of risk as the product of hazard, exposure and 
vulnerability. Extreme discharge events plus river-level engineering co-determine hazard, while 
exposure depends on topographic position interacting with human presence, and vulnerability can 
be modified by engineering at a finer scale and be further reduced by advice to leave an area in high-
risk periods. A recent study (Jongman et al., 2015) found that human fatalities and material losses 
between 1980 and 2010 expressed as a share of the exposed population and gross domestic product 
were decreasing with rising income. The planning needed to avoid extensive damage requires 
quantification of the risk of higher than usual discharges,  especially at the upper tail end of the flow 
frequency distribution. 
The statistical scarcity, per definition, of ‘extreme events’ and the challenge of data collection where 
they do occur, make it hard to rely on empirical data as such. Existing data on flood frequency and 
duration, as well as human and economic damage are influenced by topography, human population 
density and economic activity, interacting with engineered infrastructure (step 4 and 5 in Figure 1), 
as well as the extreme rainfall events that are their proximate cause. Subsidence due to 
groundwater extraction in urban areas of high population density is a specific problem for a number 
of cities built on floodplains (such as Jakarta and Bangkok), but subsidence of drained peat areas has 
also been found to increase flooding risks elsewhere (Sumarga et al., 2016). Common hydrological 
analysis of flood frequency (called 1 in 10-, 1 in 100-, 1 in 1000-year flood events, for example) does 
not separately attribute flood magnitude to rainfall and land use properties, and analysis of likely 
change in flood frequencies in the context of climate change adaptation has been challenging (Milly 
et al., 2002; Ma et al., 2014). There is a lack of simple performance indicators for watershed health 
at its point of relating precipitation P and river flow Q (step 2 in Figure 1) that align with local 
observations of river behaviour and concerns about its change and that can reconcile local, 
public/policy and scientific knowledge, thereby helping negotiated change in watershed 
management (Leimona et al., 2015). The behaviour of rivers depends on many climatic (step 1 in 
Figure 1) and terrain factors (step 7-9 in Figure 1) that make it a challenge to differentiate between 
anthropogenically induced ecosystem structural change and soil degradation (step 7a) on one hand 
and intrinsic variability on the other. Arrow 10 in Figure 1 represents the direct influence of climate 
on vegetation, but also a possible reverse influence (van Noordwijk et al., 2015b). Hydrological 
models tend to focus on predicting hydrographs at one or more temporal scales, and are usually 
tested on data-sets from limited locations. Despite many decades (if not centuries) of hydrological 
modelling, current hydrologic theory, models and empirical methods have been found to be largely 
inadequate for sound predictions in ungauged basins (Hrachowitz et al., 2013). Efforts to resolve this 
through harmonization of modelling strategies have so far failed. Existing models differ in the 
number of explanatory variables and parameters they use, but are generally dependent on empirical 
data of rainfall that are available for specific measurement points but not at the spatial resolution 
that is required for a close match between measured and modelled river flow. Spatially explicit 
models have conceptual appeal (Ma et al., 2010) but have too many degrees of freedom and too 
many opportunities for getting right answers for wrong reasons if used for empirical calibration 
(Beven, 2011). Parsimonious, parameter-sparse models are appropriate for the level of evidence 



available to constrain them, but these parameters are themselves implicitly influenced by many 
aspects of existing and changing features of the watershed, making it hard to use such models for 
scenario studies of interacting land use and climate change. Here we present a more direct approach 
deriving a metric of flow predictability that can bridge local concerns and concepts to quantified 
hydrologic function: the ‘flow persistence’ parameter (step 2 in Figure 1).   
In this contribution to the debate we will first define the metric ‘flow persistence’ in the context of 
temporal autocorrelation of river flow and then derive a way to estimate its numerical value. In part 
II we will apply the algorithm to river flow data for a number of contrasting meso-scale watersheds. 
In the discussion of this paper we will consider the new flow persistence metric in terms of three 
groups of criteria for usable knowledge (Clark et al., 2011; Lusiana et al., 2011; Leimona et al., 2015) 
based on salience (1,2), credibility (3,4) and legitimacy (5-7): 

1. Does flow persistence relate to important aspects of watershed behaviour?  

2. Does its quantification help to select management actions? 

3. Is there consistency of numerical results? 

4. How sensitive is it to bias and random error in data sources? 

5. Does it match local knowledge?  

6. Can it be used to empower local stakeholders of watershed management?  

7. Can it inform local risk management?  

Questions 3 and 4 will get specific attention in part II.  

2 Recursive river flow model and flow persistence  

2.1 Basic equations 

One of the easiest-to-observe aspects of a river is its day-to-day fluctuation in water level, related to 
the volumetric flow (discharge) via rating curves (Maidment, 1992). Without knowing details of 
upstream rainfall and the pathways the rain takes to reach the river, observation of the daily 
fluctuations in water level allows important inferences to be made. It is also of direct utility: sudden 
rises can lead to floods without sufficient warning, while rapid decline makes water utilization 
difficult. Indeed, a common local description of watershed degradation is that rivers become more 
‘flashy’ and less predictable, having lost a buffer or ‘sponge‘ effect (Joshi et al., 2004; Ranieri et al., 
2004; Rahayu et al., 2013). A simple model of river flow at time t, Qt, is that it is similar to that of the 
day before (Qt-1), to the degree Fp, a dimensionless parameter called ‘flow persistence’ (van 
Noordwijk et al., 2011) plus an additional stochastic term Qa,t: 
Qt =Fp Qt-1 + Qa,t                                                   [1]. 
Qt is for this analysis expressed in mm d-1, which means that measurements in m3 s-1 need to be 
divided by the relevant catchment area, with appropriate unit conversion. If river flow were 
constant, it would be perfectly predictable, i.e. Fp would be 1.0 and Qa,t zero; in contrast, an Fp-value 
equal to zero and Qa,t directly reflecting erratic rainfall represents the lowest possible level of 
predictability.  
The Fp parameter is conceptually identical to the ‘recession constant’ commonly used in hydrological 
models, typically assessed during an extended dry period when the Qa,t term is negligible and 
streamflow consists of base flow only (Tallaksen, 1995); empirical deviations from a straight line in a 
plot of the logarithm of Q against time are common and point to multiple rather than a single 



groundwater pool that contributes to base flow. The larger catchment area has a possibility to get 
additional flow from multiple independent groundwater contribution. 
As we will demonstrate in a next section, it is possible to derive Fp even when Qa,t is not negligible. In 
climates without distinct dry season this is essential; elsewhere it allows a comparison of apparent Fp 
between wet and dry parts of the hydrologic year. A possible interpretation, to be further explored, 
is that decrease over the years of Fp indicates ‘watershed degradation’ (i.e. greater contrast between 
high and low flows), and an increase ‘improvement’ or ‘rehabilitation’ (i.e. more stable flows). 
If we consider the sum of river flow over a period of time (from 1 to T) we obtain 
Σ1

T Qt =Fp Σ1
T Qt-1 + Σ1

T Qa,t                               [2]. 
If the period is sufficiently long period for QT minus Q0 (the values of Qt for t=T and t=0, respectively) 
to be negligibly small relative to the sum over all t‘s, we may equate Σ1

T Qt with Σ1
T Qt-1 and obtain a 

first way of estimating the Fp value: 
Fp = 1 – Σ1

T Qa,t / Σ1
T Qt                                        [3]. 

Rearranging Eq.(3) we obtain 
Σ1

T Qa,t = (1 – Fp) Σ1
T Qt          [4]. 

The ΣQa,t term reflects the sum of peak flows in mm, while Fp ΣQt  reflects the sum of base flow, also 
in mm. Clarifying the Qa contribution is equivalent with one of several ways to separate base flow 
from peak flows. For Fp = 1 (the theoretical maximum) we conclude that all Qa,t must be zero, and all 
flow is ‘base flow‘.  
The stochastic Qa,t can be interpreted in terms of what hydrologists call ‘effective rainfall’ (i.e. rainfall 
minus on-site evapotranspiration, assessed over a preceding time period tx since previous rain 
event): 
Qt =Fp Qt-1 + (1-Fp)(Ptx – Etx)                                                   [5]. 
Where Ptx is the (spatially weighted) precipitation (assuming no snow or ice, which would shift the 
focus to snowmelt) in mm d-1; Etx , also in mm d-1, is the preceding evapotranspiration that allowed 
for infiltration during this rainfall event (i.e. evapotranspiration since the previous soil-replenishing 
rainfall that induced empty pore space in the soil for infiltration and retention), or replenishment of 
a waterfilm on aboveground biomass that will subsequently evaporate. More complex attributions 
are possible, aligning with the groundwater replenishing bypass flow  and the water isotopic 
fractionation involved in evaporation (Evaristo et al., 2015).  
The consistency of multiplying effective rainfall with (1-Fp) can be checked by considering the 
geometric series (1-Fp), (1-Fp) Fp, (1-Fp) Fp

2, …, (1-Fp) Fp
n which adds up to (1-Fp)(1 - Fp

n)/(1-Fp) or 1 - 
Fp

n.  This approaches 1 for large n, suggesting that all of the water attributed to time t, i.e. Pt – Etx, 
will eventually emerge as river flow. For Fp = 0 all of (Pt – Etx) emerges on the first day, and river flow 
is as unpredictable as precipitation itself. For Fp = 1 all of (Pt – Etx) contributes to the stable daily flow 
rate, and it takes an infinitely long period of time for the last drop of water to get to the river. For 
declining Fp, (1 > Fp > 0), river flow gradually becomes less predictable, because a greater part of the 
stochastic precipitation term contributes to variable rather than evened-out river flow.  
Taking long term summations of the right- and left- hand sides of Eq.(5) we obtain: 
ΣQt =Σ(Fp Qt-1 + (1-Fp)(Pt – Etx)) = Fp Σ Qt-1 + (1-Fp)( Σ Pt – Σ Etx))        [6]. 
Which is consistent with the basic water budget, ΣQ = ΣP – ΣE, at time scales long enough for 
changes in soil water buffer stocks to be ignored. As such the total annual, and hence the mean daily 
river flow are independent of Fp. This does not preclude that processes of watershed degradation or 
restoration that affect the partitioning of P over Q and E also affect Fp.  

2.2 Low flows 

The lowest flow expected in an annual cycle is Qx Fp
Nmax where Qx is flow on the first day without rain 

and Nmax the longest series of dry days. Taken at face value, a decrease in Fp has a strong effect on 
low-flows, with a flow of 10% of Qx reached after 45, 22, 14, 10, 8 and 6 days for Fp = 0.95, 0.9, 0.85, 
0.8, 0.75 and 0.7, respectively. However, the groundwater reservoir that is drained, equalling the 



cumulative dry season flow if the dry period is sufficiently long, is Qx/(1-Fp). If Fp decreases to Fpx but 
the groundwater reservoir (Res = Qx/(1-Fp)) is not affected, initial flows in the dry period will be 
higher (Qx Fpx

i (1-Fpx) Res > Qx Fp
i (1-Fp) Res for i < log((1-Fpx)/(1-Fp))/log(Fp/Fpx)). It thus matters how 

low flows are evaluated: from the perspective of the lowest level reached, or as cumulative flow. 
The combination of climate, geology and land form are the primary determinants of cumulative low 
flows, but if land cover reduces the recharge of groundwater there may be impacts on dry season 
flow, that are not directly reflected in Fp. 
If a single Fp value would account for both dry and wet season, the effects of changing Fp on low 
flows may well be more pronounced than those on flood risk. Empirical tests are needed of the 
dependence of Fp on Q (see below). Analysis of the way an aggregate Fp depends on the dominant 
flow pathways provides a basis for differentiating Fp within a hydrologic year. 

2.3 Flow-pathway dependence of flow persistence 

The patch-level partitioning of water between infiltration and overland flow is further modified at 
hillslope level, with a common distinction between three pathways that reach streams: overland 
flow, interflow and groundwater flow (Band et al., 1993; Weiler and McDonnell, 2004). An additional 
interpretation of Eq.(1), potentially adding to our understanding of results but not needed for 
analysis of empirical data, can be that three pathways of water through a landscape contribute to 
river flow (Barnes, 1939): groundwater release with Fp,g values close to 1.0, overland flow with Fp,o 
values close to 0, and interflow with intermediate Fp,i values. 
Qt =Fp,g Qt-1,g + Fp,i Qt-1,i + Fp,o Qt-1,o + Qa,t         [7], 
Fp = (Fp,g Qt-1,g + Fp,i Qt-1,i  + Fp,o Qt-1,o)/Qt-1          [8]. 

On this basis a decline or increase in overall weighted average Fp can be interpreted as indicator of a 
shift of dominant runoff pathways through time within the watershed. Dry season flows are 
dominated by Fp,g. The effective Fp in the rainy season can be interpreted as indicating the relative 
importance of the other two flow pathways. Fp reflects the fractions of total river flow that are based 
on groundwater, overland flow and interflow pathways: 
Fp = Fp,g (ΣQt,g / ΣQt) +  Fp,o (ΣQt,o /ΣQt) +  Fp,i (ΣQt,i / ΣQt)                [9]. 

Beyond the type of degradation of the watershed that, mostly through soil compaction, leads to 
enhanced infiltration-excess (or Hortonian) overland flow (Delfs et al., 2009), saturated conditions 
throughout the soil profile may also induce overland flow, especially near valley bottoms (Bonell, 
1993; Bruijnzeel, 2004). Thus, the value of Fp,o

 can be substantially above zero if the rainfall has a 
significant temporal autocorrelation, with heavy rainfall on subsequent days being more likely than 
would be expected from general rainfall frequencies. If rainfall following a wet day is more likely to 
occur than following a dry day, as is commonly observed in Markov chain analysis of rainfall patterns 
(Jones and Thornton, 1997; Bardossy and Plate, 1991), the overland flow component of total flow 
will also have a partial temporal autocorrelation, adding to the overall predictability of river flow. In 
a hypothetical climate with evenly distributed rainfall, we can expect Fp to be 1.0 even if there is no 
infiltration and the only pathway available is overland flow. Even with rainfall that is variable at any 
point of observation but has low spatial correlation it is possible to obtain Fp values of (close to) 1.0 
in a situation with (mostly) overland flow (Ranieri at al., 2004).  

3. Methods  

3.1 Numerical example 

Figure 2 provides an example of the way a change in Fp values (based on Eq. 1) influences the 
pattern of river flow for a unimodal rainfall regime with a well-developed dry season. The figure was 
constructed in a Monte Carlo realization of rainfall based on a (truncated) sinus-based probability of 



rainfall and rectangular rainfall depth to derive the (Ptx – Etx) term, with the Qa,t values derived as (1 – 
Fp) (Ptx – Etx). The increasing ‘spikiness’ of the graph as Fp is lowered indicates reduced predictability 
of flow on any given day during the wet season on the basis of the flow on the preceding day. A bi-
plot of river flow on subsequent days for the same simulations (Figure 3) shows two main effects of 
reducing the Fp value: the scatter increases, and the slope of the lower envelope containing the 
swarm of points is lowered (as it equals Fp). Both of these changes can provide entry points for an 
algorithm to estimate Fp from empirical time series, provided the basic assumptions of the simple 
model apply and the data are of acceptable quality (see Section 3 below). For the numerical example 
shown in Figure 2, the maximum daily flow doubled from 50 to 100 mm when the Fp value decreased 
from a value close to 1 (0.98) to nearly 0.  
 Figure 2 

 Figure 3 

3.2 Flow persistence as a simple flood risk indicator 

For numerical examples (implemented in a spreadsheet model) flow on each day can be derived as: 
Qt =Σj

t Fp
t-j (1-Fp) pj Pj          [10]. 

Where pj reflects the occurrence of rain on day j (reflecting a truncated sine distribution for seasonal 
trends) and Pj is the rain depth (drawn from a uniform distribution). From this model the effects of Fp 
(and hence of changes in Fp) on maximum daily flow rates, plus maximum flow totals assessed over a 
2-5 d period, was obtained in a Monte Carlo process (without Markov autocorrelation of rainfall in 
the default case – see below). Relative flood protection was calculated as the difference between 
peak flows (assessed for 1-5 d duration after a 1 year ‘warm-up‘ period) for a given Fp versus those 
for Fp = 0, relative to those at Fp = 0. 
3.3 An algorithm for deriving Fp from a time series of stream flow data 
Equation (3) provides a first method to derive Fp from empirical data if these cover a full hydrologic 
year. In situations where there is no complete hydrograph and/or in situations where we want to 
quantify Fp for shorter time periods (e.g. to characterise intraseasonal flow patterns) and the change 
in the storage term of the water budget equation cannot be ignored, we need an algorithm for 
estimating Fp from a series of daily Qt observations.  
Where rainfall has clear seasonality, it is attractive and indeed common practice to derive a 
groundwater recession rate from a semi-logarithmic plot of Q against time (Tallaksen, 1995). As we 
can assume for such periods that Qa,t = 0, we obtain Fp = Qt /Qt-1, under these circumstances. We 
cannot be sure, however, that this Fp,g estimate also applies in the rainy season, because overall wet-
season Fp will include contributions by Fp,o and Fp,i as well (compare Eq. 9). In locations without a 
distinct dry season, we need an alternative method. 
A biplot of Qt against Qt-1 (as in Figure 3) will lead to a scatter of points above a line with slope Fp, 
with points above the line reflecting the contributions of Qa,t >0, while the points that plot on the Fp 
line itself represent Qa,t = 0 mm d-1. There is no independent source of information on the frequency 
at which Qa,t = 0, nor what the statistical distribution of Qa,t values is if it is non-zero. Calculating back 
from the Qt series we can obtain an estimate (Qa,Fptry) of Qa,t for any given estimate (Fp,try) of Fp, and 
select the most plausible Fp value. For high Fp,try estimates there will be many negative Qa,Fptry values, 
for low Fp,try estimates all Qa,Fptry values will be larger. An algorithm to derive a plausible Fp estimate 
can thus make use of the corresponding distribution of ‘apparent Qa‘ values as estimates of Fp,try , 
calculated as Qa,try = Qt - Fp,try Qt-1. While Qa,t cannot be negative in theory, small negative Qa 
estimates are likely when using real-world data with their inherent errors. The FlowPer Fp algorithm 
(van Noordwijk et al., 2011) derives the distribution of Qa,try estimates for a range of Fp,try values 
(Figure 4B) and selects the value Fp,try that minimizes the variance Var(Qa,Fptry) (or its standard 
deviation) (Figure 4C). It is implemented in a spreadsheet workbook that can be downloaded from 
the ICRAF website  (http://www.worldagroforestry.org/output/flowper-flow-persistence-model) 
Figure 4 
A consistency test is needed that the high-end Qt values relate to Qt+1 in the same was as do low or 
medium Qt values. Visual inspection of Qt+1 versus Qt, with the derived Fp value, provides a 

http://www.worldagroforestry.org/output/flowper-flow-persistence-model


qualitative view of the validity of this assumption. The Fp algorithm can be applied to any population 
of (Qt-1, Qt) pairs, e.g. selected from a multiyear data set on the basis of 3-month periods within the 
hydrological year. 

4 Results 

4.1 Flood intensity and duration  

Figure 5 shows the effect of Fp values in the range 0 to 1 on the maximum flows obtained with a 
random time series of ‘effective rainfall‘, compared to results for Fp = 0. Maximum flows were 
considered at time scales of 1 to 5 days, in a moving average routine. This way a relative flood 
protection, expressed as reduction of peak flow, could be related to Fp (Figure 5A).  
 Figure 5  

Relative flood protection rapidly decreased from its theoretical value of 100% at Fp = 1 (when there 
was no variation in river flow), to less than 10% at Fp values of around 0.5. Relative flood protection 
was slightly lower when the assessment period was increased from 1 to 5 days (between 1 and 3 d it 
decreased by 6.2%, from 3 to 5 d by a further 1.3%). Two counteracting effects are at play here: a 
lower Fp means that a larger fraction (1-Fp) of the effective rainfall contributes to river flow, but the 
increased flow is less persistent. In the example the flood protection in situations where the rainfall 
during 1 or 2 d causes the peak is slightly stronger than where the cumulative rainfall over 3-5 d 
causes floods, as typically occurs downstream.  
As we expect from equation 5 that peak flow is to (1-Fp) times peak rainfall amounts, the effect of a 
change in Fp not only depends on the change in Fp that we are considering, but also on its initial 
value. Higher initial Fp values will lead to more rapid increases in high flows for the same reduction in 
Fp (Figure 5B). However, flood duration rather responds to changes in Fp in a curvilinear manner, as 
flow persistence implies flood persistence (once flooding occurs), but the greater the flow 
persistence the less likely such a flooding threshold is passed (Figure 5C). The combined effect may 
be restricted to about 3 d of increase in flood duration for the parameter values used in the default 
example, but for different parametrization of the stochastic ε other results might be obtained.  

4.2 Algorithm for Fp estimates from river flow time series 

The algorithm has so far returned non-ambiguous Fp estimates on any modelled time series data of 
river flow, as well as for all empirical data set we tested (including all examples tested in part II), 
although there probably are data sets on which it can breakdown. Visual inspection of Qt-1/Qt biplots 
(as in Figure 3) can provide clues to non-homogenous data sets, to potential situations where 
effective Fp depends on flow level Qt and where data are not consistent with a straight-line lower 
envelope. Where river flow estimates were derived from a model with random elements, however, 
variation in Fp estimates was observed, that suggests that specific aspects of actual rainfall, beyond 
the basic characteristics of a watershed and its vegetation, do have at least some effect. Such effects 
deserve to be further explored for a set of case studies, as their strength probably depends on 
context.  

5 Discussion 
We will discuss the flow persistence metric based on the questions raised from the perspectives of 
salience, credibility and legitimacy. 

5.1 Salience 

Key salience aspects are “Does flow persistence relate to important aspects of watershed 
behaviour?” and “Does it help to select management actions?”. A major finding in the derivation of 



Fp was that the flow persistence measured at daily time scale can be logically linked to the long-term 
water balance, and that the proportion of peak rainfall that translates to peak river flow equals the 
complement of flow persistence. This feature links effects on floods of changes in watershed quality 
to effects on low flows, although not in a linear relationship. The Fp parameter as such does not 
predict when and where flooding will occur, but it does help to assess to what extent another 
condition of the watershed, with either higher or lower Fp would translate the same rainfall into 
larger or small peak water flows. This is salient, especially if the relative contributions of 
(anthropogenic) land cover and the (exogenous, probabilistic) specifics of the rainfall pattern can be 
further teased apart (see part II). Where Fp may describe the descending branch of hydrographs at a 
relevant time scale, details of the ascending branch beyond the maximum daily flow reached may be 
relevant for reducing flood damage, and may require more detailed study at higher temporal 
resolution. 
A key strength of our flow persistence parameter, that it can be derived from observing river flow at 
a single point along the river, without knowledge of rainfall events and catchment conditions, is also 
its major weakness. If rainfall data exist, and especially rainfall data that apply to each 
subcatchment, the Qa term doesn’t have to be treated as a random variable and event-specific 
information on the flow pathways may be inferred for a more precise account of the hydrograph. 
But for the vast majority of rivers in the tropics, advances in remotely sensed rainfall data are 
needed to achieve that situation and Fp may be all that is available to inform public debates on the 
relation between forests and floods.  
Figures 2 and 5 show that most of the effects of a decreasing Fp value on peak discharge (which is 
the basis for downstream flooding) occur between Fp values of 1 and 0.7, with the relative flood 
protection value reduced to 10% when Fp reaches 0.5. As indicated in Figure 1, peak discharge is only 
one of the factors contributing to flood risk in terms of human casualties and physical damage. Flood 
risks are themselves nonlinearly and in strongly topography-specific ways related to the volume of 
river flow after extreme rainfall events. While the expected fraction of rainfall that contributes to 
direct flow is linearly related to rainfall via (1-Fp), flooding risk as such will have a non-linear 
relationship with rainfall, that depends on topography and antecedent rainfall. Catchment changes, 
such as increases or decreases in percentage tree cover, will generally have a non-linear relationship 
with Fp as well as with flooding risks. The Fp value has an inverse effect on the fraction of recent 
rainfall that becomes river flow, but the effect on peak flows is less, as higher Fp values imply higher 
base flow. The way these counteracting effects balance out depends on details of the local rainfall 
pattern (including its Markov chain temporal autocorrelation), as well as the downstream 
topography and risk of people being at the wrong time at a given place, but the Fp value is an 
efficient way of summarizing complex land use mosaics and upstream topography in its effect on 
river flow. The difference between wet-season and dry-season Fp deserves further analysis. In 
climates with a real rainless dry-season, dry season Fp is dominated by the groundwater release 
fraction of the watershed, regardless of land cover, while in wet season it depends on the mix 
(weighted average) of flow pathways. The degree to which Fp can be influenced by land cover needs 
to be assessed for each landscape and land cover combination, including the locally relevant forest 
and forest derived land classes, with their effects on interception, soil infiltration and time pattern of 
transpiration. The Fp value can summarize results of models that explore land use change scenarios 
in local context. To select the specific management actions that will maintain or increase Fp a locally 
calibrated land use/hydrology model is needed, such as GenRiver (part II), DHV (Bergström, 1995) or 
SWAT (Yen et al., 2015).  
Although a higher Fp value will in most cases be desirable (and a decrease in Fp undesirable), we may 
expect that downstream biota have adjusted to the pre-human flow conditions and its inherent Fp 
and variability. Decreased variability of flow achieved by engineering interventions (e.g. a reservoir 
with constant release of water to generate hydropower) may have negative consequences for fish 
and other biota (Richter et al., 2003; McCluney et al., 2014). 



The “health” concept we use is a comprehensive one of the way climate, watershed and engineering 
interventions interact on functional aspects of river flow. In the catchments we considered in part II 
there have been no major dams or reservoirs installed. Ma et al (2014) described a method to 
separate these three influences on river flow. Where these do exist the specific operating rules of 
reservoirs need to be included in any model and these can have a major influence on downstream 
flow, depending on the primary use for power generation, dry season irrigation or stabilizing river 
flow for riverine transport. 

5.2 Credibility 

Key credibility questions are “Consistency of numerical results?” and “How sensitive are results to 
bias and random error in data sources?”. This is further discussed in part II, after a number of case 
studies has been studied. The main conclusions are that intra-annual variability of Fp values between 
wet and dry seasons was around 0.2 in the case studies, interannual variability in either annual or 
seasonal Fp was generally in the 0.1 range, while the difference between observed and simulated 
flow data as basis for Fp calculations was mostly less than 0.1. With current methods, it seems that 
effects of land cover change on flow persistence that shift the Fp value by about 0.1 are the limit of 
what can be  asserted from empirical data (with shifts of that order in a single year a warning sign 
rather than a firmly established change). When derived from observed river flow data Fp is suitable 
for monitoring change (degradation, restoration) and can be a serious candidate for monitoring 
performance in outcome-based ecosystem service management contracts. In interpreting changes in 
Fp as caused by changes in the condition in the watershed, however, changes in specific properties of 
the rainfall regime must be excluded. At the scale of paired catchment studies this assumption may 
be reasonable, but in temporal change (or using specific events as starting point for analysis), it is 
not easy to disentangle interacting effects (Ma et al., 2014). Recent evidence that vegetation not 
only responds to, but also influences rainfall (arrow 10 in Figure 1; van Noordwijk et al., 2015b) 
further complicates the analysis across scales. 
As indicated, the Fp method is related to earlier methods used in streamflow hydrograph separation 
of base flow and quick flow. While textbooks (Ward and Robinson, 2000; Hornberger et al 2014) 
tend to be critical of the lack of objectivity of graphical methods, algorithms are used for deriving the 
minimum flow in a fixed or sliding period of reference as base flow (Sloto and Crouse, 1996; Furey 
and Gupta, 2001). The time interval used for deriving the minimum flow depends on catchment size. 
Figure 6 compares results for a hydrograph of a single year of one of the catchments described in 
more detail in paper II. While there is agreement on most of what is indicated ass baseflow, the 
short term response to peaks in the flow differ, with baseflow in the Fp method more rapidly 
increasing after peak events. When compared across multiple years for the four catchments 
described in detail in paper II (figure 7), there is partial agreement in the way interannual variation is 
described in each catchment, while numerical values are similar, but the ratio of what is indicated as 
baseflow according to the Fp method and according to standard hydrograph separation varies from 
1.05 to 0.86. 
 Figure 6 

 Figure 7 

Recursive models that describe flow in a next time interval on the basis of a fraction of that in the 
preceding time interval with a term for additional flow due to additional rainfall have been used in 
analysis of peak flow event before, with time intervals as short as 1 minute rather than the 1 day we 
use here (Rose, 2004). Through reference to an overall mass balance a relationship similar to what 
we found here (Fp times preceding flow plus 1 – Fp times recent inputs) was also used in such 
models. To our knowledge, the method we describe here at daily timescales has not been used 
before. 
The idea that the form of the storage-discharge function can be estimated from analysis of streamflow 

fluctuations has been explored before for a class of catchments in which discharge is determined by 



the volume of water in storage (Kirchner, 2009). Such catchments behave as simple first-order 

nonlinear dynamical systems and can be characterized in a single-equation rainfall-runoff model that 

predicted streamflow, in a test catchment in Wales, as accurately as other models that are much more 

highly parameterized. This model of the dQ/dt versus Q relationship can also be analytically inverted; 

thus, it can be used to “do hydrology backward,” that is, to infer time series of whole-catchment 

precipitation directly from fluctuations in streamflow. The slope of the log-log relationship between 

flow recession (dQ/dt) and Q that Kirchner (2009) used is conceptually similar to the Fp metric we 

derived here, but the specific algorithm to derive the parameter from empirical data differs. Estimates 

of dQ/dt are sensitive to noise in the measurement of Q and the possibly frequent and small increases 

in Q can be separated from the expected flow recession in the algorithm we presented here. 

Seifert and Beven (2009) discussed the increase in predictive skill of models depending on the 
amount of location-specific data that can be used to constrain them. They found that the ensemble 
prediction of multiple models for a single location clearly outperformed the predictions using single 
parameter sets and that surprisingly little runoff data was necessary to identify model 
parameterizations that provided good results for “ungauged” test periods in cases where actual 
measurements were available. Their results indicated that a few runoff measurements can contain 
much of the information content of continuous runoff time series. The way these conclusions might 
be modified if continuous measurements for limited time periods, rather than separated single data 
points on river flow could be used, remains to be explored. Their study indicated that results may 
differ significantly between catchments and critical tests of Fp across multiple situations are 
obviously needed, as paper II will provide.  
In discussions and models of temperate zone hydrology (Bergström, 1995; Seifert, 1999) snowmelt is 
a major component of river flow and effects of forest cover on spring temperatures are important to 
the buffering of the annual peaks in flow that tend to occur in this season. Application of the Fp 
method to data describing such events has yet to be done. 

5.3 Legitimacy 

Legitimacy aspects are “Does it match local knowledge?” and “Can it be used to empower local 
stakeholders of watershed management?” and “Can it inform risk management?”. As the Fp 
parameter captures the predictability of river flow that is a key aspect of degradation according to 
local knowledge systems, its results are much easier to convey than full hydrographs or exceedance 
probabilities of flood levels. By focusing on observable effects at river level, rather than prescriptive 
recipes for land cover (“reforestation”), the Fp parameter can be used to more effectively compare 
the combined effects of land cover change, changes in the riparian wetlands and engineered water 
storage reservoirs, in their effect on flow buffering. It is a candidate for shifting environmental 
service reward contracts from input to outcome based monitoring (van Noordwijk et al., 2012).  As 
such it can be used as part of a negotiation support approach to natural resources management in 
which  levelling off on knowledge and joint fact finding in blame attribution are key steps to 
negotiated solutions that are legitimate and seen to be so (van Noordwijk et al., 2013; Leimona et 
al., 2015). Quantification of Fp can help assess tactical management options (Burt et al., 2014) as in a 
recent suggestion to minimize negative downstream impacts of forestry operations on stream flow 
by avoiding land clearing and planting operations in locally wet La Niña years. But the most 
challenging aspect of the management of flood, as any other environmental risk, is that the 
frequency of disasters is too low to intuitively influence human behaviour where short-term risk 
taking benefits are attractive. Wider social pressure is needed for investment in watershed health 
(as a type of insurance premium) to be mainstreamed, as individuals waiting to see evidence of 
necessity are too late to respond. In terms of flooding risk, actions to restore or retain watershed 
health can be similarly justified as insurance premium. It remains to be seen whether or not the 
transparency of the Fp metric and its intuitive appeal are sufficient to make the case in public debate 
when opportunity costs of foregoing reductions in flow buffering by profitable land use are to be 
compensated and shared (Burt et al., 2014). 



5.4 Conclusions and specific questions for a set of case studies 

In conclusion, the Fp metric appears to allow an efficient way of summarizing complex landscape 
processes into a single parameter that reflects the effects of landscape management within the 
context of the local climate. If rainfall patterns change but the landscape does not, the resultant flow 
patterns may reflect a change in watershed health (van Noordwijk et al., 2016). Flow persistence is 
the result of rainfall persistence and the temporal delay provided by the pathway water takes 
through the soil and the river system. High flow persistence indicates a reliable water supply, while 
minimizing peak flow events.  Wider tests of the Fp metric as boundary object in science-practice-
policy boundary chains (Kirchhoff et al., 2015; Leimona et al., 2015) are needed. Further tests for 
specific case studies can clarify how changes in tree cover (deforestation, reforestation, 
agroforestation) in different contexts influence river flow dynamics and Fp values. Sensitivity to 
specific realizations of underlying time-space rainfall patterns needs to be quantified, before 
changes in Fp can be attributed to ‘watershed quality‘, rather than chance events. 
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Figure 1. Steps in a causal pathway that relates rainfall (1) via watershed conditions (2) to the 

pattern of river flow described in a hydrograph (3), which can get modified by the conditions 
along the river channel into a hazard of flood frequency and duration (4); jointly with exposure 
(being in the wrong place at critical times, 5) and vulnerability (6) this determines flood damage; 
in avoiding flood damage, the condition in the watershed with its landcover and spatial 
configuration (7) influences the patch level water partitioning over overland flow and infiltration 
(8), while hillslope level configuration further influences flow pathways (9) and land cover 
potentially influences rainfall (10) 

 



 

 
Figure 2. Example of daily river flow, split into a base flow and additional flow component, for a 

unimodal sinus-based rainfall probability multiplied with a rainfall depth calculated as 
60^rand(0.1) mm/day (~120 rainy days, annual Q ~ 1600 mm) in watersheds characterized by Fp 
values ranging from 0.95 to 0.2 



 

 
Figure 3. Biplots of Q(t) versus Q(t-1) for the same simulations as Figure 2 



 

  
Figure 4. Example of the derivation of best fitting Fp,try value for an example hydrograph (A) on the 

basis of the inferred Qa distribution (cumulative frequency in B), and three properties of this 
distribution (C): its sum, frequency of negative values and standard deviation; the Fp,try minimum 
of the latter is derived from the parameters of a fitted quadratic equation 



 
 

Figure 5. A. Effects of flow persistence on the relative flood protection (decrease in 

maximum flow measured over a 1 – 5 d period relative to a case with Fp = 0 (a few small 

negative points were replaced by small positive values to allow the exponential fit); B and 

C. effects of a decrease in flow persistence on the volume of water involved in peak flows 

(B; relative to the volume at Fp is 0.6 – 0.9) and in the duration (in d) of floods (C) 
  



 
Figure 6. Comparison of baseflow separation of a hydrograph according to the flow 

persistence method (A) and two common flow separation methods, respectively with fixed 

(B) and sliding intervals (C) 

 
 

Figure 7. Comparison of yearly data for four watersheds (see paper II) analysed with 

common flow separation methods (as in Fig. 6) and the flow persistence method  
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Abstract 

The way watersheds buffer the temporal pattern of river flow relative to the temporal 
pattern of rainfall is an important ecosystem service. Part of this buffering is inherent to its 
geology and climate, but another part is responding to human use and misuse of the 
landscape, and can be part of management feedback loops if salient, credible and legitimate 
indicators can be found and used. Dissecting the anthropogenic change from exogenous 
variability (e.g. the specific time-space pattern of rainfall during an observation period) is 
relevant for designing and monitoring of watershed management interventions. Part I 
introduced the concept of flow persistence, key to a parsimonious recursive model of river 
flow. It also discussed the operational derivation of the Fp parameter. Here we compare Fp 
estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai, and Bialo) and 
Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal 
time scale. The likely response in each of these four to variation in rainfall properties (incl. 
the maximum hourly rainfall intensity) and land cover (comparing scenarios with either 
more or less forest and tree cover than the current situation) was explored through a basic 
daily water balance model, GenRiver. This model was calibrated for each site on existing 
data, before being used to explore alternative land cover and rainfall parameter settings. In 
both data and model runs, the wet-season (3-monthly) Fp values were consistently lower 
than dry-season values for all four sites. Across the four catchments Fp values decreased 
with increasing annual rainfall, but specific aspects of watersheds, such as the riparian 
swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. 
Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the 
values considered typical for each landscape was predicted to decrease Fp values by 
between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use 
change plus changes in rainfall intensity depends on other characteristics of the watersheds, 
and generalizations made on the basis of one or two case studies may not hold, even within 
the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-
agroforestry mosaic case studies. Interannual variability in Fp was found to be large relative 
to effects of land cover change and likely reflects sensitivity in the model of Hortonian 
overland flow to variations in rainfall intensity. Multiple (5-10) years of paired-plot data 
would generally be needed to reject no-change null-hypotheses on the effects of land use 
change (degradation and restoration). While empirical evidence of such effects at scale is 
understandably scarce, Fp trends over time serve as a holistic scale-dependent performance 
indicator of degrading/recovering watershed health and can be tested for acceptability and 
acceptance in a wider socio-ecological context. 

Introduction 
Inherent properties (geology, geomorphology) interact with climate and human modification of 
vegetation, soils, drainage and riparian wetlands in the degree of buffering that watersheds provide 
(Andréassian 2004; Bruijnzeel, 2004). Buffering of river flow relative to the space-time dynamics of 
rainfall is an ecosystem service, reducing the exposure of people living on geomorphological 
floodplains to high-flow events, and increasing predictability and river flow in dry periods (Joshi et 
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al., 2004; Leimona et al., 2015; Part I). In the absence of any vegetation and with a sealed surface, 
river flow will directly respond to the spatial distribution of rainfall, with only the travel time to any 
point of specific interest influencing the temporal pattern of river flow. Any persistence or 
predictability of river flow in such a situation will reflect temporal autocorrelation of rainfall, beyond 
statistical predictability in seasonal rainfall patterns. On the other side of the spectrum, river flow 
can be constant every day, beyond the theoretical condition of constant rainfall, in a watershed that 
provides perfect buffering, by passing all water through groundwater pools that have sufficient 
storage capacity at any time during the year. Both infiltration-limited (Hortonian) and saturation-
induced use of more rapid flow pathways (inter and overland flows) will reduce the flow persistence 
and make it, at least in part, dependent on rainfall events. Separating the effects of land cover (land 
use), engineering and rainfall on the actual flow patterns of rivers remains a considerable challenge 
(Ma et al., 2014; Verbist et al., 2019). It requires data, models and concepts that can serve as 
effective boundary object in communication with stakeholders (Leimona et al. 2015; van Noordwijk 
et al. 2012). There is a long tradition in using forest cover as such a boundary object, but there is 
only a small amount of evidence supporting this (Tan-Soo et al., 2014; van Dijk et al., 2009; van 
Noordwijk et al. 2015a). 
In part I, we introduced a flow persistence parameter (Fp) that links the two, asymmetrical aspects of 
flow dynamics: translating rainfall excess into river flow, and gradually releasing water stored in the 
landscape.  Here, in part II we will apply the Fp algorithm to river flow data for a number of 
contrasting meso-scale watersheds in Southeast Asia. These were selected to represent variation in 
rainfall and land cover, and test the internal consistency of results based on historical data: two 
located in the humid and one in the subhumid tropics of Indonesia, and one in the unimodal 
subhumid tropics of northern Thailand.  
After exploring the patterns of variation in Fp estimates derived from river flow records, we will 
quantify the sensitivity of the Fp metric to variations in rainfall intensity and its response, on a longer 
timescale to land cover change. To do so, we will use a model that uses basic water balance 
concepts: rainfall interception, infiltration, water use by vegetation, overland flow, interflow and 
groundwater release, to a spatially structured watershed where travel time from sub watersheds to 
any point of interest modifies the predicted river flow. In the specific model used land cover effects 
on soil conditions, interception and seasonal water use have been included. After testing whether Fp 
values derived from model outputs match those based on empirical data where these exist, we rely 
on the basic logic of the model to make inference on the relative importance of modifying rainfall 
and land cover inputs. With the resulting temporal variation in calculated Fp values, we consider the 
time frame at which observed shifts in Fp can be attributed to factors other than chance (that means: 
null-hypotheses of random effects can be rejected with accepted chance of Type I errors).  
2. Methods 
2.1 GenRiver model for effects of land cover on river flow 
The GenRiver model (van Noordwijk et al., 2011) is based on a simple water balance concept with a 
daily time step and a flexible spatial subdivision of a watershed that influences the routing of water 
and employs spatially explicit rainfall. At patch level, vegetation influences interception, retention 
for subsequent evaporation and delayed transfer to the soil surface, as well as the seasonal demand 
for water. Vegetation (land cover) also influences soil porosity and infiltration, modifying the 
inherent soil properties. Water in the root zone is modelled separately for each land cover within a 
subcatchment, the groundwater stock is modelled at subcatchment level. The spatial structure of a 
watershed and the routing of surface flows influences the time delays to any specified point of 
interest, which normally includes the outflow of the catchment. Land cover change scenarios are 
interpolated annually between time-series (measured or modelled) data. The model may use 
measured rainfall data, or use a rainfall generator that involves Markov chain temporal 
autocorrelation (rain persistence). As our data sources are mostly restricted to daily rainfall 
measurements and the infiltration model compares instantaneous rainfall to infiltration capacity, a 
stochastic rainfall intensity was applied at subcatchment level, driven by the mean as parameter and 
a standard deviation for a normal distribution (truncated at 3 standard deviations from the mean) 



proportional to it via a coefficient of variation as parameter. For the Mae Chaem site in N Thailand 
data by Dairaku et al. (2004) suggested a mean of less than 3 mm/hr. For the three sites in Indonesia 
we used 30 mm/hr, based on Kusumastuti et al. (2016). Appendix 1 provides further detail on the 
GenRiver model. The model itself, a manual and application case studies are freely available 
(http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow;van Noordwijk 
et al., 2011). 
2.2 Empirical data-sets, model calibration 

Table 1 and Figure 1 provide summary characteristics and the location of river flow data  used in four 
meso-scale watersheds for testing the Fp algorithm and application of the GenRiver model. Figure 1 
includes a water tower category in the agro-ecological zones; this is defined on the basis of a ratio of 
precipitation and potential evapotranspiration of more than 0.65, and a product of that ratio and 
relative elevation exceeding 0.277. 
 Table 1 

 Figure 1 

As major parameters for the GenRiver model were not independently measured for the respective 
watersheds, we tuned (calibrated) the model by modifying parameters within a predetermined 
plausible range, and used correspondence with measured hydrograph as test criterion (Kobolt et al. 
2008). We used the Nash-Sutcliff Efficiency (NSE) parameter (target above 0.5) and bias (less than 
25%) as test criteria and targets. Meeting these performance targets (Moriasi et al., 2007), we 
accepted the adjusted models as basis for describing current conditions and exploring model 
sensitivity. The main site-specific parameter values are listed in Table 2 and (generic) land cover 
specific default parameters in Table 3.  
 Table 2 

 Table 3 

Table 4 describes the six scenarios of land use change that were evaluated in terms of their 
hydrological impacts. Further description on the associated land cover distribution for each scenario 
in the four different watersheds is depicted in Appendix 2.  
 Table 4 

2.3 Bootstrapping to estimate the minimum observation 
The bootstrap methods (Efron and Tibshirani, 1986) is a resampling methods that is commonly used 
to generate ‘surrogate population‘ for the purpose of approximating the sampling distribution of a 
statistic. In this study, the bootstrap approach was used to estimate the minimum number of 
observation (or yearly data) required for a pair-wise comparison test between two time-series of 
stream flow or discharge data (representing two scenarios of land use distributions) to be 
distinguishable from a null-hypothesis of no effect. The pair-wise comparison test used was 
Kolmogorov-Smirnov test that is commonly used to test the distribution of discharge data (Zhang eta 
al, 2006). We built a simple macro in R (R Core Team, 2015) that entails the following steps: 

(i) Bootstrap or resample with replacement 1000 times from both time-series discharge data 

with sample size n; 

(ii) Apply the Kolmogorov-Smirnov test to each of the 1000 generated pair-wise discharge data, 

and record the P-value; 

(iii) Perform (i) and (ii) for different size of n, ranging from 5 to 50.  

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow


(iv) Tabulate the p-value from the different sample size n, and determine the value of n when the 

p-value reached equal to or less than 0.025 (or equal to the significance level of 5%). The 

associated n represents the minimum number of observations required.  

Appendix 3 provides an example of the macro in R used for this analysis.   

3. Results 

3.1 Empirical data of flow persistence as basis for model parameterization 
Inter-annual variability of Fp estimates derived for the four catchments (Figure 2) was of the order of 
0.1 units, while the intra-annual variability between dry and rainy seasons was 0.1-0.2. For all for the 
years and locations, rainy season Fp values, with mixed flow pathways, were consistently below dry-
season values, dominated by groundwater flows. If we can expect Fp,i and Fp,o (see equation 8 in part 
I) to be approximately 0.5 and 0, this difference between wet and dry periods implies a 40% 
contribution of interflow in the wet season, a 20% contribution of overland flow or any combination 
of the two effects. 
Overall the estimates from modelled and observed data are related with 16% deviating more than 
0.1 and 3% more than 0.15 (Figure 3). As the Moriasi et al. (2007) performance criteria for the 
hydrographs were met by the calibrated models for each site, we tentatively accept the model to be 
a basis for sensitivity study of  Fp to modifications to land cover and/or rainfall  
 Figure 2 

 Figure 3 

3.2 Comparing Fp effects of rainfall intensity and land cover change 

A direct comparison of model sensitivity to changes in mean rainfall intensity and land use change 
scenarios is provided in Figure 4. Varying the mean rainfall intensity over a factor 7 shifted the Fp 
value by only 0.047 and 0.059 in the case of Bialo and Cidanau, respectively, but by 0.128 in Way 
Besai and 0.261 in Mae Chaem (Figure 4A). The impact of the land use change scenarios on Fp was 
smallest in Cidanau (0.026), intermediate in Way Besai (0.048) and relatively large in Bialo and Mae 
Chaem, at 0.080 and 0.084, respectively (Figure 4B). The order of Fp across the land use change 
scenarios was mostly consistent between the watersheds, but the contrast between the ReFor and 
NatFor scenario was largest in Mae Chaem and smallest in Way Besai. In Cidanau, Way Besai and 
Mae Chaem, variations in rainfall were 2.2 to 3.1 times more effective than land use change in 
shifting Fp, in Bialo its relative effect was only 58%. Apparently, the sensitivity to changes in land use 
change plus changes in rainfall intensity depends on other characteristics of the watersheds, and 
generalizations made on the basis of one or two case studies may not hold, even within the same 
climatic zone. 
 Figure 4 

3.3 Further analysis of Fp effects for scenarios of land cover change 

Among the four watersheds there is consistency in that the 'forest' scenario has the highest, and the 
'degraded lands' the lowest Fp value (Figure 5), but there are remarkable differences as well: in 
Cidanau the interannual variation in Fp is clearly larger than land cover effects, while in the Way 
Besai the spread in land use scenarios is larger than interannual variability. In Cidanau a peat swamp 
between most of the catchment and the measuring point buffers most of landcover related variation 
in flow, but not the interannual variability. Considering the frequency distributions of Fp values over 
a 20 year period, we see one watershed (Way Besai) where the forest stands out from all others, and 
one (Bialo) where the degraded lands are separate from the others. Given the degree of overlap of 
the frequency distributions, it is clear that multiple years of empirical observations will be needed 
before a change can be affirmed.  
Figure 5 shows the frequency distributions of expected effect sizes on Fp of a comparison of any land 
cover with either forest or degraded lands. Table 5 translates this information to the number of 



years that a paired plot (in the absence of measurement error) would have to be maintained to 
reject a null-hypothesis of no effect, at p=0.05. As the frequency distributions of Fp differences of 
paired catchments do not match a normal distribution, a Kolmorov-Smirnov test can be used to 
assess the probability that a no-difference null hypothesis can yield the difference found. By 
bootstrapping within the years where simulations supported by observed rainfall data exist, we 
found for the Way Besai catchment, for example, that 20 years of data would be needed to assert (at 
P = 0.05) that the ReFor scenario differs from AgFor, and 16 years that it differs from Actual and 11 
years that it differs from Degrade. In practice, that means that empirical evidence that survives 
statistical tests will not emerge, even though effects on watershed health are real. 
 Figure 5 

 Table 5 

At process-level the increase in ‘overland flow’ in response to soil compaction due to land cover 
change has a clear and statistically significant relationship with decreasing Fp values in all catchments 
(Figure 6), but both year-to-year variation within a catchment and differences between catchments 
influence the results as well, leading to considerable spread in the biplot. Contrary to expectations, 
the disappearance of 'interflow' by soil compaction is not reflected in measurable change in Fp value. 
The temporal difference between overland and interflow (one or a few days) gets easily blurred in 
the river response that integrates over multiple streams with variation in delivery times; the 
difference between overland- or interflow and baseflow is much more pronounced. Apparently, 
according to our model, the high macroporosity of forest soils that allows interflow and may be the 
'sponge' effect attributed to forest, delays delivery to rivers by one or a few days, with little effect on 
the flow volumes at locations downstream where flow of multiple days accumulates.  The difference 
between overland- or interflow and baseflow in time-to-river of rainfall peaks is much more 
pronounced. 
 Figure 6 

Tree cover has two contradicting effects on baseflow:  it reduces the surplus of rainfall over 
evapotranspiration (annual water yield) by increased evapotranspiration (especially where 
evergreen trees are involved), but it potentially increases soil macroporosity that supports 
infiltration and interflow, with relatively little effect on water holding capacity measured as 'field 
capacity' (after runoff and interflow have removed excess water). Figure 7 shows that the total 
volume of baseflow differs more between sites and their rainfall pattern than it varies with tree 
cover. Between years total evapotranspiration and baseflow totals are positively correlated,  but for 
a given rainfall there is a trade-off. Overall these results support the conclusion that generic effects 
of deforestation on decreased flow persistence, and of (agro)/(re)-forestation on increased flow 
persistence are small relative to interannual variability due to specific rainfall patterns, and that it 
will be hard for any empirical data process to pick-up such effects, even if they are qualitatively 
aligned with valid process-based models.  
 Figure 7 

4. Discussion 

In the discussion of Part I the credibility questions on replicability of the Fp metric and its sensitivity 
to details of rainfall pattern versus land cover as potential causes of variation were seen as requiring 
case studies in a range of contexts. Although the four case studies in Southeast Asia presented here 
cannot be claimed to represent the global variation in catchment behaviour (with absence of a 
snowpack and its dynamics as an obvious element of flow buffering not included), the diversity of 
responses among these four already point to challenges for any generic interpretation of the degree 
of flow persistence that can be achieved under natural forest cover, as well as its response to land 
cover change.  
The empirical data summarized here for (sub)humid tropical sites in Indonesia and Thailand show 
that  values of Fp above 0.9 are scarce in the case studies provided, but values above 0.8 were found, 



or inferred by the model, for forested landscapes. Agroforestry landscapes generally presented Fp 

values above 0.7, while open-field agriculture or degraded soils led to Fp values of 0.5 or lower. Due 
to differences in local context, it may not be feasible to relate typical Fp values to the overall 
condition of a watershed, but temporal change in Fp can indicate degradation or restoration if a 
location-specific reference can be found. The difference between wet and dry season Fp can be 
further explored in this context. The dry season Fp value primarily reflects the underlying geology, 
with potential modification by engineering and operating rules of reservoirs, the wet season Fp is 
generally lower due to partial shifts to overland and interflow pathways.  Where further uncertainty 
is introduced by the use of modelled rather than measured river flow, the lack of fit of models 
similar to the ones we used here would mean that scenario results are indicative of directions of 
change rather than a precision tool for fine-tuning combinations of engineering and land cover 
change as part of integrated watershed management. 
The differences in relative response of the watersheds to changes in mean rainfall intensity and land 
cover change, suggest that generalizations derived from one or a few case studies are to be 
interpreted cautiously. If land cover change would influence details of the rainfall generation process 
(arrow 10 in Figure 1 of part I; e.g. through release of ice-nucleating bacteria Morris et al., 2014; van 
Noordwijk et al., 2015b) this can easily dominate over effects via interception, transpiration and soil 
changes.  
Our results indicate an intra-annual variability of Fp values between wet and dry seasons of around 
0.2 in the case studies, while interannual variability in either annual or seasonal Fp was generally in 
the 0.1 range. The difference between observed and simulated flow data as basis for Fp calculations 
was mostly less than 0.1. With current methods, it seems that effects of land cover change on flow 
persistence that shift the Fp value by about 0.1 are the limit of what can be  asserted from empirical 
data (with shifts of that order in a single year a warning sign rather than a firmly established change). 
When derived from observed river flow data Fp is suitable for monitoring change (degradation, 
restoration) and can be a serious candidate for monitoring performance in outcome-based 
ecosystem service management contracts.  
In view of our results the lack of robust evidence in the literature of effects of change in forest and 
tree cover on flood occurrence may not be a surprise; effects are subtle and most data sets contain 
considerable variability. Yet, such effects are consistent with current process and scaling knowledge 
of watersheds.  

Conclusion 
Overall, our analysis suggests that the level of flow buffering achieved depends on both land cover 
(including its spatial configuration and effects on soil properties) and space-time patterns of rainfall 
(including maximum rainfall intensity as determinant of overland flow). Generalizations on dominant 
influence of either, derived from one or a few case studies are to be interpreted cautiously. If land 
cover change would influence details of the rainfall generation process this can easily dominate over 
effects via interception, transpiration and soil changes. Multi-year data will generally be needed to 
attribute observed changes in flow buffering to degradation/restoration of watersheds, rather than 
specific rainfall events. With current methods, it seems that effects of land cover change on flow 
persistence that shift the Fp value by about 0.1 are the limit of what can be  asserted from empirical 
data, with shifts of that order in a single year a warning sign rather than a firmly established change. 
When derived from observed river flow data Fp is suitable for monitoring change (degradation, 
restoration) and can be a serious candidate for monitoring performance in outcome-based 
ecosystem service management contracts. 
Further tests on the performance of the Fp metric and its standard incorporation into the output 
modules of river flow and watershed management models will broaden the basis for interpreting the 
value ranges that can be expected for well-functioning watersheds in various conditions of climate, 
topography, soils, vegetation and engineering interventions. Such a broader empirical base could 
test the possible use of Fp as performance metric for watershed rehabilitation efforts.   

Data availability 



Table 6 specifies the rainfall and river flow data we used for the four basins and specifies the links to 
detailed descriptions. 

 Table 6 
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Table 1. Basic physiographic characteristics of the four study watersheds 

Parameter Bialo Cidanau Mae Chaem Way Besai 

Location South Sulawesi, 
Indonesia 

West Java, Indonesia Northern Thailand Lampung, Sumatera, 
Indonesia 

Coordinates 5.43 S, 120.01 E 6.21 S, 105.97 E 18.57 N, 98.35 E 5.01 S, 104.43 E 
Area (km2) 111.7 241.6 3892 414.4 
Elevation 
(m a.s.l.) 

0 – 2874 30 – 1778 475-2560 720-1831 

Flow 
pattern 

Parallel Parallel (with two 
main river flow that 
meet in the 
downstream area) 

Parallel Radial 

Land cover 
type  

Forest (13%) 
Agroforest (59%) 
Crops (22%) 
Others (6%) 

Forest (20%) 
Agroforest (32%) 
Crops (33%) 
Others (11%) 
Swamp(4%) 

Forest (evergreen, 
deciduous and pine) 
(84%) 
Crops (15%) 
Others (1%) 

Forest (18%) 
Coffee (monoculture 
and multistrata) (64%) 
Crop and Horticulture 
(12%) 
Others (6%) 

Mean 
annual 
rainfall, mm 

1695 2573 1027 2474 

Wet season April – June January - March July - September January - March 
Dry season July - September July - September January - March July - September 
Mean 
annual 
runoff, mm 

947 917 259 1673 

Major soils Inceptisols Inceptisols Ultisols, Entisols Andisols 

 
Table 2. Parameters of the GenRiver model used for the four site specific simulations (van Noordwijk 
et al., 2011 for definitions of terms; sequence of parameters follows the pathway of water) 

Parameter Definition Unit Bialo Cidanau Mae Chaem Way Besai 

RainIntensMean Average rainfall intensity  mm hr-1 30 30 3 30 
RainIntensCoefVar Coefficient of variation of 

rainfall intensity 
mm hr-1 0.8 0.3 0.5 0.3 

RainInterceptDripRt Maximum drip rate of 
intercepted rain  

mm hr-1 80 10 10 10 

RainMaxIntDripDur Maximum dripping 
duration of intercepted 
rain 

hr 0.8 0.5 0.5 0.5 

InterceptEffectontrans Rain interception effect on 
transpiration 

- 0.35 0.8 0.3 0.8 

MaxInfRate Maximum infiltration 
capacity  

mm d-1 580 800 150 720 

MaxInfSubsoil Maximum infiltration 
capacity of the sub soil 

mm d-1 80 120 150 120 

PerFracMultiplier  Daily soil water drainage as 
fraction of groundwater 
release fraction 

- 0.35 0.13 0.1 0.1 

MaxDynGrWatStore Dynamic groundwater 
storage capacity 

mm 100 100 300 300 



GWReleaseFracVar  Groundwater release 
fraction, applied to all 
subcatchments  

- 0.15 0.03 0.05 0.1 

Tortuosity Stream shape factor - 0.4 0.4 0.6 0.45 
Dispersal Factor Drainage density - 0.3 0.4 0.3 0.45 
River Velocity  River flow velocity m s-1 0.4 0.7 0.35 0.5 

  



Table 3. GenRiver defaults for land use specific parameter values, used for all four watersheds 
(BD/BDref indicates the bulk density relative to that for an agricultural soil pedotransfer function; 
see van Noordwijk et al., 2011) 
 

Land cover Type 
Potential 

interception 
(mm/d) 

Relative drought 
threshold 

BD/BDref 

Forest1 3.0 - 4.0 0.4 - 0.5 0.8 - 1.1 

Agroforestry2 2.0 - 3.0 0.5 - 0.6 0.95 - 1.05 

Monoculture tree3 1.0 0.55 1.08 

Annual crops 1.0 - 3.0 0.6 - 0.7 1.1 - 1.5 

Horticulture 1.0 0.7 1.07 

Rice field4 1.0 - 3.0 0.9 1.1 - 1.2 

Settlement 0.05 0.01 1.3 

Shrub and grass 2.0 - 3.0 0.6 1.0 - 1.07 

Cleared land 1.0 - 1.5 0.3 - 0.4 1.1 - 1.2 
Note:     1. Forest: primary forest, secondary forest, swamp forest, evergreen forest, deciduous forest 

2. Agroforestry: mixed garden, coffee, cocoa, clove 
3. Monoculture : coffee 
4. Rice field: irrigation and rainfed  



Table 4. Land use scenarios explored for four watersheds  

Scenario Description 

NatFor Full natural forest, hypothetical reference scenario 
ReFor Reforestation, replanting shrub, cleared land, grass land and some 

agricultural area with forest  
AgFor Agroforestry scenario, maintaining agroforestry areas and converting 

shrub, cleared land, grass land and some of agricultural area into 
agroforestry  

Actual Baseline scenario, based on the actual condition of land cover change 
during the modelled time period 

Agric Agriculture scenario, converting some of tree based plantations, cleared 
land, shrub and grass land into rice fields or dry land agriculture, while 
maintain existing forest 

Degrading No change in already degraded areas, while converting most of forest and 
agroforestry area into rice fields and dry land agriculture 

 



Table 5. Number of years of observations required to estimate flow persistence to reject the null-
hypothesis of ‘no land use effect‘ at p-value = 0.05 using Kolmogorov-Smirnov test. The  probability 
of the test statistic in the first significant number is provided between brackets and  where the 
number of observations exceeds the time series available, results are given in italics 

A. Natural Forest as reference   

     
Way Besai (N=32) ReFor AgFor Actual Agric 

ReFor   20 (0.035) 
16 
(0.037) 

13 
(0.046) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Bialo (N=18) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 
37 
(0.04) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Cidanau (N=20) ReFor AgFor Actual Agric 

ReFor   n.s. n.s. 
32 
(0.037) 

AgFor     n.s. n.s. 

Actual       n.s. 

Agric         

Degrading         

     

     
Mae Chaem (N=15) ReFor Actual Agric Degrade 

ReFor   n.s. 
23 
(0.049) 

18 
(0.050) 

Actual     
45 
(0.037) 

33 
(0.041) 

Agric       
33 
(0.041) 

Degrading         

  



B. Degrading scenario as reference   

      
Way Besai (N=32) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. 
17 
(0.042) 

13 
(0.046) 

7 
(0.023) 

ReFor     
21 
(0.037) 

19 
(0.026) 

7 
(0.023) 

AgFor       n.s. 
28 
(0.046) 

Actual         
30 
(0.029) 

Agric           

      

      
Bialo (N=18) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 
41 
(0.047) 

19 
(0.026) 

ReFor     n.s. n.s. 
32 
(0.037) 

AgFor       n.s. n.s. 

Actual         n.s. 

Agric           

      

      
Cidanau (N=20) NatFor ReFor AgFor Actual Agric 

NatFor   n.s. n.s. 
33 
(0.041) 

8 
(0.034) 

ReFor     n.s. n.s. 
15 
(0.028) 

AgFor       n.s. n.s. 

Actual         
25 
(0.031) 

Agric           

      

      
Mae Chaem (N=15) NatFor ReFor Actual Agric  

NatFor   n.s. 
25 
(0.031) 

12 
(0.037)  

ReFor     n.s. 
18 
(0.050)  

Actual       
18 
(0.050)  

Agric          
  



Table 6. Data availability 

 Bialo Cidanau Mae Chaem Way Besai 

Rainfall 
data 

1989-2009, Source: 
BWS Sulawesia and 
PUSAIRb; Average 
rainfall data from the 
stations Moti, Bulo-
bulo, Seka and Onto 

1998-2008, source: 
BMKGc 

1998-2002, source: 
WRD55, MTD22, 
RYP48, GMT13, WRD 
52 

1976-2007, Source: 
BMKG, PUd and PLNe 
(interpolation of 8 rainfall 
stations using Thiessen 
polygon) 

River flow 
data 

1993-2010, source; 
BWS Sulawesi and 
PUSAIR 

2000-2009, source: KTIf 1954-2003, source: 
ICHARMg 

1976-1998, source: PU 
and PUSAIR 

Reference 
of detailed 
report 

http://old.icraf.org/re
gions/southeast_asia
/publications?do=vie
w_pub_detail&pub_n
o=PP0343-14 

http://worldagroforest
ry.org/regions/southea
st_asia/publications?d
o=view_pub_detail&pu
b_no=PO0292-13 

http://worldagrofores
try.org/regions/south
east_asia/publications
?do=view_pub_detail
&pub_no=MN0048-11 

http://worldagroforestry.
org/regions/southeast_asi
a/publications?do=view_p
ub_detail&pub_no=MN00
48-11 

Note:  
a BWS: Balai Wilayah Sungai (Regional River Agency) 
bPUSAIR: Pusat Litbang Sumber Daya Air (Centre for Research and Development on Water Resources) 
cBMKG: Badan Meteorologi Klimatologi dan Geofisika (Agency on Meterology, Climatology and 

Geophysics) 
dPU: Dinas Pekerjaan Unum (Public Work  Agency) 
ePLN: Perusahaan Listrik Negara (National Electric Company) 
fKTI: Krakatau Tirta Industri, a private steel company 
fICHARM: The International Centre for Water Hazard and Risk Management 
  

 



Figure 1. Location of the four watersheds in the agroecological zones of Southeast Asia (water 
towers are defined on the basis of ability to generate river flow and being in the upper part of a 
watershed)  

  



 

 
Figure 2. Flow persistence (Fp) estimates derived from measurements in four watersheds, separately 

for the wettest and driest 3-month periods of the year 
 



 
Figure 3. Inter- (A) and intra- (B) annual variation in the Fp parameter derived from empirical versus 

modeled flow: for the four test sites on annual basis (A) or three-monthly basis (B) 
 
  



  
Figure 4 Effects on flow persistence of changes in A) the mean rainfall intensity and B) the land use 

change scenarios of Table 4 across the four watersheds 



 
Figure 5. Effects of land cover change scenarios (Table 4) on the flow persistence value in four 

watersheds, modelled in GenRiver over a 20-year time-period, based on actual rainfall records; 
the left side panels show average water balance for each land cover scenario, the middle panels 
the Fp values per year and land use, the right-side panels the derived frequency distributions 
(best fitting Weibull distribution) 

 



 
Figure 6. Frequency distribution of expected difference in Fp in ‘paired plot’ comparisons where land 

cover is the only variable; left panels: all scenarios compared to ‘reforestation’, right panel: all 
scenarios compared to degradation; graphs are based on a kernel density estimation (smoothing) 
approach  



 
Figure 7. Correlations of Fp with fractions of rainfall that take overland flow and interflow pathways 

through the watershed, across all years and land use scenarios of Figure App2  
 

  



Appendix 1. GenRiver model for effects of land cover on river flow 
The Generic River flow (GenRiver) model (van Noordwijk et al., 2011) is a simple hydrological model 
that simulates river flow based on water balance concept with a daily time step and a flexible spatial 
subdivision of a watershed that influences the routing of water. The core of the GenRiver model is a 
“patch” level representation of a daily water balance, driven by local rainfall and modified by the 
land cover and land cover change and soil properties. The model starts accounting of rainfall or 
precipitation (P) and traces the subsequent flows and storage in the landscape that can lead to 
either evapotranspiration (E), river flow (Q) or change in storage (ΔS) (Figure App1): 
P = Q + E + ΔS        [1] 

 
Figure App1.Overview of the GenRiver model 

 
The model may use measured rainfall data, or use a rainfall generator that involves Markov chain 
temporal autocorrelation (rain persistence). The model can represent spatially explicit rainfall, with 
stochastic rainfall intensity (parameters RainIntensMean, RainIntensCoefVar in Table 2) and partial 
spatial correlation of daily rainfall between subcatchments. Canopy interception leads to direct 
evaporation of an amount of water controlled by the thickness of waterfilm on the leaf area that 
depends on the land cover, and a delay of water reaching the soil surface (parameter 
RainMaxIntDripDur in Table 2). The effect of evaporation of intercepted water on other components 
of evapotranspiration is controlled by the InterceptEffectontrans parameter, that in practice may 
depend on the time of day rainfall occurs and local climatic conditions such as windspeed) 
At patch level, vegetation influences interception, retention for subsequent evaporation and delayed 
transfer to the soil surface, as well as the seasonal demand for water. Vegetation (land cover) also 
influences soil porosity and infiltration, modifying the inherent soil properties. Groundwater pool 
dynamics are represented at subcatchment rather than patch level, integrating over the landcover 
fractions within a subcatchment. The output of the model is river flow which is contribution from 
three types of stream flow: surface flow on the day of the rainfall event; interflow on the next day; 
and base flow as the slow flow. the multiple subcatchments that make up the catchment as a whole 
can differ in basic soil properties, land cover fractions that affect interception, soil structure 
(infiltration rate) and seasonal pattern of water use by the vegetation. The subcatchment will also 
typically differ in “routing time” or in the time it takes the streams and river to reach any specified 
observation point (with default focus on the outflow from the catchment). The model itself 
(currently implemented in Stella plus Excel), a manual and application case studies are freely 
available (http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow ;van 
Noordwijk et al., 2011). 

http://www.worldagroforestry.org/output/genriver-genetic-river-model-river-flow


  



Appendix 2. Watershed-specific consequences of the land use change scenarios 
The generically defined land use change scenarios (Table 4) led to different land cover proportions, 
depending on the default land cover data for each watershed, as shown in Figure App2. 

Figure App2. Land use distribution of the various land use scenarios explored for the four 
watersheds (see Table 4)   
  



Appendix 3. Example of a macro in R to estimate number of observation required using bootstrap 
approach. 
 
#The bootstrap procedure is to calculate the minimum sample size (number of observation) required 
#for a significant land use effect on Fp 
#bialo1 is a dataset contains delta Fp values for two different from Bialo watershed 
 
#read data 
bialo1 <- read.table("bialo1.csv", header=TRUE, sep=",") 
 
#name each parameter 
BL1 <- bialo1$ReFor 
BL5 <- bialo1$Degrade 
 
N = 1000 #number replication 
 
n <- c(5:50) #the various sample size 
 
J <- 46 #the number of sample size being tested (~ number of actual year observed in the dataset) 
 
P15= matrix(ncol=J, nrow=R) #variable for storing p-value 
P15Q3 <- numeric(J) #for storing p-Value at 97.5 quantile 
 
for (j in 1:J) #estimating for different n 
 
#bootstrap sampling 
{ 
for (i in 1:N) 
{ 
#sampling data 
S1=sample(BL1, n[j], replace = T) 
S5=sample(BL5, n[j], replace = T) 
 
#Kolmogorov-Smirnov test for equal distribution and get the p-Value 
KS15 <- ks.test(S1, S5, alt = c("two.sided"), exact = F) P15[i,j] <- KS15$p.value 
} 
 
#Confidence interval of CI 
P15Q3[j] <- quantile(P15[,j], 0.975) 
 
} 
 
#saving P value data and CI 
 
write.table(P15, file = "pValue15.txt") write.table(P15Q3, file = "P15Q3.txt")v 
 
 


