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Dear	
  Professor	
  Weiler,	
  	
  
	
  
We	
  would	
  like	
  to	
  thank	
  you	
  for	
  the	
  review	
  process	
  and	
  the	
  editor	
  report.	
  Here	
  below	
  you	
  can	
  find	
  
our	
  response	
  to	
  the	
  suggestions	
  of	
  you	
  and	
  the	
  reviewers.	
  	
  
	
  
• Suggestions	
  from	
  the	
  editor:	
  
	
  
Highlight	
  higher	
  values	
  in	
  Table	
  2	
  and	
  3.	
  
We	
  have	
  colored	
  the	
  cells	
  in	
  Table	
  2	
  and	
  Table	
  3	
  based	
  on	
  their	
  value,	
  this	
  indeed	
  helps	
  in	
  
recognizing	
  patterns.	
  We	
  have	
  extended	
  the	
  coloring	
  to	
  Table	
  4	
  as	
  well.	
  	
  

	
  
The	
  temporal	
  resolution	
  does	
  not	
  seem	
  to	
  show	
  a	
  linear	
  relationship	
  in	
  Figure	
  10.	
  
We	
  agree	
  that	
  a	
  more	
  advanced	
  relationship	
  (e.g.	
  quadratic)	
  might	
  be	
  more	
  valid	
  in	
  this	
  case.	
  
However,	
  we	
  think	
  that	
  the	
  number	
  of	
  points	
  is	
  too	
  limited	
  to	
  apply	
  more	
  complex	
  models	
  than	
  a	
  
linear	
  model,	
  we	
  see	
  figure	
  10	
  merely	
  as	
  an	
  illustrative	
  figure	
  to	
  show	
  the	
  strong	
  effect	
  of	
  temporal	
  
resolution	
  on	
  transferability	
  as	
  compared	
  to	
  spatial	
  resolution.	
  	
  We	
  have	
  stressed	
  the	
  illustrative	
  
character	
  of	
  this	
  figure	
  in	
  the	
  text	
  in	
  Lines	
  470-­‐473:	
  	
  

“Figure	
  10	
  shows	
  the	
  relative	
  impact	
  of	
  temporal	
  and	
  spatial	
  resolution	
  on	
  parameter	
  transferability	
  
based	
  on	
  KGE(Q)	
  for	
  uniform	
  forcing.	
  To	
  illustrate	
  the	
  relative	
  impact	
  of	
  changes	
  in	
  spatial	
  and	
  
temporal	
  resolution,	
  we	
  fitted	
  a	
  linear	
  surface	
  through	
  the	
  data	
  points	
  from	
  our	
  study	
  (R2=	
  0.68).	
  “	
  

It	
  has	
  also	
  been	
  stressed	
  in	
  the	
  caption	
  of	
  Figure	
  10:	
  “The	
  linear	
  surface	
  (R2	
  =	
  0.68)	
  was	
  fitted	
  to	
  
illustrate	
  the	
  relative	
  impact	
  of	
  changes	
  in	
  spatial	
  and	
  temporal	
  resolution.” 

Please	
  add	
  a	
  color	
  legend	
  for	
  Figure	
  12.	
  	
  
A	
  color	
  legend	
  has	
  been	
  added	
  for	
  Figure	
  12.	
  	
  

	
  
• Suggestions	
  from	
  reviewer	
  1:	
  

	
  
Because	
  the	
  behavioral	
  cutoff	
  is	
  1%	
  of	
  samples,	
  it	
  might	
  be	
  interesting	
  to	
  see	
  what	
  the	
  results	
  look	
  
like	
  with	
  a	
  more	
  lenient	
  restriction	
  (2-­‐5%)	
  to	
  allow	
  a	
  larger	
  sample	
  size	
  in	
  the	
  estimate	
  of	
  the	
  
proportion.	
  	
  
This	
  is	
  shown	
  in	
  the	
  Supplementary	
  Material	
  Table	
  1	
  and	
  Table	
  2	
  for	
  the	
  KGE(Q).	
  Results	
  are	
  slightly	
  
different	
  for	
  this	
  more	
  lenient	
  restriction,	
  but	
  the	
  pattern	
  remains	
  the	
  same,	
  as	
  is	
  also	
  shown	
  in	
  
Figure	
  12.	
  We	
  have	
  added	
  a	
  sentence	
  to	
  refer	
  to	
  the	
  Supplementary	
  Material	
  in	
  Lines	
  566-­‐569:	
  
“Figure	
  12	
  and	
  Table	
  2	
  and	
  3	
  in	
  the	
  supplementary	
  material	
  shows	
  that	
  the	
  conclusions	
  we	
  draw	
  from	
  
Table	
  2	
  and	
  Table	
  3	
  are	
  not	
  only	
  valid	
  for	
  the	
  best	
  1%	
  of	
  runs	
  selected	
  as	
  behavioural.	
  Table	
  2	
  and	
  3	
  in	
  
the	
  supplementary	
  material	
  show	
  that	
  the	
  same	
  patterns	
  are	
  found	
  when	
  selecting	
  the	
  best	
  2%	
  
respectively	
  5%	
  of	
  the	
  model	
  runs.” 

Near	
  L95	
  the	
  GLUE	
  approach	
  is	
  mentioned,	
  i.e.,	
  comparing	
  the	
  uninformative	
  prior	
  and	
  behavioral	
  
posterior	
  distributions	
  of	
  parameters.	
  Would	
  it	
  have	
  been	
  possible	
  to	
  use	
  this	
  comparison	
  to	
  derive	
  
the	
  transferability	
  metric?	
  For	
  example	
  the	
  distance	
  between	
  PDFs	
  or	
  CDFs.	
  	
  
This	
  is	
  an	
  interesting	
  suggestion;	
  we	
  actually	
  did	
  not	
  investigate	
  whether	
  the	
  distance	
  between	
  PDFs	
  
or	
  CDFs	
  could	
  be	
  informative	
  for	
  the	
  degree	
  of	
  transferability.	
  We	
  could	
  imagine	
  that	
  some	
  



information	
  could	
  be	
  extracted	
  from	
  the	
  agreement	
  or	
  disagreement	
  in	
  PDF	
  or	
  CDF,	
  but	
  we	
  cannot	
  
directly	
  think	
  of	
  a	
  way	
  to	
  quantify	
  the	
  transferability	
  based	
  on	
  this	
  approach.	
  In	
  that	
  sense,	
  our	
  
current	
  set-­‐up	
  is	
  very	
  clear	
  and	
  straight	
  forward,	
  although	
  some	
  subjectivity	
  is	
  involved	
  in	
  the	
  size	
  of	
  
the	
  sample.	
  	
  

One	
  methodological	
  point	
  that	
  deserves	
  more	
  explanation	
  is	
  the	
  use	
  of	
  spatially	
  lumped	
  parameters,	
  
even	
  when	
  spatial	
  resolutions	
  are	
  increased.	
  Thus	
  the	
  use	
  of	
  different	
  spatial	
  resolutions	
  is	
  really	
  only	
  
a	
  matter	
  of	
  distributed	
  forcing	
  data,	
  not	
  the	
  parameter	
  fields	
  themselves.	
  
This	
  is	
  indeed	
  the	
  most	
  critical	
  point	
  in	
  this	
  study.	
  We	
  would	
  like	
  to	
  elucidate	
  that	
  indeed,	
  the	
  most	
  
sensitive	
  parameters,	
  i.e.	
  the	
  parameters	
  that	
  have	
  been	
  sampled,	
  have	
  been	
  applied	
  uniformly	
  over	
  
the	
  catchment,	
  but	
  all	
  the	
  other	
  parameters	
  (the	
  soil	
  parameters,	
  land-­‐use	
  parameters,	
  snow	
  
parameters)	
  have	
  been	
  applied	
  distributed.	
  Some	
  of	
  these	
  parameters,	
  for	
  example	
  the	
  bulk	
  density	
  
of	
  layer	
  2	
  and	
  3,	
  did	
  show	
  relatively	
  high	
  sensitivity	
  in	
  our	
  sensitivity	
  analysis.	
  Therefore,	
  the	
  models	
  
with	
  higher	
  spatial	
  resolution	
  could	
  benefit	
  from	
  the	
  distribution	
  of	
  these	
  parameters.	
  We	
  have	
  
stressed	
  this	
  by	
  adding	
  Line	
  245:	
  “The	
  sampled	
  parameters	
  were	
  applied	
  uniformly	
  over	
  the	
  
catchment,	
  245	
  whereas	
  all	
  other	
  soil-­‐	
  and	
  landuse	
  parameters	
  have	
  been	
  applied	
  in	
  a	
  distributed	
  
fashion.	
  ”	
  
But	
  indeed;	
  our	
  conclusion	
  that	
  spatial	
  variability	
  is	
  underestimated	
  is	
  mainly	
  the	
  result	
  of	
  the	
  
uniformly	
  applied	
  most	
  sensitive	
  parameters,	
  as	
  shown	
  in	
  Section	
  5.3.	
  This	
  is,	
  however,	
  part	
  of	
  our	
  
conclusion	
  and	
  recommendation.	
  We	
  have	
  added	
  Lines	
  607-­‐609	
  to	
  further	
  discuss	
  the	
  point	
  of	
  
spatially	
  lumped	
  parameters:	
  “Promising	
  techniques	
  have	
  been	
  developed	
  to	
  allow	
  spatial	
  
distribution	
  of	
  calibrated	
  parameters,	
  for	
  example	
  with	
  Multiscale	
  Parameter	
  Regionalization	
  (MPR,	
  
Samaniego	
  et	
  al.	
  (2010);	
  Kumar	
  et	
  al.	
  (2013)),	
  which	
  could	
  and	
  should	
  be	
  applied	
  for	
  large-­‐domain	
  
hydrologic	
  models.”	
  
Furthermore,	
  we	
  discuss	
  this	
  choice	
  now	
  in	
  lines	
  320-­‐323:	
  “Because	
  sampling	
  the	
  seven	
  selected	
  
parameters	
  in	
  a	
  distributed	
  fashion	
  is	
  computationally	
  extremely	
  demanding	
  and	
  currently	
  not	
  yet	
  
feasible,	
  the	
  sampled	
  parameters	
  have	
  been	
  applied	
  uniformly	
  over	
  the	
  cells	
  in	
  the	
  distributed	
  VIC	
  
models.	
  This	
  is	
  according	
  to	
  current	
  practice	
  in	
  large-­‐scale	
  modelling.”	
  

Before	
  the	
  HLHS	
  sample	
  is	
  performed,	
  the	
  authors	
  find	
  that	
  parameter	
  sensitivity	
  (using	
  the	
  DELSA	
  
method)	
  does	
  not	
  change	
  much	
  across	
  scales.	
  Is	
  this	
  similar	
  or	
  different	
  to	
  the	
  finding	
  that	
  behavioral	
  
parameter	
  sets	
  (values)	
  DO	
  change	
  across	
  scales?	
  Is	
  there	
  an	
  interpretation	
  of	
  this	
  result	
  that	
  can	
  be	
  
discussed?	
  Many	
  readers	
  may	
  find	
  parameter	
  sensitivity,	
  and	
  its	
  transferability	
  across	
  scales,	
  equally	
  
interesting	
  as	
  the	
  model	
  performance	
  itself.	
  	
  
The	
  finding	
  that	
  parameter	
  sensitivity	
  did	
  not	
  change	
  very	
  much	
  across	
  scales	
  is	
  different	
  from	
  the	
  
finding	
  that	
  parameter	
  values	
  did	
  not	
  change	
  very	
  much	
  across	
  scales,	
  since	
  equal	
  sensitivity	
  for	
  a	
  
certain	
  parameter	
  does	
  not	
  necessarily	
  imply	
  that	
  the	
  value	
  of	
  the	
  parameter	
  is	
  the	
  same.	
  	
  
In	
  order	
  to	
  provide	
  more	
  insight	
  in	
  the	
  sensitivity	
  analysis,	
  we	
  have	
  added	
  the	
  table	
  with	
  investigated	
  
parameters	
  and	
  a	
  figure	
  with	
  the	
  results	
  of	
  the	
  sensitivity	
  analysis	
  to	
  the	
  Supplementary	
  Material.	
  
Line	
  289	
  and	
  Line	
  309	
  have	
  been	
  added	
  to	
  the	
  manuscript	
  to	
  refer	
  to	
  the	
  Supplementary	
  Material.	
  

According	
  to	
  Figure	
  6,	
  the	
  behavioral	
  parameter	
  sets	
  at	
  finer	
  temporal	
  resolutions	
  (hourly,	
  daily)	
  are	
  
not	
  so	
  good	
  at	
  reproducing	
  observed	
  streamflow	
  (NSE	
  ∼	
  0.5-­‐0.6).	
  This	
  may	
  warrant	
  further	
  
discussion.	
  The	
  selection	
  of	
  behavioral	
  parameter	
  sets	
  is	
  based	
  on	
  the	
  top	
  1%	
  of	
  model	
  runs,	
  not	
  the	
  
performance	
  metrics	
  like	
  NSE,	
  KGE,	
  etc.	
  But	
  using	
  those	
  criteria,	
  it	
  may	
  be	
  that	
  none	
  of	
  the	
  model	
  
runs	
  are	
  "behavioral".	
  Are	
  there	
  any	
  implications	
  of	
  this?	
  	
  
It	
  is	
  indeed	
  an	
  effect	
  of	
  our	
  method	
  that,	
  by	
  choosing	
  a	
  fixed	
  percentage	
  rather	
  than	
  a	
  minimum	
  
performance,	
  not	
  all	
  the	
  selected	
  runs	
  can	
  or	
  might	
  be	
  considered	
  ‘behavioral’.	
  We	
  think	
  that	
  the	
  
implications	
  of	
  this	
  effect	
  for	
  our	
  conclusions	
  are	
  limited;	
  it	
  does	
  not	
  necessarily	
  negatively	
  nor	
  
positively	
  impact	
  the	
  transferability	
  of	
  the	
  parameters	
  across	
  spatial	
  or	
  temporal	
  resolutions.	
  Lines	
  
374-­‐377	
  have	
  been	
  added	
  to	
  the	
  manuscript:	
  



“Inherent	
  to	
  our	
  approach,	
  selecting	
  a	
  certain	
  percentage	
  of	
  runs	
  rather	
  than	
  applying	
  a	
  threshold	
  
level	
  based	
  on	
  an	
  objective	
  function,	
  is	
  that	
  the	
  selected	
  runs	
  do	
  not	
  necessarily	
  comply	
  to	
  an	
  
acceptable	
  model	
  performance.	
  We	
  expect	
  that	
  this	
  neither	
  positively	
  nor	
  negatively	
  influence	
  our	
  
results	
  concerning	
  parameter	
  transferability.	
  ”	
  

• Suggestions	
  from	
  reviewer	
  2:	
  

This	
  study	
  uses	
  a	
  conceptually	
  based	
  approach	
  where	
  calibration	
  is	
  generally	
  mandatory	
  given	
  the	
  
indirect	
  nature	
  of	
  the	
  model	
  parameters.	
  Are	
  there	
  lessons	
  learned	
  from	
  the	
  more	
  physically	
  based	
  
modeling	
  community,	
  which	
  is	
  also	
  studying	
  the	
  effects	
  of	
  resolution?	
  	
  
We	
  think	
  this	
  is	
  a	
  valuable	
  suggestion,	
  and	
  have	
  added	
  a	
  small	
  paragraph	
  to	
  discuss	
  the	
  effect	
  of	
  
spatial	
  resolution	
  in	
  more	
  physically-­‐based	
  models	
  which	
  are	
  usually	
  applied	
  to	
  a	
  smaller	
  area	
  but	
  
with	
  a	
  higher	
  resolution,	
  see	
  Lines	
  70-­‐75:	
  	
  “Although	
  the	
  ambition	
  of	
  GHMs	
  is	
  to	
  move	
  towards	
  
hyperresolution	
  (∼	
  1	
  km	
  and	
  higher),	
  more	
  physically-­‐based	
  catchment	
  models	
  have	
  already	
  been	
  
applied	
  at	
  spatial	
  resolutions	
  in	
  the	
  order	
  of	
  100	
  meters.	
  Also	
  for	
  these	
  models	
  at	
  this	
  scale,	
  the	
  effect	
  
of	
  spatial	
  resolution	
  has	
  been	
  investigated	
  (e.g.	
  Vivoni	
  et	
  al.	
  (2005);	
  Sulis	
  et	
  al.	
  (2011);	
  Shrestha	
  et	
  al.	
  
(2015)).	
  Even	
  for	
  fully	
  coupled	
  surface-­‐	
  groundwater	
  land-­‐surface	
  models,	
  the	
  effect	
  of	
  spatial	
  
resolution	
  on	
  hydrologic	
  fluxes	
  was	
  found	
  to	
  be	
  considerable	
  (Shrestha	
  et	
  al.,	
  2015).	
  ”	
  

I	
  am	
  curious	
  about	
  the	
  spatial	
  resolution	
  of	
  routing.	
  It	
  appears	
  that	
  the	
  routing	
  network	
  is	
  a	
  constant	
  
across	
  all	
  simulations,	
  which	
  might	
  substantially	
  influence	
  the	
  conclusions.	
  Prior	
  studies	
  have	
  relaxed	
  
that	
  assumption.	
  The	
  authors	
  should	
  comment	
  on	
  this	
  more	
  and	
  while	
  it	
  may	
  be	
  infeasible	
  to	
  
conduct	
  additional	
  simulations,	
  additional	
  discussion	
  would	
  be	
  valuable.	
  
It	
  was	
  a	
  conscious	
  choice	
  to	
  exclude	
  the	
  effect	
  of	
  spatial	
  scale	
  on	
  the	
  routing.	
  A	
  discussion	
  on	
  this	
  has	
  
been	
  added	
  in	
  Lines	
  574-­‐581:	
  “In	
  this	
  study	
  we	
  excluded	
  the	
  effect	
  of	
  routing	
  by	
  using	
  	
  a	
  high-­‐
resolution	
  drainage	
  network	
  based	
  on	
  sub-­‐basins	
  with	
  a	
  size	
  of	
  ~1	
  km2,	
  independent	
  of	
  the	
  resolution	
  
of	
  the	
  hydrologic	
  model.	
  We	
  think	
  that	
  the	
  effect	
  of	
  spatial	
  resolution	
  can	
  be	
  increased	
  by	
  adapting	
  
the	
  routing	
  scheme	
  accordingly.	
  Drainage	
  network	
  resolution	
  may	
  affect	
  the	
  projected	
  hydrograph,	
  
for	
  example	
  with	
  changes	
  in	
  the	
  stream	
  network	
  and	
  the	
  channel	
  slope.	
  However,	
  this	
  effect	
  should	
  
then	
  be	
  assigned	
  to	
  the	
  routing	
  model,	
  and	
  not	
  to	
  the	
  runoff	
  generation	
  model	
  (the	
  hydrologic	
  
model).	
  For	
  clarity,	
  we	
  decided	
  to	
  exclude	
  the	
  effect	
  of	
  spatial	
  resolution	
  on	
  routing	
  in	
  this	
  study.	
  ” 

Besides	
  the	
  suggestions	
  provided	
  by	
  the	
  editor	
  and	
  the	
  reviewers,	
  we	
  have	
  added	
  a	
  relevant	
  recent	
  
reference	
  (Ficchi	
  et	
  al.,	
  2016).	
  Furthermore,	
  we	
  have	
  adapted	
  Figure	
  2	
  to	
  fit	
  better	
  with	
  the	
  
projection	
  of	
  the	
  Thur	
  basin	
  as	
  used	
  in	
  the	
  other	
  figures	
  of	
  the	
  manuscript.	
  	
  
	
  
We	
  believe	
  that	
  the	
  suggestions	
  from	
  the	
  reviewers	
  and	
  the	
  editor	
  have	
  improved	
  the	
  manuscript.	
  
We	
  hope	
  we	
  have	
  addressed	
  all	
  requests	
  sufficiently.	
  	
  
	
  
Kind	
  regards,	
  
	
  
Lieke	
  Melsen	
  and	
  co-­‐authors.	
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Abstract. The transfer of parameter sets over different temporal and spatial resolutions is common

practice in many large-domain hydrological modelling studies. The degree to which parameters are

transferable across temporal and spatial resolutions is an indicator for how well spatial and temporal

variability are represented in the models. A large degree of transferability may well indicate a poor

representation of such variability in the employed models. To investigate parameter transferability5

over resolution in time and space we have set-up a study in which the Variable Infiltration Capac-

ity (VIC) model for the Thur basin in Switzerland was run with four different spatial resolutions

(1× 1 km, 5× 5 km, 10× 10 km, lumped) and evaluated for three relevant temporal resolutions

(hour, day, month), both applied with uniform and distributed forcing. The model was run 3,150

times using a Hierarchical Latin Hypercube Sample and the best 1% of the runs was selected as10

behavioural. The overlap in behavioural sets for different spatial and temporal resolutions was used

as indicator for parameter transferability. A key result from this study is that the overlap in param-

eter sets for different spatial resolutions was much larger than for different temporal resolutions,

also when the forcing was applied in a distributed fashion. This result suggests that it is easier to

transfer parameters across different spatial resolutions than across different temporal resolutions.15

However, the result also indicates a substantial underestimation in the spatial variability represented

in the hydrological simulations, suggesting that the high spatial transferability may occur because

the current generation of large-domain models have an inadequate representation of spatial variabil-

ity and hydrologic connectivity. The results presented in this paper provide a strong motivation to

further investigate and substantially improve the representation of spatial and temporal variability in20

large-domain hydrological models.
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1 Introduction

The history of modern hydrological modelling dates back to halfway the nineteenth century, starting

with empirical models to predict peak flows (Todini, 2007). For a long time, hydrological models

were developed only at the catchment scale, evolving from empirically-based to more physically-25

based. Computational power and increased data availability have driven the development of increas-

ingly complex and distributed hydrological models (Boyle et al., 2001; Liu and Gupta, 2007). Dis-

tributed hydrological models can incorporate spatially varying parameters, including those reflecting

land use and soil characteristics (Carpenter and Georgakakos, 2006), and spatially variable forcing.

In 1989 the first Global Hydrological Model (GHM) was presented (Vörösmarty et al., 1989; Sood30

and Smakhtin, 2015). Continuing improvements in computational power and data availability pro-

vides new opportunities for GHMs, for example expressed in the recent ambition to develop global

models with a resolution in the order of ∼ 1 km and higher, the so-called hyper-resolution (Wood

et al., 2011; Bierkens et al., 2014; Bierkens, 2015).

Because the parameters in hydrological models often represent a different spatial scale than the ob-35

servation scale, or because conceptual parameters have no directly measurable physical meaning,

calibration of hydrological models is almost always inevitable (Beven, 2012). The increased com-

plexity of hydrological models and the increased application domain has resulted in more complex

and time consuming optimization procedures for the model parameters. However, although recent

developments in e.g. satellites and remote sensing can provide spatially distributed data to construct40

and force models, discharge measurements are still required to calibrate and validate model output.

Both to decrease calculation time of the optimization procedure and to be able to apply the model

in ungauged or poorly gauged basins and areas, many studies have focused on the transferability of

parameter values over time, space, and spatial and temporal resolution (e.g. Wagener and Wheater

(2006); Duan et al. (2006); Troy et al. (2008); Samaniego et al. (2010); Rosero et al. (2010); Kumar45

et al. (2013); Bennett et al. (2016)). Sometimes it is assumed that parameters are directly transfer-

able, for example by calibrating on a coarser time step than the time step at which the model output

will eventually be analysed (e.g. Liu et al. (2013); Costa-Cabral et al. (2013)). Troy et al. (2008)

rightly question what the effect is of calibrating at one time step and transferring the parameters to

another time step. Their results suggest that the time step had only limited impact on the calibrated50

parameters and thus on the monthly runoff ratio. On the other hand, Haddeland et al. (2006) found

that modelled moisture fluxes are sensitive to the model time step. Several studies (e.g. Littlewood

and Croke (2013); Kavetski et al. (2011); Wang et al. (2009) and Littlewood and Croke (2008)) have

found that parameter values are closely related to the employed time step of the model. Chaney et al.

(2015) investigated to what extent monthly runoff observations could reduce the uncertainty around55

the flow duration curve of daily modelled runoff. They found a decrease in the uncertainty around

the flow duration curve when the monthly discharge observations were used, but the magnitude of

the reduction was dependent on climate type. Recently, Ficchì et al. (2016) conducted a thorough
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analysis on the effect of temporal resolution on the projection of flood events, where it was shown

that the flood characteristics determined the sensitivity for the temporal resolution.60

Less intuitive and less common is to transfer parameters across different grid resolutions. Haddeland

et al. (2002) showed that the output of the Variable Infiltration Capacity (VIC) model was signifi-

cantly different when the parameters of the model were kept constant for several spatial resolutions.

For the same model, Liang et al. (2004) showed that model parameters calibrated at a coarse grid

resolution could be applied to finer resolutions to obtain comparable results. Troy et al. (2008) on65

the contrary, found that calibrating the VIC model on a coarse resolution significantly affected the

model performance when applied to finer resolutions. Finnerty et al. (1997) investigated parameter

transferability over both space and time for the Sacramento model, and showed that it can lead to

considerable volume errors.

Although the ambition of GHMs is to move towards hyperresolution (∼ 1 km and higher), more70

physically-based catchment models have already been applied at spatial resolutions in the order of

100 meters. Also for these models at this scale, the effect of spatial resolution has been investigated

(e.g. Vivoni et al. (2005); Sulis et al. (2011); Shrestha et al. (2015)). Even for fully coupled surface-

groundwater land-surface models, the effect of spatial resolution on hydrologic fluxes was found to

be considerable (Shrestha et al., 2015).75

The impact of transferring parameters across spatial and/or temporal resolutions on model perfor-

mance is thus ambiguous, but relevant in the light of hydrological model development, especially for

GHMs which are at the upper boundary of computational power and data availability. Calibration

on a coarse temporal or spatial resolution and subsequently transferring to a higher resolution could

potentially reduce computation time, and it is therefore relevant to investigate the opportunities. But80

parameter transferability across spatial and temporal resolutions is also interesting for another rea-

son: it is an indicator for the degree to which spatial and temporal variability are represented in the

model. Ideally, in a model that describes all relevant hydrological processes correctly, parameters

should to a large extent be transferable over time because longer time steps are simply an integration

of the shorter time steps. On the other hand, parameters should not or hardly be transferable over85

space, because the physical characteristics which they represent are different from place to place. In-

vestigating parameter transferability across spatial and temporal resolutions can thus provide insight

in the model’s representation of spatial and temporal variability.

In this study, we employ the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), which

has also been applied at the global scale (Nijssen et al., 2001; Bierkens et al., 2014), to study param-90

eter transferability across temporal and spatial resolutions, accounting for the difference between

uniform and distributed forcing. We applied this study on a well-gauged meso-scale catchment in

Switzerland (the Thur basin, 1703 km2) on spatial resolutions that are relevant for hyper-resolution

studies (1×1 km, 5×5 km and 10×10 km, as well as a lumped model which represents the 0.5◦ grid

used in many global studies). We use the most common temporal resolutions for which discharge95
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data are available (hourly, daily, monthly). We ran the models both with distributed forcing (differ-

ent forcing input for each grid cell) and with uniform forcing (same forcing input for each grid cell),

where the latter is in line with many of the datasets currently used for forcing global hydrological

models (e.g. WATCH forcing data, 0.5◦).

Several studies already investigated scale effects in the VIC model, for instance Haddeland et al.100

(2002); Liang et al. (2004); Haddeland et al. (2006); Troy et al. (2008); Wenger et al. (2010); Wen

et al. (2012). Novel in this study is that we choose a probabilistic rather than a deterministic ap-

proach: essentially we employ a GLUE-based approach (Beven and Binley, 1992, 2014) in which

we implicitly account for parameter uncertainty. We quantify parameter transferability by evaluat-

ing the overlap in behavioural sets for different temporal and spatial resolutions. To determine the105

behavioural sets, we make use of three different objective functions focusing on high flows, average

conditions, and low flows. Novel is also that we test the effect of forcing on the results, and that

we use several subbasins to explain the results. Our case study provides a benchmark for parameter

transferability for models applied at larger scales, dealing with the same spatial and temporal res-

olutions as employed here. The results of our study also provide an indication of the current status110

of spatial and temporal representation in the VIC model, being representative for a larger group of

land-surface models.

2 Catchment and Data Description

2.1 Thur basin

The Thur basin (1703 km2, see Figures 1 and 2) in North-East Switzerland was chosen as study115

area, because of the excellent data availability in this area and because of its relevance as a tributary

of the river Rhine (Hurkmans et al., 2008). The main river in the basin (the Thur) has a length

of 127 km. The average elevation of the basin is 765 m a.s.l., the mean slope is 7.9◦ (based on

a 200× 200 m resolution DEM and slope file). The basin outlet is situated at Andelfingen at an

elevation of 356 m a.s.l. (Gurtz et al., 1999). The basin has an alpine/pre-alpine climatic regime,120

with high temperature variations both in space and time (Figure 3). Precipitation varies from 2500

mm yr−1 in the mountains to 1000 mm yr−1 in the lower areas. Part of the year the basin is covered

with snow. The most striking feature in the Thur basin is the Säntis, an Alpine peak with an altitude of

2502 meter. The dominant land use in the Thur basin is pasture. Within the Thur basin, measurements

for nine (nested) sub-catchments are available, see Figure 2. The smallest gauged sub-catchment is125

the Rietholzbach catchment (3.3 km2, see Seneviratne et al. (2012)), the largest is Halden (1085

km2). Both the Rietholzbach and the Thur have been subject of many previous studies (e.g. Gurtz

et al. (1999, 2003); Jasper et al. (2004); Abbaspour et al. (2007); Yang et al. (2007); Teuling et al.

(2010); Melsen et al. (2014)). In this study, we will mainly focus on the outlet of the Thur basin.
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2.2 Discharge data130

For the station at the Thur outlet (Andelfingen) and eight sub-basins hourly discharge measurements

for the period 1974-2012 were made available by the Swiss Federal Office for the Environment

(FOEN). All discharge measurements have been obtained using a stage-discharge relation, based on

several measurements conducted by FOEN throughout the years, a.o. with an ADCP. The discharge

measurements for the Rietholzbach catchment were made available by ETH Zürich.135

2.3 Forcing data

Forcing data for this study were made available by the Swiss Federal Office for Meteorology and

Climatology (MeteoSwiss). These data have previously been used for numerous applications of hy-

drological models in the Thur (Jasper et al., 2004; Abbaspour et al., 2007; Fundel and Zappa, 2011;

Fundel et al., 2013; Jörg-Hess et al., 2015). The data are available for this study in the form re-140

quired to implement the PREVAH model (Viviroli et al., 2009a, b). Data from nine different me-

teorological stations throughout the catchment (Güttingen, Hörnli, Reckenholz, Säntis, St.Gallen,

Tänikon, Wädenswil, Zürich and Rietholzbach) were available with an hourly time resolution and

spatially interpolated with the use of the WINMET tool of the PREVAH modelling system (Viviroli

et al., 2009a), using elevation-dependent regression (EDR) and inverse distance weighting (IDW)145

and combinations of IDW and EDR. The data is available for the period 1981–2004, for which a

stable configuration of stations is available. In this study, we only used data for the period May

2002 - August 2003. To force the VIC model, hourly precipitation, incoming shortwave radiation,

temperature, vapour pressure and wind data were used. We have run the model with two set-ups:

fed with uniform forcing and fed with distributed forcing. Because the Thur basin has an extent of150

approximately 0.5◦, a lumped application of the forcing mimics the use of global forcing data sets

like the WATCH forcing product and the ERA-interim product. Application with distributed forcing

implied different forcing input for each grid cell. Because of the pronounced elevation differences in

the basin, precipitation and temperature show a clear spatial pattern, which can be seen in Figure 3.

2.4 Spatial data for the model155

Land use, hydraulic conductivity, elevation, and soil water storage capacity maps, all with a spa-

tial resolution of 200× 200 m, were provided by the Swiss Federal Institute for Forest, Snow and

Landscape Research (WSL) under license of Swisstopo (JA100118). Also in this case we used the

pre-processing routines created to implement the PREVAH modelling system (Viviroli et al., 2009a).

The resolution of the available data (200× 200 m) is higher than the model with the highest resolu-160

tion in this study (1×1 km), which allows for sub-grid variability in the VIC model for land use and

elevation parameters (see Section 3.1). Other soil characteristics, such as bulk density, have been ob-
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tained from the Harmonized World Soil Database (FAO et al., 2012), which has a spatial resolution

of 1× 1 km.

3 Model and routing description165

The VIC model (version 4.1.2.i) was run at an hourly time step in the energy balance mode, which

implies that both the water- and the energy balance are solved. The default routing developed for

VIC by Lohmann et al. (1996) is only applicable at daily time steps and hence is not suitable to

study parameter transferability at finer temporal resolutions. Therefore, horizontal water transport

through the channel network was implemented using mizuRoute (Mizukami et al., 2015b).170

3.1 The VIC model

The VIC model (Liang et al., 1994, 1996) is a land-surface model that solves the water and the en-

ergy balance. Subgrid land use type variability is accounted for by providing vegetation tiles that

each cover a certain percentage of the total surface area. Three different types of evaporation are

considered by the VIC model; evaporation from the bare soil (Eb), transpiration by the vegetation175

(T ), considered per vegetation tile, and evaporation from interception (Ei). The total evapotranspira-

tion is the area-weighted sum of the three evaporation types. The fraction of land that is not assigned

to a particular land use type is considered to be bare soil. Evaporation from bare soil only occurs

at the top layer (layer 1). If layer 1 is saturated, bare soil evaporation is at its potential rate. Poten-

tial evaporation is obtained with the Penman-Monteith equation. If the top layer is not saturated, an180

Arno-formulation (Francini and Pacciani, 1991), which uses the structure of the Xinanjiang model

(Zhao et al., 1980), is used to reduce the evaporation.

For the upper two soil layers, the Xinanjiang formulation (Zhao et al., 1980) is used to describe infil-

tration. This formulation assumes that the infiltration capacity varies within an area. Surface runoff

occurs when precipitation added to the soil moisture of layers 1 and 2 exceeds the local infiltra-185

tion capacity of the soil. Moisture transport from layer 1 to layer 2 and from layer 2 to layer 3 is

gravity driven and only dictated by the moisture level of the upper layer. It is assumed that there is

no diffusion between the different layers. Layer 3 characterizes long term soil moisture response,

e.g. seasonality. It only responds to short-term rainfall when both top layers are fully saturated. The

gravity driven moisture movement is regulated by the Brooks-Corey relationship:190

Qi,i+1 =Ksat,i

(
Wi−Wr,i

W c
i −Wr,i

)expti

. (1)

Qi,i+1 is the flow [L3T−1] from layer i to layer i+1.Ksat,i is the saturated hydraulic conductivity of

layer i, Wi is the soil moisture content in layer i, W c
i is the maximum soil moisture content in layer

i, Wr,i the residual moisture content in layer i. The exponent of the Brooks-Corey relation, expti is

defined as follows: 2
Bp

+3, in which Bp is the pore size distribution index. The exponent as a whole195
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is often calibrated.

Base flow is determined based on the moisture level of layer 3. Base flow generation follows the

conceptualization of the Arno model (Francini and Pacciani, 1991). This formulation consists of a

linear part (lower moisture content regions) and a quadratic part (in the higher moisture regions).

Baseflow is modelled as follows:200

Qb =



dsdm

wsW c
3
·W3 if 0≤W3 ≤ wsW

c
3

dsdm

wsW c
3
·W3 +

(
dm− dsdm

ws

)(
W3−wsW

c
3

W c
3−wsW c

3

)g
if W3 ≥ wsW

c
3

In this equation, Qb is the total baseflow over the model time step (in this study one hour), dm is the

maximum base flow, ds the fraction of dm where non-linear base flow begins, ws is the fraction of

soil moisture where non-linear baseflow starts. W c
3 is the maximum soil moisture content in layer 3,

calculated as a product of porosity and depth. The exponent g is by default set to two (Liang et al.,205

1996).

Since the grid-size of the VIC model is often larger than the characteristic scale of snow processes,

sub-grid variability is accounted for by means of elevation bands. For each grid cell the percentage

of area within certain altitude ranges is provided. The snow model is applied for each elevation band

and land use type separately; the weighted average provides the output per grid cell. This output210

consists of the Snow Water Equivalent (SWE) and the snow depth. The snow model is a two-layer

accumulation-ablation model, which solves both the energy- and the mass balance. At the top layer

of the snow cover the energy exchange takes place. A zero energy flux boundary is assumed at the

snow-ground interface. A complete description of the model can be found in Liang et al. (1994) and

Liang et al. (1996).215

3.2 Routing

The mizuRoute routine (Mizukami et al., 2015b) takes care of the transport of water between the

different grid cells. The routing is based on the same concept as the routing described by Lohmann

et al. (1996), except that in mizuRoute the response is determined per subcatchment instead of per

grid cell.220

With the linearized St. Venant equation,

∂Q

∂t
=D

∂2Q

∂x2
−C ∂Q

∂x
, (2)

water is transported from the boundary of the subcatchment to the next subcatchment and finally to

the outlet. In Equation 2,D (m2s−1) represents the diffusion coefficient andC (m s−1) the advection

coefficient.225

In the Thur basin, the routing is applied to subcatchments in the order of 1 km2. It is important to
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note that with the applied routing-setup, the drainage network is kept independent of the resolution,

because surface runoff is routed for pre-defined sub-basins instead of per grid cell. In the default

VIC routing of Lohmann et al. (1996), water is routed per grid cell and therefore dependent on the

spatial resolution of the VIC model. By applying mizuRoute based on pre-defined sub-basins (~1230

km2), we have excluded the effect of the spatial resolution on the routing process.

4 Experimental set-up

We have constructed four VIC models with different spatial resolutions: 1× 1 km, 5× 5 km, 10×
10 km, as well as a lumped model. These models have been run with both uniform and distributed

forcing. Since for the lumped model there is no difference between uniform and distributed forcing,235

this leads to a total of seven different model set-ups. Because the runtime of the model combined

with all the post-processing is rather long (on average 2.5 hours for the 1× 1 km model on a stan-

dard PC), an efficient sampling strategy was designed. The procedure we followed is illustrated in

Figure 5. With sensitivity analysis (Section 4.4) the most sensitive parameters from the model were

selected. Subsequently, we sampled the full parameter space with a uniform prior using a Hierar-240

chical Latin Hypercube sample (HLHS) (Vor̂echovský, 2015), see Section 4.5. Although sampling

the parameter space with a uniform prior is less efficient than other distributions which focus more

on the most likely regions, we did not want to exclude any region because both the temporal and

spatial resolution were varied. The sampled parameters were applied uniformly over the catchment,

whereas all other soil- and landuse parameters have been applied in a distributed fashion. After run-245

ning the models with the HLHS, the output was evaluated and the best 1% of the runs was defined as

behavioural. The overlap in behavioural sets was used as an indicator for parameter transferability

(Section 4.7).

4.1 Spatial model resolution250

Four VIC implementations with different spatial resolutions (0.0109◦ roughly corresponding to 1×
1 km, 0.0558◦ ≈ 5× 5 km, 0.1100◦ ≈ 10× 10 km, as well as a lumped model) were constructed.

The 1×1 km model represents the so-called hyper-resolution. Several studies already explore GHMs

at this resolution, e.g. Sutanudjaja et al. (2014) for the Rhine-Meuse basin. The model with the

10× 10 km resolution can be characterized as ‘regional’. The 5× 5 km model is in between the255

hyper-resolution scale and the regional scale. The lumped model, which represents an area of 1703

km2, is in the order of magnitude of grid cells with a 0.5◦ resolution, which represents the original

scale for which VIC was developed. Figure 1 gives an overview of the cell size of the four models.

The sampled parameters (see Section 4.4) have been applied uniformly over the catchment, all other
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parameters have been applied in a distributed manner. We will discuss the effect of applying the260

sampled parameters uniformly by using data from the nine subcatchments.

4.2 Temporal model resolution

The models are run at an hourly time step, implying that they solve both the energy and the water

balance. The hourly output of the routing model is aggregated to daily and monthly time steps for

further evaluation, see Figure 1.265

4.3 Simulation period

The four models are run for a period of 1 year and four months. The first three months are used

as spin-up period and not used for further analysis. Tests with the same parameter set and different

initial conditions revealed that three months are sufficient to eliminate the effect of initial conditions

(see Figure 4). The initial soil moisture content of the model before spin-up was fixed at θ = 0.9270

because we found that the model reaches equilibrium faster when starting from a wet state. The

models have not been subjected to a validation procedure on another time period, because in this

particular application the goal was not to identify the best performing model, but to investigate the

role of temporal and spatial resolution on parameter transferability.

The analysed period is 1 August 2002 – 31 August 2003 (see Figure 4). This period is characterised275

by three very high peaks (August, September 2002) as well as the severe 2003 drought (June, July,

August 2003). The 2002 peaks (see e.g. Schmocker-Fackel and Naef (2010)) have an estimated re-

turn period of 15 to 20 years. The peaks were caused by a larger system that also caused the heavy

floods in the Elbe and the Danube (Becker and Grünewald, 2003). In contrast, the 2003 summer was

extremely warm and dry in Western and Central Europe (Miralles et al., 2014), with Switzerland280

being among the hottest and driest regions (Andersen et al., 2005; Rebetez et al., 2006; Zappa and

Kan, 2007; Seneviratne et al., 2012). With these two extremes the selected period covers a large part

of the flow duration curve, both in the high and the low flow regions (right panel in Figure 4).

4.4 Model parameters285

The VIC model has a large number of parameters, divided over three sections: soil parameters, veg-

etation parameters, and snow parameters. To determine which parameters should be sampled in this

study, a sensitivity analysis was conducted on a broad selection of parameters (see Table 1 in the sup-

plementary material). The parameter selection was made such that the main hydrological processes

were represented and included 28 VIC parameters from the three different sections. Sensitivity anal-290

ysis was conducted using the Distributed Evaluation of Local Sensitivity Analysis (DELSA) method

(Rakovec et al., 2014). DELSA is a hybrid local-global sensitivity analysis method. It evaluates pa-

rameter sensitivity based on the gradients of the objective function for each individual parameter at
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several points throughout the parameter space. Note that this method only provides first-order sensi-

tivities and thus does not account for parameter interaction.295

A base set of 100 parameter samples was created. For each parameter k that is accounted for in

the analysis, the base set of parameter samples is perturbed. In total, including the base set, this

leads to (number of parameters+1)×100 parameter samples that need to be evaluated. To save com-

putation time, the sensitivity analysis was conducted on the lumped VIC model for the Thur. To

study the effect of spatial scale on sensitivity, two lumped models for subbasins of the Thur have300

been constructed: The Jonschwil catchment (495 km2) and the Rietholzbach catchment (3.3 km2).

The Rietholzbach catchment is nested inside the Jonschwil catchment, which is again nested in the

Thur catchment (Figure 2). The three catchments have comparable land use.The Kling-Gupta Ef-

ficiencty of the discharge (KGE(Q)), Nash-Sutcliffe efficiency of the discharge (NSE(Q)) and the

Nash-Sutcliffe efficiency of the logarithm of the discharge (NSE(logQ)) (see Section 4.6) were used305

as objective function to assess the sensitivity of the parameters.

The analysis showed that parameter sensitivity did not notably change over the assessed scales: the

same parameters were found to be most sensitive, but in a slightly different order (see Figure 1 in the

supplementary material). There are four parameters which, for all scales and for all objective func-

tions, proved to be highly sensitive: The parameter describing variable infiltration (bi), the parameter310

that defines the fraction of ds,max where non-linear baseflow starts (ds), the maximum velocity of

the base flow (dm) and the exponent of the Brooks-Corey relation ( 2
Bp

+3, expt2, see Equation 1).

Hence, these four parameters were selected for the sampling analysis. Other parameters that showed

sensitivity in some cases were the depth and bulk density of soil layer 2, the depth and bulk density of

soil layer 3, and the rooting depth of layer 1. The selection of sensitive parameters closely resembles315

the results of Demaria et al. (2007), who applied a sensitivity analysis on VIC over different hydro-

climatological regimes. Because Demaria et al. (2007) found that the depth of soil layer 2 was highly

sensitive, this parameter was added to the selection of parameters that was sampled. In addition, the

two routing parameters C and D were sampled because they control the lateral exchange of water

between grid cells. An overview of the selected parameters is given in Table 1. Because sampling320

the seven selected parameters in a distributed fashion is computationally extremely demanding and

currently not yet feasible, the sampled parameters have been applied uniformly over the cells in the

distributed VIC models. This is according to current practice in large-scale modelling.

4.5 Hierarchical Latin Hypercube Sample

In comparison with traditional sampling methods, the number of parameter samples needed to cover325

the full parameter space can decrease significantly by selecting only the most sensitive parameters

(see Figure 5b). For the four VIC models (three distributed models, one lumped model) the selected

parameters (Table 1) were varied using a Latin Hypercube Sample (LHS). This is a variance re-

duction method which efficiently samples the parameters within each region with equal probability
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in the parameter distribution (Vor̂echovský and Novák, 2009) (see Figure 5c). Especially for the330

1×1 km model the calculation time is rather long. Therefore, the LHS should preferably be as small

as possible, while still being able to provide insights in e.g. posterior parameter distributions. For

a Monte Carlo (MC) sample, it is easy to start with a small sample, and add more samples if this

shows to be necessary, e.g. based on the sample variance. For a variance reduction technique such as

LHS this is not that straight forward. Therefore, we make use of the Hierarchical Latin Hypercube335

Sample (HLHS), recently developed by Vor̂echovský (2015). This method allows us to start with

a small LHS and add more samples if necessary, while conserving the LHS-structure (Figure 5d).

Inherent to this method is that every sample extension is twice as large as the previous sample, which

results in a total number of simulations after r extensions:

Nsim,r = 3r ·Nstart, (3)340

with Nsim being the total number of simulations, r the number of extensions, and Nstart the start

number of samples. As a starting sample size 350 is chosen, which is sampled based on a space-

filling criterion. For the seven parameters in the HLHS sample a uniform prior is assumed in order

the study the full parameter space. The starting sample can be increased by a first extension to

1,050 samples in total, further to 3,150, and even up to 9,450. After each extension, the cumulative345

distribution function (CDF) of the objective functions (KGE, NSE) is compared with the CDF of

the previous extension. A Kolmogorov-Smirnov test is used to test if the CDFs are significantly

different. It was found that the CDF estimated from 3,150 samples was not significantly different

from the CDF based on 1,050 samples at a 0.05-significance level. Therefore, 3,150 samples was

considered sufficient to sample the parameter space.350

4.6 Objective functions

For each model run, several objective functions were evaluated. The three objective functions are:

– The Kling-Gupta Efficiency (KGE) to describe the overall capability of the model to simulate

the discharge (Gupta et al., 2009):

KGE(Q) = 1−
√
(r− 1)2 +(α− 1)2 +(β− 1)2, (4)355

where r is the correlation between observed discharge Qo and modelled discharge Qm, α is

the standard deviation of Qm divided by the standard deviation of Qo, and β is the mean of

Qm (Qm) divided by the mean of Qo (Qo) .

– The Nash-Sutcliffe Efficiency (NSE) of the discharge to describe the model performance for

the higher discharge regions (Nash and Sutcliffe, 1970):360

NSE(Q) = 1−
∑T

t=1(Q
t
o−Qt

m)2∑T
t=1(Q

t
o−Qo)

2
= 2 ·α · r−α2−β2

n, (5)

in which βn is the bias normalized by the standard deviation.

11



– The Nash-Sutcliffe Efficiency of the logarithm of the discharge NSE(logQ) to test the model

performance for low discharges (Krause et al., 2005).

The objective functions are calculated for all runs (3,150) for the seven different VIC set-ups and365

based on hourly, daily and monthly time steps.

4.7 Determination of behavioural sets and parameter transferability

After running the VIC model with 3,150 parameter sets, a selection is made of the best parameter

sets, the so-called behavioural runs (Beven and Binley, 1992). The best 1% (which is different for

different objective functions) of the 3,150 runs (32 members) are selected as behavioural. For each370

combination of spatial and temporal resolution, and for the three objective functions separately, the

32 best members are selected. We value all 32 parameter sets equally plausible and do not assign

weights to the best performing sets within the behavioral selection, to account for uncertainty in the

observations. Inherent to our approach, selecting a certain percentage of runs rather than applying

a threshold level based on an objective function, is that the selected runs do not necessarily comply375

to an acceptable model performance. We expect that this neither positively nor negatively influences

our results concerning parameter transferability.

We define parameter transferability θ←→ as the percentage agreement in selected behavioural sets:

θ←→=#(ASi,Tj ∩BSk,Tl
)/n · 100, (6)

in which ASi,Tj is the set of selected behavioural members for spatial resolution Si and temporal380

resolution Tj , and BSk,Tl
are the selected members for spatial resolution Sk and temporal resolution

Tl. The n is the total number of selected members (in this case 32). Equation 6 expresses θ←→ as a

percentage; if θ←→= 100, this indicates that for two different resolutions (either spatial, temporal or

both) exactly the same parameter sets were selected as behavioural.

5 Results385

First, the impact of temporal and spatial resolution on model performance is discussed for both uni-

form and distributed forcing, followed by a discussion of the impact of the temporal and spatial

resolution on parameter distribution. For these analyses, the temporal and spatial resolution are as-

sumed to be independent. Subsequently, the parameter transferability across temporal and spatial

resolution is assessed by determining the overlap in behavioural sets as defined by Equation 6. Af-390

ter that, parameter transferability over both temporal and spatial resolution is assessed. Finally, we

investigate parameter transferability over the sub-basins of the Thur.
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5.1 Impact of temporal and spatial resolution on model performance and parameter

distribution

Figure 6 shows the model performance of the behavioural sets for the different spatial and temporal395

resolutions and the different objective functions, both for uniform and distributed forcing. We will

first discuss the results for the uniform forcing.

With uniform forcing, the lumped model outperforms the distributed models for all three objective

functions and time steps. The monthly time step shows for all three objective functions an increas-

ing model performance with decreasing spatial resolution. It is remarkable that the model with the400

monthly time step outperforms the models with daily and hourly time step when the NSE(logQ) was

used as objective function, while with the NSE(Q) as objective function exactly the opposite is the

case. It is important to notice here that the monthly model results are simply an aggregation from the

hourly model results which might imply that the higher score on the monthly time step is the result

of errors which compensate for each other, and that the model perfomance scores for the monthly405

time step are based on a considerable lower number of points. The KGE(Q) as objective function

does not lead to a remarkably different model performance for the monthly time step. From the fig-

ure it seems that both the spatial and temporal resolution have impact on the model performance.

This is confirmed with a statistical test. An ANOVA analysis with two factors (temporal resolution;

spatial resolution), with three, respectively four levels (hourly, daily, monthly; 1× 1 km, 5× 5 km,410

10× 10 km and lumped) shows that both the spatial and the temporal resolution have significant

(p < 0.05) impact on all three objective functions.

Distributed forcing leads in all cases except one (1×1 km, monthly, NSE(logQ)) to an improved

model performance compared to uniform forcing. It is important to note that for the lumped model

uniform and distributed forcing are the same. It should therefore be remarked that while with uni-415

form forcing the lumped model outperforms the other model set-ups, for the distributed forcing the

10×10 km model outperforms the other spatial resolutions (except for NSE(logQ)). An ANOVA

analysis confirmed that also for distributed forcing, both spatial and temporal resolution have signif-

icant (p < 0.05) impact on the model performance for all three objective functions.

Figure 7 shows the distribution of the behavioural sets for the three separate components of the420

KGE(Q). Regarding the correlation r, the monthly time step scores higher than the daily and hourly

time step. On the other hand, the hourly and daily time steps score higher with respect to β (closer

towards 1). Although Figure 6 gives the impression that the model performance in terms of KGE(Q)

is relatively insensitive to temporal and spatial resolution, Figure 7 reveals this is actually the result

of compensations from the three different components of the KGE(Q): The monthly time step has a425

higher correlation, while the daily and hourly time steps have a higher β.

Figure 8 shows the parameter distribution of the seven sampled parameters, and shows how the dis-

tribution varies as a function of temporal and spatial resolution, both for distributed and uniform

forcing. The distribution of the behavioural parameter sets for the daily and hourly time steps are
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very much alike for all parameters, but the distribution for the monthly time step is in some cases430

broader, which implies that the parameters are less clearly defined. The parameter showing the clear-

est effect of temporal scale is the advection coefficient C (Figure 8). The C parameter, the velocity

component in the routing, becomes less well defined with increasing time step, which is intuitive

because timing becomes less relevant for longer time intervals.

The difference in the parameter distribution when comparing distributed and uniform forcing is lim-435

ited. The clearest difference can be found for the dm-parameter with the NSE(Q) as objective func-

tion. This parameter describes the maximum velocity of the base flow, and can potentially impact

short term processes for which distributed forcing seems important, like surface runoff. However,

there are other parameters, such as the bi-parameter, which are more directly linked to infiltration

and surface runoff processes and do not show a clear difference in parameter distribution between440

distributed and uniform forcing.

With an ANOVA analysis, the significance of temporal and spatial resolution on the parameter distri-

bution of the behavioural sets was tested. Figure 9 shows that the significance of spatial and temporal

resolutions on the parameter distribution depends on which objective function was used to deter-

mine the behavioural sets. Uniform and distributed forcing show comparable patterns. In general,445

the temporal resolution has more impact on the parameter distribution (at least four parameters are

significantly affected by temporal resolution) than the spatial resolution (only one parameter for one

objective function experiences significant impact of the spatial resolution). Only two parameters are

significantly impacted by the tempvoral resolution for all three objective functions: ds and C.

5.2 Parameter transferability450

The main research question of this study is to what extent parameters are transferable across tem-

poral and spatial resolutions, and we will use that as indicator for the representation of spatial and

temporal variability in the model. We have defined parameter transferability θ←→ as the percentage

agreement in identified behavioural sets (Equation 6). Table 2 and Table 3 give an overview of θ←→ for

different temporal and spatial resolutions, both for uniform and distributed forcing. Table 2 shows455

that the θ←→ is generally high for different spatial resolutions, which suggests that the parameters are

to a large extent transferable across spatial scales. In contrast, Table 3 shows that parameters are

hardly transferable over the temporal scale. The selected runs for hourly and daily time steps largely

agree, but the selected runs on a monthly time step are clearly different. Surprisingly, this is also

strongly related to the objective function. The selection based on the NSE(logQ) is less sensitive to460

temporal resolution than those based on the KGE(Q) or the NSE(Q). A possible explanation is that

the NSE(logQ) tends to put more focus on lower discharges with a longer time scale, with less focus

on the short term flashy response of a catchment. Parameter transferability over space is in general

slightly lower when distributed forcing is used compared to uniform forcing. On the other hand, pa-

rameter transferability over time is slightly higher for distributed forcing. Decreased sensitivity for465
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the temporal resolution and increased sensitivity for the spatial resolution can indicate an improved

physical representation with distributed forcing compared to uniform forcing, as one would expect.

Table 2 and 3 list the parameter transferability over only one dimension (either spatial resolution

or temporal resolution). We also investigated the combined effect of transferring parameters over

both the spatial and the temporal resolution. Figure 10 shows the relative impact of temporal and470

spatial resolution on parameter transferability based on KGE(Q) for uniform forcing. To illustrate

the relative impact of changes in spatial and temporal resolution, we fitted a linear surface through

the data points from our study (R2 = 0.68). The figure clearly shows that temporal resolution has a

stronger impact on parameter transferability than spatial resolution. The linear regression equation

that describes the surface in Figure 10 is given below:475

θ←→KGE(Q) = 83.3− 12.6 · Tj
Tl
− 3.0 · Si

Sk
, (7)

in which Tj

Tl
is the ratio in temporal resolution between the two model set-ups over which parameters

are transferred and Si

Sk
is the ratio in spatial resolution (L/L) between the two model set-ups. The

effect of temporal resolution on parameter transferability is stronger (slope of 12.6) than the effect

of spatial resolution (slope of 3.0). Parameter transferability decreases when the ratio between the480

original and the intended spatial and temporal resolution increases. The surfaces based on NSE(Q)

(R2=0.60) and NSE(logQ) (R2=0.75) show a similar behaviour:

θ←→NSE(Q) = 88.6− 12.8 · Tj
Tl
− 2.8 · Si

Sk
, (8)

θ←→NSE(logQ) = 92.9− 7.4 · Tj
Tl
− 3.6 · Si

Sk
. (9)485

When we fit a surface through the points obtained for the models run with distributed forcing, the

linear regression equations (R2=0.66, 0.67, 0.88 respectively) look as follows:

θ←→KGE(Q) = 80.3− 11.4 · Tj
Tl
− 2.6 · Si

Sk
. (10)

θ←→NSE(Q) = 75.3− 10.3 · Tj
Tl
− 4.3 · Si

Sk
, (11)490

θ←→NSE(logQ) = 91.3− 5.4 · Tj
Tl
− 2.8 · Si

Sk
. (12)

Also for the models with distributed forcing, the slope for the temporal resolution is steeper than

the slope for spatial resolution, implying that parameter transferability is more sensitive for tempo-

ral than for spatial resolution. Compared to uniform forcing, the slope for temporal resolution, and495

hence the impact of temporal resolution on transferability, is less steep for distributed forcing, while

the slope for spatial resolution is on average comparable for both forcings.
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5.3 Spatially distributed parameters

The advantage of distributed hydrological models over lumped models is that distributed models can500

incorporate spatially varying parameters, including those reflecting land use and soil characteristics

(Carpenter and Georgakakos, 2006), and spatially varying forcing. Figure 11 for example, shows

how the spatial variation in bulk densitity decreases with increasing resolution. However, in this

study, as in most large-domain studies with distributed models, the most sensitive parameters (i.e.

the once that were calibrated) have been applied uniformly over the grid cells. The main motivation505

for this practice is the ill-posedness of the problem (too many parameters have to be identified

with too little information), in addition to computational time. This implies that the advantage of

a distributed model remains unused for the parameters that impact the model output most. To test

the spatial distribution of the most sensitive parameters for the Thur basin, we have investigated

parameter transferability between the Thur basin and the nine subbasins for which discharge data510

were available (see Section 2.1 and Figure 2). Table 4 gives an overview for a selected number of

spatial and temporal resolutions. The table shows that parameter transferability from the Thur to the

subbasins is notably low. An extreme example is the St.Gallen catchment, which has maximum one

behavioural parameter set in common with the Thur basin. Table 4 therefore shows that the spatial

variation in the calibrated parameters is underestimated in the current model set-up.515

6 Discussion

6.1 Model performance

It seems counter-intuitive that model performance is significantly affected by both the temporal and

spatial resolution, while the parameter distribution is mainly impacted by the temporal resolution.

This can be explained, however. Model performance can still be significantly impacted by temporal520

and spatial resolution, even if the same parameters are selected for different spatial resolutions. This

implies that the model performance is mainly limited by the model structure or set-up, and much

less by the parameter values. This is confirmed by comparing the uniform and distributed forcing.

Although the distribution of the behavioural parameters was not very different for the two forcing

types, the model performance for distributed forcing was in almost all cases better than the model525

performance for the uniform forcing.

Liang et al. (2004) defined a so-called ‘critical resolution’, beyond which a finer spatial resolution

would not lead to any improvement in the model performance. In the study of Liang et al. (2004)

this critical resolution for the VIC model was found to be 1/8◦(≈ 12.5× 12.5 km). All spatial reso-

lutions applied in this study but the lumped one are below this critical resolution. The results in this530

study are therefore consistent with the results from Liang et al. (2004), because we did not find any

improvement in model performance with increasing spatial resolution, neither for the uniform nor
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for the distributed forcing. Rather, we find the contrary; for the uniform forcing the lumped model

outperformed the higher resolution models, and for the distributed forcing the 10× 10 km outper-

formed the other models. If something like a critical resolution exists, it is probably related to the535

processes represented in the model. Contradictory to our findings are the results of Zappa (2002),

who found that a critical spatial resolution in the Thur region is in the order of 500×500 m using the

PREVAH model, because of the complex topography and snow processes in the catchment. This can

either imply that the sub-grid variability parametrization in VIC is effective, or that not all relevant

hydrological processes are included in the VIC model. In order to check this last suggestion, future540

research on parameter transferability should consider more hydrological fluxes and states besides

the discharge, e.g. evapotranspiration.

6.2 The high sensitivity for temporal resolution

The conclusion that parameters cannot be transferred across temporal resolution seems to contradict

the results of Troy et al. (2008). The large difference is that Troy et al. (2008) only used sub-daily545

time steps (1, 3, 6, 12 hours), whereas we did find agreement between the hourly and daily time

step. Therefore, our results are not necessarily contradictory. Troy et al. (2008) chose the sub-daily

time steps in order to investigate if time could be saved in the calibration process by calibrating

on a coarser time step. Unfortunately, the reality is that in most large-domain studies models are

calibrated with monthly discharge observations (Melsen et al., 2016) rather than with sub-daily ob-550

servations. Our results suggest that models which were calibrated or validated at a monthly time

step cannot be interpreted at the daily or hourly time step. Chaney et al. (2015) showed that monthly

discharge observations could decrease the uncertainty around the daily flow duration curve. The de-

crease in uncertainty by adding monthly discharge information differed for different climates. The

Thur basin, with a wet continental climate, would experience a high reduction in uncertainty. This555

means that our results, which show that with monthly data it is impossible to determine the optimal

parameter set for the hourly or daily time step, would even be stronger for dry climates (Chaney

et al., 2015). Kavetski et al. (2011) showed that parameter values can significantly change by chang-

ing the temporal resolution. They found that the sensitivity of a parameter to temporal resolution

could be related to the model structure; the parameters from simpler model structures were more560

sensitive to temporal resolution than the parameters from more complex models.

Figure 12 and Table 2 and 3 in the supplementary material shows that the conclusions we draw

from Table 2 and Table 3 are not only valid for the best 1% of runs selected as behavioural. Table 2

and 3 in the supplementary material show that the same patterns are found when selecting the best

2% respectively 5% of the model runs. Figure 12 gives an overview for two selected cases, which565

show that model performance deteriorates when parameters are transferred over time, also for the

best 10% up to higher thresholds, whereas the impact of spatial resolution on model performance

deterioration is limited.
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6.3 Models versus nature: Do the current generation of models adequately represent spatial

variability?570

Our results show that parameter transferability is more sensitive to temporal than to spatial reso-

lution. A key question is to what extent this result stems from the model representation of spatial

variability. Spatial variability can be reflected in three domains of the model: the routing, the forc-

ing, and the soil- and land use parameters. In this study we excluded the effect of routing by using

a high-resolution drainage network based on sub-basins with a size of ~1 km2, independent of the575

resolution of the hydrologic model. We think that the effect of spatial resolution can be increased

by adapting the routing scheme accordingly. Drainage network resolution may affect the projected

hydrograph, for example with changes in the stream network and the channel slope. However, this

effect should then be assigned to the routing model, and not to the runoff generation model (the

hydrologic model). For clarity, we decided to exclude the effect of spatial resolution on routing in580

this study.

We investigated the effect of forcing by comparing the results for distributed and uniformly applied

forcing, and we tested the effect of spatially distributed soil- and land use parameters by aggregating

them for lower resolutions (Figure 11). Despite distributed forcing and the decrease in variation in

soil- and land use parameters, the model parameters showed low sensitivity to the spatial resolution.585

A possible explanation could be the sub-grid parametrizations of the VIC model for land use and

elevation, which decrease the effect of up-scaling these parameters to other resolutions, as shown by

Haddeland et al. (2002). However, we think that Section 5.3 and Table 4 show how spatial variabil-

ity is underestimated by calibrating and applying the most sensitive parameters uniformly over the

basin.590

The models in this study are configured in a similar way to many current day large-domain hydrolog-

ical models, using common data like the Harmonized World Soil Database and uniform application

of the most sensitive parameters. As such, this study is likely representative for many large-domain

studies. The limited sensitivity for spatial resolution is arguable because our implementation of VIC

substantially underestimates the spatial variability in nature, and, importantly, that similar issues in595

representing spatial variability is a common problem in large-domain hydrological modelling (e.g.,

see the model configuration in Mizukami et al. (2015a)). Many studies have considered spatial vari-

ability in forcing (Adams et al., 2012; Lobligeois et al., 2014) and soil parameters (Mohanty and

Skaggs, 2001; Western et al., 2004). Kim et al. (1997) accounted for heterogeneity in soil hydraulic

properties using stochastic methods, based on the scaling theory of Miller and Miller (1956). In600

fact, the effect of stochastic soil parametrizations on parameter transferability would be a valuable

research topic (Maxwell and Kollet, 2008). We argue here that the high spatial transferability may

occur because the current generation of land-surface models have an inadequate representation of

spatial variability and hydrologic connectivity, providing a strong motivation to substantially im-

prove the representation of spatial and temporal variability in models. This not only implies increas-605
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ing the spatial (and temporal) resolution of the model, but also including more relevant hydrological

processes. Promising techniques have been developed to allow spatial distribution of calibrated pa-

rameters, for example with Multiscale Parameter Regionalization (MPR, Samaniego et al. (2010);

Kumar et al. (2013)), which could and should be applied for large-domain hydrologic models.

6.4 Limitations of this case study610

The results in our study are based on a limited number of model configurations for a single basin,

so the results presented here are only intended to provide an example of the behaviour in the cur-

rent generation of land-surface models. Our results show a low sensitivity for the spatial resolution,

whether applied with distributed forcing or not. The observed impact of spatial resolution can there-

fore almost completely be attributed to the effect of spatially distributed soil and land use parameters615

(including the calibrated ones), which could be substantially underestimated. The impact of tempo-

ral resolution on parameter transferability is large. We employed the temporal resolutions for which

most hydrological observations are available, thus our results are relevant for practical applications.

Based on the work of Chaney et al. (2015) we expect that parameter transferability will be lower

for arid climates than the numbers we obtained, and based on the work of Kavetski et al. (2011) we620

expect that parameter transferability will be lower for more parsimonious models. The general mes-

sage from our study is the surprisingly high spatial transferability, highlighting the need for a focused

research effort to improve the representation of spatial variability in large-domain distributed models

(GHMs). A possible path forward is to develop computationally frugal process representations, as

for example presented by Hazenberg et al. (2015) for hillslope processes.625

7 Summary and conclusions

A VIC model for the Thur basin was run with four different spatial resolutions (1× 1 km, 5× 5 km,

10× 10 km, lumped) and evaluated at three different temporal resolutions (hourly, daily, monthly).

The forcing was applied both uniformly and distributed over the catchment, and the drainage network

for the routing was defined independent of the model resolution. Three objective functions were used630

to evaluate model performance: KGE(Q), NSE(Q) and the NSE(logQ). The model was run 3,150

times using a Hierarchical Latin Hypercube Sample and the best 1% of the runs was selected as

behavioural and used for further analysis. Parameter transferability was quantified by evaluating the

overlap in behavioural sets for different temporal and spatial resolutions. From the results we can

draw the following conclusions:635

– Both the spatial resolution and the temporal resolution of the VIC model had a significant im-

pact on the model performance, either expressed in terms of KGE(Q), NSE(Q), or NSE(logQ).

The model performance evaluated at a monthly time step consistently increased with decreas-

ing spatial resolution, while for the daily and hourly time step no clear relation with spatial

19



resolution could be found. Generally, the models applied with spatially distributed forcing640

performed better than the models applied with uniform forcing.

– The spatial resolution of the model had little impact on the parameter distribution of the be-

havioural sets. On the other hand, the temporal resolution significantly impacted the distribu-

tion of at least four out of seven parameters, both when applied with uniformly and distributed

forcing.645

– Parameters could to a large extent be transferred across the spatial resolutions, while parameter

transferability over the temporal resolutions was less trivial. Parameter transferability between

the hourly and daily time step was found to be feasible, but the monthly time step lead to

substantially different parameter values. This is crucial information, because many studies

tend to calibrate the VIC model on the monthly time step (Melsen et al., 2016). The results650

of this study suggest that the output from models calibrated on a monthly time step cannot be

interpreted or analysed on a daily or hourly time step. This might seem obvious, but it should

be recognized that the increasing spatial resolution of large-domain land-surface models might

increase the expectations concerning temporal resolution as well, as described in Melsen et al.

(2016).655

– We also investigated if parameters could be transferred across both the spatial and the tempo-

ral resolution simultaneously. Parameter transferability decreases when the ratio between the

original and the intended spatial and/or temporal resolution increases. The ratio of temporal

resolutions has a larger negative effect on parameter transferability than the ratio of spatial res-

olutions. It was also shown that parameter transferability depends on the objective function.660

When the NSE(logQ), which tends to put more emphasize on low flows, is used as evaluation

criterion, the parameter values at a monthly time step overlap much more with the daily and

hourly time steps than when KGE(Q) or NSE(Q) are used as objective functions. This means

that parameter transferability across temporal resolution also depends on the time scale of the

process to which a particular parameter refers.665

The most important result of our study is that it showed high parameter transferability across spa-

tial resolution, even when forcing was applied in a distributed fashion. A possible explanation for

the low sensitivity to spatial resolution is the uniform application of the most sensitive parameters.

This is indicative of a substantial underestimation of the actual spatial variability represented by

the VIC simulations. We did, however, construct our model according to current day standards for670

large-domain land-surface models, raising the point that the high spatial transferability may occur

because the current generation of models have an inadequate representation of spatial variability

and hydrologic connectivity. The results presented in this paper provide strong motivation to further

investigate and substantially improve the representation of spatial and temporal variability in large-

domain hydrological models. Large-domain hydrological models have many applications, from wa-675
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ter footprints (Gleeson et al., 2012) and water scarcity (Hoekstra, 2014), to global water use (Wada

and Bierkens, 2014) and electricity supply (Van Vliet et al., 2012), but the spatial variability in the

models is very likely underestimated, which increases the uncertainty in the model results. A critical

evaluation of large-domain hydrological models on a smaller scale, as conducted in this study, shows

that we should be carefull with interpreting the results of large-domain models.680
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Table 1. Sampled model parameters.

Parameter Units Lower value Upper value Description

bi - 10−5 0.4 Variable infiltration curve parameter

ds - 10−4 1.0 Fraction of ds,max where non-linear baseflow starts

dm mm d−1 1.0 50 Maximum velocity of the baseflow

expt2 - 4.0 18.0 Exponent of the Brooks-Corey drainage equation for layer 2

Depth2 m Depth1+0.1 Depth1+3 Depth of soil layer 2

C ms−1 0.5 4 Advection coefficient of horizontal routing (St. Venant)

D m2s−1 200 4000 Diffusion coefficient of horizontal routing (St. Venant)
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Figure 1. Overview of the spatial and temporal resolutions employed in this study. Top from left to right: DEM

grid cells for 1×1 km, 5×5 km, 10×10 km resolution and the lumped model. The circle in the left panel shows

the location of the Thur outlet where the discharge is measured. The dotted lines in the right panel indicate a

0.5◦ grid. Bottom: The three temporal resolutions, observed discharge at an hourly, daily and monthly time

step.

28



Table 2. Transferability of parameters across spatial resolution, expressed as percentage agreement in detected

behavioural runs for different spatial resolutions (in km) at different time steps.

Uniform forcing (% agreement) Distributed forcing (% agreement)

HOUR

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

1× 1 vs 5× 5 78 84 91 88 75 84

1× 1 vs 10× 10 72 81 81 78 56 78

5× 5 vs 10× 10 94 94 91 88 81 94

1× 1 vs lumped 78 88 91

5× 5 vs lumped 91 84 94

10× 10 vs lumped 88 81 88

DAY

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

1× 1 vs 5× 5 94 84 84 91 84 91

1× 1 vs 10× 10 84 69 69 78 69 81

5× 5 vs 10× 10 91 84 84 89 84 91

1× 1 vs lumped 91 81 88

5× 5 vs lumped 91 88 94

10× 10 vs lumped 84 84 81

MONTH

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

1× 1 vs 5× 5 75 88 88 84 84 91

1× 1 vs 10× 10 66 84 81 66 78 84

5× 5 vs 10× 10 88 91 94 78 88 94

1× 1 vs lumped 78 72 94

5× 5 vs lumped 78 75 88

10× 10 vs lumped 78 78 88
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Table 3. Transferability of parameters across temporal resolution, expressed as percentage agreement in de-

tected behavioural runs for different temporal resolutions at different spatial resolutions.

Uniform forcing (% agreement) Distributed forcing (% agreement)

1× 1 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

hour vs day 56 81 81 69 63 75

hour vs month 3 6 34 6 9 47

day vs month 3 6 47 6 13 63

5× 5 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

hour vs day 66 88 81 69 69 81

hour vs month 3 6 38 9 6 53

day vs month 3 6 47 9 6 66

10× 10 km

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

hour vs day 63 75 78 59 72 78

hour vs month 3 3 44 13 6 59

day vs month 0 6 63 13 6 75

lumped

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

hour vs day 66 84 81

hour vs month 3 0 44

day vs month 3 3 53
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Figure 2. The Thur basin and the nine sub-basins for which discharge data were available.
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Table 4. Transferability of parameters from the Thur to the nine subbasins, expressed as percentage agreement

(%) in detected behavioural runs. The forcing was applied uniformly and the KGE(Q) was used as objective

function.

Catchment (size) 1× 1 km 5× 5 km 10× 10 km

hour day month hour hour

Rietholzbach (3.3 km2) 19 0 0 25 19

Herisau (17.8 km2) 16 6 0 16 16

Appenzell (74.2 km2) 28 25 9 28 16

Wängi (78.9 km2) 9 56 31 34 50

Mogelsberg (88.2 km2) 28 38 66 19 28

Frauenfeld (212 km2) 3 3 75 3 0

St.Gallen (261 km2) 3 0 0 3 0

Jonschwil (493 km2) 6 0 0 6 0

Halden (1085 km2) 19 9 0 18 13
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Figure 3. Upper panels: The precipitation sum in the Thur catchment over the full model period (1/8/2002 –

31/8/2003) shown for different resolutions (f.l.t.r. 1× 1 km, 5× 5 km, 10× 10 km). Lower panels: the average

temperature over this period for the same spatial resolutions.
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Figure 4. Daily discharge characteristics for the Thur basin. Left panel: the daily discharge in the Thur for the

selected model period. The black lines show three model runs with the same parameter set but with different

initial conditions (θ = 0.5,0.7,0.9). Right panel: part of the flow duration curve covered within the model

period. The flow duration curve is based on 39 years of daily discharge observations in the Thur for the period

1974–2012.
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Figure 5. Parameter sampling as applied in this study. (a) Example situation when sampling for a model with

three parameters. (b) Sensitivity analysis can be conducted to decrease the dimensions of the sampling space.

(c) Latin Hypercube sampling is structured and more efficient: one sample in each row and each column, as

indicated with the bands. The number of samples has to be determined beforehand. (d) Hierarchical Latin

Hypercube sampling allows to extend the sample if necessary, while conserving Latin Hypercube structure.
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Figure 6. Model performance of the behavioural sets for different temporal resolutions and different spatial

resolutions. The left panel shows the KGE(Q), the middle panel the NSE(Q) and the right panel the NSE(logQ).

Per objective function the most behavioural sets were selected, hence the selected sets where not necessarily

the same for the three objective functions. The box shows the 25–75% quantile.
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Figure 7. The model performance for the three separate components of the Kling-Gupta Efficiency of the

behavioural sets for different temporal and spatial resolutions. The left panel shows the correlation r, the middle

panel the standard deviation of the model output divided by the standard deviation of the observations (α), and

the right panel shows the mean of the model output divided by the mean of the observations (β).
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Figure 8. Distribution of the sampled parameters for the behavioural sets, fitted with a kernel-density. The

width of the line indicates the variation in distribution between the different spatial resolutions. The left column

is based on KGE(Q), the middle column on NSE(Q) and the right column on NSE(logQ). Legend according to

Figure 6.
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Figure 9. The effect of spatial and temporal resolution on parameter distribution. The p-value indicates the

significance of the impact of spatial resolution (S) and temporal resolution (T) on the parameter values of the

behavioural sets, evaluated for the three objective functions.
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Figure 10. Parameter transferability as a function of ratio in temporal and spatial resolution. Ratio of temporal

resolutions is defined as follows: transfer from hourly to daily time step is a ratio of 24, whereas transfer from

hourly to monthly is a ratio of 732 (732 hours in one month of 30.5 days). The ratio of spatial resolutions

is defined as the square root of the number of cells that would fit in the other cell: from 1× 1 km resolution

to 5× 5 km resolution is a ratio of
√
25 = 5. The behavioural sets were determined based on the KGE(Q).

The linear surface (R2 = 0.68) was fitted to illustrate the relative impact of changes in spatial and temporal

resolution.
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Figure 11. Distribution of bulk density over the grid cells for the four different spatial resolutions.
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Figure 12. Impact of parameter transfer on model performance. The panels show the distribution of the NSE(Q)

fitted with a kernel density for 3,150 runs. On the left hand side of the arrow the red area represents the best

10% of the runs, each colour interval increasing with 10% to the full data set (100%, purple). The selected

behavioural runs are indicated separately with a black line (best 1%)). The panel on the right hand side of the

arrow shows the distribution of the model performance for the coloured selections when evaluated at another

spatial (left) or temporal (right) resolution. When the direction of the colours changes from the left panel to the

right panel, this implies a low parameter transferability. The data for the first two columns are based on hourly

discharges, the data for the second two columns are based on the 1× 1 km model.
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Figure 1. DELSA parameter sensitivity (scaled from 0 to 1) for three nested basins with a different size (Ri-

etholzbach; 3.3 km2, Jonschwil; 493 km2, Thur; 1703 km2). The numbers on the x-axis refer to the parameters

in Table 1. The sensivity as shown in this figure is based on the NSE(Q) as objective function. Results are shown

based on a daily and hourly time interval.
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Table 1. Description and boundary values of parameters that have been considered in the DELSA sensitivity

analysis.

Nr. Parameter Units Lower value Upper value Description

Soil parameter file

1 bi - 10−5 0.4 Variable infiltration curve parameter

2 Ds - 10−4 1 Fraction of Dsmax where non-linear baseflow starts

3 Dsmax mm d−1 1 50 Maximum velocity of the baseflow

4 Ws - 0.5 1 Fraction of maximum soil moisture where non-linear baseflow

starts

5 c - 1 4 Exponent used in the baseflow curve

6 expt1 - 5 30 Exponent of the Brooks-Corey drainage equation layer 1

7 expt2 - 5 30 Exponent of the Brooks-Corey drainage equation layer 2

8 expt3 - 5 30 Exponent of the Brooks-Corey drainage equation layer 3

9 Ksat1 mm d−1 100 1000 Saturated hydrologic conductivity layer 1

10 Ksat2 mm d−1 100 1000 Saturated hydrologic conductivity layer 2

11 Ksat3 mm d−1 100 1000 Saturated hydrologic conductivity layer 3

12 Depth1 m 0.01 0.5 Thickness of soil layer 1

13† Depth2 m Depth1+0.1 Depth1+4 Thickness of soil layer 2

14 Depth3 m 0.1 4 Thickness of soil layer 3

15 bulk density1 kg m−3 1500 2685 Bulk density of soil layer 1

16 bulk density2 kg m−3 1500 2685 Bulk density of soil layer 2

17 bulk density3 kg m−3 1500 2685 Bulk density of soil layer 3

18 Wcr-FRACT1 - 0.30 0.47 Fractional soil moisture content at critical point layer 1

19 Wcr-FRACT2 - 0.30 0.47 Fractional soil moisture content at critical point layer 2

20 Wcr-FRACT3 - 0.30 0.47 Fractional soil moisture content at critical point layer 3

21 snow-rough m 5·10−5 0.5 Surface roughness of the snow pack

Vegetation parameter file

22 Root depth 1 m 0.1 3 Root zone thickness layer 1

23 Root depth 2 m 0.1 3 Root zone thickness layer 2

24 Root depth 3 m 0.1 3 Root zone thickness layer 3

Vegetation library file

25 rmin s m−1 30 300 Minimum stomatal resistance of vegetation

26? LAI - 0.7 1.3 Leaf Area Index

Global parameter file

27 Tmin
◦C -1.5 0.0 Minimum temperature at which rain can fall

28† Tmax
◦C Tmin+0.5 Tmin+1.5 Maximum temperature at which snow can fall

† Value of this parameter must be greater than the related parameter mentioned in the parameter boundaries.
? Implemented as a multiplication factor to the default parameter values.
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Table 2. Transferability of parameters across spatial resolution, expressed as percentage agreement in detected

behavioural runs based on KGE(Q). The results are shown for three different sample sizes for the behavioural

runs; the highest 1% of the runs, the highest 2% of the runs, and the highest 5% of the runs.

Uniform forcing (% agreement) Distributed forcing (% agreement)

HOUR

1% 2% 5% 1% 2% 5%

1× 1 vs 5× 5 78 89 85 88 84 89

1× 1 vs 10× 10 72 77 78 78 70 83

5× 5 vs 10× 10 94 83 92 88 86 91

1× 1 vs lumped 78 88 85

5× 5 vs lumped 91 89 92

10× 10 vs lumped 88 84 90

DAY

1% 2% 5% 1% 2% 5%

1× 1 vs 5× 5 94 84 86 91 86 89

1× 1 vs 10× 10 84 78 79 78 84 81

5× 5 vs 10× 10 91 91 92 89 94 88

1× 1 vs lumped 91 86 87

5× 5 vs lumped 91 89 90

10× 10 vs lumped 84 84 90

MONTH

1% 2% 5% 1% 2% 5%

1× 1 vs 5× 5 75 86 85 84 89 86

1× 1 vs 10× 10 66 69 73 66 69 74

5× 5 vs 10× 10 88 83 86 78 73 83

1× 1 vs lumped 78 70 70

5× 5 vs lumped 78 75 77

10× 10 vs lumped 78 72 79
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Table 3. Transferability of parameters across temporal resolution, expressed as percentage agreement in de-

tected behavioural runs based on KGE(Q). The results are shown for three different sample sizes for the be-

havioural runs; the highest 1% of the runs, the highest 2% of the runs, and the highest 5% of the runs.

Uniform forcing (% agreement) Distributed forcing (% agreement)

1× 1 km

1% 2% 5% 1% 2% 5%

hour vs day 56 77 83 69 72 78

hour vs month 3 3 6 6 16 15

day vs month 3 3 4 6 9 17

5× 5 km

1% 2% 5% 1% 2% 5%

hour vs day 66 70 80 69 73 79

hour vs month 3 2 8 9 13 15

day vs month 3 3 6 9 9 22

10× 10 km

1% 2% 5% 1% 2% 5%

hour vs day 63 73 79 59 84 79

hour vs month 3 3 8 13 16 16

day vs month 0 3 8 13 16 24

lumped

1% 2% 5% 1% 2% 5%

hour vs day 66 72 82

hour vs month 3 6 9

day vs month 3 3 8
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