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Abstract 12 

The fluctuant and complicated hydrological processes can result in the uncertainty of runoff 13 

forecasting. Thus, it is necessary to apply the multi-method integrated modelling approaches 14 

to simulate runoff. Integrating the ensemble empirical mode decomposition (EEMD), the back 15 

propagation artificial neural network (BPANN) and the nonlinear regression equation, we put 16 

forward a hybrid model to simulate the annual runoff (AR) of the Kaidu River in northwest 17 

China. We also validate the simulated effects by using the coefficient of determination (R2) 18 

and the Akaike information criterion (AIC) based on the observed data from 1960 to 2012 in 19 

Dashankou hydrological station. The average absolute and relative errors show the high 20 

simulation accuracy of the hybrid model. R2 and AIC both illustrate that the hybrid model has 21 

a much better performance than the single BPANN. The hybrid model and integrated 22 

approach elicited by this study can be applied to simulate the annual runoff of the similar 23 

rivers in northwest China. 24 

 25 
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1 Introduction 1 

The description of hydrological processes is the basis of hydrological modelling and 2 

simulation. Many models have been developed for describing hydrological processes over the 3 

past decades. From different perspectives, these hydrologic models can be classified as 4 

stochastic and deterministic models according to their mathematical property, or classified as 5 

conceptual and physically based models according to the physical processes involved in 6 

modelling, or classified as lump and distributed models according to the spatial description of 7 

the watershed process (Refsgaard, 1996; Moglen and Beighley, 2002). 8 

Among the hydrologic models, distributed hydrological models are widely used. The 9 

soil-water-atmosphere-plant (SWAP) model has been intensively validated during the past 10 

two decades (van Dam et al., 1997; Gusev and Nasonova, 2003; Kroes et al., 2003; Gusev et 11 

al., 2011; Ma et al., 2011). Different versions of SWAP are validated against various observed 12 

hydrothermal characteristics. The validations are performed both for “point” experimental 13 

sites and for catchments and river basins with different areas (from 10-1 to 105 km2) on a 14 

long-term basis and under different environmental conditions (Nasonova and Gusev, 2007). 15 

The soil and water assessment tool (SWAT) model is a continuation of almost 30 years of 16 

modelling efforts conducted by the USDA Agricultural Research Service, and widely used in 17 

the world. A number of scientists have used SWAT model for simulating streamflow and 18 

related hydrologic analyses (Gan and Luo, 2013; Levesque et al, 2008; Liu et al., 2008, 2014; 19 

Luo et al., 2012; Shope et al., 2014; Lin et al., 2015; Yang and Musiake, 2003). According to 20 

the investigation by Gassman et al. (2007), there have been hundreds of published articles 21 

including SWAT applications, reviews of SWAT components, or other researches of SWAT 22 

in the past decades. 23 

However, the application prerequisite of the distributed hydrological model is to successfully 24 

obtain a large number of parameters (such as temperature, precipitation, evapotranspiration, 25 

topography, land use, soil moisture, and vegetation coverage) at each grid cell (Yang et al., 26 

2015). But for a large river basin with sparse meteorological and hydrological sites as well as 27 

lacking of observed data, it is difficult to obtain the large number of parameters mentioned 28 
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above at each grid cell. Therefore, more studies are required to explore the hydrological 1 

processes from different perspectives by means of different methods. 2 

In fact, hydrologists have used many methods for understanding the variation pattern of 3 

streamflow in the recent two decades. Various methods such as grey model (Yu et al., 2001; 4 

Trivedi and Singh, 2005), functional-coefficient time series model (Shao et al. 2009), wavelet 5 

analysis (Labat et al., 2000a, 2000b; Lane, 2007; Sang, 2012), genetic algorithm (Seibert, 6 

2000), and artificial neural network (Hsu et al. 1995; Hu et al. 2008; Tokar and Johnson, 1999; 7 

Modarres, 2009) have been widely used for hydrologic analysis and streamflow simulation. 8 

Specially, hybrid models have been paid more attentions (Nourani et al., 2009; Zhao et al., 9 

2009; Sahay and Srivastava 2014; Xu et al., 2014; Yarar 2014). 10 

The water resource in northwest China which can be utilized is mainly from the streamflow of 11 

inland rivers. Hence the runoff variation of inland rivers has aroused more and more attention 12 

(Chen et al. 2009; Li et al. 2008; Wang et al. 2010; Xu et al., 2011). However, the runoff 13 

variation pattern of inland rivers in northwest China has not been clearly comprehended 14 

because of the complexity of the hydrological process (Xu et al. 2009, 2010). To understand 15 

the runoff variation pattern of inland rivers in northwest China, this study select the Kaidu 16 

River as a typical case of an inland river in northwest China, and integrated the ensemble 17 

empirical mode decomposition (EEMD), the back propagation artificial neural network 18 

(BPANN) and nonlinear regression equation to conduct a hybrid model for simulating annual 19 

runoff (AR). 20 

 21 

2 Study basins and data 22 

2.1 Study Area 23 

The Kaidu River is situated at the north fringe of Yanqi Basin on the south slope of the 24 

Tianshan Mountains in Xinjiang, and is enclosed between latitudes 42°14′–43°21′N and 25 

longitudes 82°58′–86°05′E (Fig. 1). The river starts from the Hargat Valley and the Jacsta 26 

Valley in Sarming Mountain with a maximum altitude of 5000 m (the middle part of the 27 
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Tianshan Mountain), and ends in Bosten Lake, which is located in the Bohu County of 1 

Xinjiang. This lake is the largest lake in Xinjiang (also once the largest interior fresh water 2 

lake in China) and immediately starts another river known as the Kongque River. The 3 

catchment area of the Kaidu River above Dashankou, is 18,827 km2, with an average 4 

elevation of 3100m (Chen et al., 2013).  5 

Bayanbuluke wetland, which is in Kaidu River Basin, is the largest wetland of the Tianshan 6 

Mountain area. The large areas of grassland and marshes in Bayanbuluke wetland have 7 

provided favorable conditions for swan survival and reproduction. For this reason, it becomes 8 

the China's sole state-level swan nature reserve. The annual average temperature is only -4.6 9 

oC and the extreme minimum temperature is -48.1 oC. The snow cover days are as many as 10 

139.3 d and the largest average snow depth is 12 cm. As a unique high alpine cold climate and 11 

topography, it cultivates various alpine grassland and meadow ecosystems, having abundant 12 

aquatic plants, animals and good grassland resources. It is the birthplace and water saving 13 

place of the Kaidu River and plays a crucial role in regulating, reserving water and 14 

maintaining water balance. It also plays an utmost important role in protecting the Bosten 15 

Lake, its surrounding wetlands, and the ecological environment and green corridor of the 16 

lower reaches of Tarim River. 17 

2.2 Data 18 

The purpose of this study is to well understand the internal variation pattern by simulation 19 

method, so we used the annual runoff (AR) time series data from 1960 to 2012, which are 20 

observed at the Dashankou hydrological station. To analyze the correlation between the AR 21 

and regional climate change, the data of precipitation and temperature in the same period at 22 

the Bayinbuluke meteorological station were used. The two stations locate in the mountainous 23 

area (the source area of the river) where human activities are relatively rare. Therefore, it was 24 

assumed that the observed data reflect the natural conditions (Chen et al., 2013). In order to 25 

compare the hydrological cycle of Kaidu River and the El Niño meteorological phenomena, 26 

we also used the NINO3.4 index from NOAA Earth System Research Laboratory 27 

(http://www.esrl.noaa.gov/psd/data/climateindices/list/#Nina34).  28 
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3 Methods 1 

To simulate the AR, we made a hybrid model by integrating ensemble empirical mode 2 

decomposition (EEMD), back propagation artificial neural network (BPANN) and regression 3 

equation. We firstly used the EEMD method to decompose the AR into four intrinsic mode 4 

functions (i.e. IMF1, IMF2, IMF3 and IMF4) and a trend (RES). Then we simulated IMFs by 5 

the back propagation artificial neural network (BPANN), and simulated RES (trend) by a 6 

nonlinear regression equation. Finally, the simulated values for AR are obtained from the 7 

summation of the simulated results of the trend (RES) and IMFs. The framework of the 8 

hybrid model is showed in Fig. 2. 9 

3.1 EEMD method 10 

The ensemble empirical mode decomposition (EEMD) is a new noise-assisted data analysis 11 

method based on the empirical mode decomposition (EMD), which defines the true IMF 12 

components as the mean of an ensemble of trials, each consisting of a signal plus white noise 13 

of finite amplitude (Wu and Huang, 2009).  14 

The EMD has been developed for non-linear and non-stationary signal analysis, though only 15 

empirically. The EMD decompose a signal into several intrinsic mode functions (IMFs), then 16 

the frequencies of the IMFs are arranged in decreasing order (high to low), where the lowest 17 

frequency of the IMF components represents the overall trend of the original signal or the 18 

average of the time series data (Huang et al., 1998). Most importantly, each of these IMFs 19 

must satisfy two conditions: (1) the number of extrema and the number of zero crossings must 20 

be equal or differ at most by one; (2) at any point, the mean value of the envelope defined by 21 

the local maxima and local minima must be zero. 22 

The EMD processing is as follows. 23 

For the original signal )(tx , first we find out all the local maxima and minima, and then use 24 

cubic spline interpolation method to form the upper envelope )(1 tu  and the lower envelope 25 

)(2 tu ; the local mean envelope )(1 tm  can be expressed as: 26 
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The first component )(1 th  can be obtained by subtracting the local mean envelope )(1 tm  2 

from the original signal )(tx , with the mathematical expression as follows: 3 

)()()( 11 tmtxth −=                             (2) 4 

If )(1 th  does not satisfy the IMF conditions, regard it as the new )(tx , and repeat the steps 5 

in formula (1) and (2) k times until )(1 th k  is obtained as an IMF. 6 
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Here, the standard deviation (SD) is smaller than a predetermined value. If the above process 10 

is repeated too many times, the IMF will become a pure frequency modulation signal with 11 

constant amplitude in the actual operation, possibly resulting in loss of its actual meaning.  12 

Once the first IMF component is determined, the residue )(1 tr  can also be obtained by 13 

separating 1C  from the rest of the data, i.e. 14 

11 )()( Ctxtr −=                               (5) 15 

By taking the residue )(1 tr  as new data and repeating steps (1)-(5), a series of IMFs, namely, 16 

nCCC ,,, 32 L  can be obtained.  17 

The sifting process finally stops when the residue, )(trn , becomes a monotonic function or a 18 

function with only one extremum from which no more IMF can be extracted. Finally, the 19 

original signal )(tx  can be reconstructed by n IMFs (i.e. )(tCi ) and a residue )(trn  as 20 
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follows: 1 
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Although EMD has many merits, there is a shortcoming of mode mixing in EMD. To 3 

overcome the mode mixing problem, the EEMD has been developed for non-linear and 4 

non-stationary signal analysis (Wu and Huang 2009).  5 

The principle of EEMD is that: adding white noise to the data, which distributes uniformly in 6 

the whole time–frequency space, the bits of signals of different scales can be automatically 7 

designed onto proper scales of reference established by the white noise. 8 

The EEMD algorithm is straightforward and can be described as follows: first, add a white 9 

noise series to the original signal 10 

)()()( tntxtx ii +=                                    (7)   11 

Where )(txi  is the new signal after adding ith white noise to the original signal data )(tx , 12 

)(tni  is the white noise. Then, decompose the signal with added white noise into IMFs using 13 

EMD according to the steps of (1)-(5) equation, the corresponding IMF components )(tCij   14 

and residue component )(tri  of the decompositions were obtained. Finally, adopt the means 15 

of the ensemble corresponding to the IMFs of the decompositions as the final result, namely 16 
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where )(tC j  is the final jth IMF component, N is the number of white noise series, )(tCij  18 

denotes the jth IMF from the added white noise trial. 19 

Wu and Huang (2009) noted that the amplitude size of the added noise exerts little influence 20 

on the decomposition results on the condition that it is limited, is not vanishingly small or 21 

very large and can include all possibilities. Therefore, the application of the EEMD method 22 

does not rely on subjective involvement; it is an adaptive data analysis method. 23 
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The significance test in EEMD can be carried out by means of white noise ensemble 1 

disturbance, to get each IMF credibility (Wu and Huang 2009; Huang and Shen 2005). 2 

In addition, to solve the overshooting and undershooting phenomenon of the impact of the 3 

boundary on the decomposition process, mirror-symmetric extension (Huang and Shen 2005; 4 

Xue et al. 2013) was used to address the EEMD decomposition boundary problem. 5 

The residue of EEMD is a monotonic function that intrinsically presents the overall trend of a 6 

time series (Wu et al., 2007, 2009). Thus, the reconstruction of signal )(tx  based on EEMD 7 

can be obtained as following: 8 

)(21)( trendRESIMFIMFIMFtx n ++++= L           (9) 9 

Where RES is the residue of EEMD, i.e. the trend of signal )(tx . 10 

In this study, we decomposed the AR time series to a trend (RES) and four IMFs. 11 

The MATLAB programs for EEMD are provided by RCADA, National Central University, 12 

which can be downloaded at the website (http://rcada.ncu.edu.tw/research1_clip_ex.htm). 13 

3.2 BPANN 14 

In the back propagation artificial neural network (BPANN), a number of smaller processing 15 

elements (PEs) are arranged in layers: an input layer, one or more hidden layers, and an output 16 

layer (Hsu et al., 1995). The input from each PE in the previous layer ( ix ) is multiplied by a 17 

connection weight ( jiw ). These connection weights are adjustable and may be likened to the 18 

coefficients in statistical models. At each PE, the weighted input signals are summed and a 19 

threshold value ( jθ ) is added. This combined input ( jI ) is then passed through a transfer 20 

function ( )(⋅f ) to produce the output of the PE ( jy ). The output of one PE provides the input 21 

to the PEs in the next layer. This process can be summarized (Maier and Dandy, 1998) in 22 

equation (13) and (14) and illustrated in Fig. 3. 23 

jijij xwI θ∑ +=                                  (10) 24 
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The error function of network at tth moment is defined as follows: 2 
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where )(tyi is the actual output and )(tdi is the desired output respectively corresponding to 4 

ith neuron at tth moment. When ε≤)(tE (ε is a given error in advance), the network will stop 5 

training and the network model at this time is just what we need. 6 

We used the BPANN with a four-tier structure to simulate IMF1, IMF2, IMF3 and IMF4 of 7 

the AR based on the results from the EEMD. The four-tier structure of the BPANN for each 8 

IMF is as follows (Fig. 4): an input layer with three variables, i.e. (t-1)-th, (t-2)-th and (t-3)-th 9 

value of the IMF; two hidden layers, in which the first layer contains three neurons and the 10 

second layer contains four neurons; an output layer with a variable, i.e. tth value of the IMF. 11 

The transfer function from the input layer to two hidden layers is tansig, i.e. the hyperbolic 12 

tangent sigmoid transfer function (http://www.mathworks.com/help/nnet/ref/tansig.html). The 13 

transfer function from the hidden layers to the output layer is purelin, i.e. the linear function 14 

(http://www.mathworks.com/help/nnet/ref/purelin.html). 15 

The purpose of our BPANN is to capture the relationship between a historical set of inputs 16 

and corresponding outputs. As mentioned above, this is achieved by repeatedly presenting 17 

examples of the input/output relationship to the model and adjusting the model coefficients 18 

(i.e. the connection weights) in an attempt to minimize an error function between the 19 

historical outputs and the outputs predicted by the model. This calibration process is generally 20 

referred to as ‘training’. The aim of the training procedure is to adjust the connection weights 21 

until the global minimum in the error surface has been reached. The network training process 22 

(Moghadassi et al., 2009) is summarized in Fig. 5. 23 

The back-propagation process is commenced by presenting the first example of the desired 24 

relationship to the network. The input signal flows through the network, producing an output 25 
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signal, which is a function of the values of the connection weights, the transfer function and 1 

the network geometry. The output signal produced is then compared with the desired 2 

(historical) output signal with the aid of an error (cost) function. 3 

Because it can train any network as long as its weight, net input, and transfer functions have 4 

derivative functions (Kermani et al., 2005), we selected the Levenberg-Marquardt 5 

optimization, i.e. trainlm (http://www.mathworks.com/help/nnet/ref/trainlm.html) as a 6 

network training function in the computing environment of MATLAB. 7 

3.3 Nonlinear regression 8 

In order to simulate the trend of AR, we fitted a quadratic polynomial by using the nonlinear 9 

regression based on the results from the EEMD. We conducted the quadratic polynomial 10 

regression equation as follows: 11 

cbtaty ++= 2                               (13) 12 

where the independent variable (t) is the time variable, and the dependent variable (y) 13 

represent the trend of AR, which is the RES obtained from the EEMD. The coefficients (a, b 14 

and c) are obtained by method of least squares (Lancaster and Šalkauskas, 1986). 15 

3.4 Simulated effect test 16 

In order to identify the uncertainty of the simulated results, the coefficient of determination 17 

was calculated as follows: 18 
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where R2 is the coefficient of determination; iŷ  and iy  are the simulate value and actual 20 

data of AR respectively; y is the mean of ),...,2,1( niyi = ; ∑
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1

2)(  is the total sum of squares. The coefficient of 1 

determination is a measure of how well the simulate results represent the actual data. A bigger 2 

coefficient of determination indicates a higher certainty and lower uncertainty of the estimates 3 

(Xu, 2002). 4 

To compare the goodness between our hybrid model and single BPANN, we also used the 5 

measure of Akaike information criterion (AIC) (Anderson et al., 2000). The formula of AIC is 6 

as follows: 7 

)/ln(2 nRSSnkAIC +=                                       (15) 8 

where k is the number of parameters estimated in the model; n is the number of samples; RSS 9 

is the same as in formula (14). A smaller AIC indicates a better model (Burnham and 10 

Anderson, 2002). 11 

 12 

4 Results and discussion 13 

4.1 Decomposition for AR 14 

Fig. 6 reveals anomaly fluctuations of the AR time series in the Kaidu River during 1960 15 

-2012. It is clear that the AR shows a strong nonlinear and non-stationary variation. Because 16 

of the nonlinear and non-stationary characteristics, it is difficult to show the change law of the 17 

AR time series. 18 

To discover intrinsic modes in the signal of AR, we decomposed the AR time series by the 19 

EEMD method. For decomposing the AR time series, the ensemble number is 100, and the 20 

added noise has amplitude that is 0.2 times the standard deviation of the corresponding data, 21 

and four IMF components (IMF1-4) and a trend component (RES) were obtained. The 22 

decomposed results are showed in Fig. 7.  23 

The significance test showed that IMF2, IMF3 and IMF4 reach above the 95% confidence 24 

level, while IMF1 reach above 90% confidence level. The variance contribution rate of IMF1, 25 
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IMF2, IMF3, IMF4 and RES (trend) is 28.29%, 19.61%, 10.11%, 8.58% and 33.41% 1 

respectively. The summation of IMF1, IMF2, IMF3, IMF4 and RES represent of the 2 

reconstruction for AR time series, which is very highly correlative with its original data series. 3 

It can be seen that the reconstruction for AR series with the original data series is almost 4 

exactly the same (Fig. 8). This result illustrates that the decomposition of the AR time series 5 

by EEMD got a good prospective effect. 6 

Each IMF component in Fig. 7 has its own physical meaning, which reflects the inherent 7 

oscillation at a characteristic scale. The four IMF components (IMF1-4) reflect the fluctuation 8 

characteristics from high frequency to low frequency. IMF1 presents the highest frequency 9 

fluctuation and IMF4 shows the lowest frequency fluctuation. Whereas the fluctuation 10 

frequency of IMF2 is higher than that of IMF3 but lower than that of IMF1, and the 11 

fluctuation frequency of IMF3 is higher than that of IMF4 but lower than that of IMF2. The 12 

residual (RES) of EEMD is a monotonic function that presents the overall trend of the AR 13 

time series. 14 

The multi-scale oscillations of runoff in the Kaidu River reflect not only the periodic changes 15 

of the climatic system under external forcing but also the non-linear feedback of the climatic 16 

system. To compare the hydrological cycle of Kaidu River and the El Niño meteorological 17 

phenomena, we also decomposed the NINO3.4 index data series in the same period by using 18 

the EEMD method. The results show that the four IMF components (IMF1-4) of the NINO3.4 19 

index data series respectively display quasi-3-year, quasi-6-year, quasi-11-year and 20 

quasi-28-year periodic fluctuation (Fig. 9), whereas the four IMF components (IMF1-4) of the 21 

AR series in the Kaidu River respectively show quasi-3-year, quasi-6-year, quasi-11-year and 22 

quasi-27-year cyclic variation (Fig. 7). Although the two cycles are not complete same, they 23 

show some comparability. A study showed that there was a possible variability in droughts 24 

and wet spells over China on the multi-year or decadal scale when one strong El Niño event 25 

happened, but it does not mean that each El Niño event must cause a wet-dry change (Su and 26 

Wang, 2006). Similarly, the larger fluctuations of runoff in the Kaidu River on the multi-year 27 

or decadal scale possibly relate to strong El Niño events, but it does not mean that a big 28 
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change of runoff certainly corresponds to a strong El Niño event. The possible reason is that 1 

the influencing factors include not only El Niño event but also other factors. 2 

In fact, there are many other factors affecting the runoff, such as the varied topography, 3 

vegetation cover and construction of water conservancy project (Chen et al., 2013). Our 4 

previous study showed that the runoff process of the Kaidu River is closely related to the 5 

regional climate change (Xu et al., 2014; Bai et al., 2015). To compare the cycles between the 6 

runoff in Kaidu River and the regional climatic factors in the study period, we used the 7 

EEMD method to decompose the data series of annual precipitation (AP) and annual average 8 

temperature (AAT) into four IMF components (IMF1-4) and a trend. The results are similar to 9 

that of the AR: the AP and AAT on the whole show an upward trend, meanwhile, a) the AP 10 

presents quasi-3-year, quasi-6-year, quasi-11-year and quasi-27-year cycles, and b) the AAT 11 

displays quasi-3-year, quasi-6-year, quasi-13-year and quasi-27-year cycles. To further 12 

analyze the correlation between runoff and precipitation and temperature, we reconstructed 13 

inter-annual and inter-decadal precipitation and temperature variations, in which the 14 

inter-annual precipitation/temperature was obtained by IMF1 and IMF2, while the 15 

inter-decadal precipitation/temperature was obtained by IMF3 and IMF4. The results of 16 

multi-scale correlation analysis among annual runoff, annual precipitation and annual average 17 

temperature are shown in Table 1. Evidently, although there are differences in the length and 18 

strength of the periods among the precipitation, temperature and runoff changes, the positive 19 

correlation between runoff and precipitation, temperature are still significant except for 20 

inter-annual precipitation v.s. inter-decadal runoff, suggesting that the precipitation and 21 

temperature are two main causes of runoff variation. Furthermore, the higher correlation 22 

between runoff and climate factors is precipitation, followed by temperature at both the 23 

inter-annual and inter-decadal scales. 24 

4.2 Simulation for IMFs 25 

In order to capture the relationship between the historical data and real time output, we 26 

constructed the BPANN with a four-tier structure to simulate IMF1, IMF2, IMF3 and IMF4 of 27 

the AR based on the results from the EEMD. Using the MATLAB software 28 
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(http://www.mathworks.com/products/matlab/), we selected the transfer function for input 1 

layer to the hidden layer and the hidden layer to the output layer as the tangent sigmoid 2 

function (tansig) and the linear function (purelin) respectively, and chose 'trainlm' as a training 3 

function to train the network. We set the learning rate as 0.01 and the training error accuracy 4 

as 0.01, and randomly extracted 70%, 15% and 15% of the data in the time series of each IMF 5 

as the training, testing, and validation samples. We finally obtained the optimized network for 6 

each IMF after thousands of training. Using the optimized networks, we obtained the 7 

simulated results for IMF1, IMF2, IMF3 and IMF4 respectively (Fig. 10).  8 

Table 2 presents the R2 and AIC value of the simulation model (the optimized networks) for 9 

each IMF. The big coefficient of determination (R2) indicates that the simulated accuracy for 10 

each IMF is very high. The smaller AIC value means the better simulation effect, which 11 

indicates that the simulated effect of IMF4 is the best, and then follows are IMF3, IMF2, and 12 

IMF1 respectively. 13 

4.3 Simulation for the trend 14 

As above mentioned, the residue (RES) of EEMD presents the overall trend of the AR time 15 

series. Because it is a monotonic function, we can simulate the trend by a regression equation. 16 

Based on the data of RES from EEMD, we obtained the regression equation by using the 17 

method of least squares as the following quadratic polynomial: 18 

6.76327975.7002.0 2 +−= tty                        (16) 19 

where t is the time, which is measured by year; and y is the simulated value for the trend of 20 

the AR time series. 21 

The coefficient of determination of formula (16) is as high as 0.9999. It is evident that the 22 

simulated effect of the RES (trend) is even better than that of IMF1, IMF2, IMF3 and IMF4 23 

(also see Table 2). The simulated results for the trend of AR time series calculated by formula 24 

(16) are shown as Fig. 11. 25 
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4.4 Simulation for AR 1 

Based on the idea and framework of the hybrid model mentioned previously in the 2 

methodology of this study, we can calculate the simulated value of AR at each year by 3 

summing the simulated value of IMF1, IMF2, IMF3, IMF4 and RES. By summing the 4 

simulated value of IMF1, IMF2, IMF3, IMF4 and RES at each year, we calculated the 5 

simulated value of AR for each year.  6 

For calibration and validation purposes, we divided the whole data series into two periods, the 7 

calibration period, i.e. 1960-1989, and the validation period, i.e. 1990-2012. The calibration 8 

period is used for parameter estimation for the EEMD, BPANN and nonlinear regression 9 

equation. The validation period is used for validating the effectiveness of the hybrid model. 10 

The simulation results show the excellent performances of the model for both the calibration 11 

(1960-1989) and validation (1990-2012) periods with R2 and AIC value (Table 3), which is 12 

highly acceptable. Fig. 12 shows the observed data of AR and its simulated values by the 13 

hybrid model. 14 

In order to compare and validate the simulated results from the hybrid model, we also 15 

simulated the AR series by using a single BPANN. Table 3 shows the simulated effect 16 

comparisons between the hybrid model and the single BPANN. It can be seen that the 17 

coefficient of determination (R2) of the hybrid model is as high as 0.9747, whereas that of the 18 

single BPANN is only 0.4037. Moreover, the AIC value of the hybrid model (6.2550) is far 19 

smaller than that of the single BPANN (171.7801). It is clear that both R2 and AIC value 20 

indicate that the simulated effect of the hybrid model is much better than that of the single 21 

BPANN. Furthermore, the average absolute and relative error show the high simulation 22 

accuracy of the the hybrid model.  23 

All the indices illustrate that the hybrid model is much better than the single BPANN. The 24 

reason is that the hybrid model concentrated on the advantages of both EEMD and BPANN. 25 

Where the EEMD precisely decompose the non-linear and non-stationary signal of AR into 26 

intrinsic mode functions (IMFs), and the BPANN well recognize and accurately simulate the 27 

IMFs. Because the non-linear and non-stationary AR signal contains many components and 28 
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each component has its own intrinsic mode, a single BPANN can not accurately recognized 1 

and simulated the all change patterns in AR series. For this reason, this study used an 2 

integrated approach to conduct the hybrid model. In order to identify the pattern of each 3 

component in the non-linear and non-stationary AR signal, we firstly used the EEMD to 4 

decompose the AR series into four intrinsic mode functions (i.e. IMF1, IMF2, IMF3 and 5 

IMF4) and a trend (RES). Then we used the BPANN to accurately recongnize the pattern of 6 

each IMF by net learning and training, while using the nonliner regression to exactly simulate 7 

the pattern of the trend (RES). The above simulated results have already proved that our 8 

hybrid model is effective. 9 

 10 

5 Conclusions 11 

Integrating the ensemble empirical mode decomposition, the back propagation artificial 12 

neural network and the nonlinear regression equation, we conducted a hybrid model to 13 

simulate the annual runoff of the Kaidu River in northwest China. The main conclusions of 14 

this study are as follows: 15 

(1) The comparison between simulated values of annual runoff and its original data shows the 16 

high simulation accuracy of the hybrid model. Both of the small average absolute and relative 17 

errors illustrate the high simulation accuracy of the hybrid model. The big R2 and small AIC 18 

both indicate that the simulated effect of the hybrid model is much better than that of the 19 

single back propagation artificial neural network. 20 

(2) This study elicited an integrated approach to simulate annul runoff of inland rivers, and 21 

the framework of the hybrid model conducted by this study can be applied to other inland 22 

rivers in northwest China. 23 

 24 

Acknowledgements  25 

This work is supported by the Open Foundation (No. G2014-02-07) of State Key Laboratory 26 



 17

of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese 1 

Academy of Sciences. 2 

 3 

 4 

References 5 

Anderson, D. R., Burnham, K. P., and Thompson, W. L.: Null hypothesis testing: problems, 6 

prevalence, and an alternative, J. Wildlife Manage., 64, 912-923, 2000. 7 

Bai, L., Chen, Z. S, Xu, J. H., and Li, W. H.: Multi-scale response of runoff to climate 8 

fluctuation in the headwater region of Kaidu River in Xinjiang of China, Theor. Appl. 9 

Climatol., DOI: 10.1007/s00704-015-1539-2, 2015. 10 

Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel Inference: a practical 11 

information-theoretic approach, 2nd edn. Springer-Verlag, New York, 49–97, 2002. 12 

Chen, Y. N., Xu, C. C., Hao, X. M., Li, W. H., Chen, Y. P., Zhu, C. G., and Ye, Z. X.: 13 

Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China, 14 

Quatern. Int., 208, 53-61, 2009. 15 

Chen, Z. S., Chen, Y. N., and Li, B. F.: Quantifying the effects of climate variability and 16 

human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. 17 

Appl. Climatol., 111, 537-545, 2013. 18 

Gan, R. and Luo, Y.: Using the nonlinear aquifer storage–discharge relationship to simulate 19 

the base flow of glacier-and snowmelt-dominated basins in northwest China, Hydrol. Earth 20 

Syst. Sci., 17, 3577-3586, doi:10.5194/hess-17-3577-2013, 2013. 21 

Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The soil and water assessment 22 

tool: historical development, applications, and future research directions, T. ASABE, 50, 23 

1211-1250, 2007. 24 



 18

Gusev, E. M., Nasonova, O. N., Dzhogan, L. Ya., and Kovalev, E. E.: Northern Dvina runoff 1 

simulation using land-surface model SWAP and global databases. Water Res., 38, 470–483, 2 

2011. 3 

Gusev, Ye. M. and Nasonova, O. N.: Modelling heat and water exchange in the boreal spruce 4 

forest by the land-surface model SWAP, J. Hydrol., 280, 162–191, 2003. 5 

Hu, C., Hao, Y., Yeh, T. C. J., Pang, B., and Wu, Z.: Simulation of spring flows from a karst 6 

aquifer with an artificial neural network, Hydrol. Process., 22, 596-604, 2008. 7 

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., N.-C., Yen, Tung, C. 8 

C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear 9 

and non-stationary time series analysis, P. Roy. Soc. Lond. A Mat., 454, 903-995, 1998. 10 

Hsu, K., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of the 11 

rainfall-runoff process, Water Resour. Res., 31, 2517-2530, 1995. 12 

Huang, N. E., Shen, Z., and Long, S. R.: A new view of nonlinear water waves: the Hilbert 13 

Spectrum, Annu. Rev. Fluid Mech., 31, 417-457, 1999. 14 

Kroes, J. G., Wesseling, J. G., and Van Dam, J. C.: Integrated modelling of the soil–water–15 

atmosphere–plant system using the model SWAP 2.0 an overview of theory and an 16 

application, Hydrol. Process., 14, 1993-2002, 2000. 17 

Kermani, B. G., Schiffman, S. S., and Nagle, H. G.: Performance of the 18 

Levenberg–Marquardt neural network training method in electronic nose applications, Sensor. 19 

Actuat. B-Chem., 110, 13–22, 2005. 20 

Labat, D., Ababou, R., and Mangin, A.: Rainfall-runoff relations for karstic springs. Part I: 21 

convolution and spectral analyses, J. Hydrol., 238, 123-148, 2000a. 22 

Labat, D., Ababou, R., and Mangin, A.: Rainfall–runoff relations for karstic springs. Part II: 23 

continuous wavelet and discrete orthogonal multiresolution analyses, J. Hydrol., 238, 149-178, 24 

2000b. 25 

Lancaster, P. and Šalkauskas, K.: Curve and Surface Fitting: An Introduction, Academic 26 



 19

Press, London, 1986. 1 

Lane, S. N.: Assessment of rainfall-runoff models based upon wavelet analysis, Hydrol. 2 

Process., 21, 586-607, 2007. 3 

Levesque, E., Anctil, F., Van Griensven, A. N. N., and Beauchamp, N.: Evaluation of 4 

streamflow simulation by SWAT model for two small watersheds under snowmelt and 5 

rainfall, Hydrolog. Sci. J., 53, 961-976, 2008. 6 

Li, Z. L., Xu, Z. X., Li, J. Y., and Li, Z. J.: Shift trend and step changes for runoff time series 7 

in the Shiyang River basin, northwest China, Hydrol. Process., 22, 4639-4646, 2008. 8 

Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., and James, A.: Analyses of landuse 9 

change impacts on catchment runoff using different time indicators based on SWAT model, 10 

Ecol. Indic., 58, 55-63, 2015. 11 

Liu, Y. B., Yang, W., and Wang, X.: Development of a SWAT extension module to simulate 12 

riparian wetland hydrologic processes at a watershed scale, Hydrol. Process., 22, 2901-2915, 13 

2008. 14 

Liu, Y. B., Yang, W., Yu, Z., Lung, I., Yarotski, J., Elliott, J., and Tiessen, K.: Assessing 15 

Effects of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed, J. 16 

Hydrol. Eng., 19, 05014015, doi:10.1061/(ASCE)HE.1943-5584.0001005, 2014. 17 

Luo,Y., Arnold, J., Allen, P., and Chen X.: Baseflow simulation using SWAT model in an 18 

inland river basin in Tianshan Mountains, Northwest China, Hydrol. Earth Syst. Sci., 16, 19 

1259-1267, doi:10.5194/hess-16-1259-2012, 2012. 20 

Ma, Y., Feng, S., Huo, Z., and Song, X.:  Application of the SWAP model to simulate the 21 

field water cycle under deficit irrigation in Beijing, China, Math. Comput. Model., 54, 22 

1044-1052, 2011. 23 

Maier, H. R. and Dandy, G. C.: The effect of internal parameters and geometry on the 24 

performance of back-propagation neural networks: an empirical study, Environ. Modell. 25 

Softw., 13, 193–209, 1998. 26 



 20

Modarres, R.: Multi-criteria validation of artificial neural network rainfall-runoff 1 

modeling, Hydrol. Earth Syst. Sci., 13, 411-421, doi:10.5194/hess-13-411-2009, 2009. 2 

Moglen, G. E. and Beighley, R. E.:  Spatially explicit hydrologic modeling of land use 3 

change, Journal of the American Water Resources Association, 38, 241-253, 2002. 4 

Moghadassi, A. R., Parvizian, F., Hosseini, S. M., and Fazlali, A. R.: A new approach for 5 

estimation of PVT properties of pure gases based on artificial neural network model. Braz. J. 6 

Chem. Eng., 26, 199–206, 2009. 7 

Nasonova, O. N. and Gusev Y. M.: Can a land surface model simulate runoff with the same 8 

accuracy as a hydrological model?. Quantification and reduction of predictive uncertainty for 9 

sustainable water resources management, in: Proceedings of Symposium HS2004 at 10 

IUGG2007, Perugia, July 2007, IAHS Press, 258–265, 2007. 11 

Nourani, V., Komasi, M., and Mano, A.: A multivariate ANN-wavelet approach for 12 

rainfall–runoff modeling, Water Resour. Manag., 23, 2877-2894, 2009. 13 

Refsgaard, J.C.: Terminology, modelling protocol and classification of hydrologic model 14 

codes, in: Abbott, M. B. and Refsgaard, J. C. (Eds.), Distributed Hydrologic Modelling, 15 

Kluwer Academic Publishers, dordrecht, 41-54, 1996. 16 

Sahay, R. R. and Srivastava, A.: Predicting monsoon floods in rivers embedding wavelet 17 

transform, genetic algorithm and neural network, Water Resour. Manag., 28, 301-317, 2014. 18 

Sang, Y. F.: A practical guide to discrete wavelet decomposition of hydrologic time 19 

series, Water Resour. Manag., 26, 3345-3365, 2012. 20 

Seibert, J.: Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, 21 

Hydrol. Earth Syst. Sci., 4, 215-224, doi:10.5194/hess-4-215-2000, 2000. 22 

Shope, C. L., Maharjan, G. R., Tenhunen, J., Seo, B., Kim, K., Riley, J., Arnhold, S., Koellner, 23 

T., Ok, YS., Peiffer, S., Kim, B., Park, J. -H., and Huwe, B.: Using the SWAT model to 24 

improve process descriptions and define hydrologic partitioning in South Korea, Hydrol. 25 

Earth Syst. Sci., 18, 539-557, doi:10.5194/hess-18-539-2014, 2014. 26 



 21

Su, M. F. and Wang, H. J.: Relationship and its instability of ENSO Chinese variations in 1 

droughts and wet spells, Sci China Ser D-Earth Sci., 50, 145-152, 2007. 2 

Tokar, A. S. and Johnson, P. A.: Rainfall-runoff modeling using artificial neural networks, J. 3 

Hydrol. Eng., 4, 232-239, 1999. 4 

Trivedi, H. V. and Singh, J. K.: Application of grey system theory in the development of a 5 

runoff prediction model, Biosyst. Eng., 92(4), 521-526, 2005. 6 

van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., van Walsum, P. E. V.,  7 

Groenendijk, P., and van Diepen, C. A.: Theory of SWAP version 2.0: simulation of water 8 

flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment. 9 

Technical Document 45,  DLO Winand Staring Centre, Report 71, Department Water 10 

Resources, Wageningen Agriculture University, Wageningen, 1997. 11 

Wang, J., Li, H., and Hao, X.: Responses of snowmelt runoff to climatic change in an inland 12 

river basin, Northwestern China, over the past 50 years, Hydrol. Earth Syst. Sci.,  14(10): 13 

1979–1987, doi:10.5194/hess-14-1979-2010, 2010. 14 

Wu, Z. H. and Huang, N. E.: A study of the characteristics of white noise using the empirical 15 

mode decomposition method, P. Roy. Soc. Lond. A Mat., 460, 1597-1611, 2004. 16 

Wu, Z. H., Huang, N. E., Long, S. R., and Peng, C. K.: On the trend, detrending, and 17 

variability of nonlinear and nonstationary time series, P. Natl. Acad. Sci. USA, 104, 18 

14889-14894, 2007. 19 

Wu, Z. H. and Huang, N. E.: Ensemble empirical mode decomposition: A noise-assisted data 20 

analysis method, Advances in Adaptive Data Analysis, 01, 1-41, 2009. 21 

Wu, Z. H., Huang, N. E., Wallace, J. M., Smoliak, B. V., and Chen, X. Y.: On the 22 

time-varying trend in global-mean surface temperature, Clim. Dynam., 37, 759-773, 2011. 23 

Xu, J. H.: Mathematical methods in contemporary geography, Higher Education Press, 24 

Beijing, 37–105, 2002. 25 

Xu, J. H., Chen, Y. N., Li, W. H., Ji, M. H., and Dong, S.: The complex nonlinear systems 26 



 22

with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of 1 

the Tarim Rive, J. Geogr. Sci., 19, 25-35, 2009. 2 

Xu, J. H., Li, W. H., Ji, M. H., Lu, F., and Dong, S.: A comprehensive approach to 3 

characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western 4 

China, Hydrol. Process., 24, 136-146, 2010. 5 

Xu, J. H., Chen, Y. N., Li W. H., Yang, Y., and Hong, Y. L.: An integrated statistical approach 6 

to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic 7 

factors, Stoch. Env. Res. Risk A., 25, 223–233, 2011 8 

Xu, J. H., Chen, Y. N., Li, W. H., Nie, Q., Song, C. N., and Wei, C. M.: Integrating wavelet 9 

analysis and BPANN to simulate the annual runoff with regional climate change: a case study 10 

of Yarkand River, Northwest China, Water Resour. Manag., 28, 2523-2537, 2014. 11 

Yang, D. W. and Musiake, K.: A continental scale hydrological model using the distributed 12 

approach and its application to Asia, Hydrol. Process., 17, 2855-2869, 2003. 13 

Yang, D. W., Gao, B., Jiao, Y., Lei, H. M., Zhang, Y. L., Yang, H. B., and Cong, Z. T.: A 14 

distributed scheme developed for eco-hydrological modeling in the upper Heihe River, Sci 15 

China-Earth Sci., 58, 36-45, 2015. 16 

Yarar, A.: A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow 17 

data, Water Resour. Manag., 28, 553-565, 2014. 18 

Yu, P. S., Chen, C. J., Chen, S. J., and Lin, S. C.: Application of grey model toward runoff 19 

forecasting, J. Am. Water Resour. As., 37, 151–166, 2001. 20 

Zhao, Q., Liu, Z., Ye, B., Qin, Y., Wei, Z., and Fang, S: A snowmelt runoff forecasting model 21 

coupling WRF and DHSVM, Hydrol. Earth Syst. Sci., 13, 1897-1906, 22 

doi:10.5194/hess-13-1897-2009, 2009. 23 

 24 

 25 

 26 



 23

 1 

Table 1  Correlations between runoff and climate factors  2 

Time scale Precipitation vs. runoff Temperature vs. runoff 

Inter-annual scale 0.666** 0.416** 

Inter-annual v.s. inter-decadal 
scale 0.205 0.441** 

Inter-decadal v.s. inter-annual 
scale 0.279* 0.438** 

Inter-decadal scale 0.822** 0.617** 

Note: **correlation is significant at the 0.01 level (2-tailed); *correlation is significant at the 0.05 level (2-tailed). 3 

 4 

Table 2  R2 and AIC value of simulation models for the IMFs and trend of AR 5 

IMFS R2 AIC 

IMF1 0.9107 0.5789 

IMF2 0.9619 -54.9342 

IMF3 0.9859 -105.9041 

IMF4 0.9980 -204.2977 

Trend  0.9999 -405.1425 

 6 

Table 3  Comparison of simulated effect between the hybrid model and the single BPANN 7 

 Hybrid model Single BPANN 

R2 0.9747 0.4037 

AIC 6.2550 171.7801 

Average absolute error 
(108m3) 0.9970 3.5477 

Average relative error (%) 2.9107 10.1079 

 8 

 9 
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Figure 1  Location of the Kaidu River, northwest China 4 
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Figure 2  The framework of the hybrid model to simulate the annual runoff 4 
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Figure 3  The back-propagation artificial neural network 4 
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Figure 4  Four-tier structure BPANN to simulate the IMFs of AR 4 
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Figure 5  Back-propagation training process 4 

 5 

 6 

 7 

 8 

 9 

 10 



 29

 1 

 2 

 3 

Figure 6  Annual runoff anomalies in the Kaidu River during 1960 - 2012 4 
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Figure 7  The EEMD results for the time series of AR in the Kaidu River 4 
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Figure 8  The correlation between the reconstruction of AR time series based on EEMD and 4 

its original data 5 
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Figure 9  The EEMD results for the NINO3.4 index data series during 1960 - 2012 4 
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Figure 10  Simulation for the IMFS of AR by BPANN 4 
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Figure 11  Simulation for the trend of AR by nonlinear regreesion equation 4 
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Figure 12  Comparisons between the observed data of AR and its simulated values for 4 

calibration period (1960–1989) and validation period (1990–2012) 5 
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