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ABSTRACT:

This study develops a new error modelling method stoort-term and real-time streamflow
forecasting, called error reduction and represemtan stages (ERRIS). The novelty of ERRIS
is that it does not rely on a single complex emadel but runs a sequence of simple error
models through four stages. At each stage, an emomtel attempts to incrementally improve
over the previous stage. Stage 1 establishes psrasrad a hydrological model and parameters
of a transformation function for data normalizati@tage 2 applies a bias-correction, Stage 3
applies an autoregressive (AR) updating, and SAageplies a Gaussian mixture distribution to
represent model residuals. For a range of catctapném forecasts at the end of Stage 4 are
shown to be much more accurate than at Stage fodvelhighly reliable in representing forecast
uncertainty. In particular, the forecasts becomeenaxcurate by applying the AR updating at
Stage 3, and more reliable in uncertainty spreadsiryg a mixture of two Gaussian distributions
to represent the residuals at Stage 4. While ththadeproduces ensemble forecasts, ERRIS can
be applied to any existing calibrated hydrologicabdels, including those calibrated to

deterministic (e.g. least-squares) objectives.

KEYWORDS: streamflow forecasting, updating, residual dsition, multi-stage error

modelling, ensemble forecasting



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-514, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 20 January 2016 Sciences

(© Author(s) 2016. CC-BY 3.0 License.

45

46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65

66

Discussions

1. Introduction

Streamflow forecasts have long been used to supgpexision making for managing river
conditions, such as flood emergency response andptimal water allocation. Recently, much
research has been carried out on ensemble stremrfdl@casting [e.gAlfieri et al, 2013;
Bennett et a).2014a;Demargne et al.2014; Thielen et al. 2009], encouraged by research
communities such as the Hydrological Ensemble FEtiedi Experiment (HEPEX -
http://hepex.ord! In recognition that streamflow forecasts canshbject to significant errors,
forecast ensembles are used to represent foregesttainty. In producing ensemble forecasts,
one aims to reduce forecast uncertainty as mugossble to give the most accurate forecasts.
One also aims to represent the remaining forecasertainty reliably to give the right

distribution among ensemble members.

Streamflow forecasts are usually made by initiatizihydrological models (e.g. conceptual
rainfall-runoff models) and then forcing them witbrecast rainfall. There are a number of
sources of errors in streamflow forecasts, inclgdénrors in measurement of observed rainfall
and streamflow, errors in hydrological model stawet errors in estimated model parameters,
and errors in forecast rainfall. Ideal hydrologiestor quantification would account for each
individual source of errors explicitly and reliaplguch that all sources of errors would
accumulate to accurately represent overall ermorthe streamflow forecasts. Various attempts
have been made to identify and decompose the soofaarrors, by methods such as sequential
optimization and data assimilation'rugt et al, 2005], sequential assimilatioMgradkhani et
al., 2005], the Bayesian total error analysis (BATEKavetski et al.2006a; bKuczera et al.

2006], and Integrated Bayesian Uncertainty Estim@iBUNE) [Ajami et al, 2007]. Such
3
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methods are useful for attempting to separate #jenmsources of errors, identifying deficiencies
of model structure, performing parameter sensytivinalyses and comparing different
hydrological models, without confounding input amatput errors. However, because of a lack
of information on the different sources of errorsl @n how they interact with each other, it is
highly challenging to apply an error decompositapproach to arrive at statistically reliable

overall errors in streamflow forecas®dnard et al.2010].

An alternative approach is to consider only theraNerrors of forecasts, without attempting to
explain the sources of errors. An estimate of terall error of a forecast is the residual, defined
as the difference between modelled streamflow abskmvations. We now concentrate our
discussion on residuals, but we will continue tferéo models of residuals as ‘error models’,
following common practice. Residuals of a seriesfavecasts form a time series. The most
traditional and simplest error model, related t® thassical least squares calibration, is based on
the assumption of uncorrelated homoscedastic Gausssiduals in the time series of residuals
[Diskin and Simon1977]. This assumption is generally not valid figdrological applications,
where residuals are frequently auto-correlatederbstedastic and non-Gaussidfugzera
1983; Sorooshian and Dracypl980]. More sophisticated error models have lmreloped to
address correlation, variance structure and thegilaliion of residuals. Autoregressive models
have been widely used to account for auto-cormatf residuals [e.gBates and Campbell
2001;Xiong and O'Connqr2002]. Heteroscedasticity may be explicitly dedth by describing
the variance of residuals as a function of soméestapendent variables (e.g. observed
streamflow, dry/wet seasons) [elvin et al, 2013;Schaefli et al. 2007;Yang et al. 2007].

Non-Gaussianity of residuals may be explicitly egmted by non-Gaussian probability
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distributions [e.g.Marshall et al, 2006; Schaefli et al. 2007; Schoups and Vrugt2010].
Heteroscedasticity and non-Gaussianity of residoely also be dealt with implicitly, and often
more conveniently, by using data transformatiomeéomalize the residuals and stabilize their

variance [e.gThiemann et al.2001;Thyer et al. 2002;Wang et al.2012].

The approach of dealing with only the residualghaut considering the individual sources of
errors, greatly simplifies the problem of error rabhidg for the purpose of error reduction and
quantification. Broadly, previous attempts to modesiduals can be divided into ‘post-
processor’ methods that separate the estimatidrydfological model parameters from the
estimation of error model parameters, and ‘joinfeieance’ methods that estimate all
parameters at once. Post-processor methodsKeig.et al.[2014]] are often held to be less
theoretically desirable than joint inference methope.g. Kuczera 1983 Bates and
Campbel] 2001]. This is because joint inference methodsragpi a complete description of
the behavior of errors, including behaviors thasearfrom interactions between parameters
from hydrological and error models [see discussipBvin et al, 2014]. Unfortunately joint
inference methods can have serious limitationsofoerational forecasting of streamflows.
Li et al. [2015] showed that a joint inference method caupedr performance in the
hydrological model when it was isolated from theoermodel (we will call this the ‘base’
hydrological model). Error models that account fosto-correlated residuals have less
influence on forecasts as lead-time increases. Bsusad-time increases, and the influence
of the error model decreases, the quality of thedast relies on the performance of the
base hydrological modelEvin et al. [2014] demonstrated another (and perhaps more

egregious) limitation of joint inference methodseint estimation can result in deleterious
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interference between error model and hydrologicallet parameters, leading to poor out-
of-sample streamflow predictions. In our experieriaéeractions between parameters of the
hydrological model and the error model can makeiiy difficult to calibrate the models jointly.
The shape of the distribution of forecast resideals change markedly after hydrological model
forecasts are updated, for example with an autessgre error model. Despite considerable
progress in hydrological uncertainty modelling, festudies in the literature present model
forecasts (or simulations) that are practicallyatde when error updating is applied [e3gagne

et al, 2015;Schoups and Vrug2010].

This paper presents a new error modelling methalled error reduction and representation
in stages (ERRIS), for real-time and short-terneatnflow forecasting applications. ERRIS
is a post-processing method developed to deal w#heh overall errors of streamflow
forecasts resulting from hydrological uncertaintyyo Errors in streamflow forecasts due to
uncertainty in weather (precipitation in particyldorecasts are modelled separately by
using ensemble weather forecadefinett et al.2014c;Robertson et al.2013;Shrestha et
al., 2013]. For convenience, in this study we usetémm streamflow forecasto mean one-
step-ahead model prediction of streamflow, givesesbed weather and streamflow up to
just before the forecast start time and assumingeastep-ahead weather forecast that turns
out to perfectly match observations. In future wosle will extend ERRIS to multiple-step-

ahead streamflow forecasting.

The novelty of ERRIS is that it does not rely osiagle complex error model, but runs a
sequence of simple error models through multipdgss. We start with a very simple model

of independent Gaussian residuals after data wenstion to determine hydrological model

6
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parameters. At each subsequent stage, an errorl nm®detroduced to improve over the
previous stage and to finalize the representatiwiyding associated parameter values, of one
particular statistical feature (bias, correlationresiduals or a non-Gaussian distribution).
ERRIS progressively refines model features, foagsimly on a small number of model
parameters at each stage. This is achieved by a&tighthe values for a core set of
parameters at each stage and holding them conatastibsequent stages. In doing so,
ERRIS avoids the problems associated with parameteractions that can occur under

joint inference methods.

This paper is organized as follows. The ERRIS nebtisadescribed in detail in Section 2. A
case study is introduced in Section 3. Major resalie presented in Section 4, followed by

discussion and further results in Section 5. Cosiols are made in Section 6.

2. The error reduction and representation in stage¢éERRIS) method

2.1. Model formulation

Stage 1: Transformation and hydrological modelling

We start from a simplified version of the seasgnaiVariant error model described hyet al.
[2013] to calibrate the hydrological model in th&EIS method. At stage 1, we apply the

log-sinh transformatiorv/ang et al.2012]
f(Q) = b log{ sinh(a+ bQ}, 1)

wherea andb are transformation parameters, to the raw valfisf@amflowQ. We assume at

this stage that hydrological model forecast redglaae independent and, in the transformed
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153 space, follow a Gaussian distribution with a consteariance. The log-sinh transformation
154 has been applied to a wide range of hydrologict flag.Li et al, 2013;Peng et al. 2014;
155 Robertson et al.2013; Shrestha et al.2015; Zhao et al. 2015] including extreme daily
156 streamflow valuesHennett et a).2014b] to normalize data and stabilize variaacel has been
157 shown to perform at least as well as other commaebd transformation®gl Giudice et al.

158 2013;Wang et al.2012].

159 We denote the observed and simulated streamflowlsaf by Q(t) and Q(t), respectively.

160 The error model at Stage 1 is mathematically spetidis

161 Z(H= Q1) 2
160 L= f(Q(1) 3)
163 Z(t)~N(Z(1).07) 4)

164 whereN denotes a Gaussian distribution of the model vadadin the transformed space at
165 Stage 1, with mearil(t) and standard deviatio; . We will use similar notations eQ, Z,

166 Z and O) for all stages in the ERRIS method, with stagjsinguished by subscripts (i.e. 1,
167 2, 3, 4) . No autocorrelation within the forecassiduals is assumed at Stage 1. This avoids
168 the potential parameter interference between thecawelation parameter and hydrological
169 model parameters (e.g. parameters describing tensigience of the hydrograph) when the

170 hydrological model is jointly calibrated with therer model.
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At the end of Stage 1, the simulated streamfl@\g) is taken as the forecast median of the

ensemble streamflow forecast.
Stage 2: Linear bias correction

At Stage 1, we assume that the hydrological sirarats overall unbiased. However, the
hydrological model often over-estimates low flowslainder-estimates high flows. At Stage 2,
we adopt a simple but effective bias-correctionese firstly introduced byvang et al[2014]

to revise the the forecast value made at Stagéis.bias correction describes the forecast bias in
the transformed domain by a linear function. Beeatise bias-correction is applied to
transformed data, it is able to cope with condaidniases (biases that vary with flow magnitude)
that are often present in hydrological model sirioles, even if these vary in a strongly non-
linear way. We express the specific error modeicstire of Stage 2 as

Z(t)=c+dz(d )

Z(t)~N(2,(1),02) ®)

where ¢ and d represent the intercept and slope parameterseobitiis correction and’,

denotes the standard deviation of the residuaBtaaje 2. The slope parametdr allows much
flexibility in the bias correction. Wherd equals 1, this bias correction becomes a simple
additive correction. Wherd equals 0, the bias-correction forces the foretmsipproach a
constant (in additional to uncertainty). This mappen when the hydrological forecast performs
worse than climatology (i.e. long-term average).ewld is greater than 1, the bias-correction

9
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can correct the very strongly conditional biasesmight be found in ephemeral and intermittent

catchments.

At the end of Stage 2, the forecast median in tgaal space is revised to
Q1) = £7(2,(v), (7)

where f (x) = b’larsinl‘{ expbx ) a} is the back-transformation of the log-sinh transfation

given in Equation (1).
Stage 3: AR updating

At Stage 3, we no longer assume that forecast uatddare independent, and use an AR-
based error model to describe the correlation sirecof forecast residuals. The AR-based
error model enables the ERRIS method to correctdast residuals based on the latest
available observations of streamflow. Specificalyg assume that the forecast residuals at
Stage 2 follow a restricted AR error model desatibg Li et al. [2015]. The error model at

Stage 3 can be written as

7 (9 =1%0*p(Z(t-)-2,(t-3) i|Q0- Q<] A D-Q(r1]
’ f ( (1) +Qt-1)- Q(t- 1)) otherwise ©
z(t)~ N(Za(t)'ag) ©)

where Q;(t) = f* (Zz(t) +o(z(t-1)- Z,(t- 1))) is the updated streamflow without applying

the restriction, andg0 and T; are the lag-1 autocorrelation parameter and dredard deviation

10
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of the residuals at Stage 3, respectivdlyet al. [2015] demonstrated that when AR models are
applied to normalized residuals without restrictiaver-correction of forecasts can occur,
particularly at the peak or on the rise of a hydapy. Equation (8) uses the restricted AR error

model to reduce the tendency to over-correct fatscdn Equation (8) the forecast median,

denoted byQ(t), is given by

_{Q;(t) FiQ0 - Q]<[Qat-- (-1} (10)

Q,()+Q(t-1)- Q,(t-1) otherwise

The forecast at Stage 3 upda@;(t) based on the latest observed streamftpi—1) and its

difference from Qz(t—l). Therefore, more information (i.e. streamflow atvagions at the

previous time step) is required to generate strieanforecasts at Stage 3 than at the previous

two stages.

Stage 4: Residual distribution refinement

In Section 4, we will demonstrate that the residus#lter Stages 1 and 2 are well described
by Gaussian distributions, but the shape of theiduad distribution after Stage 3
dramatically changes. In particular, the distribatof the residuals after Stage 3 looks more
peaked and has longer tails than a Gaussian disoib The reason for the non-Gaussian
residuals after Stage 3 is as follows. The AR uipdatt Stage 3 is very effective in
correcting small residuals especially at hydrogragtession and therefore reducing

residuals to very small values. The updating, haweis not very effective around peaks,

11
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where the residuals remain large even in the toansfd space. This results in a centrally

peaked and long tailed distribution of residuateaStage 3.

At Stage 4, we use a non-Gaussian distributionesrdbe the model residuals from Stage 3.
Several long-tailed distributions have been usetyidrological modelling studies, such as
the finite mixture distribution $chaefli et al. 2007; Smith et al. 2010], the exponential
power distribution $choups and Vrugl010] and Student’s t-distributiomMprshall et al,
2006]. In this study, we assume that the modelteds can be grouped into two categories
with respect to variance and thus choose a two-om@pt Gaussian mixture distribution. It is
possible to use more than two components, but we show in our case study that two
components are sufficient. We discuss the possjbili using other long-tailed distributions

in Section 5.1.

Using a two-component Gaussian mixture distributiore express the residual model at

Stage 4 as
Z,H=2(Y 1)
Z(t)~ MN(Z,(1),02,,0% W, (12)

where MN (24 (V),05,0%, p) represents a mixture of two Gaussian distributibr(sZA(t),crjl)
and N (Z(t),ajz) with weights W and1-w. The corresponding probability density function

of MN(Z(")yOf,in,zaV‘a- denoted bypdf( Z()] Z(9,02,,0%, V\) can be explicitly written as a

weighted sum of two Gaussian probability densityctions

12
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244 pdf(Z(Y| Z(9.05,,0%,, W= v Z91 Z(9o%)+( T Wl ZYIZ(90%). (13)

245 where ¢ is the probability density function (PDF) of a Gaian distribution. We assume that

246 0,,<0,,to make the two components identifiable. This agstion implies thatW represents

247  the probability associated with the mixture compuribat has a smaller variance.

248 The four stages of the ERRIS method are summaiizédble 1.

249 2.2. Model estimation

250 The maximum likelihood estimatiorLi[ et al, 2013;Wang et al. 2009] is used to estimate

251 model parameters at all four stages. Denote thenpeter set aﬂs for StageS The likelihood

252  functions for the four stages are given by

253 Ls(69=[19.. AZ(912{9).0) (14)

t
254 for S=1,2,3, and
255 L,(6,)=[13..oPdf(Z(912().02.0%,, (15)
t

256 whereJ, ,=1/tan{a+bQ(t} is the Jacobian determinant of the log-sinh tramsétion.

257 At Stage 1, the hydrological model parameters,sfaamation parametersa( and b) and the

258 residual standard deviatior) are jointly estimated by maximizing the likelitdbéunction. It

259 s also possible to use a set of parameters alrealiyrated for the hydrological model (using a

13
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different objective, such as the least sum of sepiarrors) and estimate at Stage 1 only the
transformation parameters and the residual startfar@tion (see discussion in Section 5.2). At
the end of Stage 1, the values of the hydrologieahmeters and the transformation parameters

are concluded, without further changes in subsegtages.

At Stage 2, the bias correction paramete&rsuid d ) and the residual standard deviatia®, )
are estimated by maximizing the likelihood functiéa the end of Stage 2, the values of the bias
correction parameters are concluded. At Stage 83 atho-correlation coefficient® ) and the
residual standard deviatiord§) are estimated. At the end of Stage 3, the vafuthe auto-

correlation coefficient is concluded. At Stage e todel residual parameterg,,0,, and

W) are finalized. Note that paramete®s, 0, andJ; are only intermediate parameters to assist

in the estimation of other parameters at corresipgnstages.

The Shuffled Complex Evolution (SCE) algorithibuan et al, 1994] is used to maximize the
log likelihood function at Stage 1, where a numbeparameters are required to be calibrated.
The Simplex algorithmNelder and Mead1965] is used in the likelihood-based calibratéin
other stages, where fewer parameters are presemtudd’ different optimization algorithms
because the Simplex algorithm is more computatiprdficient when the number of parameters

is small.

14
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2.3. Model verification

We use several performance measures to evaluatentemble forecasts derived at each
stage. The evaluation criteria suggested Hngeland et al.[2010] are used to test for

important attributes of ensemble forecasts inclgdialiability, sharpnessandefficiency

Reliability is often described as the property of statisticahsistency, which allows
ensemble forecasts to reproduce the frequency efvant. Reliability can be checked by the

forecast probability integral transform (PIT) ofestmflow observations, defined by
=R (QW) (15)

where F, is the forecast CDF of the streamflow at tihein the case of zero flows, we use the
pseudo PIT Wang and Robertspn2011], which is randomly generated from a uniform

distribution with a range[O,i'(]. If a forecast is reliable/Z follows a uniform distribution over

[0,1]. We graphically examindZ with the corresponding theoretical quantile of tiréform

distribution. A perfectly reliable forecast follovise 1:1 line. In addition, PIT diagrams can be

summarized by ther -index [Renard et a].2010], defined by

,

2 n
a=1-—
ntz_llq n+1

: (16)

where 7( is the sorted’Z, in increasing order. The -index represents the total deviation of

li' from the corresponding uniform quantile (i.e., teadency to deviate from the bisector in

PIT diagrams). The range of tlee-index is from 0 (worst reliability) to 1 (perfectliability).
15
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Sharpnesss a measure of the spread of the forecast prtibabistribution. Sharp forecasts
with narrow forecast intervals are often preferbgdforecast users as they reduce the range
of possible outcomes that are anticipated — thait is easier to make decisions with sharp
forecasts. However, if a sharp forecast is unrétiaib is underconfident and is likely to lead
to poor decisions. Thus sharp forecasts are ddsjrddut only if the forecasts are also
reliable. We use the average width of the 95% faseintervals (AWCI) to indicate forecast
sharpness. Wider forecast intervals suggest leagpstorecasts. In order to compare the
sharpness across different catchments, we defiseoee relative AWCI with respect to a

reference forecast

AWCI,.. - AWCI
AWCI,..

Relative AWCI= , a7

where AWCl... is AWCI calculated from the reference forecaste Téference forecast in this

study is generated by resampling historical stréans. To issue a reference forecast for a given
month/year (e.g. February 1999), we randomly drasample of 1000 daily streamflows that
occur in that month (e.g. February) from other geée.g. years other than 1999) with
replacement. The relative AWCI is unitless and thaximum is one, corresponding to the

sharpest forecast.

The Efficiency(or accuracy) of a forecast is commonly used &eas deterministic (single-
valued) forecasts. For the ensemble forecasts wergée here, we measure the efficiency
with the well-known Nash-Sutcliffe efficiency (NSE)ash and Sutcliffel970], calculated

for the forecast mean. A greater value of NSE imidis a more accurate forecast mean and thus

16
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better forecast efficiency. We also use relativeshio assess how the forecast mean deviates

from observations.

We evaluate the overall forecast skill with a s&dbre derived from the widely used continuous
ranked probability score (CRPS}fieiting and Katzfus2014;Grimit et al, 2006;Wang et
al., 2009] (denoted bYCRPS S{). CRPS is a negatively oriented score: a smakduer of
CRPS indicates a better forecast. As with the ikedafWCI, the skill scoreCRPS_ St is
defined as the normalized version of CRPS witheesfp a reference forecast

CRPS,. - CRP!

CRPS_SS$ ,
- CRPS$

(18)

where CRPSG,; is CRPS calculated from the reference forecaseddy defined for Equation

(18), above). The maximum @RPS_ S¢is 1, corresponding to a perfectly skillful forsta

3. Case Study

3.1  Study region and data

We select six catchments in southeast Australiataneke catchments in the United States
(US) for this study (Figure 1), from a range ofneditic and hydrological conditions. The
streamflow data for the Australian catchments dained from the Catchment Water Yield
Estimation Tool (CWYET) datasetVhze et al. 2011]. The rainfall and potential
evaporation data for the Australian catchments en from the Australian Water
Availability Project (AWAP) datasetlpnes et a).2009]. All data for the US catchments are

taken from the Model Intercomparison Experiment (REX) datasetuan et al, 2006].
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The Abercrombie and Emu catchments have many instawf zero flow (Table 2), and

accurate streamflow forecasting is particularly lEreging for such dry catchments

AWCler and CRPS$,; for each catchment is given by Table 3.

3.2 Cross-validation

Daily streamflow is simulated with the GR4J raitfialnoff model Perrin et al, 2003] and
then forecasted with ERRIS as described in SecBonForecasts are generated from
“perfect” (observed) deterministic rainfall foretast a lead time of one day (i.e., one time
step ahead). All results reported in this studytssed on cross-validation unless specified.
Cross-validation allows us to generalize the fos¢ckill to data outside the sample period.
Because of data availability, we choose differentdg periods for Australian and US
catchments. For Australian catchments, data fro@01® 1991 are used to warm up the
hydrological model and the data from 1992-2005wsed to generate a leave-two-years-out
cross-validation (i.e. effectively 14-fold crosskdation). For a particular year, we remove
the streamflow data from this year and the follogvirear and apply ERRIS to forecast the
streamflow for the year. The removal of the datarfrthe following year aims to minimize
the impact of streamflow memory on model perfornmarfeor US catchments, the data from
1979 to 1980 are used in the warm-up period andi#ta from 1981 to 1998 are used for a

leave-two-years-out cross-validation (i.e. effeetiw18-fold cross-validation).

4. Results

Figure 2 compares forecasts at different stagesafoexample period. In this example, we

generate daily streamflow forecasts for the Mittattd catchment in the period between
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01/07/2000 to 31/12/2000. The forecast mean an®®é forecast interval are plotted against
observations. The forecast at Stage 1 (the basmlbgital model forecast) frequently over-
estimates low flows, such as in the period betwléyp and September. For high flow periods
(e.g. October), the forecast mean is generally nag@irate but virtually all observations lie
within the 95% forecast intervals, suggesting thatforecast intervals are perhaps too wide (i.e.,
the forecasts may be underconfident). The forerasin at Stage 2 is closer to the observations
and the 95% forecast intervals tend to be narroBtage 2 tends to overestimate high flows less
than Stage 1, but introduces the problem of untletasng high flows in some instances (e.g.
September).

The AR error updating applied in Stage 3 signiftbtameduces the forecast residuals, as we
expect given that streamflows are often heavilpenitrelated. The forecasts at Stage 3 are not
only more accurate but also more certain, indicégdhe considerably narrower 95% forecast
intervals. The differences between Stage 3 andeStaye not evident in the time-series plots, in
essence because Stage 4 is an attempt to addsess ©f reliability, which is difficult to see
when forecast intervals are so narrow. We givetailée view of changes to reliability at each
stage below.

Figure 3 summarizes the performance at each stagegenerally confirms the improvements in
performance at each stage observed in Figure gemeral, Stage 1 and Stage 2 are similarly
efficient (Figure 3b), skillful (Figure 3c), shalfigure 3d) and reliable (Figure 3e). As we
expect, Stage 2 forecasts are consistently lesedithan Stage 1 (Figure 3a) (except for the
Hope catchment, where many instances of zero flogurp see Table 2). Stage 3 is generally
much more efficient and skillful than Stage 1 andg® 2. A partial exception to this is the

Abercrombie catchment, which is less efficient &ag8 3 than Stage 2. As an intermittent
19
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catchment, the Abercrombie catchment experiences(tio zero) flows, but is also punctuated
by abrupt high flows. Stage 3 is based on the pemsistence of the residuals and may introduce
more errors when flows change abruptly, which someg occurs in the Abercrombie
catchment. In addition, residuals tend to be laagédnigher flows and because NSE is a measure
of squared residuals, it tends to give more weighteesiduals at high flows. This causes the
Abercrombie Stage 3 forecasts to be less effittaant those of Stage 2.

As we expect, Stage 3 forecasts are notably sh#mparthose at Stage 2 (Figure 3d). However,
this sharpness is not supported by reliabilityg8ta forecasts tend to be much less reliable than
all other stages (Figure 3e). Figure 4 illustrates reliability of the forecasts at each stage in
more detail with the PIT plots. The PIT plots shthat the forecasts at the first two stages are
reliable (as with thex -index in Figure 3e). However, for Stage 3 the ®ion the PIT plots
deviate substantially from the 1:1 line, with aazl&-shape pattern for almost all catchments (the
exception is the Tarwin catchment). A traditionaterpretation of this S-shape is that the
forecasts are underconfideritajo and Tamea2007]. However, in this case, the S-shape is
caused by the high level of kurtosis in the disttiin of the residuals, as we will show below.
The a-index from Stage 3 is smaller than those fromedtalgand 2 (the Tarwin catchment is the
only exception), confirming the lack of the relilitlyi at Stage 3. Stage 4 consistently improves
the reliability of the forecast after the AR updati The PIT plot at Stage 4 is much closer to the
1:1 line than that at Stage 3 and this is refleddgdthea -index, which increases for all
catchments. Stage 4 corrects the underconfideatdsts from Stage 3 and slightly decreases the

sharpness from Stage 3 (Figure 3d).
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At Stage 3, unreliable forecasts are caused byesepting the model residual by an

inappropriate (Gaussian) probability distributioWe compare the underlying density of the

model residuals at Stage 8(t) =Z,(t) - Z(1) (fitted by the nonparametric density estimation),

with the fitted parametric densities for differafistributions in Figure 5The fitted Gaussian
density is flatter than the underlying density oft) in order to match the tails for each

catchment. This suggests that the residual distoibus more peaked and has longer tails than
the Gaussian distribution. As we have seen abavec#st residuals are, in general, dramatically
reduced by the AR error updating. Unfortunatelys tieduction in residual does not occur at all
events, especially where abrupt changes in flonulo¢and hence the assumption of strong
autocorrelation breaks down). Thus the magnitudb@forecast residuals at Stage 3 for a small
proportion of events is large relative to the migjoof events. As we have seen, the practical
implication of the dichotomous behavior of the desils is that their distribution is still bell-
shaped and symmetric but has a much longer tail the Gaussian distributiolhe Gaussian
mixture distribution treats the entire model residuas two groups with different variances. The
Gaussian mixture distribution is able to capture preak and tails of the underlying residual
density for all catchments, resulting in reliablesemble forecasts that also have a highly
accurate forecast mean. As we note in the intragluchowever, other distributions have also
been used to describe “peaky” data, and we exphese in the next section.

To provide a basis for any future comparisons \liils study, we include example parameter
values for each stage in Table 4 (derived by catiibg each stage to the full set of data — i.e.
without cross-validation). We note that: 1) theiaace parameter at Stage 3 is always much

smaller than at Stage 1 and Stage 2, which leadketadramatic reduction in the width of
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forecast intervals at this stage; and 2) that Yeparameter that weights the component of the
Gaussian mixture distribution with smaller variangealways greater than 0.5, confirming that

the majority of residuals take a narrow range dfi@s as we have described.

5. Further results

5.1  Testing an alternative residual distribution

It is possible to use long-tailed distributionseatkthan the Gaussian mixture distribution at Stage
4. For example, Student’s t-distribution is a sienfging-tailed distribution that has been used in
hydrological modelling [e.gMarshall et al, 2006]. In this section we investigate whether
Student’s t-distribution is a viable alternativetbe Gaussian mixture distribution at Stage 4. To

do this, we modify the model residual in Equatitg)(as follows

Z(t) = Z,(9) + (), (19)

Where £(t) is assumed to independently follow a Student'sstrithution with , degrees of

freedom, and is a scale parameter describing the spread arativarof the model residuals.

We first examine how well Student’s t-distributioan fit the residual distribution at Stage 4 for
all nine catchments (Figure 5). High peaks and kailg of the residual densities can be captured
reasonably well by Student’s t-distribution for rgaall catchments. The fitted densities of
Student’s t-distribution appear more “peaked” favsincatchments than those of the Gaussian
mixture distribution, which is originally used atage 4. Figure 6 further investigates how
Student’s t-distribution can fit the upper quantdé the model residuals. There is a clear
tendency of Student’s t-distribution to overestientite upper quantile (e.g. 98% or higher) of the
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model residuals (especially for the Australian katents). These upper quantiles are more
accurately estimated by the Gaussian mixture Higion. This implies that Student's t-

distribution often has tails that are too long. Wte, however, that if the ERRIS method is
tested on other catchments, it is possible thadeSiis t-distribution may describe the residuals

better than the Gaussian mixture distribution ime@ases.

However, the very long tail of Student’s t distiilom can be problematic for operational
forecasting. The degrees of freedom, determines how heavy the tails of Student's t-
distribution are. Table 5 presents the two caldstgiarameters (i.¢2 andr) for all catchments.
Calibrated, values are less than 2 for eight out of nine catafts. The exception is the Hope
catchment, and even here the calibratets very close to 2. It is well know that for degs of
freedom less than 2, Student’s t-distribution isheavy-tailed that the variance is infinite (if
1<y <£2) or even undefined (i <1). This is obviously undesirable for operationakfzasting:

it can cause a few forecast ensemble members tmw barge that the forecast mean becomes
implausibly large. Figure 7 compares the forecasamwith observations if the model residual is
revised as Equation (19). In all catchments, in esooases forecast mean values are
unrealistically large even as observations aretively small. Student’s t-distribution is thus
prone to be too long-tailed to be practically inmpéted. Therefore, we do not recommend
using Student’s t-distribution to describe the deal distribution at Stage 4, and advocate the

Gaussian mixture distribution as a practical atiéue.

5.2  Testing an alternatively calibrated hydrological malel

In this study, we apply a likelihood-based calilmatat Stage 1 to derive the distribution of the

forecast residuals. However, in operational pracfarecasters may prefer to use their own
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methods for calibrating hydrological models (omi&y be onerous to recalibrate large numbers
of hydrological models, whatever method is usetdis possible to simply ‘bolt on’ the ERRIS
method to existing hydrological models. We simplged to calibrate the transformation
parameters and the model residual standard deviatiGtage 1 while fixing the hydrological
parameters to those already calibrated. We denatasthis by first calibrating hydrological
models with a simple least-squares objective. Véa tpply the ERRIS method and repeat the

cross-validation analysis.

Figure 8, an analog to Figure 3, summarizes fotgmasormance when the hydrological model
is calibrated to a least-squares objective. Thetdsguares calibration essentially maximizes
NSE as an objective, but the corresponding crobdatad NSE is not necessarily always greater
than that of the likelihood-based calibration. Theecast performance from the two different
calibrations can differ markedly at Stage 1, buargely similar after the AR error updating at
Stage 3 and Stage 4. Thus ERRIS is flexible endoghccommodate existing hydrological

models.

Figure 9, an analog to Figure 4, compares the R¢Tsdor different catchments when the
hydrological model is least-squares calibrated. itaén change is that the forecasts at Stage 1
are no longer reliable in many instances. Thisaissed by the least-squares calibration, which
does not ensure the forecast residuals are Gaugsian after the log-sinh transformation). The
PIT plots derived from Stage 2 and Stage 3 in Egirshow a very similar pattern to their
counterparts in Figure 4. It suggests that poaabity at Stage 3 occurs irrespective of the

calibration strategy employed for the hydrologicaidel. As with Figure 4, Figure 9 shows the
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Gaussian mixture distribution used at Stage 4 t¥fely ameliorates the problems with the

reliability of Stage 3.

6. Discussion

There are several advantages of using a multi-sgage model compared to a single complex
error model. (1) The parameter estimation in ERR$Srelatively simple, and hence
computationally efficient. Only a small number @rameters are estimated at each stage. Joint
parameter estimations associated with a single boatgd error model are often more
computationally demanding. (2) Interference betwparameters is minimized. The parameters
of a single complex model can confound each othdrthe contribution of one parameter can
sometimes be explained by others. For examplehyleological model parameters describing
soil moisture storage capacity may interfere sttpmgth the error parameters describing bias.
Interference between parameters can make the ptaestimation unstable, because more than
one set of parameters can achieve a similar obgdunction value, and thus over-fit
parameters. (3) In operational forecasting it temfimportant that individual components of the
forecasting model can function independently. Pamaple, if forecasts are issued to long lead
times, the influence of an AR model diminisheseslItime extends. Thus forecasts at long lead
times rely strongly on the hydrological model (aimd,our case, with a bias-correction) to be
plausible. If all parameters are estimated jointlys difficult to guarantee that each component
of a forecasting model can operate independentlpddition, because stages are independent, it
is possible to change a stage without affectingrogitages, making the ERRIS approach easy to

extend or modify.
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This paper is aimed at developing a staged erratehsuitable for eventual use in an operational
ensemble forecasting system. We have focused @emirg the theoretical underpinnings of
this approach, and have limited its testing to desting with ‘perfect’ (observed) rainfall
forecasts at a lead time of one day. Operatiorstksys routinely forecast to long lead times, and
use uncertain rainfall forecasts to force hydratagimodels. In future work we will extend the
validation of this model to forecast multiple letwhes, and couple the ERRIS approach with

reliable ensemble rainfall forecasBdbertson et al2013;Shrestha et al2015].

7. Summary and conclusions

In this study, we introduce the error reduction asgresentation in stages (ERRIS) method to
update errors and quantify uncertainty in streamflorecasts. The first stage of ERRIS employs
a simple error model that assumes independent @ausesiduals after the log-sinh
transformation. The second stage applies a biagat@n that is able to correct conditional and
unconditional biases, including the sometimes sgfisonnon-linear biases that occur in
intermittent catchments. The third stage exploit®eorrelation in residuals with an AR model
to dramatically reduce forecast residuals, but isilts in unreliable ensemble forecasts. In the
fourth stage a Gaussian mixture distribution isduse describe the residuals, resulting in
ensemble forecasts that are both highly accuratevary reliable. Based on extensive validation
of ERRIS, the accuracy of the forecast mean ifh8ligmproved by the bias correction at Stage
2 and is considerably improved by the updating tag& 3. The reliability of the forecasts at
Stage 3 becomes a problem, because the shape refsttieal distribution dramatically changes.
The revision of the residual distribution at Stagés effective for representing non-Gaussian

residuals and leading to highly reliable forecaste Gaussian mixture distribution is showed to
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be more suitable than the Student’s t distribufmmdescribing the residuals after updating. We

also confirm that ERRIS is flexible enough to adapexisting calibrated hydrological models.
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700  Figure 1: Map of the catchments used in this study
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Figure 4: Comparison of the cumulative probabilitydistribution of the PIT at different stages.
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713  Figure 5: Comparison of the different probability density functions fitted to the model residuals at ge 3 for
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Figure 6: Comparison of the upper quantile of the mdel residuals fitted by different distributions for each
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Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-514, 2016 Hydrology and

Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 20 January 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License. Discussions
O
Page 43
720
q° Abercrombie 8e ° Mitta Mitta i Z Orara
g4 g | g4
& ° © 3 00 @ = |o
= o = = °
E A E E g%
5 < |2 5 s 5
g 512 g g 2 g
5 © |8 @ 7 © |3
© © ©
8 4 8 8 84
5 5 8 5 < o
i ° L S w o o
o N o o
g 4 8 o
=] . R « °o o o o
A o B
o 8 o 0 © ° ° ° o 4 Beo® oo S °©
T T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 50 100 150 200 250 300 0 10 20 30 40 50 60
Q(m®/s) s Q(m®/s) Q(m®/s)
o —
° Tarwin & 1o Emu °© . ° Hope
s 4
e} o |° S
o |° 2 878 s © % 3
o © o o ° o
E ¥ E E
= o = o % ° % < =)
© o © ®o © o
2 3e g g oo E S
~,; ° 3 8 o ° a2
§ 81, o s |6 8
o « (4 oo o o
2 i& i 3 ° S sS4 o
o 0 Se_ oo ° IS
S 4 @o ° °
T © oo o © &?9 o ?
o o o o
o 4 - &, 850 Po °0 ° 4 o 4 80808 %% 00 3
T T T T T T T T T T T T T T T T
0 5 10 15 20 25 0 500 1000 1500 2000 0 50 100 150 200
Q(m®/s) Q(m®/s) Q(m®/s)
(=3
° Amite g4° Guadalupe 8 San Marcos
S | To
— 8 % ° Q
2 28 2 g
E E 81 E @
§ 8 § § 8
o Q7] o 8 84
£ £ g o
® o o 3 L 3
S 8- e =° 2 o
« ° o o
o o
o o < T
o o % ° o
o+ o 4 %Q’ocO ° ° o o 009°% o oo
T T T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 0 200 400 600 800 100
721 Q(m®/s) Q(m?/s) Q(m’/s)
722

723  Figure 7: Comparison of streamflow observations wh streamflow forecast mean for each catchment when
724  the residual distribution is fitted by Student’s t-distribution.
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727  Figure 8: Same as Figure 3 but the hydrological maal is calibrated by the least-squares method.
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Figure 9: Same as Figure 4 but the hydrological maal is calibrated by the least-squares method.
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733 Table 1: Summary of the ERRIS method
Stage Stage . Stage ! Stage -
Purpose Transformation and  Linear bias correction AR updating Residual disttibn
Hydrological model refinement
simulation
Calibrated parameters Hydrological model bias-correction AR parameters Distribution parameters
parameters, parameter
transformation
parameters
Correlation structure Independent Independent Auto-correlated with Auto-correlated with
lag one lag one

Residual distribution  Transformed-Gaussian ~ Transformed -Gaussian ~ TransftyGaussian ~ Transformed- Gaussian

mixture
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736
737 Table 2: Basic catchment characteristics (1992-20D5
Name Country Gauge Site Area Rainfall Streamflow Runoff Zero
(km?) (mml/yr) (mml/yr) coefficient  flows
Abercrombie Aus Abercrombie River atl447 783 63 0.08 14.4%
Hadley no. 2
Mitta Mitta Aus Mitta Mitta River at 1527 1283 261 0.20 0
Hinnomunjie
Orara Aus Orara River at Bawdenl1868 1176 243 0.21 0.6%
Bridge
Tarwin Aus Tarwin River  at 1066 1042 202 0.19 0
Meeniyan
Emu Aus Mount Emu Creek at1204 641 23 0.04 0
Skipton
Hope Aus Mount Hope Creek at1646 436 11 0.02 23.3%
Mitiamo
Amite us 07378500 3315 1575 554 0.35 0
Guadalupe us 08167500 3406 772 104 0.13 1.7%
San Marcos us 08172000 2170 844 165 0.20 0
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740 Table 3: AWCI and CRPS calculated from the referene forecast for each catchment

Abercrombie Mitta Mitta Emu Hope Orara Tarwin Amite Guadalupggan Marcos

AWClege (m's) 18.00 49.68 9.41 5.04 62.83 38.81 409.63 70.25 59.60

CRPG (ms) 2.20 6.42 0.79 0.46 10.25 465 41.69 9.29 7.64
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Stage Parameter Catchmer
Abercrombic  Mitta Emu Hope Orare Tarwin Amite Guadalup San
Mitta Marcos
X, 551.26 1319.05 485.73 561.36 481.28 672.24 1279.63763.15 906.72
X -0.41 -3.13 -3.22 -0.06 0.49 -2.20 -2.59 0.92 1.66
X3 7.94 65.63 12.40 1.10 28.71 20.24 44.67 23.67 39.93
1 Xy 12.29 9.39 25.86 89.21 20.33 27.54 15.59 8.80 11.76
log(a) -10.55 -9.70 -14.95 -11.80 -9.08 -11.55 -21.48 380. -23.75
log(b) -9.46 -9.49 -7.51 -8.68 -9.01 -9.35 -9.95 -9.89 899.
(2} 5298.92 5233.01 1790.99 4523.05 4490.65 5271.08 5.888 8366.75 6843.48
c 6997.90 -14341.19  -373.84 946.83 -3153.26  -3282.81117.29 24909.80  10653.89
2 d 1.06 0.85 0.98 1.02 0.95 0.96 1.01 1.16 1.07
g, 5290.04 4924.38 1789.96 4540.44 4468.17 524414 4.888 8025.35 6767.15
P 0.86 0.95 0.96 0.97 0.95 0.94 0.86 0.83 0.82
3 g, 3289.50 1765.58 592.12 1611.67 1656.96 2154.72 5155 4661.31 4058.23
w 0.73 0.69 0.77 0.70 0.75 0.64 0.55 0.86 0.87
4 S 1006.22 492.91 186.56 792.99 558.05 678.15 1481.791417.63 1246.49
S 6238.76 3092.35 1192.76 2693.45 3159.56 3473.87 7.8238 9573.92 10673.07
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Table 5: The calibrated parameters when Student’s distribution is used to describe the residual distbution
at Stage 4

Abercrombie  Mitta Mitta Emu Hope Orara Tarwin Amite Guadalupe San Marcos
r 1058.36 487.30 163.52 875.77 547.63 824.62 2033.781148.71 836.18
v 1.44 1.25 1.33 2.31 1.53 1.58 1.62 1.36 154




