Rebuttal concerning manuscript hess-2015-532:
“Representation of spatial and temporal variability in large-domain hydrological models: Case
study for a mesoscale prealpine basin”

Dear Professor Weiler,

We would like to thank you for the review process and the editor report. Here below you can find
our response to the suggestions of you and the reviewers.

* Suggestions from the editor:

Highlight higher values in Table 2 and 3.
We have colored the cells in Table 2 and Table 3 based on their value, this indeed helps in
recognizing patterns. We have extended the coloring to Table 4 as well.

The temporal resolution does not seem to show a linear relationship in Figure 10.

We agree that a more advanced relationship (e.g. quadratic) might be more valid in this case.
However, we think that the number of points is too limited to apply more complex models than a
linear model, we see figure 10 merely as an illustrative figure to show the strong effect of temporal
resolution on transferability as compared to spatial resolution. We have stressed the illustrative
character of this figure in the text in Lines 470-473:

“Figure 10 shows the relative impact of temporal and spatial resolution on parameter transferability
based on KGE(Q) for uniform forcing. To illustrate the relative impact of changes in spatial and
temporal resolution, we fitted a linear surface through the data points from our study (R*= 0.68). “

It has also been stressed in the caption of Figure 10: “The linear surface (R2 = 0.68) was fitted to
illustrate the relative impact of changes in spatial and temporal resolution.”

Please add a color legend for Figure 12.
A color legend has been added for Figure 12.

* Suggestions from reviewer 1:

Because the behavioral cutoff is 1% of samples, it might be interesting to see what the results look
like with a more lenient restriction (2-5%) to allow a larger sample size in the estimate of the
proportion.

This is shown in the Supplementary Material Table 1 and Table 2 for the KGE(Q). Results are slightly
different for this more lenient restriction, but the pattern remains the same, as is also shown in
Figure 12. We have added a sentence to refer to the Supplementary Material in Lines 566-569:
“Figure 12 and Table 2 and 3 in the supplementary material shows that the conclusions we draw from
Table 2 and Table 3 are not only valid for the best 1% of runs selected as behavioural. Table 2 and 3 in
the supplementary material show that the same patterns are found when selecting the best 2%
respectively 5% of the model runs.”

Near L95 the GLUE approach is mentioned, i.e., comparing the uninformative prior and behavioral
posterior distributions of parameters. Would it have been possible to use this comparison to derive
the transferability metric? For example the distance between PDFs or CDFs.

This is an interesting suggestion; we actually did not investigate whether the distance between PDFs
or CDFs could be informative for the degree of transferability. We could imagine that some



information could be extracted from the agreement or disagreement in PDF or CDF, but we cannot
directly think of a way to quantify the transferability based on this approach. In that sense, our
current set-up is very clear and straight forward, although some subjectivity is involved in the size of
the sample.

One methodological point that deserves more explanation is the use of spatially lumped parameters,
even when spatial resolutions are increased. Thus the use of different spatial resolutions is really only
a matter of distributed forcing data, not the parameter fields themselves.

This is indeed the most critical point in this study. We would like to elucidate that indeed, the most
sensitive parameters, i.e. the parameters that have been sampled, have been applied uniformly over
the catchment, but all the other parameters (the soil parameters, land-use parameters, snow
parameters) have been applied distributed. Some of these parameters, for example the bulk density
of layer 2 and 3, did show relatively high sensitivity in our sensitivity analysis. Therefore, the models
with higher spatial resolution could benefit from the distribution of these parameters. We have
stressed this by adding Line 245: “The sampled parameters were applied uniformly over the
catchment, 245 whereas all other soil- and landuse parameters have been applied in a distributed
fashion. ”

But indeed; our conclusion that spatial variability is underestimated is mainly the result of the
uniformly applied most sensitive parameters, as shown in Section 5.3. This is, however, part of our
conclusion and recommendation. We have added Lines 607-609 to further discuss the point of
spatially lumped parameters: “Promising techniques have been developed to allow spatial
distribution of calibrated parameters, for example with Multiscale Parameter Regionalization (MPR,
Samaniego et al. (2010); Kumar et al. (2013)), which could and should be applied for large-domain
hydrologic models.”

Furthermore, we discuss this choice now in lines 320-323: “Because sampling the seven selected
parameters in a distributed fashion is computationally extremely demanding and currently not yet
feasible, the sampled parameters have been applied uniformly over the cells in the distributed VIC
models. This is according to current practice in large-scale modelling.”

Before the HLHS sample is performed, the authors find that parameter sensitivity (using the DELSA
method) does not change much across scales. Is this similar or different to the finding that behavioral
parameter sets (values) DO change across scales? Is there an interpretation of this result that can be
discussed? Many readers may find parameter sensitivity, and its transferability across scales, equally
interesting as the model performance itself.

The finding that parameter sensitivity did not change very much across scales is different from the
finding that parameter values did not change very much across scales, since equal sensitivity for a
certain parameter does not necessarily imply that the value of the parameter is the same.

In order to provide more insight in the sensitivity analysis, we have added the table with investigated
parameters and a figure with the results of the sensitivity analysis to the Supplementary Material.
Line 289 and Line 309 have been added to the manuscript to refer to the Supplementary Material.

According to Figure 6, the behavioral parameter sets at finer temporal resolutions (hourly, daily) are
not so good at reproducing observed streamflow (NSE ~ 0.5-0.6). This may warrant further
discussion. The selection of behavioral parameter sets is based on the top 1% of model runs, not the
performance metrics like NSE, KGE, etc. But using those criteria, it may be that none of the model
runs are "behavioral". Are there any implications of this?

It is indeed an effect of our method that, by choosing a fixed percentage rather than a minimum
performance, not all the selected runs can or might be considered ‘behavioral’. We think that the
implications of this effect for our conclusions are limited; it does not necessarily negatively nor
positively impact the transferability of the parameters across spatial or temporal resolutions. Lines
374-377 have been added to the manuscript:



“Inherent to our approach, selecting a certain percentage of runs rather than applying a threshold
level based on an objective function, is that the selected runs do not necessarily comply to an
acceptable model performance. We expect that this neither positively nor negatively influence our
results concerning parameter transferability. ”

* Suggestions from reviewer 2:

This study uses a conceptually based approach where calibration is generally mandatory given the
indirect nature of the model parameters. Are there lessons learned from the more physically based
modeling community, which is also studying the effects of resolution?

We think this is a valuable suggestion, and have added a small paragraph to discuss the effect of
spatial resolution in more physically-based models which are usually applied to a smaller area but
with a higher resolution, see Lines 70-75: “Although the ambition of GHMs is to move towards
hyperresolution (~ 1 km and higher), more physically-based catchment models have already been
applied at spatial resolutions in the order of 100 meters. Also for these models at this scale, the effect
of spatial resolution has been investigated (e.g. Vivoni et al. (2005); Sulis et al. (2011); Shrestha et al.
(2015)). Even for fully coupled surface- groundwater land-surface models, the effect of spatial
resolution on hydrologic fluxes was found to be considerable (Shrestha et al., 2015). ”

| am curious about the spatial resolution of routing. It appears that the routing network is a constant
across all simulations, which might substantially influence the conclusions. Prior studies have relaxed
that assumption. The authors should comment on this more and while it may be infeasible to
conduct additional simulations, additional discussion would be valuable.

It was a conscious choice to exclude the effect of spatial scale on the routing. A discussion on this has
been added in Lines 574-581: “In this study we excluded the effect of routing by using a high-
resolution drainage network based on sub-basins with a size of ~1 km?, independent of the resolution
of the hydrologic model. We think that the effect of spatial resolution can be increased by adapting
the routing scheme accordingly. Drainage network resolution may affect the projected hydrograph,
for example with changes in the stream network and the channel slope. However, this effect should
then be assigned to the routing model, and not to the runoff generation model (the hydrologic
model). For clarity, we decided to exclude the effect of spatial resolution on routing in this study. ”

Besides the suggestions provided by the editor and the reviewers, we have added a relevant recent
reference (Ficchi et al., 2016). Furthermore, we have adapted Figure 2 to fit better with the

projection of the Thur basin as used in the other figures of the manuscript.

We believe that the suggestions from the reviewers and the editor have improved the manuscript.
We hope we have addressed all requests sufficiently.

Kind regards,

Lieke Melsen and co-authors.
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Abstract. The transfer of parameter sets over different temporal and spatial resolutions is common
practice in many large-domain hydrological modelling studies. The degree to which parameters are
transferable across temporal and spatial resolutions is an indicator for how well spatial and temporal
variability are represented in the models. A large degree of transferability may well indicate a poor
representation of such variability in the employed models. To investigate parameter transferability
over resolution in time and space we have set-up a study in which the Variable Infiltration Capac-
ity (VIC) model for the Thur basin in Switzerland was run with four different spatial resolutions
(1 x1km, 5x5 km, 10 x 10 km, lumped) and evaluated for three relevant temporal resolutions
(hour, day, month), both applied with uniform and distributed forcing. The model was run 3,150
times using a Hierarchical Latin Hypercube Sample and the best 1% of the runs was selected as
behavioural. The overlap in behavioural sets for different spatial and temporal resolutions was used
as indicator for parameter transferability. A key result from this study is that the overlap in param-
eter sets for different spatial resolutions was much larger than for different temporal resolutions,
also when the forcing was applied in a distributed fashion. This result suggests that it is easier to
transfer parameters across different spatial resolutions than across different temporal resolutions.
However, the result also indicates a substantial underestimation in the spatial variability represented
in the hydrological simulations, suggesting that the high spatial transferability may occur because
the current generation of large-domain models have an inadequate representation of spatial variabil-
ity and hydrologic connectivity. The results presented in this paper provide a strong motivation to
further investigate and substantially improve the representation of spatial and temporal variability in

large-domain hydrological models.
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1 Introduction

The history of modern hydrological modelling dates back to halfway the nineteenth century, starting
with empirical models to predict peak flows (Todini, 2007). For a long time, hydrological models
were developed only at the catchment scale, evolving from empirically-based to more physically-
based. Computational power and increased data availability have driven the development of increas-
ingly complex and distributed hydrological models (Boyle et al., 2001} [Liu and Guptal [2007)). Dis-
tributed hydrological models can incorporate spatially varying parameters, including those reflecting
land use and soil characteristics (Carpenter and Georgakakos}, |2006), and spatially variable forcing.
In 1989 the first Global Hydrological Model (GHM) was presented (Vorosmarty et al., [1989; [Sood,
and Smakhtinl [2015). Continuing improvements in computational power and data availability pro-
vides new opportunities for GHMs, for example expressed in the recent ambition to develop global
models with a resolution in the order of ~ 1 km and higher, the so-called hyper-resolution (Wood,
et al.L 2011} Bierkens et al.l [2014; [Bierkens!, [2015)).

Because the parameters in hydrological models often represent a different spatial scale than the ob-
servation scale, or because conceptual parameters have no directly measurable physical meaning,
calibration of hydrological models is almost always inevitable (Beven, |2012). The increased com-
plexity of hydrological models and the increased application domain has resulted in more complex
and time consuming optimization procedures for the model parameters. However, although recent
developments in e.g. satellites and remote sensing can provide spatially distributed data to construct
and force models, discharge measurements are still required to calibrate and validate model output.

Both to decrease calculation time of the optimization procedure and to be able to apply the model
in ungauged or poorly gauged basins and areas, many studies have focused on the transferability of
parameter values over time, space, and spatial and temporal resolution (e.g. Wagener and Wheater
(2006); |Duan et al.| (2006); [Troy et al.| (2008)); |Samaniego et al.|(2010); Rosero et al.|(2010); |Kumar
et al.| (2013)); [Bennett et al.[| (2016))). Sometimes it is assumed that parameters are directly transfer-
able, for example by calibrating on a coarser time step than the time step at which the model output
will eventually be analysed (e.g. [Liu et al.| (2013); [Costa-Cabral et al.| (2013)). [Troy et al.| (2008)
rightly question what the effect is of calibrating at one time step and transferring the parameters to
another time step. Their results suggest that the time step had only limited impact on the calibrated
parameters and thus on the monthly runoff ratio. On the other hand, Haddeland et al.| (2006) found
that modelled moisture fluxes are sensitive to the model time step. Several studies (e.g. [Littlewood,
and Croke|(2013)); Kavetski et al.| (201 1); [Wang et al.|(2009) and Littlewood and Croke|(2008))) have
found that parameter values are closely related to the employed time step of the model. (Chaney et al.
(2015) investigated to what extent monthly runoff observations could reduce the uncertainty around
the flow duration curve of daily modelled runoff. They found a decrease in the uncertainty around
the flow duration curve when the monthly discharge observations were used, but the magnitude of

the reduction was dependent on climate type. Recently, [Ficchi et al.|(2016) conducted a thorough
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analysis on the effect of temporal resolution on the projection of flood events, where it was shown
that the flood characteristics determined the sensitivity for the temporal resolution.

Less intuitive and less common is to transfer parameters across different grid resolutions.
showed that the output of the Variable Infiltration Capacity (VIC) model was signifi-
cantly different when the parameters of the model were kept constant for several spatial resolutions.
For the same model, [Liang et al.| (2004) showed that model parameters calibrated at a coarse grid
resolution could be applied to finer resolutions to obtain comparable results. (2008) on

the contrary, found that calibrating the VIC model on a coarse resolution significantly affected the

model performance when applied to finer resolutions. Finnerty et al.| (1997) investigated parameter

transferability over both space and time for the Sacramento model, and showed that it can lead to
considerable volume errors.

Although the ambition of GHMs is to move towards hyperresolution (~ 1 km and higher), more
physically-based catchment models have already been applied at spatial resolutions in the order of
100 meters. Also for these models at this scale, the effect of spatial resolution has been investigated

(e.g.[Vivoni et al] (2003); [Sulis et al| (20TT])); [Shrestha et al| (2013)). Even for fully coupled surface-

groundwater land-surface models, the effect of spatial resolution on hydrologic fluxes was found to

be considerable (Shrestha et al.,[2015).

The impact of transferring parameters across spatial and/or temporal resolutions on model perfor-

mance is thus ambiguous, but relevant in the light of hydrological model development, especially for
GHMs which are at the upper boundary of computational power and data availability. Calibration
on a coarse temporal or spatial resolution and subsequently transferring to a higher resolution could
potentially reduce computation time, and it is therefore relevant to investigate the opportunities. But
parameter transferability across spatial and temporal resolutions is also interesting for another rea-
son: it is an indicator for the degree to which spatial and temporal variability are represented in the
model. Ideally, in a model that describes all relevant hydrological processes correctly, parameters
should to a large extent be transferable over time because longer time steps are simply an integration
of the shorter time steps. On the other hand, parameters should not or hardly be transferable over
space, because the physical characteristics which they represent are different from place to place. In-
vestigating parameter transferability across spatial and temporal resolutions can thus provide insight
in the model’s representation of spatial and temporal variability.

In this study, we employ the Variable Infiltration Capacity (VIC) model (Liang et all, [1994), which

has also been applied at the global scale (Nijssen et al., 2001} Bierkens et al.,[2014), to study param-
eter transferability across temporal and spatial resolutions, accounting for the difference between

uniform and distributed forcing. We applied this study on a well-gauged meso-scale catchment in
Switzerland (the Thur basin, 1703 km?) on spatial resolutions that are relevant for hyper-resolution
studies (1 x 1 km, 5x 5 km and 10 x 10 km, as well as a lumped model which represents the 0.5° grid

used in many global studies). We use the most common temporal resolutions for which discharge
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data are available (hourly, daily, monthly). We ran the models both with distributed forcing (differ-
ent forcing input for each grid cell) and with uniform forcing (same forcing input for each grid cell),
where the latter is in line with many of the datasets currently used for forcing global hydrological
models (e.g. WATCH forcing data, 0.5°).

Several studies already investigated scale effects in the VIC model, for instance [Haddeland et al.
(2002); Liang et al.| (2004); Haddeland et al.| (2006); [Troy et al.| (2008); [Wenger et al.|(2010); |Wen
et al.| (2012)). Novel in this study is that we choose a probabilistic rather than a deterministic ap-
proach: essentially we employ a GLUE-based approach (Beven and Binley, |[1992, 2014) in which
we implicitly account for parameter uncertainty. We quantify parameter transferability by evaluat-
ing the overlap in behavioural sets for different temporal and spatial resolutions. To determine the
behavioural sets, we make use of three different objective functions focusing on high flows, average
conditions, and low flows. Novel is also that we test the effect of forcing on the results, and that
we use several subbasins to explain the results. Our case study provides a benchmark for parameter
transferability for models applied at larger scales, dealing with the same spatial and temporal res-
olutions as employed here. The results of our study also provide an indication of the current status
of spatial and temporal representation in the VIC model, being representative for a larger group of

land-surface models.

2 Catchment and Data Description
2.1 Thur basin

The Thur basin (1703 km?, see Figures |1 and [2) in North-East Switzerland was chosen as study
area, because of the excellent data availability in this area and because of its relevance as a tributary
of the river Rhine (Hurkmans et al.l [2008). The main river in the basin (the Thur) has a length
of 127 km. The average elevation of the basin is 765 m a.s.l., the mean slope is 7.9° (based on
a 200 x 200 m resolution DEM and slope file). The basin outlet is situated at Andelfingen at an
elevation of 356 m a.s.l. (Gurtz et al.l [1999). The basin has an alpine/pre-alpine climatic regime,

with high temperature variations both in space and time (Figure [3). Precipitation varies from 2500

1 1

mm yr~ " in the mountains to 1000 mm yr~" in the lower areas. Part of the year the basin is covered
with snow. The most striking feature in the Thur basin is the Séntis, an Alpine peak with an altitude of
2502 meter. The dominant land use in the Thur basin is pasture. Within the Thur basin, measurements
for nine (nested) sub-catchments are available, see Figure 2] The smallest gauged sub-catchment is
the Rietholzbach catchment (3.3 km?, see |Seneviratne et al. (2012)), the largest is Halden (1085
km?). Both the Rietholzbach and the Thur have been subject of many previous studies (e.g. Gurtz
et al.| (1999, 2003)); Jasper et al|(2004); Abbaspour et al.| (2007); |Yang et al.| (2007); Teuling et al.

(2010); Melsen et al.| (2014)). In this study, we will mainly focus on the outlet of the Thur basin.
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2.2 Discharge data

For the station at the Thur outlet (Andelfingen) and eight sub-basins hourly discharge measurements
for the period 1974-2012 were made available by the Swiss Federal Office for the Environment
(FOEN). All discharge measurements have been obtained using a stage-discharge relation, based on
several measurements conducted by FOEN throughout the years, a.o. with an ADCP. The discharge

measurements for the Rietholzbach catchment were made available by ETH Ziirich.
2.3 Forcing data

Forcing data for this study were made available by the Swiss Federal Office for Meteorology and
Climatology (MeteoSwiss). These data have previously been used for numerous applications of hy-
drological models in the Thur (Jasper et al., 2004; |/Abbaspour et al., [2007; |[Fundel and Zappal 2011}
Fundel et al., [2013} Jorg-Hess et al. [2015). The data are available for this study in the form re-
quired to implement the PREVAH model (Viviroli et al., [2009a} b). Data from nine different me-
teorological stations throughout the catchment (Giittingen, Hornli, Reckenholz, Séntis, St.Gallen,
Tanikon, Widenswil, Ziirich and Rietholzbach) were available with an hourly time resolution and
spatially interpolated with the use of the WINMET tool of the PREVAH modelling system (Viviroli
et al.| [2009a), using elevation-dependent regression (EDR) and inverse distance weighting (IDW)
and combinations of IDW and EDR. The data is available for the period 1981-2004, for which a
stable configuration of stations is available. In this study, we only used data for the period May
2002 - August 2003. To force the VIC model, hourly precipitation, incoming shortwave radiation,
temperature, vapour pressure and wind data were used. We have run the model with two set-ups:
fed with uniform forcing and fed with distributed forcing. Because the Thur basin has an extent of
approximately 0.5°, a lumped application of the forcing mimics the use of global forcing data sets
like the WATCH forcing product and the ERA-interim product. Application with distributed forcing
implied different forcing input for each grid cell. Because of the pronounced elevation differences in

the basin, precipitation and temperature show a clear spatial pattern, which can be seen in Figure 3]
2.4 Spatial data for the model

Land use, hydraulic conductivity, elevation, and soil water storage capacity maps, all with a spa-
tial resolution of 200 x 200 m, were provided by the Swiss Federal Institute for Forest, Snow and
Landscape Research (WSL) under license of Swisstopo (JA100118). Also in this case we used the
pre-processing routines created to implement the PREVAH modelling system (Viviroli et al.| 2009a)).
The resolution of the available data (200 x 200 m) is higher than the model with the highest resolu-
tion in this study (1 x 1 km), which allows for sub-grid variability in the VIC model for land use and

elevation parameters (see Section[3.)). Other soil characteristics, such as bulk density, have been ob-
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tained from the Harmonized World Soil Database (FAO et al., 2012), which has a spatial resolution
of 1 x 1 km.

3 Model and routing description

The VIC model (version 4.1.2.1) was run at an hourly time step in the energy balance mode, which
implies that both the water- and the energy balance are solved. The default routing developed for
VIC by Lohmann et al.| (1996)) is only applicable at daily time steps and hence is not suitable to
study parameter transferability at finer temporal resolutions. Therefore, horizontal water transport

through the channel network was implemented using mizuRoute (Mizukami et al.| [2015b)).
3.1 The VIC model

The VIC model (Liang et al.,[1994}|1996)) is a land-surface model that solves the water and the en-
ergy balance. Subgrid land use type variability is accounted for by providing vegetation tiles that
each cover a certain percentage of the total surface area. Three different types of evaporation are
considered by the VIC model; evaporation from the bare soil (F}), transpiration by the vegetation
(T), considered per vegetation tile, and evaporation from interception (F;). The total evapotranspira-
tion is the area-weighted sum of the three evaporation types. The fraction of land that is not assigned
to a particular land use type is considered to be bare soil. Evaporation from bare soil only occurs
at the top layer (layer 1). If layer 1 is saturated, bare soil evaporation is at its potential rate. Poten-
tial evaporation is obtained with the Penman-Monteith equation. If the top layer is not saturated, an
Arno-formulation (Francini and Pacciani, [1991), which uses the structure of the Xinanjiang model
(Zhao et al.,|1980), is used to reduce the evaporation.

For the upper two soil layers, the Xinanjiang formulation (Zhao et al.,|1980) is used to describe infil-
tration. This formulation assumes that the infiltration capacity varies within an area. Surface runoff
occurs when precipitation added to the soil moisture of layers 1 and 2 exceeds the local infiltra-
tion capacity of the soil. Moisture transport from layer 1 to layer 2 and from layer 2 to layer 3 is
gravity driven and only dictated by the moisture level of the upper layer. It is assumed that there is
no diffusion between the different layers. Layer 3 characterizes long term soil moisture response,
e.g. seasonality. It only responds to short-term rainfall when both top layers are fully saturated. The

gravity driven moisture movement is regulated by the Brooks-Corey relationship:

Wi*Wri expt;
: > ) 1)

Qii+1 = Kai | 50—
<Wic - Wr,i

Qi i+1 is the flow [L37T~1] from layer 4 to layer 44 1. K ; is the saturated hydraulic conductivity of
layer 4, W; is the soil moisture content in layer ¢, W is the maximum soil moisture content in layer
1, W,.; the residual moisture content in layer ¢. The exponent of the Brooks-Corey relation, expt; is

defined as follows: Bl + 3, in which B,, is the pore size distribution index. The exponent as a whole
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is often calibrated.

Base flow is determined based on the moisture level of layer 3. Base flow generation follows the
conceptualization of the Arno model (Francini and Pacciani, [1991)). This formulation consists of a
linear part (lower moisture content regions) and a quadratic part (in the higher moisture regions).

Baseflow is modelled as follows:

e W3 if 0 < W3 < w Wy

Qv =

g
dedm Y, _ dady | ([ Wamw, Wy
w,wg V3 + (dm W, ) (WC—wSWC

3 3
if Wy > w,We

In this equation, )}, is the total baseflow over the model time step (in this study one hour), d,,, is the
maximum base flow, d; the fraction of d,, where non-linear base flow begins, wy is the fraction of
soil moisture where non-linear baseflow starts. I¥/5 is the maximum soil moisture content in layer 3,
calculated as a product of porosity and depth. The exponent g is by default set to two (Liang et al.|
1996).

Since the grid-size of the VIC model is often larger than the characteristic scale of snow processes,
sub-grid variability is accounted for by means of elevation bands. For each grid cell the percentage
of area within certain altitude ranges is provided. The snow model is applied for each elevation band
and land use type separately; the weighted average provides the output per grid cell. This output
consists of the Snow Water Equivalent (SWE) and the snow depth. The snow model is a two-layer
accumulation-ablation model, which solves both the energy- and the mass balance. At the top layer
of the snow cover the energy exchange takes place. A zero energy flux boundary is assumed at the
snow-ground interface. A complete description of the model can be found in|Liang et al.|(1994) and

Liang et al.| (1996).
3.2 Routing

The mizuRoute routine (Mizukami et al.l 2015b) takes care of the transport of water between the
different grid cells. The routing is based on the same concept as the routing described by [Lohmann
et al.| (1996), except that in mizuRoute the response is determined per subcatchment instead of per
grid cell.

With the linearized St. Venant equation,

0Q  °Q 0Q
ot ~Par Yo

@)
water is transported from the boundary of the subcatchment to the next subcatchment and finally to
the outlet. In Equation D (m?s—!) represents the diffusion coefficient and C' (m s~) the advection
coefficient.

In the Thur basin, the routing is applied to subcatchments in the order of 1 km?. It is important to
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note that with the applied routing-setup, the drainage network is kept independent of the resolution,
because surface runoff is routed for pre-defined sub-basins instead of per grid cell. In the default
VIC routing of [Lohmann et al.| (1996)), water is routed per grid cell and therefore dependent on the
spatial resolution of the VIC model. By applying mizuRoute based on pre-defined sub-basins (~1

km?), we have excluded the effect of the spatial resolution on the routing process.

4 Experimental set-up

We have constructed four VIC models with different spatial resolutions: 1 x 1 km, 5 x 5 km, 10 x
10 km, as well as a lumped model. These models have been run with both uniform and distributed
forcing. Since for the lumped model there is no difference between uniform and distributed forcing,
this leads to a total of seven different model set-ups. Because the runtime of the model combined
with all the post-processing is rather long (on average 2.5 hours for the 1 X 1 km model on a stan-
dard PC), an efficient sampling strategy was designed. The procedure we followed is illustrated in
Figure 5} With sensitivity analysis (Section[4.4) the most sensitive parameters from the model were
selected. Subsequently, we sampled the full parameter space with a uniform prior using a Hierar-
chical Latin Hypercube sample (HLHS) (Votechovsky, 2015), see Section .5 Although sampling
the parameter space with a uniform prior is less efficient than other distributions which focus more
on the most likely regions, we did not want to exclude any region because both the temporal and
spatial resolution were varied. The sampled parameters were applied uniformly over the catchment,
whereas all other soil- and landuse parameters have been applied in a distributed fashion. After run-
ning the models with the HLHS, the output was evaluated and the best 1% of the runs was defined as
behavioural. The overlap in behavioural sets was used as an indicator for parameter transferability
(Section|4.7).

4.1 Spatial model resolution

Four VIC implementations with different spatial resolutions (0.0109° roughly corresponding to 1 x
1 km, 0.0558° =~ 5 x 5 km, 0.1100° ~ 10 x 10 km, as well as a lumped model) were constructed.
The 1 x 1 km model represents the so-called hyper-resolution. Several studies already explore GHMs
at this resolution, e.g. |Sutanudjaja et al.| (2014) for the Rhine-Meuse basin. The model with the
10 x 10 km resolution can be characterized as ‘regional’. The 5 x 5 km model is in between the
hyper-resolution scale and the regional scale. The lumped model, which represents an area of 1703
km?, is in the order of magnitude of grid cells with a 0.5° resolution, which represents the original
scale for which VIC was developed. Figure[T] gives an overview of the cell size of the four models.

The sampled parameters (see Section[d.4) have been applied uniformly over the catchment, all other
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parameters have been applied in a distributed manner. We will discuss the effect of applying the

sampled parameters uniformly by using data from the nine subcatchments.
4.2 Temporal model resolution

The models are run at an hourly time step, implying that they solve both the energy and the water
balance. The hourly output of the routing model is aggregated to daily and monthly time steps for

further evaluation, see Figure E}
4.3 Simulation period

The four models are run for a period of 1 year and four months. The first three months are used
as spin-up period and not used for further analysis. Tests with the same parameter set and different
initial conditions revealed that three months are sufficient to eliminate the effect of initial conditions
(see Figure [). The initial soil moisture content of the model before spin-up was fixed at = 0.9
because we found that the model reaches equilibrium faster when starting from a wet state. The
models have not been subjected to a validation procedure on another time period, because in this
particular application the goal was not to identify the best performing model, but to investigate the
role of temporal and spatial resolution on parameter transferability.

The analysed period is 1 August 2002 — 31 August 2003 (see Figure[d). This period is characterised
by three very high peaks (August, September 2002) as well as the severe 2003 drought (June, July,
August 2003). The 2002 peaks (see e.g. Schmocker-Fackel and Naef (2010)) have an estimated re-
turn period of 15 to 20 years. The peaks were caused by a larger system that also caused the heavy
floods in the Elbe and the Danube (Becker and Griinewald, [2003)). In contrast, the 2003 summer was
extremely warm and dry in Western and Central Europe (Miralles et al., [2014), with Switzerland
being among the hottest and driest regions (Andersen et al.| 2005 Rebetez et al.l [2006; [ Zappa and
Kan| 2007; |Seneviratne et al., 2012). With these two extremes the selected period covers a large part

of the flow duration curve, both in the high and the low flow regions (right panel in Figure [4)).

4.4 Model parameters

The VIC model has a large number of parameters, divided over three sections: soil parameters, veg-
etation parameters, and snow parameters. To determine which parameters should be sampled in this
study, a sensitivity analysis was conducted on a broad selection of parameters (see Table 1 in the sup-
plementary material). The parameter selection was made such that the main hydrological processes
were represented and included 28 VIC parameters from the three different sections. Sensitivity anal-
ysis was conducted using the Distributed Evaluation of Local Sensitivity Analysis (DELSA) method
(Rakovec et al.,|2014). DELSA is a hybrid local-global sensitivity analysis method. It evaluates pa-

rameter sensitivity based on the gradients of the objective function for each individual parameter at
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several points throughout the parameter space. Note that this method only provides first-order sensi-
tivities and thus does not account for parameter interaction.

A base set of 100 parameter samples was created. For each parameter k that is accounted for in
the analysis, the base set of parameter samples is perturbed. In total, including the base set, this
leads to (number of parameters+1) x 100 parameter samples that need to be evaluated. To save com-
putation time, the sensitivity analysis was conducted on the lumped VIC model for the Thur. To
study the effect of spatial scale on sensitivity, two lumped models for subbasins of the Thur have
been constructed: The Jonschwil catchment (495 km?) and the Rietholzbach catchment (3.3 km?).
The Rietholzbach catchment is nested inside the Jonschwil catchment, which is again nested in the
Thur catchment (Figure [2). The three catchments have comparable land use.The Kling-Gupta Ef-
ficiencty of the discharge (KGE(Q)), Nash-Sutcliffe efficiency of the discharge (NSE(Q)) and the
Nash-Sutcliffe efficiency of the logarithm of the discharge (NSE(logQ)) (see Section @) were used
as objective function to assess the sensitivity of the parameters.

The analysis showed that parameter sensitivity did not notably change over the assessed scales: the
same parameters were found to be most sensitive, but in a slightly different order (see Figure 1 in the
supplementary material). There are four parameters which, for all scales and for all objective func-
tions, proved to be highly sensitive: The parameter describing variable infiltration (b;), the parameter
that defines the fraction of d ;4. Where non-linear baseflow starts (d,), the maximum velocity of
the base flow (d,,,) and the exponent of the Brooks-Corey relation (Blp + 3, expts, see Equation .
Hence, these four parameters were selected for the sampling analysis. Other parameters that showed
sensitivity in some cases were the depth and bulk density of soil layer 2, the depth and bulk density of
soil layer 3, and the rooting depth of layer 1. The selection of sensitive parameters closely resembles
the results of [Demaria et al.| (2007, who applied a sensitivity analysis on VIC over different hydro-
climatological regimes. Because Demaria et al.|(2007) found that the depth of soil layer 2 was highly
sensitive, this parameter was added to the selection of parameters that was sampled. In addition, the
two routing parameters C' and D were sampled because they control the lateral exchange of water
between grid cells. An overview of the selected parameters is given in Table [T} Because sampling
the seven selected parameters in a distributed fashion is computationally extremely demanding and
currently not yet feasible, the sampled parameters have been applied uniformly over the cells in the

distributed VIC models. This is according to current practice in large-scale modelling.
4.5 Hierarchical Latin Hypercube Sample

In comparison with traditional sampling methods, the number of parameter samples needed to cover
the full parameter space can decrease significantly by selecting only the most sensitive parameters
(see Figure5p). For the four VIC models (three distributed models, one lumped model) the selected
parameters (Table [T)) were varied using a Latin Hypercube Sample (LHS). This is a variance re-

duction method which efficiently samples the parameters within each region with equal probability
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in the parameter distribution (Vofechovsky and Novakl [2009) (see Figure [5t). Especially for the
1 x 1 km model the calculation time is rather long. Therefore, the LHS should preferably be as small
as possible, while still being able to provide insights in e.g. posterior parameter distributions. For
a Monte Carlo (MC) sample, it is easy to start with a small sample, and add more samples if this
shows to be necessary, e.g. based on the sample variance. For a variance reduction technique such as
LHS this is not that straight forward. Therefore, we make use of the Hierarchical Latin Hypercube
Sample (HLHS), recently developed by |Votechovsky| (2015). This method allows us to start with
a small LHS and add more samples if necessary, while conserving the LHS-structure (Figure [5d).
Inherent to this method is that every sample extension is twice as large as the previous sample, which

results in a total number of simulations after r extensions:
Nsim,r =3 Nstartv (3)

with Ng;,, being the total number of simulations, r the number of extensions, and N4, the start
number of samples. As a starting sample size 350 is chosen, which is sampled based on a space-
filling criterion. For the seven parameters in the HLHS sample a uniform prior is assumed in order
the study the full parameter space. The starting sample can be increased by a first extension to
1,050 samples in total, further to 3,150, and even up to 9,450. After each extension, the cumulative
distribution function (CDF) of the objective functions (KGE, NSE) is compared with the CDF of
the previous extension. A Kolmogorov-Smirnov test is used to test if the CDFs are significantly
different. It was found that the CDF estimated from 3,150 samples was not significantly different
from the CDF based on 1,050 samples at a 0.05-significance level. Therefore, 3,150 samples was

considered sufficient to sample the parameter space.
4.6 Objective functions

For each model run, several objective functions were evaluated. The three objective functions are:

— The Kling-Gupta Efficiency (KGE) to describe the overall capability of the model to simulate
the discharge (Gupta et al.,|2009):

KGEQ =1-+/(r—1)>+(a—1)2+ (8- 1), “

where r is the correlation between observed discharge (), and modelled discharge Q),,,, a is

the standard deviation of @,,, divided by the standard deviation of @,, and § is the mean of
Qm (Q,,) divided by the mean of Q, (Q,) .

— The Nash-Sutcliffe Efficiency (NSE) of the discharge to describe the model performance for
the higher discharge regions (Nash and Sutcliffe} |1970):

T
_,(QL—Q1,)?
NSE(Q)=1— %f_ll(Qz—Qo))z =2-a-r—a®—j32, 5)

in which (3, is the bias normalized by the standard deviation.
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— The Nash-Sutcliffe Efficiency of the logarithm of the discharge NSE(logQ) to test the model

performance for low discharges (Krause et al., [2005).

The objective functions are calculated for all runs (3,150) for the seven different VIC set-ups and

based on hourly, daily and monthly time steps.
4.7 Determination of behavioural sets and parameter transferability

After running the VIC model with 3,150 parameter sets, a selection is made of the best parameter
sets, the so-called behavioural runs (Beven and Binley, [1992)). The best 1% (which is different for
different objective functions) of the 3,150 runs (32 members) are selected as behavioural. For each
combination of spatial and temporal resolution, and for the three objective functions separately, the
32 best members are selected. We value all 32 parameter sets equally plausible and do not assign
weights to the best performing sets within the behavioral selection, to account for uncertainty in the
observations. Inherent to our approach, selecting a certain percentage of runs rather than applying
a threshold level based on an objective function, is that the selected runs do not necessarily comply
to an acceptable model performance. We expect that this neither positively nor negatively influences
our results concerning parameter transferability.

We define parameter transferability & as the percentage agreement in selected behavioural sets:
& = #(As,, 1, N Bs, 1,)/n - 100, (6)
in which Ag, 1, is the set of selected behavioural members for spatial resolution .S; and temporal
resolution 7}, and Bg, 1, are the selected members for spatial resolution S}, and temporal resolution
T;. The n is the total number of selected members (in this case 32). Equation |§| expresses & as a
percentage; if &: 100, this indicates that for two different resolutions (either spatial, temporal or

both) exactly the same parameter sets were selected as behavioural.

5 Results

First, the impact of temporal and spatial resolution on model performance is discussed for both uni-
form and distributed forcing, followed by a discussion of the impact of the temporal and spatial
resolution on parameter distribution. For these analyses, the temporal and spatial resolution are as-
sumed to be independent. Subsequently, the parameter transferability across temporal and spatial
resolution is assessed by determining the overlap in behavioural sets as defined by Equation [6] Af-
ter that, parameter transferability over both temporal and spatial resolution is assessed. Finally, we

investigate parameter transferability over the sub-basins of the Thur.
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5.1 Impact of temporal and spatial resolution on model performance and parameter

distribution

Figure [6] shows the model performance of the behavioural sets for the different spatial and temporal
resolutions and the different objective functions, both for uniform and distributed forcing. We will
first discuss the results for the uniform forcing.

With uniform forcing, the lumped model outperforms the distributed models for all three objective
functions and time steps. The monthly time step shows for all three objective functions an increas-
ing model performance with decreasing spatial resolution. It is remarkable that the model with the
monthly time step outperforms the models with daily and hourly time step when the NSE(logQ) was
used as objective function, while with the NSE(Q) as objective function exactly the opposite is the
case. It is important to notice here that the monthly model results are simply an aggregation from the
hourly model results which might imply that the higher score on the monthly time step is the result
of errors which compensate for each other, and that the model perfomance scores for the monthly
time step are based on a considerable lower number of points. The KGE(Q) as objective function
does not lead to a remarkably different model performance for the monthly time step. From the fig-
ure it seems that both the spatial and temporal resolution have impact on the model performance.
This is confirmed with a statistical test. An ANOVA analysis with two factors (temporal resolution;
spatial resolution), with three, respectively four levels (hourly, daily, monthly; 1 x 1 km, 5 x 5 km,
10 x 10 km and lumped) shows that both the spatial and the temporal resolution have significant
(p < 0.05) impact on all three objective functions.

Distributed forcing leads in all cases except one (1x1 km, monthly, NSE(logQ)) to an improved
model performance compared to uniform forcing. It is important to note that for the lumped model
uniform and distributed forcing are the same. It should therefore be remarked that while with uni-
form forcing the lumped model outperforms the other model set-ups, for the distributed forcing the
10x 10 km model outperforms the other spatial resolutions (except for NSE(logQ)). An ANOVA
analysis confirmed that also for distributed forcing, both spatial and temporal resolution have signif-
icant (p < 0.05) impact on the model performance for all three objective functions.

Figure [/| shows the distribution of the behavioural sets for the three separate components of the
KGE(Q). Regarding the correlation r, the monthly time step scores higher than the daily and hourly
time step. On the other hand, the hourly and daily time steps score higher with respect to 3 (closer
towards 1). Although Figure[6]gives the impression that the model performance in terms of KGE(Q)
is relatively insensitive to temporal and spatial resolution, Figure [7]reveals this is actually the result
of compensations from the three different components of the KGE(Q): The monthly time step has a
higher correlation, while the daily and hourly time steps have a higher 5.

Figure [§ shows the parameter distribution of the seven sampled parameters, and shows how the dis-
tribution varies as a function of temporal and spatial resolution, both for distributed and uniform

forcing. The distribution of the behavioural parameter sets for the daily and hourly time steps are
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very much alike for all parameters, but the distribution for the monthly time step is in some cases
broader, which implies that the parameters are less clearly defined. The parameter showing the clear-
est effect of temporal scale is the advection coefficient C' (Figure [§). The C' parameter, the velocity
component in the routing, becomes less well defined with increasing time step, which is intuitive
because timing becomes less relevant for longer time intervals.

The difference in the parameter distribution when comparing distributed and uniform forcing is lim-
ited. The clearest difference can be found for the d,,,-parameter with the NSE(Q) as objective func-
tion. This parameter describes the maximum velocity of the base flow, and can potentially impact
short term processes for which distributed forcing seems important, like surface runoff. However,
there are other parameters, such as the b;-parameter, which are more directly linked to infiltration
and surface runoff processes and do not show a clear difference in parameter distribution between
distributed and uniform forcing.

With an ANOVA analysis, the significance of temporal and spatial resolution on the parameter distri-
bution of the behavioural sets was tested. Figure[9]shows that the significance of spatial and temporal
resolutions on the parameter distribution depends on which objective function was used to deter-
mine the behavioural sets. Uniform and distributed forcing show comparable patterns. In general,
the temporal resolution has more impact on the parameter distribution (at least four parameters are
significantly affected by temporal resolution) than the spatial resolution (only one parameter for one
objective function experiences significant impact of the spatial resolution). Only two parameters are

significantly impacted by the tempvoral resolution for all three objective functions: ds and C.
5.2 Parameter transferability

The main research question of this study is to what extent parameters are transferable across tem-
poral and spatial resolutions, and we will use that as indicator for the representation of spatial and
temporal variability in the model. We have defined parameter transferability <§> as the percentage
agreement in identified behavioural sets (Equation@. Tableand Tablegive an overview of & for
different temporal and spatial resolutions, both for uniform and distributed forcing. Table [2] shows
that the & is generally high for different spatial resolutions, which suggests that the parameters are
to a large extent transferable across spatial scales. In contrast, Table [3] shows that parameters are
hardly transferable over the temporal scale. The selected runs for hourly and daily time steps largely
agree, but the selected runs on a monthly time step are clearly different. Surprisingly, this is also
strongly related to the objective function. The selection based on the NSE(logQ) is less sensitive to
temporal resolution than those based on the KGE(Q) or the NSE(Q). A possible explanation is that
the NSE(logQ) tends to put more focus on lower discharges with a longer time scale, with less focus
on the short term flashy response of a catchment. Parameter transferability over space is in general
slightly lower when distributed forcing is used compared to uniform forcing. On the other hand, pa-

rameter transferability over time is slightly higher for distributed forcing. Decreased sensitivity for
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the temporal resolution and increased sensitivity for the spatial resolution can indicate an improved
physical representation with distributed forcing compared to uniform forcing, as one would expect.
Table [2] and [3] list the parameter transferability over only one dimension (either spatial resolution
or temporal resolution). We also investigated the combined effect of transferring parameters over
both the spatial and the temporal resolution. Figure [T0] shows the relative impact of temporal and
spatial resolution on parameter transferability based on KGE(Q) for uniform forcing. To illustrate
the relative impact of changes in spatial and temporal resolution, we fitted a linear surface through
the data points from our study (1?2 = 0.68). The figure clearly shows that temporal resolution has a
stronger impact on parameter transferability than spatial resolution. The linear regression equation

that describes the surface in Figure[T0is given below:
T. S.
0 =83.3-126- -2 —3.0- 5~
YL KGE(Q) T, S

in which % is the ratio in temporal resolution between the two model set-ups over which parameters

@)

are transferred and g—; is the ratio in spatial resolution (L/L) between the two model set-ups. The
effect of temporal resolution on parameter transferability is stronger (slope of 12.6) than the effect
of spatial resolution (slope of 3.0). Parameter transferability decreases when the ratio between the
original and the intended spatial and temporal resolution increases. The surfaces based on NSE(Q)

(R%=0.60) and NSE(logQ) (R%=0.75) show a similar behaviour:

O Nsm(Q) =88.6—-12.8- TZ —28- o, ®)
O NsE(ogg) =92.9-T4- TZ —3.6- 5 )

When we fit a surface through the points obtained for the models run with distributed forcing, the
linear regression equations (R2=0.66, 0.67, 0.88 respectively) look as follows:
T} S;

&KGE(Q) =80.3—11.4- ?Z —2.6- Sk. (10)
T S.

O Nsp(@) =T5.3—-10.3- ﬁ — 4.3 ka a1

&NSE(logQ) :91.3—5.4-?;—2.8-5—]6. (12)

Also for the models with distributed forcing, the slope for the temporal resolution is steeper than
the slope for spatial resolution, implying that parameter transferability is more sensitive for tempo-
ral than for spatial resolution. Compared to uniform forcing, the slope for temporal resolution, and
hence the impact of temporal resolution on transferability, is less steep for distributed forcing, while

the slope for spatial resolution is on average comparable for both forcings.
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5.3 Spatially distributed parameters

The advantage of distributed hydrological models over lumped models is that distributed models can
incorporate spatially varying parameters, including those reflecting land use and soil characteristics
(Carpenter and Georgakakos| [2006), and spatially varying forcing. Figure [IT] for example, shows
how the spatial variation in bulk densitity decreases with increasing resolution. However, in this
study, as in most large-domain studies with distributed models, the most sensitive parameters (i.e.
the once that were calibrated) have been applied uniformly over the grid cells. The main motivation
for this practice is the ill-posedness of the problem (too many parameters have to be identified
with too little information), in addition to computational time. This implies that the advantage of
a distributed model remains unused for the parameters that impact the model output most. To test
the spatial distribution of the most sensitive parameters for the Thur basin, we have investigated
parameter transferability between the Thur basin and the nine subbasins for which discharge data
were available (see Section [2.T]and Figure [2). Table [ gives an overview for a selected number of
spatial and temporal resolutions. The table shows that parameter transferability from the Thur to the
subbasins is notably low. An extreme example is the St.Gallen catchment, which has maximum one
behavioural parameter set in common with the Thur basin. Table [4] therefore shows that the spatial

variation in the calibrated parameters is underestimated in the current model set-up.

6 Discussion
6.1 Model performance

It seems counter-intuitive that model performance is significantly affected by both the temporal and
spatial resolution, while the parameter distribution is mainly impacted by the temporal resolution.
This can be explained, however. Model performance can still be significantly impacted by temporal
and spatial resolution, even if the same parameters are selected for different spatial resolutions. This
implies that the model performance is mainly limited by the model structure or set-up, and much
less by the parameter values. This is confirmed by comparing the uniform and distributed forcing.
Although the distribution of the behavioural parameters was not very different for the two forcing
types, the model performance for distributed forcing was in almost all cases better than the model
performance for the uniform forcing.

Liang et al.| (2004) defined a so-called ‘critical resolution’, beyond which a finer spatial resolution
would not lead to any improvement in the model performance. In the study of [Liang et al.| (2004)
this critical resolution for the VIC model was found to be 1/8°(~ 12.5 x 12.5 km). All spatial reso-
lutions applied in this study but the lumped one are below this critical resolution. The results in this
study are therefore consistent with the results from |Liang et al.| (2004), because we did not find any

improvement in model performance with increasing spatial resolution, neither for the uniform nor
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for the distributed forcing. Rather, we find the contrary; for the uniform forcing the lumped model
outperformed the higher resolution models, and for the distributed forcing the 10 x 10 km outper-
formed the other models. If something like a critical resolution exists, it is probably related to the
processes represented in the model. Contradictory to our findings are the results of [Zappal (2002),
who found that a critical spatial resolution in the Thur region is in the order of 500 x 500 m using the
PREVAH model, because of the complex topography and snow processes in the catchment. This can
either imply that the sub-grid variability parametrization in VIC is effective, or that not all relevant
hydrological processes are included in the VIC model. In order to check this last suggestion, future
research on parameter transferability should consider more hydrological fluxes and states besides

the discharge, e.g. evapotranspiration.
6.2 The high sensitivity for temporal resolution

The conclusion that parameters cannot be transferred across temporal resolution seems to contradict
the results of [Troy et al.| (2008). The large difference is that Troy et al.[|(2008) only used sub-daily
time steps (1, 3, 6, 12 hours), whereas we did find agreement between the hourly and daily time
step. Therefore, our results are not necessarily contradictory. Troy et al.| (2008) chose the sub-daily
time steps in order to investigate if time could be saved in the calibration process by calibrating
on a coarser time step. Unfortunately, the reality is that in most large-domain studies models are
calibrated with monthly discharge observations (Melsen et al., 2016)) rather than with sub-daily ob-
servations. Our results suggest that models which were calibrated or validated at a monthly time
step cannot be interpreted at the daily or hourly time step. Chaney et al.|(2015) showed that monthly
discharge observations could decrease the uncertainty around the daily flow duration curve. The de-
crease in uncertainty by adding monthly discharge information differed for different climates. The
Thur basin, with a wet continental climate, would experience a high reduction in uncertainty. This
means that our results, which show that with monthly data it is impossible to determine the optimal
parameter set for the hourly or daily time step, would even be stronger for dry climates (Chaney
et al.| [2015). Kavetski et al.| (2011) showed that parameter values can significantly change by chang-
ing the temporal resolution. They found that the sensitivity of a parameter to temporal resolution
could be related to the model structure; the parameters from simpler model structures were more
sensitive to temporal resolution than the parameters from more complex models.

Figure [12] and Table 2 and 3 in the supplementary material shows that the conclusions we draw
from Table 2] and Table 3] are not only valid for the best 1% of runs selected as behavioural. Table 2
and 3 in the supplementary material show that the same patterns are found when selecting the best
2% respectively 5% of the model runs. Figure [I2] gives an overview for two selected cases, which
show that model performance deteriorates when parameters are transferred over time, also for the
best 10% up to higher thresholds, whereas the impact of spatial resolution on model performance

deterioration is limited.
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6.3 Models versus nature: Do the current generation of models adequately represent spatial

variability?

Our results show that parameter transferability is more sensitive to temporal than to spatial reso-
lution. A key question is to what extent this result stems from the model representation of spatial
variability. Spatial variability can be reflected in three domains of the model: the routing, the forc-
ing, and the soil- and land use parameters. In this study we excluded the effect of routing by using
a high-resolution drainage network based on sub-basins with a size of ~1 km?, independent of the
resolution of the hydrologic model. We think that the effect of spatial resolution can be increased
by adapting the routing scheme accordingly. Drainage network resolution may affect the projected
hydrograph, for example with changes in the stream network and the channel slope. However, this
effect should then be assigned to the routing model, and not to the runoff generation model (the
hydrologic model). For clarity, we decided to exclude the effect of spatial resolution on routing in
this study.

We investigated the effect of forcing by comparing the results for distributed and uniformly applied
forcing, and we tested the effect of spatially distributed soil- and land use parameters by aggregating
them for lower resolutions (Figure [TT)). Despite distributed forcing and the decrease in variation in
soil- and land use parameters, the model parameters showed low sensitivity to the spatial resolution.
A possible explanation could be the sub-grid parametrizations of the VIC model for land use and
elevation, which decrease the effect of up-scaling these parameters to other resolutions, as shown by
Haddeland et al.| (2002). However, we think that Section @ and Table E| show how spatial variabil-
ity is underestimated by calibrating and applying the most sensitive parameters uniformly over the
basin.

The models in this study are configured in a similar way to many current day large-domain hydrolog-
ical models, using common data like the Harmonized World Soil Database and uniform application
of the most sensitive parameters. As such, this study is likely representative for many large-domain
studies. The limited sensitivity for spatial resolution is arguable because our implementation of VIC
substantially underestimates the spatial variability in nature, and, importantly, that similar issues in
representing spatial variability is a common problem in large-domain hydrological modelling (e.g.,
see the model configuration in Mizukami et al.[(2015a)). Many studies have considered spatial vari-
ability in forcing (Adams et al., [2012; |Lobligeois et al.l 2014)) and soil parameters (Mohanty and
Skaggs|,2001; Western et al.,2004). Kim et al.[|(1997) accounted for heterogeneity in soil hydraulic
properties using stochastic methods, based on the scaling theory of Miller and Miller| (1956). In
fact, the effect of stochastic soil parametrizations on parameter transferability would be a valuable
research topic (Maxwell and Kollet, |2008). We argue here that the high spatial transferability may
occur because the current generation of land-surface models have an inadequate representation of
spatial variability and hydrologic connectivity, providing a strong motivation to substantially im-

prove the representation of spatial and temporal variability in models. This not only implies increas-
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ing the spatial (and temporal) resolution of the model, but also including more relevant hydrological
processes. Promising techniques have been developed to allow spatial distribution of calibrated pa-
rameters, for example with Multiscale Parameter Regionalization (MPR, [Samaniego et al.| (2010);

Kumar et al|(2013))), which could and should be applied for large-domain hydrologic models.
6.4 Limitations of this case study

The results in our study are based on a limited number of model configurations for a single basin,
so the results presented here are only intended to provide an example of the behaviour in the cur-
rent generation of land-surface models. Our results show a low sensitivity for the spatial resolution,
whether applied with distributed forcing or not. The observed impact of spatial resolution can there-
fore almost completely be attributed to the effect of spatially distributed soil and land use parameters
(including the calibrated ones), which could be substantially underestimated. The impact of tempo-
ral resolution on parameter transferability is large. We employed the temporal resolutions for which
most hydrological observations are available, thus our results are relevant for practical applications.
Based on the work of (Chaney et al.| (2015) we expect that parameter transferability will be lower
for arid climates than the numbers we obtained, and based on the work of |[Kavetski et al.| (2011) we
expect that parameter transferability will be lower for more parsimonious models. The general mes-
sage from our study is the surprisingly high spatial transferability, highlighting the need for a focused
research effort to improve the representation of spatial variability in large-domain distributed models
(GHMs). A possible path forward is to develop computationally frugal process representations, as

for example presented by |Hazenberg et al.|(2015) for hillslope processes.

7 Summary and conclusions

A VIC model for the Thur basin was run with four different spatial resolutions (1 x 1 km, 5 x 5 km,
10 x 10 km, lumped) and evaluated at three different temporal resolutions (hourly, daily, monthly).
The forcing was applied both uniformly and distributed over the catchment, and the drainage network
for the routing was defined independent of the model resolution. Three objective functions were used
to evaluate model performance: KGE(Q), NSE(Q) and the NSE(logQ). The model was run 3,150
times using a Hierarchical Latin Hypercube Sample and the best 1% of the runs was selected as
behavioural and used for further analysis. Parameter transferability was quantified by evaluating the
overlap in behavioural sets for different temporal and spatial resolutions. From the results we can

draw the following conclusions:

— Both the spatial resolution and the temporal resolution of the VIC model had a significant im-
pact on the model performance, either expressed in terms of KGE(Q), NSE(Q), or NSE(logQ).
The model performance evaluated at a monthly time step consistently increased with decreas-

ing spatial resolution, while for the daily and hourly time step no clear relation with spatial
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resolution could be found. Generally, the models applied with spatially distributed forcing

performed better than the models applied with uniform forcing.

— The spatial resolution of the model had little impact on the parameter distribution of the be-
havioural sets. On the other hand, the temporal resolution significantly impacted the distribu-
tion of at least four out of seven parameters, both when applied with uniformly and distributed

forcing.

— Parameters could to a large extent be transferred across the spatial resolutions, while parameter
transferability over the temporal resolutions was less trivial. Parameter transferability between
the hourly and daily time step was found to be feasible, but the monthly time step lead to
substantially different parameter values. This is crucial information, because many studies
tend to calibrate the VIC model on the monthly time step (Melsen et al.l 2016). The results
of this study suggest that the output from models calibrated on a monthly time step cannot be
interpreted or analysed on a daily or hourly time step. This might seem obvious, but it should
be recognized that the increasing spatial resolution of large-domain land-surface models might
increase the expectations concerning temporal resolution as well, as described in Melsen et al.

(2016).

— We also investigated if parameters could be transferred across both the spatial and the tempo-
ral resolution simultaneously. Parameter transferability decreases when the ratio between the
original and the intended spatial and/or temporal resolution increases. The ratio of temporal
resolutions has a larger negative effect on parameter transferability than the ratio of spatial res-
olutions. It was also shown that parameter transferability depends on the objective function.
When the NSE(logQ), which tends to put more emphasize on low flows, is used as evaluation
criterion, the parameter values at a monthly time step overlap much more with the daily and
hourly time steps than when KGE(Q) or NSE(Q) are used as objective functions. This means
that parameter transferability across temporal resolution also depends on the time scale of the

process to which a particular parameter refers.

The most important result of our study is that it showed high parameter transferability across spa-
tial resolution, even when forcing was applied in a distributed fashion. A possible explanation for
the low sensitivity to spatial resolution is the uniform application of the most sensitive parameters.
This is indicative of a substantial underestimation of the actual spatial variability represented by
the VIC simulations. We did, however, construct our model according to current day standards for
large-domain land-surface models, raising the point that the high spatial transferability may occur
because the current generation of models have an inadequate representation of spatial variability
and hydrologic connectivity. The results presented in this paper provide strong motivation to further
investigate and substantially improve the representation of spatial and temporal variability in large-

domain hydrological models. Large-domain hydrological models have many applications, from wa-
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ter footprints (Gleeson et al.,[2012)) and water scarcity (Hoekstra, [2014), to global water use (Wada
and Bierkens, 2014)) and electricity supply (Van Vliet et al., 2012)), but the spatial variability in the
models is very likely underestimated, which increases the uncertainty in the model results. A critical
evaluation of large-domain hydrological models on a smaller scale, as conducted in this study, shows

that we should be carefull with interpreting the results of large-domain models.

Acknowledgements. The authors would like to thank Kevin Sampson for the preparation of GIS files for the
routing, Oldrich Rakovec for providing and helping with DELSA, and Miroslav Vofechovsky for the provided
Hierarchical Latin Hypercube Sample. The Swiss Federal Office for the Environment (FOEN) and Martin
Hirschi and Dominic Michel from ETH Ziirich are thanked for kindly providing the discharge data. We would
like to thank MeteoSwiss for providing the forcing data. Lieke Melsen would like to acknowledge Niko Wan-
ders, Wouter Greuell, Pablo Mendoza, Rohini Kumar, Stephan Tober and Oldrich Rakovec for fruitful discus-

sions that led to the basis of this paper. The data in this study are available from the first author upon request.

21



690

695

700

705

710

715

720

725

References

Abbaspour, K., Yang, J., Maximov, 1., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.:
Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol.,
333, 413-430, doi:10.1016/j.jhydrol.2006.09.014, 2007.

Adams, R., Western, A., and Seed, A.: An analysis of the impact of spatial variability in rainfall on runoff and
sediment predictions from a distributed model, Hydr. Process., 26, 3263-3280, doi:10.1002/hyp.8435, 2012.

Andersen, O., Seneviratne, S., Hinderer, J., and Viterbo, P.: GRACE-derived terrestrial water storage depletion
associated with the 2003 European heat wave, Geophys. Res. Let., 32, .18405, doi:10.1029/2005GL023574,
2005.

Becker, A. and Griinewald, U.: Flood risk in Central Europe, Science, 300, 1099, doi:10.1126/science.1083624,
2003.

Bennett, J., Robertson, D., Ward, P., Hapuarachchi, H., and Wang, Q.: Calibrating hourly rainfall-runoff models
with daily forcings for streamflow forecasting applications in meso-scale catchments, Env. Modell. Softw.,
76, 20-36, doi:10.1016/j.envsoft.2015.11.006, 2016.

Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydr.
Process., 6, 279-298, doi:10.1002/hyp.3360060305, 1992.

Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28, 5897-5918, doi310.1002/hyp.10082, 2014.

Beven, K. J.: Rainfall-Runoff modelling, The Primer - 2nd Edition, vol. Ch.1. Down to Basics: Runoff Processes
and the Modelling Process, John Wiley & Sons, 2012.

Bierkens, M., Bell, V., Burek, P., Chaney, N., Condon, L., David, C., De Roo, A., Déll, P., Drost, N., Famiglietti,
J., Florke, M., Gochis, D., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R., Reager, J., Samaniego, L.,
Sudicky, E., Sutanudjaja, E., Van de Giesen, N., Winsemius, H., and Wood, E.: Hyper-resolution global
hydrological modelling: What’s next?, Hydr. Process., 29, 310-320, doi;10.1002/hyp.10391, 2014.

Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923-4947,
doi:10.1002/2015WRO017173, 2015.

Boyle, D., Gupta, H., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Towards improved streamflow fore-
casts: Value of semidistributed modeling, Water Resour. Res., 37, 2749-2759, doi:10.1029/2000WR000207,
2001.

Carpenter, T. and Georgakakos, K.: Intercomparison of lumped versus distributed hydrologic model ensem-
ble simulations on operational forecast scales, J. Hydrol., 329, 174-185, doi:10.1016/j.jhydrol.2006.02.013|
2006.

Chaney, N., Herman, J., Reed, P., and Wood, E.: Flood and drought hydrologic monitoring: the role of model
parameter uncertainty, Hydr. Earth Syst. Sci. Discuss., 12, 1697-1728, doi:10.5194/hessd-12-1967/2015,
2015.

Costa-Cabral, M., Roy, S., Maurer, E., Mills, W., and Chen, L.: Snowpack and runoff response to climate change
in Owens Valley and Mono Lake watersheds, Clim. Change, 116, 97-109, doii10.1007/s10584-012-0529-y,
2013.

Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis of land surface parameters using

the Variable Infiltration Capacity model, J. Geophys. Res., 112, D11113, doi:10.1029/2006JD007534, 2007.

22


http://dx.doi.org/10.1016/j.jhydrol.2006.09.014
http://dx.doi.org/10.1002/hyp.8435
http://dx.doi.org/10.1029/2005GL023574
http://dx.doi.org/10.1126/science.1083624
http://dx.doi.org/10.1016/j.envsoft.2015.11.006
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1002/hyp.10082
http://dx.doi.org/10.1002/hyp.10391
http://dx.doi.org/10.1002/2015WR017173
http://dx.doi.org/10.1029/2000WR000207
http://dx.doi.org/10.1016/j.jhydrol.2006.02.013
http://dx.doi.org/10.5194/hessd-12-1967/2015
http://dx.doi.org/10.1007/s10584-012-0529-y
http://dx.doi.org/10.1029/2006JD007534

730

735

740

745

750

755

760

765

Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H., Gusev, Y., Habets, F., Hall,
A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O., Noilhan, J., Oudin, L.,
Sorooshian, S., Wagener, T., and Wood, E.: Model Parameter Estimation Experiment (MOPEX): An
overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3—
17, doi:10.1016/.jhydrol.2005.07.031, 2006.

FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. rep., AO,
Rome, Italy and IIASA, Laxenburg, Austria, doi:http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/, 2012.

Ficchi, A., Perrin, C., and Andréassian, V.. Impact of temporal resolution of inputs on hydro-
logical model performance: An analysis based on 2400 flood events, J. Hydrol., 538, 454-470,
doii10.1016/j.jhydrol.2016.04.016, 2016.

Finnerty, B., Smith, M., Sea, D., Koren, V., and Moglen, G.: Space-time scale sensitivity of the Sacramento
model to radar-gage precipitation inputs, J. Hydrol., 203, 21-38, doi:10.1016/S0022-1694(97)00083-8, 1997.

Francini, M. and Pacciani, M.: Comparative analysis of several conceptual rainfall-runoff models, J. Hydrol.,
122, 161-219, 1991.

Fundel, F. and Zappa, M.: Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial
conditions and value of reforecasts, Water Resour. Res., 47, doi;10.1029/2010WR009996, 2011.

Fundel, F., Jorg-Hess, S., and Zappa, M.: Monthly hydrometeorological ensemble prediction of streamflow
droughts and corresponding drought indices, Hydrol. Earth Syst. Sci., 17, 395407, doii10.5194/hess-17-
395-2013, 2013.

Gleeson, T., Wada, Y., and van Beek, M. P. B. L. H.: Water balance of global aquifers revealed by groundwater
footprint, Nature, 488, 197-200, doi:10.1038/nature11295, 2012.

Gupta, H., Kling, H., Yilmaz, K., and Martinez, G.: Decomposition of the mean squared error and NSE perfor-
mance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80-91, 2009.

Gurtz, J., Baltensweiler, A., and Lang, H.: Spatially distributed hydrotope-based modelling of evapotranspira-
tion and runoff in mountainous basins, Hydrol. Process., 13, 2751-2768, 1999.

Gurtz, J., Verbunt, M., Zappa, M., Moesch, M., Pos, F., and Moser, U.: Long-term hydrometeorological mea-
surements and model-based analyses in the hydrological research catchment Rietholzbach, J. Hydrol. Hy-
dromech., 51, 162—174, http://dlib.lib.cas.cz/4634/1/2003_51_3_gurtz_162.pdf, 2003.

Haddeland, 1., Matheussen, B., and Lettenmaier, D.: Influence of spatial resolution on simulated streamflow in
a macroscale hydrologic model, Water Resour. Res., 38, 1124, doii10.1029/2001 WR000854, 2002.

Haddeland, 1., Lettenmaier, D., and Skaugen, T.: Reconciling Simulated Moisture Fluxes Resulting from Alter-
nate Hydrologic Model Time Steps and Energy Budget Closure Assumptions, J. Hydrometeorol., 7, 355-370,
doi:10.1175/JHM496.1, 2006.

Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G., Pelletier, J., Troch, P., and Zeng, X.: A hybrid-
3D hillslope hydrological model for use in Earth system models., Water Resour. Res., 10, 8218-8239,
doii10.1002/2014WR016842, 2015.

Hoekstra, A.: Water scarcity challenges to business, Nature Clim. Change, 4, 318-320,
doii10.1038/nclimate2214, 2014.

23


http://dx.doi.org/10.1016/j.jhydrol.2005.07.031
http://dx.doi.org/http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://dx.doi.org/http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://dx.doi.org/http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://dx.doi.org/10.1016/j.jhydrol.2016.04.016
http://dx.doi.org/10.1016/S0022-1694(97)00083-8
http://dx.doi.org/10.1029/2010WR009996
http://dx.doi.org/10.5194/hess-17-395-2013
http://dx.doi.org/10.5194/hess-17-395-2013
http://dx.doi.org/10.5194/hess-17-395-2013
http://dx.doi.org/10.1038/nature11295
http://dlib.lib.cas.cz/4634/1/2003_51_3_gurtz_162.pdf
http://dx.doi.org/10.1029/2001WR000854
http://dx.doi.org/10.1175/JHM496.1
http://dx.doi.org/10.1002/2014WR016842
http://dx.doi.org/10.1038/nclimate2214

770

775

780

785

790

795

800

805

Hurkmans, R. T. W. L., de Moel, H., Aerts, J. C. J. H., and Troch, P. A.: Water balance versus land surface model
in the simulation of Rhine river discharges, Water Resour. Res., 44, W01418, doi:10.1029/2007WR006168|,
2008.

Jasper, K., Calanca, P., Gyalistras, D., and Fuhrer, J.: Differential impacts of climate change on the hydrology
of two Alpine river basins, Clim. Res., 26, 113-129, do0ii10.3354/cr026113} 2004.

Jorg-Hess, S., Kempf, S., Fundel, F., and Zappa, M.: The benefit of climatological and calibrated reforecast data
for simulating hydrological droughts in Switzerland, Met. App., 22, 444458, doii10.1002/met.1474, 2015.

Kavetski, D., Fenicia, F., and Clark, M. P.: Impact of temporal data resolution on parameter inference and model
identification in conceptual hydrological modeling: Insights from an experimental catchment, Water Resour.
Res., 47, W05501, doi;10.1029/2010WR009525| 2011.

Kim, C. P, Stricker, J. N. M., and Feddes, R. A.: Impact of soil heterogeneity on the water budget of the
unsaturated zone, Water Resour. Res., 33, 991-999, doi:10.1029/97WR00364, 1997.

Krause, P., Boyle, D. P., and Bise, F.: Comparison of different efficiency criteria for hydrological model assess-
ment, Adv. Geosci., 5, 89-97, http://www.adv-geosci.net/5/89/2005/adgeo- 5-89-2005.html, 2005.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on
water fluxes at multiple scales and locations, Water Resour. Res., 49, 360-379, doi:10.1029/2012WR012195,
2013.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land
surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14,415-14,458, 1994.

Liang, X., Wood, E. F.,, and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model:
Evaluation and modification, Global Planet. Change, 13, 195-206, doi:10.1016/0921-8181(95)00046-1,
1996.

Liang, X., Guo, J., and Leung, L.: Assessment of the effects of spatial resolutions on daily water flux simula-
tions, J. Hydrol., 298, 287-310, doi:10.1016/j.jhydrol.2003.07.007, 2004.

Littlewood, I. and Croke, B.: Data time-step dependency of conceptual rainfall-streamflow model parameters: an
empirical study with implications for regionalisation, Hydr. Sci. J., 53, 685-695, doi:10.1623/hys).53.4.685,
2008.

Littlewood, I. and Croke, B.: Effects of data time-step on the accuracy of calibrated rainfall-streamflow model
parameters: practical aspects of uncertainty reduction, Hydr. Res., 44, 430-440, doi:10.2166/nh.2012.099,
2013.

Liu, H., Tian, F., Hu, H., Hu, H., and Sivapalan, M.: Soil moisture controls on patterns of grass green-up in Inner
Mongolia: an index based approach, Hydrol. Earth Syst. Sci., 17, 805-815, doii10.5194/hess-17-805-2013,
2013.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Towards an integrated data assimilation frame-
work, Water Resour. Res., 43, W07401, doi:10.1029/2006 WR005756, 2007.

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution
rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth
Syst. Sci., 18, 575-594, doi:10.5194/hess-18-575-2014, 2014.

Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to land

surface parameterization schemes, Tellus, 48A, 708-721, 1996.

24


http://dx.doi.org/10.1029/2007WR006168
http://dx.doi.org/10.3354/cr026113
http://dx.doi.org/10.1002/met.1474
http://dx.doi.org/10.1029/2010WR009525
http://dx.doi.org/10.1029/97WR00364
http://www.adv-geosci.net/5/89/2005/adgeo-5-89-2005.html
http://dx.doi.org/10.1029/2012WR012195
http://dx.doi.org/10.1016/0921-8181(95)00046-1
http://dx.doi.org/10.1016/j.jhydrol.2003.07.007
http://dx.doi.org/10.1623/hysj.53.4.685
http://dx.doi.org/10.2166/nh.2012.099
http://dx.doi.org/10.5194/hess-17-805-2013
http://dx.doi.org/10.1029/2006WR005756
http://dx.doi.org/10.5194/hess-18-575-2014

810

815

820

825

830

835

840

Maxwell, R. and Kollet, S.: Quantifying the effects of three-dimensional subsurface heterogeneity on Horto-
nian runoff processes using a coupled numerical, stochastic approach, Adv. Water Resour., 31, 807-817,
doi:10.1016/j.advwatres.2008.01.020, 2008.

Melsen, L., Teuling, A., van Berkum, S., Torfs, P., and Uijlenhoet, R.: Catchments as simple dynamical systems:
A case study on methods and data requirements for parameter identification, Water Resour. Res., 50, 5577—
5596, doii10.1002/2013WR014720, 2014.

Melsen, L., Teuling, A., Torfs, P., Uijlenhoet, R., Mizukami, N., and Clark, M.: HESS Opinions: The need for
process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20, 1069-1079,
doii10.5194/hess-20-1069-2016, 2016.

Miller, E. and Miller, R.: Physical theory for capillary flow phenomena, J. Appl. Phys., 27, 324-332,
doii10.1063/1.1722370, 1956.

Miralles, D., Teuling, A., van Heerwaarden, C., and Vila-Guerau de Arellano, J.: Mega-heatwave tempera-
tures due to combined soil desiccation and atmospheric heat accumulation, Nature Geo.Sci., 7, 345-349,
doii10.1038/ngeo2141} 2014.

Mizukami, N., Clark, M., Gutmann, E., Mendoza, P., Newman, A., Nijssen, B., Livneh, B., Hay, L., Arnold, J.,
and Brekke, L.: Implications of the methodological choices for hydrologic portrayals of climate change over
the Contiguous United States: statistically downscaled forcing data and hydrologic models, J. Hydrometeo-
rol., in press, doi:10.1175/JHM-D-14-0187.1, 2015a.

Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., Markstrom, S. L.,
Hay, L. E., Woods, R., Arnold, J. R., and Brekke, L. D.: mizuRoute version 1: a river network routing
tool for a continental domain water resources applications, Geosci. Model Dev. Discuss, 8, 9415-9449,
doi:10.5194/gmdd-8-9415-2015; 2015b.

Mohanty, B. and Skaggs, T.: Spatio-temporal evolution and time-stable characteristics of soil moisture within
remote sensing footprints with varying soil, slope, and vegetation, Adv. Water Resour., 24, 1051-1067,
doii10.1016/S0309-1708(01)00034-3| 2001.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, I. A discussion of principles,
J. Hydrol., 10, 282-290, 1970.

Nijssen, B., O’Donnell, G., and Lettenmaier, D.: Predicting the Discharge of Global Rivers, J. Climate, 14,
3307-3323, doii10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2, 2001.

Rakovec, O., Hill, M. C., Clark, M. P,, Weerts, A. H., Teuling, A. J., and Uijlenhoet, R.: Distributed Evaluation
of Local Sensitivity Analysis (DELSA), with application to hydrologic models, Water Resour. Res., 50,
409-426, doi:10.1002/2013WR014063, 2014.

Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J., and Menzel, A.: Heat and drought
2003 in Europe: a climate synthesis, Ann. For. Sci., 63, 569-577, doi;10.105 1/forest:2006043, 2006.

Rosero, E., Yang, Z., Wagener, T., Gulden, L., Yatheendradas, S., and Niu, G.: Quantifying parameter sensitivity,
interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over
transition zones during the warm season, J. Geophys. Res., 115, D03106, doi:10.1029/2009JD012035, 2010.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic

model at the mesoscale, Water Resour. Res., 46, W05523, doi:;10.1029/2008 WR007327, 2010.

25


http://dx.doi.org/10.1016/j.advwatres.2008.01.020
http://dx.doi.org/10.1002/2013WR014720
http://dx.doi.org/10.5194/hess-20-1069-2016
http://dx.doi.org/10.1063/1.1722370
http://dx.doi.org/10.1038/ngeo2141
http://dx.doi.org/10.1175/JHM-D-14-0187.1
http://dx.doi.org/10.5194/gmdd-8-9415-2015
http://dx.doi.org/10.1016/S0309-1708(01)00034-3
http://dx.doi.org/10.1175/1520-0442(2001)014%3C3307:PTDOGR%3E2.0.CO;2
http://dx.doi.org/10.1002/2013WR014063
http://dx.doi.org/10.1051/forest:2006043
http://dx.doi.org/10.1029/2009JD012035
http://dx.doi.org/10.1029/2008WR007327

845

850

855

860

865

870

875

880

Schmocker-Fackel, P. and Naef, F.: More frequent flooding? Changes in flood frequency in Switzerland since
1850, J. Hydrol., 381, 1-8, doi:10.1016/j.jhydrol.2009.09.022, 2010.

Seneviratne, S. L., Lehner, 1., Gurtz, J., Teuling, A. J., Lang, H., Moser, U., Grebner, D., Menzel, L., Schroff,
K., Vitvar, T., and Zappa, M.: Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time
series and 2003 drought event, Water Resour. Res., 48, W06526, doi:10.1029/2011WRO011749, 2012.

Shrestha, P., Sulis, M., Simmer, C., and Kollet, S.: Impacts of grid resolution on surface energy fluxes
simulated with an integrated surface-groundwater flow model, Hydrol. Earth Syst. Sci., 19, 4317-4326,
doi:10.5194/hess-19-4317-2015, 2015.

Sood, A. and Smakhtin, V.. Global hydrological models: a review, Hydr. Sci. J., 60, 549-565,
doii10.1080/02626667.2014.950580, 2015.

Sulis, M., Paniconi, C., and Camporese, M.: Impact of grid resolution on the integrated and distributedr esponse
of a coupled surface-subsurface hydrological model for the des Anglais catchment, Quebec, Hydrol. Process.,
25, 1853-1865, doi:10.1002/hyp.7941, 2011.

Sutanudjaja, E., van Beek, L., de Jong, S., van Geer, F., and Bierkens, M.: Calibrating a large-extent high-
resolution coupled groundwater-land surface model using soil moisture and discharge data, Water Resour.
Res., 50, 687-705, doi:10.1002/2013WR013807, 2014.

Teuling, A. J., Lehner, L., Kirchner, J. W., and Seneviratne, S. I.: Catchments as simple dynamical systems: Ex-
perience from a Swiss prealpine catchment, Water Resour. Res., 46, W10502, doi:10.1029/2009WR008777,
2010.

Todini, E.: Hydrological Catchment Modelling: Past, Present and Future, Hydr. Earth Syst. Sci., 11, 468-482,
doi:10.5194/hess-11-468-2007, 2007.

Troy, T. J., Wood, E. F.,, and Sheffield, J.: An efficient calibration method for continental-scale land surface
modeling, Water Resour. Res, 44, W09411, doi:10.1029/2007WR006513, 2008.

Van Vliet, M. T. H., Yearsly, J. R., Ludwig, F., Vogele, S., Lettenmaier, D. P, and Kabat, P.: Vulner-
ability of US and European electricity supply to climate change, Nature Clim. Change, 2, 676-681,
doi:10.1038/nclimate1546, 2012.

Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological modelling
system PREVAH and its pre- and post-processing-tools, Environ. Modell. Softw., 24, 1209-1222,
doi:10.1016/j.envsoft.2009.04.001} 2009a.

Viviroli, D., Zappa, M., Schwanbeck, J., Gurtz, J., and Weingartner, R.: Continuous simulation for flood es-
timation in ungauged mesoscale catchments of Switzerland - Part I: Modelling framework and calibration
results, J. Hydrol., 377, 191-207, doi310.1016/j.jhydrol.2009.08.023, 2009b.

Vivoni, E., Ivanov, V., Bras, R., and Entekhabi, D.: On the effects of triangulated terrain resolution ondistributed
hydrologic model response, Hydrol. Process., 19, 2101-2122, do0ii10.1002/hyp.5671, 2005.

Votechovsky, M.: Hierarchical refinement of latin hypercube samples, Computer-Aided Civil and Infrastruct.
Eng., 30, 394411, doii10.1111/mice.12088| 2015.

Votechovsky, M. and Novdk, D.: Correlation control in small-sample Monte Carlo type simu-
lations I: A simulated annealing approach, Probabilistic Engineering Mechanics, 24, 452-462,
doii10.1016/).probengmech.2009.01.004, 2009.

26


http://dx.doi.org/10.1016/j.jhydrol.2009.09.022
http://dx.doi.org/10.1029/2011WR011749
http://dx.doi.org/10.5194/hess-19-4317-2015
http://dx.doi.org/10.1080/02626667.2014.950580
http://dx.doi.org/10.1002/hyp.7941
http://dx.doi.org/10.1002/2013WR013807
http://dx.doi.org/10.1029/2009WR008777
http://dx.doi.org/10.5194/hess-11-468-2007
http://dx.doi.org/10.1029/2007WR006513
http://dx.doi.org/10.1038/nclimate1546
http://dx.doi.org/10.1016/j.envsoft.2009.04.001
http://dx.doi.org/10.1016/j.jhydrol.2009.08.023
http://dx.doi.org/10.1002/hyp.5671
http://dx.doi.org/10.1111/mice.12088
http://dx.doi.org/10.1016/j.probengmech.2009.01.004

885

890

895

900

905

910

915

Vorosmarty, C., Moore III, B., Grace, A., and Gildea, M.: Continental scale models of water bal-
ance and fluvial transport: an application to South-America, Glob. Biogeochem. cy., 3, 241-265,
doii10.1029/GB0031003p0024 1, 1989.

Wada, Y. and Bierkens, M.: Sustainability of global water use: past reconstruction and future projections, Env.
Res. Lett., 9, 104003, doi:10.1088/1748-9326/9/10/104003}, 2014.

Wagener, T. and Wheater, H. S.: Parameter estimation and regionalization for continuous rainfall-runoff models
including uncertainty, J. Hydrol., 320, 132-154, doii10.1016/j.jhydrol.2005.07.015, 2006.

Wang, Y., He, B., and Takase, K.: Effects of temporal resolution on hydrological model parameters and its
impact on prediction of river discharge, Hydr. Sci. J., 54, 886-898, doi{10.1623/hysj.54.5.886, 2009.

Wen, Z., Liang, X., and Yang, S.: A new multiscale routing framework and its evaluation for land surface
modeling applications, Water Resour. Res., 48, W08528, doi;10.1029/2011WRO011337, 2012.

Wenger, S., Luce, C., Hamlet, A., Isaak, D., and Neville, H.: Macroscale hydrologic modeling of ecologically
relevant flow metrics, Water Resour. Res., 46, W09513, doi;10.1029/2009WR008839, 2010.

Western, A., Zhou, S., Grayson, R., McMahona, T., Bloschl, G., and Wilson, D.: Spatial correlation of soil
moisture in small catchments and its relationship to dominant spatial hydrological processes, J. Hydrol.,
286, 113-134, doi:10.1016/j.jhydrol.2003.09.014, 2004.

Wood, E., Roundy, J., Troy, T., van Beek, L., Bierkens, M. P., Blyth, E., de Roo, A., D6ll, P., Ek, M., Famiglietti,
J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P., Kollet, S., Lehner, B., Lettenmaier, D., Peters-Lidard,
C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface model-
ing: Meeting a grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47, W05301,
doii10.1029/2010WR010090, 2011.

Yang, J., Reichert, P., and Abbaspour, K.: Bayesian uncertainty analysis in distributed hydrologic
modeling: A case study in the Thur River basin (Switzerland), Water Resour. Res., 43, W10401,
doi310.1029/2006WR005497, 2007.

Zappa, M.: Multiple-Response Verification of a Distributed Hydrological Model at Different Spatial Scales,
chap. 4. The sensitivity of distributed hydrological simulations to the spatial resolution of physiographic
data, pp. 35-51, 14895, ETH Ziirich, doi:http://dx.doi.org/10.3929/ethz-a-004529728, 2002.

Zappa, M. and Kan, C.: Extreme heat and runoff extremes in the Swiss Alps, Nat. Hazards Earth Syst. Sci., 7,
375-389, doi:10.5194/nhess-7-375-2007, 2007.

Zhao, R., Zuang, Y., Fang, L., Liu, X., and Zhang, Q.: The Xinanjiang model, Hydrological forecast-
ing - Prévisions hydrologiques (Proceedings of the Oxford Symposium, April 1980), 129, 351-356,
doi:http://hydrologie.org/redbooks/a129/iahs_129_0351.pdf, 1980.

27


http://dx.doi.org/10.1029/GB003i003p00241
http://dx.doi.org/10.1088/1748-9326/9/10/104003
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1623/hysj.54.5.886
http://dx.doi.org/10.1029/2011WR011337
http://dx.doi.org/10.1029/2009WR008839
http://dx.doi.org/10.1016/j.jhydrol.2003.09.014
http://dx.doi.org/10.1029/2010WR010090
http://dx.doi.org/10.1029/2006WR005497
http://dx.doi.org/http://dx.doi.org/10.3929/ethz-a-004529728
http://dx.doi.org/10.5194/nhess-7-375-2007
http://dx.doi.org/http://hydrologie.org/redbooks/a129/iahs_129_0351.pdf

Table 1. Sampled model parameters.

Parameter Units Lower value Upper value Description

bi - 1075 0.4 Variable infiltration curve parameter

ds - 1074 1.0 Fraction of ds,mq- Where non-linear baseflow starts

dm mmd~? 1.0 50 Maximum velocity of the baseflow

expto - 4.0 18.0 Exponent of the Brooks-Corey drainage equation for layer 2
Depths m Depth,+0.1 Depth,+3 Depth of soil layer 2

c ms™! 0.5 4 Advection coefficient of horizontal routing (St. Venant)

D m?s7! 200 4000 Diffusion coefficient of horizontal routing (St. Venant)
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Figure 1. Overview of the spatial and temporal resolutions employed in this study. Top from left to right: DEM

grid cells for 1 x 1 km, 5x 5 km, 10 x 10 km resolution and the lumped model. The circle in the left panel shows

the location of the Thur outlet where the discharge is measured. The dotted lines in the right panel indicate a

0.5° grid. Bottom: The three temporal resolutions, observed discharge at an hourly, daily and monthly time

step.
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Table 2. Transferability of parameters across spatial resolution, expressed as percentage agreement in detected

behavioural runs for different spatial resolutions (in km) at different time steps.

Uniform forcing (% agreement) Distributed forcing (% agreement)

HOUR

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

1x1vsdx5

1x1vs10x10
5x5vs10x 10
1 x 1 vs lumped
5 % 5 vs lumped

10 x 10 vs lumped

DAY

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)
1x1vsdx5d
1x1vs10x10
5x5vs10x 10
1 x 1 vs lumped
5 % 5 vs lumped
10 x 10 vs lumped

MONTH

KGE(Q) NSE(Q) NSE(ogQ) KGE(Q) NSE(Q) NSE(logQ)
1x1vsbx5d
1x1vs10x10
5x5vs10x 10
1 x 1 vs lumped

5 x 5 vs lumped

10 x 10 vs lumped




Table 3. Transferability of parameters across temporal resolution, expressed as percentage agreement in de-

tected behavioural runs for different temporal resolutions at different spatial resolutions.

Uniform forcing (% agreement) Distributed forcing (% agreement)

1x1km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(ogQ)

hour vs day
hour vs month 3 6 34 6 9
day vs month 3 6 - 6 13

5 x 5 km

KGE(Q) NSE(Q) NSE(ogQ) KGE(Q) NSE(Q) NSE(ogQ)

hour vs day
hour vs month 3 6 38 9 6
day vs month 3 6 - 9 6

10 x 10 km

KGE(Q) NSE(Q) NSE(ogQ) KGE(Q) NSE(Q) NSE(logQ)
hour vs day
13
13

hour vs month

day vs month 0 6

I'h
~

lumped

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

hour vs day LR T

hour vs month 3 0

44
day vs month 3 3 -

Andelfingen (Thuroutlet) Halden

Herisau

20
Kilometers

Figure 2. The Thur basin and the nine sub-basins for which discharge data were available.
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Table 4. Transferability of parameters from the Thur to the nine subbasins, expressed as percentage agreement
(%) in detected behavioural runs. The forcing was applied uniformly and the KGE(Q) was used as objective

function.

Catchment (size) 1 x1km 5x5km 10 x 10 km

hour day month hour hour
Rietholzbach (3.3 km?) 19 0 0 25 19
Herisau (17.8 km?) 16 6 0 16 16
Appenzell (74.2 km?) 28 25 9 28 16
Wiingi (78.9 km?) 9 56 31 34 50
Mogelsberg (88.2 km?) 28 38 66 19 28
Frauenfeld (212 km?) 3 3 e 3 0
St.Gallen (261 km?) 0 0 3 0
Jonschwil (493 km?) 6 0 0 6 0
Halden (1085 km?) 19 9 18 13
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l 2000
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Figure 3. Upper panels: The precipitation sum in the Thur catchment over the full model period (1/8/2002 —
31/8/2003) shown for different resolutions (f.l.t.r. 1 X 1 km, 5 X 5 km, 10 x 10 km). Lower panels: the average

temperature over this period for the same spatial resolutions.



600 T T T T T 600~ i i i i
I Model perio [ Flow duration curve 39 yr.
5001 [ Spin—up period.| 500} e Covered in model period |
— Model runs
g g | |
) ‘v 400 1
o (3]
£ £
“é, 1.’-, 300t° 1
I IS
] ]
2 @ 200 1
&) a
100 1
oL n n L n —
M J J A S O N D J F M A M J J A S 0 20 40 60 80 100

Exceedance (%)

Figure 4. Daily discharge characteristics for the Thur basin. Left panel: the daily discharge in the Thur for the
selected model period. The black lines show three model runs with the same parameter set but with different

initial conditions (6 = 0.5,0.7,0.9). Right panel: part of the flow duration curve covered within the model

period. The flow duration curve is based on 39 years of daily discharge observations in the Thur for the period
1974-2012.
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Figure 5. Parameter sampling as applied in this study. (a) Example situation when sampling for a model with
three parameters. (b) Sensitivity analysis can be conducted to decrease the dimensions of the sampling space.
(c) Latin Hypercube sampling is structured and more efficient: one sample in each row and each column, as
indicated with the bands. The number of samples has to be determined beforehand. (d) Hierarchical Latin

Hypercube sampling allows to extend the sample if necessary, while conserving Latin Hypercube structure.
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Figure 6. Model performance of the behavioural sets for different temporal resolutions and different spatial

resolutions. The left panel shows the KGE(Q), the middle panel the NSE(Q) and the right panel the NSE(logQ).

Per objective function the most behavioural sets were selected, hence the selected sets where not necessarily

the same for the three objective functions. The box shows the 25-75% quantile.
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Figure 7. The model performance for the three separate components of the Kling-Gupta Efficiency of the

behavioural sets for different temporal and spatial resolutions. The left panel shows the correlation r, the middle

panel the standard deviation of the model output divided by the standard deviation of the observations («), and

the right panel shows the mean of the model output divided by the mean of the observations (3).
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Figure 8. Distribution of the sampled parameters for the behavioural sets, fitted with a kernel-density. The
width of the line indicates the variation in distribution between the different spatial resolutions. The left column
is based on KGE(Q), the middle column on NSE(Q) and the right column on NSE(logQ). Legend according to

Figure[6]
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Figure 9. The effect of spatial and temporal resolution on parameter distribution. The p-value indicates the

significance of the impact of spatial resolution (S) and temporal resolution (T) on the parameter values of the
behavioural sets, evaluated for the three objective functions.

Overlap in behavioural parameter sets (%)

Figure 10. Parameter transferability as a function of ratio in temporal and spatial resolution. Ratio of temporal
resolutions is defined as follows: transfer from hourly to daily time step is a ratio of 24, whereas transfer from
hourly to monthly is a ratio of 732 (732 hours in one month of 30.5 days). The ratio of spatial resolutions
is defined as the square root of the number of cells that would fit in the other cell: from 1 x 1 km resolution
to 5 x 5 km resolution is a ratio of /25 = 5. The behavioural sets were determined based on the KGE(Q).

The linear surface (R? = 0.68) was fitted to illustrate the relative impact of changes in spatial and temporal
resolution.
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Figure 12. Impact of parameter transfer on model performance. The panels show the distribution of the NSE(Q)
fitted with a kernel density for 3,150 runs. On the left hand side of the arrow the red area represents the best
10% of the runs, each colour interval increasing with 10% to the full data set (100%, purple). The selected
behavioural runs are indicated separately with a black line (best 1%)). The panel on the right hand side of the
arrow shows the distribution of the model performance for the coloured selections when evaluated at another
spatial (left) or temporal (right) resolution. When the direction of the colours changes from the left panel to the
right panel, this implies a low parameter transferability. The data for the first two columns are based on hourly

discharges, the data for the second two columns are based on the 1 x 1 km model.
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Figure 1. DELSA parameter sensitivity (scaled from O to 1) for three nested basins with a different size (Ri-
etholzbach; 3.3 km?, Jonschwil; 493 km?, Thur; 1703 kmz). The numbers on the x-axis refer to the parameters
in Table[T] The sensivity as shown in this figure is based on the NSE(Q) as objective function. Results are shown

based on a daily and hourly time interval.



Table 1. Description and boundary values of parameters that have been considered in the DELSA sensitivity

analysis.
Nr.  Parameter Units Lower value ~ Upper value Description
Soil parameter file
1 b; - 1075 0.4 Variable infiltration curve parameter
2 Ds - 1074 1 Fraction of Dsmax where non-linear baseflow starts
3 Dsmax mmd~! 1 50 Maximum velocity of the baseflow
4 Ws - 0.5 1 Fraction of maximum soil moisture where non-linear baseflow
starts
5 c - 1 4 Exponent used in the baseflow curve
6 exptl - 5 30 Exponent of the Brooks-Corey drainage equation layer 1
7 expt2 - 5 30 Exponent of the Brooks-Corey drainage equation layer 2
8 expt3 - 5 30 Exponent of the Brooks-Corey drainage equation layer 3
9 Ksatl mmd~?! 100 1000 Saturated hydrologic conductivity layer 1
10 Ksat2 mmd?! 100 1000 Saturated hydrologic conductivity layer 2
11 Ksat3 mmd™* 100 1000 Saturated hydrologic conductivity layer 3
12 Depth: m 0.01 0.5 Thickness of soil layer 1
13" Depths m Depth; +0.1 Depth; +4 Thickness of soil layer 2
14 Depths m 0.1 4 Thickness of soil layer 3
15 bulk density1 kgm™3 1500 2685 Bulk density of soil layer 1
16 bulk density2 kgm™3 1500 2685 Bulk density of soil layer 2
17 bulk density3 kgm™3 1500 2685 Bulk density of soil layer 3
18 Wer-FRACT1 - 0.30 0.47 Fractional soil moisture content at critical point layer 1
19 Wer-FRACT?2 - 0.30 0.47 Fractional soil moisture content at critical point layer 2
20 Wcer-FRACT3 - 0.30 0.47 Fractional soil moisture content at critical point layer 3
21 snow-rough m 5.107° 0.5 Surface roughness of the snow pack
Vegetation parameter file
22 Root depth 1 m 0.1 3 Root zone thickness layer 1
23 Root depth 2 m 0.1 3 Root zone thickness layer 2
24 Root depth 3 m 0.1 3 Root zone thickness layer 3
Vegetation library file
25 rmin sm~! 30 300 Minimum stomatal resistance of vegetation
26*  LAI - 0.7 1.3 Leaf Area Index
Global parameter file
27 Tinin °C -1.5 0.0 Minimum temperature at which rain can fall
28" Thae °C Trmint0.5 Tmin+l.5 Maximum temperature at which snow can fall

T Value of this parameter must be greater than the related parameter mentioned in the parameter boundaries.

* Implemented as a multiplication factor to the default parameter values.
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Table 2. Transferability of parameters across spatial resolution, expressed as percentage agreement in detected
behavioural runs based on KGE(Q). The results are shown for three different sample sizes for the behavioural

runs; the highest 1% of the runs, the highest 2% of the runs, and the highest 5% of the runs.

Uniform forcing (% agreement)  Distributed forcing (% agreement)

HOUR

1% 2% 5% 1% 2% 5%

1x1vs5x5H

1x1vs10x10
5x5vs10x 10
1 x 1 vs lumped
5 x 5 vs lumped

10 x 10 vs lumped

1% 2% 5% 1% 2% 5%
1x1vsdx5b
1x1vs10x10
5x5vs10x 10
1 x 1 vs lumped
5 x 5 vs lumped
10 x 10 vs lumped

MONTH

1% 2% 5% 1% 2% 5%
1x1vsdx5H
1x1vs10x10
5x5vs1l0x 10
1 x 1 vs lumped
5 x 5 vs lumped
10 x 10 vs lumped




Table 3. Transferability of parameters across temporal resolution, expressed as percentage agreement in de-

tected behavioural runs based on KGE(Q). The results are shown for three different sample sizes for the be-

havioural runs; the highest 1% of the runs, the highest 2% of the runs, and the highest 5% of the runs.

Uniform forcing (% agreement)  Distributed forcing (% agreement)

1 x1km
1% 2% 5% 1% 2% 5%
hour vs month 3 3 6 6 16 15
day vs month 3 3 6 9 17
5x 5km
1% 2% 5% 1% 2% 5%
hour vs day 66 70 8 6 7387
hour vs month 3 2 8 9 13 15
day vs month 3 3 6 9 9 22
10 x 10 km
1% 2% 5% 1% 2% 5%
hour vs month 3 3 8 13 16 16
day vs month 0 3 8 13 16 24
lumped
1% 2% 5% 1% 2% 5%
hour vs month 3 6 9
day vs month 3 3 8




