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We are grateful for the constructive comments, and would here like to briefly respond
to Referee #1’s general comments. The specific comments will be addressed in a later
response. Below, referee #1’s general comments are in bold and our responses are in
upright font. We refer to the manuscript for explanations of variables and abbreviations.

1) MAJOR: The description of the method should be improved. Is the method
the same as in previous studies (e.g., Gao et al. 2014 GRL)? If yes, it should be
clearly acknowledged. Is it different from the paper (under review, not available
to reviewers) by Boer-Euser et al.? It should be clear to the reader if the novelty
of the papers is on the method or in the satellite dataset used as input. Please
clarify.
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We consider this paper to be novel in several ways, not isolated to either method or
satellite dataset input. The novelties include:

• showing that a mass balance based method for estimating SR is suitable for
global scale application,

• making use of the recent developments in satellite-based evaporation data to
estimate SR at the global scale,

• present a SR dataset that can be used directly by the community of global mod-
ellers,

• providing significant new insights on the strategy of natural vegetation to deal with
droughts and being resistant to future climate fluctuations,

• showing how evaporation simulation changes when conventional look-up table
derived root zone storage capacity information is replaced by the presented SR
dataset, and showing how this compares to independent evaporation products,
and

• investigating the differentiated drought return periods for different land use types.

While we make use of the same mass balance principle as applied by Gao et al.,
(2014) and de Boer-Euser et al., (2016) (now published), our algorithm is based on
indirect measurements of every unique pixel that reduces various assumptions related
to atmospheric exchanges between land and atmosphere. The scale of application,
and input data are different as well.

Importantly, Gao et al., (2014) did not use actual evaporation data as input, and used
NDVI to estimate the slope of transpiration during different seasons. The slope of
transpiration was kept constant, and the mass balance was calculated using the Mass
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Curve Technique, and not a running “deficit” account as in this paper. In contrast to
the method used by de Boer-Euser et al. (2016), we do not a priori assume a Gumbel
return period. Moreover, both Gao et al., (2014) and de Boer-Euser et al. (2016)
applied the mass balance approach at the catchment scale and estimated interception
in order to use transpiration with effective precipitation. In this paper, we show that
it is feasible to apply the concept directly at the global scale using independent pixel
measurements instead of catchments as units and simplified approximations of total
evaporation and total precipitation. An overview of the differences is provided in Table
1.

Although the basics of both methods (Gao et al., 2014; de Boer-Euser et al., 2016)
were covered in the Introduction, we agree that the differences could be made clearer.
In the revision, we will highlight the novelties of this paper, especially attending to the
differences between our method and those applied in Gao et al., (2014) and de Boer-
Euser et al., (2016).

2) MODERATE: In the “Methods” section it reads several assumptions: (i) “irri-
gation is captured in satellite-based evaporation data”, I am not sure it is true.
At least, not for all satellite-based datasets, please clarify. Moreover, at page
14 it reads that the evaporation originating from irrigation water simulated by
LPJmL is considered. Why irrigation is already included in the satellite-based
evaporation data? (ii) “the long term average is added in order to compensate
for overestimation of evaporation and underestimation of precipitation”. Why?
(iii) “in order to take into account of surface runoff, D never becomes negative”.
Again, why? I believe that the authors should better justify the assumption made
in their method and why these assumptions are valid (or not). This will allow the
reader to understand the strengths and the limitation of the proposed approach.

(i) Satellite-based evaporation datasets determine the latent heat flux from radiation
data and thermal infrared data. The origin of evaporation cannot be determined, al-
though it can be verified whether E is exceeding net precipitation Pnet. Several pa-
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pers have demonstrated the capability to distinguish total E into the component that
originates from rainfall P and from other sources such as irrigation, inundations and
groundwater dependent ecosystems (e.g. Ahmad et al., 2005; Van Eekelen et al.,
2014; Bastiaanssen et al., 2014). The latent heat flux simply encompasses all these
processes, hence, evaporation from irrigation is implicitly incorporated. Because of
this, we must remove it from our SR calculations, and therefore used irrigation evap-
oration from LPJmL. Other models such as GlobWat (Hoogeveen et al., 2015) and
Water Footprint (Chukalla et al., 2015) could have been used alternatively. If evapo-
ration irrigation is not removed, the SR estimates in irrigated regions would be greatly
overestimated, as we would have mistaken irrigation water to come from a natural soil
moisture store. We wrote at P. 9 L. 16-18: “Without correction, the irrigation evapora-
tion in the satellite evaporation data would erroneously contribute to accumulation of
soil moisture deficit in our computations.”

(ii) “The long-term average is added. . .” in certain grid cells where accumulated E-
P is positive for several years in a row, in order to prevent SR from growing every
year. Continuously increasing E-P may be linked to wetlands, irrigated fields or nat-
ural seepage zones, where lateral inflow of water occurs. In our method this would
lead to accumulation of moisture, which is not possible over longer periods of time.
Some deeply rooting vegetation may accumulate moisture over more than a year to re-
plenish moisture deficits of previous years, but positive E-P values over several years
need to be compensated. For clarification, we will revise at P. 9 L. 20-21: “[the long
term average]. . . [is added] to the inflow, in order to compensate for lateral inflow or
estimation errors in evaporation or precipitation.”

(iii) We assume that any excess precipitation that cannot be contained by the root zone
storage reservoir (or D, which is essentially a running estimate of root zone storage
reservoir size) is runoff or recharge. Since the reservoir size is calculated through D, D
can never be negative. We wrote that this is a way to take into account surface runoff,
but it could also be expressed as the inevitable procedure if D is defined as the running
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estimate of the root zone storage reservoir size.

We will make these points clearer in the revised manuscript.

3) MAJOR: The selection of the input datasets is for me a major issue. Again,
it should be clarified why satellite-based data are considered for evaporation
and not for precipitation. Why satellite-based datasets for precipitation are not
considered (e.g., TMPA, CMORPH, PERSIANN)?

Moreover, why the average of the three evaporation datasets should be “attrac-
tive”? Are the results changing by using only one of the datasets? What is the
relative impact of the evaporation and precipitation datasets on the final results?
It should be clarified, too.

Why ERA-Interim data are used for temporal downscaling? Apart that it is not
mentioned how the temporal downscaling is carried out, currently daily evapora-
tion and precipitation datasets are (freely) available (actually, several datasets).
Why the authors do selected monthly datasets and then performed downscaling
with ERA-Interim? Why not using directly ERA-Interim data? Or other daily prod-
ucts (e.g., GLEAM for evaporation and TMPA for precipitation)? All these points
should be clarified.

To estimate SR, we need global coverage at a grid cell resolution for both evapora-
tion and precipitation. Importantly, these products that must not be produced using
assumptions on root zone storage capacity, to prevent circularity (since we are esti-
mating root zone storage capacity). In other words, there should be no water balance
type of computation process involved in the determination of SR. We used satellite-
based evaporation products because they are the only options available that fulfil these
criteria, i.e., reanalyses and land surface model evaporation contain soil depth infor-
mation. Flux net data are too sparse for acquiring consistently good quality global
coverage). Conversely, precipitation data do not need to be satellite-based, but can
also be ground-based. In this manuscript, we used CRU (ground-based) and CHIRPS
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(satellite-based).

Inter-comparison of precipitation products show that both CRU and CHIRPS are good
quality precipitation products. In particular, CHIRPS performance stands out in a
comprehensive inter-comparison of 13 difference precipitation products in the Nile
basin (Hessels, 2015). PERSIANN was the worst performer in this inter-comparison,
whereas CMORPH performed the worst in several bias analyses (Hessels, 2015). On-
going analyses (not yet published) in the Mekong basin, Vietnam and Colombia also
show that CHIRPS performs excellently, so the CHIRPS performance in three con-
tinents are outweighing the older technologies used for PERSIANN, CMORPH and
APRODITE. One paper on Vietnam is currently under review elsewhere (Simons et al.,
in review).

The average of the three evaporation datasets is the simplest and most transpar-
ent way to create an ensemble product. (Hofste, 2014) also showed that three dif-
ferent approaches towards an ensemble evaporation product (i.e., simple averaging,
expert judgement, and outlier removal based on MODIS16NBI, SSEBop, CMRSET,
and ALEXI7) all performed similarly better than the individual constituent evaporation
datasets in the Nile basin. In their comparison analyses, the mean product outper-
formed the one based on expert judgement and exhibited less “worst sub-basin perfor-
mances” than their outlier analysis product, resulting them to conclude that the mean
ensemble without any imposed restrictions is “relatively safe” to use.

We have performed analyses of the relative impact of evaporation and precipitation,
which we did not include in the paper for conciseness. However, the referee reminds
us that this could be of interest for the reader, and we will therefore include these results
in the Supplements in the revised version.

Daily remotely-sensed ALEXI-based E data is under production by NOAA and USDA.
Daily data based on VIIRS will be made available. The new ETMonitor remote sens-
ing algorithm from the Chinese Academy of Sciences also envisages daily fluxes at
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the global scale, but at this moment these products are not available yet. There are
currently (February 2016) seven global remote sensing products of E available. The
monthly evaporation data used in the manuscript were those available at the time of
this research. We did not consider using GLEAM, since the evaporation data is mod-
elled with a-priori assumptions on soil layer depth by land use type (Miralles et al.,
2011). For the same reasons, we did not employ the ERA-Interim evaporation, since it
is based on the land surface model TESSEL (van den Hurk et al., 2000).

In the temporal downscaling, we first established the ratios between daily values to the
mean monthly ERA-Interim, and second, used the relationship to estimate daily values
from monthly ESM or ECSM values. We will describe this procedure in the revised
manuscript.

4) MODERATE: In most of the paper, only the SR,CRU-SM dataset is analysed.
Why two datasets are considered (CHIRPS and CRU)? The real value of consid-
ering also the CHIRPS dataset is not clear to me. Please clarify.

We present CHIRPS combined with the mean of SSEBop, CMRSET and MODIS, be-
cause CHIRPS is the lead precipitation product and has a fine resolution of 5 km pix-
els. The use of three evaporation datasets decrease uncertainties related to individual
evaporation products because there is simply not one single preferred model. Re-
search executed by Hofste (2014) for the Nile basin demonstrated that the performance
of an ensemble E product is significantly better than using individual E products, some-
thing that was confirmed by Simons et al. (in review) in Vietnam. However, CHIRPS
is unfortunately not available at the global scale, and CMRSET is not reliable in high
latitudes, and the modelling community likely needs a global SR product. Thus, we
added SR,CRU-SM. This way, we have a global SR map that can be compared to the
SR,CHIRPS-CSM for reference. We will clarify this further in the revised manuscript.

Note also that we show results of the CHIRPS analyses in the Supplementary Infor-
mation. We explained (P. 19 L. 17-18) that we did not present E simulation results
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using SR,CHIRPS-CSM in the main manuscript, since it does not have global cover-
age, but referred to the Supplementary Information for a comparison between using
SR,CRU-SM and SR,CHIRPS-CSM.

5) MAJOR: I found the selection of the application for validating the obtained SR
maps not correct. In the paper, it is assessed the improvement in estimating
evaporation with the new SR parameterization in STEAM. It is fine for me. The
problem is that the same evaporation dataset (ESM) used for computing SR is
also used for assessing the improvements due to the new SR parameterization. It
is a circular argument that is not good. I suggest performing a different validation
test. Why not considering the differences in the runoff prediction with the old
and new SR parameterization? It looks to me much more relevant, and a good
independent evaluation.

We consider validation using ESM to be appropriate, since the algorithms for esti-
mating SR, and for estimating E in STEAM are very different. First, SR is derived
based on the E overshoot over P , whereas STEAM is a process-based model where
evaporation originates from five different compartments, each constrained by potential
evaporation and related stress functions. This means that it is impossible to reproduce
ESM simply by inserting SR to STEAM. If SR is zero because ESM never overshoots
precipitation, STEAM soil evaporation and transpiration would become zero. If extreme
SR are produced because ESM is unrealistically large, STEAM evaporation will not
approach ESM, since it will be capped by potential evaporation. Second, consider
also that the precipitation products (CRU and CHIRPS respectively) used for deriv-
ing SR differ from the precipitation forcing (ERA-Interim) used in STEAM. Third, ESM
and STEAM are truly independent to each other as well. Whereas STEAM is pro-
cess and water balance based, the ensemble E product is based on a combination of
two(ESM)/three(ECSM) well established energy balance methods. The only difference
of the new STEAM simulations is the inclusion of updated information on root zone
storage so that during longer periods of drought, more realistic estimations of contin-
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ued evaporation processes can be expected. Last, SR,CRU-SM is based on a single
year value of ESM (i.e., the year of maximum storage deficit), whereas the analyses of
improvements were based on the entire available time series of 10-11 years. Thus, the
fact that SR,CRU-SM dimensioned on one year of ESM nevertheless improves E sim-
ulation in STEAM with regard to 10-11 years of ESM (i.e., the overall εRMS decreases
when SR,CRU-SM is used in STEAM) is a strong indication that the storage capacity
correction was implemented for the right reason. We maintain that the comparison with
ESM is useful and will clarify our arguments in the revised manuscript. Note also that
STEAM is not calibrated by any means.

To address the referee’s concern of interdependency, we cross-check the mean
monthly STEAM evaporation based on SR,CRU-SM (2003-2013) with the mean
monthly LandFlux-EVAL diagnostic ensemble evaporation (1989-2005) (Mueller et al.,
2013), see comparison in Table 2. It appears that the εRMS improvements are even
greater (mean improvement 10 mm/year instead of 4 mm/year), but with the greatest
improvements in maximum monthly evaporation instead of minimum monthly evapora-
tion. The LandFlux-EVAL diagnostic product include the evaporation products: PRUNI,
MPIBGC, CSIRO, GLEAM, and AWB. Since this product includes GLEAM, which re-
lies on water balance calculations and soil layer depth assumptions, we consider the
use of this product inappropriate for our purposes and would refrain from including this
comparison in the manuscript.

Runoff data represent a catchment or basin average value that is not sufficient for val-
idating a spatial map on SR. Using runoff for validation, we would for example not
be able to analyse the E simulation performance with regard to climate indicators or
land use types. Runoff results are also highly sensitive to the precipitation data used,
especially in wet regions (Fekete et al., 2004; Materia et al., 2010). River flow data
can be considerably unreliable in several large river basins such as the Congo (Tshi-
manga and Hughes, 2014). Nevertheless, we have compared simulation results (P -E)
to annual mean GRDC runoff data, and will add it to the Supplementary Information for
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readers’ reference.

6) MINOR: A very recent paper with the same topic has been
published in Journal of Hydrology by Campos et al. (2016,
http://dx.doi.org/10.1016/j.jhydrol.2016.01.023). I suggest mentioning and
analysing this study.

We thank the referee for this suggestion. We will add this to the revised manuscript.
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Table 1. Overview of the methods used in Gao et al., (2014), de Boer-Euser et al. (2016), and
this study.

Gao et al., (2014) de Boer-Euser et al., (2016) This paper
Scale/Coverage Catchment Catchment Global
Unit Catchment Catchment Grid cell (0.5 degree)
Water de-
mand input
in the mass
balance
calculation

The slope of cumulative
transpiration was used as
consumptive use. The slope
of cumulative transpiration
was derived from Normal-
ized Difference Vegetation
Index (NDVI). Interception
threshold to estimate effec-
tive precipitation was as-
sumed to be 2 mm/day.

Daily transpiration was used
as consumptive use. Total
evaporation estimate came
from the annual water bal-
ance (i.e. P and Q data),
interception was estimated
through model simulation,
and daily transpiration was
downscaled from long term
average transpiration using
estimates of daily potential
transpiration.

Total time-variable actual
evaporation, which includes
all evaporation components
(e.g. transpiration, intercep-
tion), was determined from
the surface energy balance
(not from a water balance).
Interception estimation is no
longer needed, as it is im-
plicit in both P and E data,
and therefore cancels out.
Further, we included the ef-
fect of evaporation from irri-
gation.

Mass balance
algorithm ex-
ecution

Mass Curve Technique Daily water balance model
with interception and root
zone storage reservoir.
Deficit increases when tran-
spiration exceeds effective
precipitation. Any excess
precipitation is assumed to
runoff directly.

Daily water balance with
root zone storage capacity
reservoir. Deficit D in-
creases when total evapora-
tion exceeds total precipi-
tation, and decreases when
P>E and D>0. Excess pre-
cipitation is assumed to be
runoff or recharge.

Identification
of the most
suitable
drought re-
turn period

Identified through the best
runoff simulation perfor-
mance across the catchment.

Assumed 10 years across the
catchment based on Gao et
al. (2014).

Differentiated drought re-
turn periods are identified
for different land use types
using evaporation simula-
tion performance.
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Table 2. εRMS and εRMS improvements in evaporation simulation with ESM and LandFlux-
EVAL as benchmark respectively.

Monthly
E com-
pared

εRMS with ESM as benchmark
(mm/year)

εRMS with LandFlux-EVAL diag-
nostic as benchmark (mm/year)

Look-up SR,CRU-SM εRMS im-
provement

Look-up SR,CRU-SM εRMS im-
provement

Mean 234 230 4 136 126 10
Max 323 320 3 244 222 22
Min 189 181 8 143 129 14
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